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Abstract

We present efficient Monte Carlo algorithms for performing Bayesian inference in a

broad class of models: those in which the distributions of interest may be represented by

time marginals of continuous-time jump processes conditional on a realisation of some

noisy observation sequence. The sequential nature of the proposed algorithm makes

it particularly suitable for online estimation in time series. We demonstrate that two

existing schemes can be interpreted as particular cases of the proposed method. Results

are provided which illustrate significant performance improvements relative to existing

methods. The appendix to this document can be found online.
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1 Introduction

Throughout statistics and related fields, there exist numerous problems which are most

naturally addressed in a continuous time framework. A great deal of progress has been made

over the past few decades in online estimation for partially-observed, discrete time series.

This paper shows how to generalise standard discrete time particle filtering techniques to a

broad class of continuous time models.

Within the Bayesian paradigm, the tasks of optimal filtering and smoothing correspond

to obtaining, recursively in time, the posterior distribution of the trajectory of an unobserved

stochastic process at a particular time instant, or over some interval, given a sequence of

noisy observations made over time. State space models, in which the unobserved process is a
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discrete-time Markov chain, are very flexible and have found countless applications through-

out statistics, engineering, biology, economics and physics. In many cases of interest the

state-space model is nonlinear and nongaussian, and exact inference is intractable. Approx-

imation methods must, therefore, be employed. Sequential Monte Carlo (SMC) methods

(Cappé et al., 2007; Doucet and Johansen, 2009), approximate the sequence of posterior

distributions by a collection of weighted samples, termed particles.

However, many physical phenomena are most naturally modelled in continuous time and

this motivates the development of inference methodology for continuous time stochastic pro-

cesses. Whilst it is possible to attempt discretisation, this can be computationally expensive

and introduces a bias which is not easy to quantify. In this work we focus on estimating

the trajectory of piecewise deterministic processes (PDP’s), which evolve deterministically

in continuous time except at a countable collection of stopping times at which they randomly

jump (in the sense of potentially introducing a discontinuity into the trajectory) to a new

value. PDP’s were proposed by Davis (1984) and the connection between PDP’s and marked

point processes was investigated by Jacobsen (2006). Numerous problems can be straight-

forwardly and parsimoniously cast as filtering problems involving PDP’s. We will present

examples in the following two areas:

Mathematical Finance. Estimating the intensity of a shot noise Cox process (SNCP)

plays a role in reinsurance and option pricing schemes. Exact inference for SNCP models

is intractable. Approximate methods based on weak convergence to Gaussian processes in

specific parameter regimes (Dassios and Jang, 2005) and Markov Chain Monte Carlo have

been proposed (Centanni and Minozzo, 2006).

Object Tracking. It has been demonstrated that, in some object tracking scenarios, the

trajectory of a manoeuvring object may be more parsimoniously modelled by a PDP than by

traditional discrete-time models, see Lasdas and Davis (1989); Sworder et al. (1995); Godsill

et al. (2007) and references therein.

The contribution of this paper is the development of efficient SMC algorithms for the

filtering of any PDP. A key factor which determines the efficiency of SMC methods is the

mechanism by which particles are propagated and re-weighted. If this mechanism is not

carefully chosen, the particle approximation to the target distribution will be poor, with

only a small subset of the particles having any significant weight. Over time, this in turn

leads to loss of diversity in particle locations and instability of the algorithm. The proposed

approach combats these issues, maintaining considerably more diversity in the particle sys-

tem than previously-proposed approaches and therefore providing a better approximation to

2



the target distribution. We are specifically interested in performing inference online, that

is, as observations become available over time and in such a manner that computational

complexity and storage requirements do not increase over time. This is essential in many

applications.

In the next section, we specify the filtering model of interest more precisely. A repre-

sentative example is presented and related existing works are discussed. In section 3 we

describe the design of an SMC algorithm which is efficient for the processes of interest here.

An auxiliary technique which can further improve the efficiency of the proposed method

is also presented. We present results in section 4, for a SNCP model used in reinsurance

pricing and an aircraft tracking model and demonstrate the improvement in performance

over existing algorithms which is possible.

2 Background

Except where otherwise noted, distributions will be assumed to admit a density with respect

to a suitable dominating measure, denoted dx, and, with a slight abuse of notation, the

same symbol will be used to refer to both a measure and its associated density, so for

example π(dx) = π(x)dx. We denote by δx(·) the Dirac measure concentrated at x. For a

Markov kernel K(x, dy) acting from E1 to E2 and some probability measure µ(dx) on E1,

we will employ the following shorthand for the integral operation: µK(·) =
∫

E1
K(x, ·)µ(dx).

When describing marginals of joint densities, we will use the notation of the following form:

πn(xk) =
∫

πn(x1:n)dx1:k−1dxk+1:n.

2.1 Model Specification

Consider first a pair Markov chain (τj, θj)j∈N, of non-decreasing times, τj ∈ R
+ and param-

eters, θj ∈ Ξ with transition kernel of the form:

p(d(τj, θj)|τj−1, θj−1) = f(dτj|τj−1)q(dθj|θj−1, τj−1, τj). (1)

There is no theoretical need to impose this conditional independence structure, but we do

so here for ease of presentation. In some applications τj may be dependent upon θj−1,

or the process (τj, θj)j∈N may be non-Markovian. In principle the proposed methods can

accommodate such dependence structures.
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We next define a random continuous time counting process (νt)t≥0 as follows:

νt =
∞∑

j=1

I[0,t](τj) = max{j : τj ≤ t}.

The signal process, (ζt)t≥0, which takes a value in Ξ at any time t and has known initial

distribution, ζ0 ∼ q0(ζ0), is then defined by: ζt = F (t, τνt
, θνt

), with the conventions that

τ0 = 0, θ0 = ζ0. The function F : R
+ × R

+ × Ξ→ Ξ, is deterministic, Ξ-valued and subject

to the condition that F (τj, τj, θj) = θj, ∀j ∈ N. From the initial condition ζ0, a realisation

of the signal process evolves deterministically according to F until the time of the first jump

τ1, at which time it takes the new value θ1. The signal continues to evolve deterministically

according to F until τ2, at which time the signal acquires the new value θ2, and so on.

We will be especially interested in the number of jumps occurring in the interval [0, tn]

and therefore set kn , νtn . Our model induces a joint prior distribution, pn(kn, τ1:kn
), on the

number of jumps in [0, tn] and their locations:

pn(kn, dτ1:kn
) = S(tn, τkn

)
kn∏

j=1

f(dτj|τj−1), (2)

which has support on the disjoint union:
⋃∞

k=0{k} × Tn,k, where R
k ⊃ Tn,k = {τ1:k : 0 <

τ1 < · · · < τk ≤ tn} and where S(t, τ) is the survivor function associated with the transition

kernel f(dτj|τj−1):

S(t, τ) = 1−

∫ t

τ

f(ds|τ). (3)

(3) is the conditional probability that, given the most recent jump occurred at τ , the next

jump occurs after t. Thus (2) is the probability that there are precisely kn jumps on [0, tn],

with locations in infinitesimal neighbourhoods of τ1, τ2, ...., τkn
.

The signal process is observed in the nth window (tn−1, tn] through a collection of random

variables, Yn, conditionally independent of the past, given the signal process on (tn−1, tn].

Denote the likelihood function by g(yn|ζ(tn−1,tn]).

Given the function F , the path (ζt)t∈[0,tn] is completely specified by the initial condition

ζ0, the number of jumps, kn, their locations τ1:kn
and associated parameter values θ1:kn

. For

each n, we will be interested in sampling such quantities. For each n, we therefore specify

a distinct collection of random variables Xn = (kn, ζn,0, θn,1:kn
, τn,1:kn

), which takes its values

in the disjoint union:

En =
∞⋃

k=0

{k} × Ξk+1 × Tn,k,
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Note that En ⊂ En+1. We also write ζn,t = F (t, τνn,t
, θνn,t

).

In order to obtain the distribution of (ζt)t∈[0,tn], given the observations y1:n, it would suffice

to find πn(xn), the posterior density of Xn, because, by construction, the signal process is a

deterministic function of the jump times and parameters. This posterior, up to a constant

of proportionality, has the form:

πn(xn) ∝ pn(kn, τn,1:kn
)q0(ζn,0)

kn∏

j=1

q(θn,j|θn,j−1, τn,j, τn,j−1)
n∏

p=1

g(yp|ζn,(tp−1,tp]). (4)

As a filtering example, in order to obtain the distribution, p(ζtn|y1:n), it suffices to obtain

πn(τkn
, θkn

). Exact inference for all non-trivial versions of this model is intractable and in

section 3 we describe Monte Carlo approximation schemes.

2.2 A Motivating Example

Consider the planar motion of a vehicle which manoeuvres according to standard, piece-

wise constant acceleration dynamics. Each parameter may be decomposed into x and y

components, each containing a position, s, velocity, u, and acceleration value, a,

θj =


 θx

j

θy
j


 and F (t, τνt

, θνt
) =


 F x(t, τνt

, θνt
)

F y(t, τνt
, θνt

)


 .

Here Ξ = R
6 but the x and y components have identical parameters and evolutions; for

brevity we describe only a single component: θx
j = [sx

j ux
j ax

j ]
T and,

F x(t, τνt
, θνt

) =




1 (t− τνt
) 1

2
(t− τνt

)2

0 1 (t− τνt
)

0 0 1







sx
νt

ux
νt

ax
νt


 .

At time zero the vehicle has position, velocity and acceleration ζ0. At τj, the acceleration of

the vehicle jumps to a new, random value according to q(dθj|θj−1, τj−1, τj), which is specified

by:

q(dθx
j |θj−1, τj, τj−1) = δs

x,−
j

(dsx
j )δu

x,−
j

(dux
j )q(dax

j ),

sx,−
j = sx

j−1 + ux
j−1(τj − τj−1) + ax

j−1(τj − τj−1)
2/2,

ux,−
j = ux

j−1 + ax
j−1(τj − τj−1).
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The component of F in the y-direction is equivalent. This model is considered a suitable

candidate for the benchmark fighter-aircraft trajectory as described in Blair et al. (1998),

shown in figure 3a. As an example observation model, at each time tn the Cartesian position

of the vehicle is observed through some noisy sensor. An example inference task is then to

recursively estimate the position of the vehicle, and the time of the most recent jump in its

acceleration, given observations from the noisy sensor. We return to this example in the

sequel.

2.3 Related Work

Inference schemes based upon direct extension of the particle filter have been devised for the

process of interest. The variable rate particle filter (VRPF) of Godsill and Vermaak (2004);

Godsill et al. (2007) is one such scheme. Algorithms for filtering of Brownian motion–driven

diffusions were developed in Godsill (2007). A related method was presented independently in

Maskell (2004). The relationship between the proposed method and these existing algorithms

is made precise in the sequel.

In the standard discrete-time particle filtering context, it is well known that sampling

from the prior distribution can be inefficient, yielding importance weights of high variance.

This problem is exacerbated when constructing SMC algorithms for PDP’s.

Resampling, which is an essential component of SMC algorithms for online filtering, re-

sults in multiple copies of some particles. Under the prior distribution for the class of models

considered here, there is significant positive probability that zero jumps will occur between

one observation time and the next. Proposing from the prior distribution after resampling

can therefore result in multiple copies of some particles being propagated over several itera-

tions of the algorithm, without diversification. This phenomenon is most obvious when the

expected jump arrival rate is low relative to the rate at which observations are made (as is

the case in applications of interest). This in turn leads to the accumulation of errors in the

particle approximation to the target distribution and instability of the algorithm. Compu-

tational methods to avoid repeated calculations and diversification by ‘state regeneration’

were described in Godsill et al. (2007), but these do not address the underlying problem and

involve proposing particles without taking into account new observations.

Finally, we note that Chopin (2006) addressed a related but discrete-time change-point

problem, which propagates the posterior distribution for the time since the most recent

change-point. Chopin remarks that slow-mixing properties make the inclusion of MCMC

diversification moves (Gilks and Berzuini (2001)) in the accompanying SMC algorithm es-
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sential for efficient operation. The ‘adjustment’ moves proposed below address the same

basic problem within the framework of the present paper and diversification via MCMC

moves is also possible.

3 Methodology

The SMC samplers framework of Del Moral et al. (2006) is a general method for obtain-

ing a set of samples from a sequence of distributions which are defined on the same or

different spaces. This generalisation of the standard SMC method (in which the object

distributions exist on spaces of strictly increasing dimension) has recently been applied to

trans-dimensional problems (Doucet et al., 2006).

Given a collection of spaces (En)n∈N, upon which the sequence of probability measures

from which we wish to sample, (πn)n∈N is defined, the SMC sampler approach is to construct

a sequence of distributions (π̃n)n∈N upon the sequence of spaces

(
n∏

p=1

Ep

)

n∈N

, which have

the target at time index n as a marginal distribution at that time index. The synthetic

distributions are (assuming that a density representation exists) defined by:

π̃n(x1:n) = πn(xn)
n−1∏

p=1

Lp (xp+1, xp) , (5)

where (Ln)n∈N is a sequence of ‘backward’ Markov kernels with Ln acting from En+1 into En.

With this structure, an importance sample from π̃n is obtained by taking the path x1:n−1, a

sample from π̃n−1, and extending it with a Markov kernel, Kn, which acts from En−1 into

En, providing samples from π̃n−1 ×Kn and leading to the incremental importance weight:

wn(xn−1, xn) ∝
π̃n(x1:n)

π̃n−1(x1:n−1)Kn(xn−1, xn)
=

πn(xn)Ln−1(xn, xn−1)

πn−1(xn−1)Kn(xn−1, xn)
.

Remark 1. Although, for simplicity, we have above followed the convention in the literature

and assumed that all distributions and kernels of interest may be described by a density

with respect to some common dominating measure, this is not necessarily the case. All

that is actually required is that the product distribution defined by πn ⊗ Ln−1(d(xn, xn−1)) is

dominated by πn−1 ⊗ Kn(d(xn−1, xn)) and the importance weight is then the corresponding

Radon-Nikodỳm derivative. Thus the backward kernel Ln−1 must be chosen such that this

requirement is met.

Under this approach the importance weights at time index n depend only upon xn and
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xn−1. This means the full history of the sampler need not be stored. In the context of the

filtering problem under consideration, recall that xn actually specifies a path of (ζt)t∈[0,tn],

but we will construct samplers with importance weights which depend only upon some recent

history of xn and xn−1, yielding a scheme with storage requirements which do not increase

over time.

3.1 PDP Particle Filter

We next describe the design of a SMC scheme to target the distributions of interest in our

filtering problem. By applying the SMC samplers method to the sequence of distributions

(πn(xn))n∈N, see (4), we can obtain recursive schemes which propagate particle approxima-

tions to the distributions of various quantities in the recent history of the signal process. As

a simple example this allows us to maintain an approximation to each marginal distribution

πn(τkn
, θkn

), and thus to p(ζtn|y1:n). From the set of N particles, {(kn τkn
θkn

)(i) , w
(i)
n }Ni=1,

the filtering distribution for the signal process can be approximated by:

pN(dζtn|y1:n) =
N∑

i=1

w(i)
n δ

ζ
(i)
tn

(dζtn), ζ
(i)
tn

= F
(
tn, τ

(i)

k
(i)
n

, θ
(i)

k
(i)
n

)
.

We next give specific details of how such algorithms can be constructed. The explicit treat-

ment of the dimensionality of the problem gives us control over the proposal of different

numbers of jumps. Furthermore, the SMC samplers framework accommodates a more ef-

ficient proposal mechanism than that of the VRPF by permitting ‘adjustment’ moves as

described below.

3.1.1 Choice of Kernels

In addition to the choice of the proposal kernels Kn, it is necessary to select a sequence of

backward kernels Ln. The appearance of these kernels in the weight expression makes it clear

that it will be extremely important to select these carefully. In the proposed algorithms we

will be employing proposal kernels which are mixtures, for example each mixture component

applying a different increment to the dimensionality parameter kn. In general it is valid to

allow the mixture weights to be a function of the current state, for example:

Kn(xn−1, xn) =
M∑

m=1

αn,m(xn−1)Kn,m(xn−1, xn), ∀xn,

M∑

m=1

αn,m = 1.
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Del Moral et al. (2006) provide an expression for the optimal backward kernel for such a

proposal kernel (in the sense that the variance of the importance weights is minimized if

resampling is conducted at every step). When this optimal backward kernel is employed,

the importance weight becomes:

wn(xn−1, xn) ∝
πn(xn)

∫
En−1

πn−1(xn−1)
[∑M

m=1 αn,m(xn−1)Kn,m(xn−1, xn)
]
dxn−1

. (6)

Whenever it is possible to use the optimal backward kernel, one should do so. However,

in most instances the integral in the denominator of (6) will prove intractable, and an

approximation to the optimal kernel must be used instead. We will consider backward

kernels of the mixture form

Ln−1(xn, xn−1) =
M∑

m=1

βn−1,m(xn)Ln−1,m(xn, xn−1).

In the context of mixture proposal kernels, it was suggested in Del Moral et al. (2006),

that IS could be performed on a higher dimensional space, involving the space of mixture

component indicators, in which case the incremental importance weight is specified by:

wn(xn−1,m, xn) ∝
πn(xn)βn−1,m(xn)Ln−1,m(xn, xn−1)

πn−1(xn−1)αn,m(xn−1)Kn,m(xn−1, xn)
. (7)

The design of the proposal kernel also plays a significant role in the performance of the

algorithm. In order to minimise the variance of the importance weights, it must be well

matched to the target distribution and hence to the observations. There are many different

proposal kernels which could be employed in the context of PDP filtering. In order to

provide some guidance, we next show how to build a generic kernel, consisting of two moves,

in order to highlight issues which affect the algorithm’s performance. An algorithm built

around the below moves and possibly also involving the application of a Metropolis-Hastings

kernel (further details below), constitutes a general strategy for the filtering PDPs. Another

example can be found the appendix, where the algorithm of Maskell (2004) and the VRPF

of Godsill et al. (2007) are specified in the PDP particle filter framework.

3.1.2 Standard Moves

We here consider two generic moves, an adjustment move and a birth move.

Adjustment Move Kn,a. The dimensionality is maintained and the most recent jump time
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τn−1,kn−1 , is replaced by a draw from a distribution hn(·|xn−1) with support (τn−1,kn−1−1, tn],

yielding a new jump time τn,kn
.

Kn,a(xn−1, dxn) = δkn−1(kn)δτn−1,1:kn−1−1
(dτn,1:kn−1)δθn−1,1:kn−1

(dθn,1:kn
)hn(dτn,kn

|xn−1). (8)

It can be shown that the optimal choice (in the sense of minimizing the conditional variance

of the importance weight, given that an adjustment move is to be made and that the optimal

backwards kernel is employed) of hn(·|xn−1) is the full conditional distribution πn(·|xn\τn,kn
),

where xn \ τn,kn
denotes all components of xn other than τn,kn

. A similar adjustment move

can be devised to obtain a new value for the most recent parameter θn,kn
.

Birth Move Kn,b. The dimensionality is increased and additional jump times and param-

eters are sampled. In a simple case, the number of jumps is incremented, kn = kn−1 + 1, a

new jump, τn,kn
is proposed from a distribution hn(·|τn−1,kn−1) on (τn−1,kn−1 , tn], and a new

parameter is then drawn from a proposal distribution ηn(·|xn \ θn,kn
):

Kn,b(xn−1, dxn) = δkn−1+1(kn)δτn−1,1:kn−1
(dτn,1:kn−1)

× δθn−1,1:kn−1
(dθn,1:kn−1)hn(dτn,kn

|τn−1,kn−1)ηn(dθn,kn
|xn \ θn,kn

). (9)

It can be shown that the optimal choice of ηn(·|xn \ θn,kn
) is the full conditional πn(θn,kn

|xn \

θn,kn
), given that a birth move is to be made, the optimal backwards kernel employed and

τn,kn
. If τn,kn

≤ tn−1 this amounts to altering the trajectory (ζt)t∈[τn,kn ,tn−1] and extending

the trajectory onto (tn−1, tn].

It should be noted that, due to the nested structure of the sequence (En)n∈N and the

support of the sequence (πn)n∈N, there is no technical requirement to include a dimensionality

reducing component, or death move, in the proposal. It is technically possible to do so,

although the corresponding optimal backward kernel is rarely available exactly. Birth/death

moves can also be applied via a trans–dimensional MCMC kernel.

Design of proposal kernels. The full conditional distributions for the most recent jump

time and associated parameter are respectively given by:

πn(τn,kn
|xn \ τn,kn

) ∝ S(tn, τn,kn
)f(τn,kn

|τn,kn−1)q(θn,kn
|θn,kn−1, τn,kn

, τn,kn−1)

·
n∏

p=Qn

g(yp|ζn,(tp−1,tp]) · I[τn,kn−1,tn](τn,kn
), (10)

πn(θn,kn
|xn \ θn,kn

) ∝ q(θn,kn
|θn,kn−1 , τn,kn

, τn,kn−1)
n∏

p=Q′

n

g(yp|ζn,(tp−1,tp]), (11)
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where Qn = inf{p : tp ≥ τn,kn−1} and Q′
n = inf{p : tp ≥ τn,kn

}. When the full conditional

distributions are not available analytically, sensible approximations should be employed. We

note that such approximations do not affect the exactness of the algorithm; just the estimator

variance.

One possible approach to the adjustment move is to propose by adding a small random

perturbation to the existing most recent jump time. This technique is applied in section

4.2. An alternative, but more expensive strategy would be to obtain a piecewise linear

approximation of (10) by evaluating the right hand side of (10) on a grid of points in

(τn,kn−1, tn], interpolating and normalizing. Methods to approximate (11) will usually be

model–specific. To provide guidance, we next give an illustrative example. Consider the

case in which, a–priori, the parameters evolve according to

θn,kn
= F (τn,kn

, τn,kn−1, θn,kn−1) + Un,

where Un is an independent disturbance of known distribution and where observations are

made point–wise, i.e.,

Yn = G(ζtn) + Vn = G(F (tn, τn,kn
, θn,kn

)) + Vn,

where G is a possibly nonlinear observation function and Vn is an independent noise distur-

bance of known distribution. For (11), it may be possible to obtain a tractable approximation

of the likelihood terms by local–linearisation of G◦F . The same approach may be employed

to approximate q(θn,kn
|θn,kn−1, τn,kn

, τn,kn−1) and hence the full conditional distribution. Ap-

proximations using this approach were applied in Whiteley et al. (2007).

Backward Kernel and Importance Weights. Given a proposal kernel consisting of one or

more moves, we need a strategy for designing a corresponding backward kernel. We adopt

the approach as in Del Moral et al. (2006) and first design one backward kernel component

corresponding to each proposal kernel component, and then combine the backward kernel

components.

Sensible approximations of the optimal backwards kernel must be employed, whilst ensur-

ing that the requirement described in remark (1) is met. For the forward kernel components

described above, we advocate the use of the following backward kernel components or ap-
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proximations thereof:

Ln−1,a(xn, xn−1) =
πn−1(xn−1)Kn,a(xn−1, xn)

πn−1Kn,a(xn)
, Ln−1,b(xn, xn−1) =

πn−1(xn−1)Kn,b(xn−1, xn)

πn−1Kn,b(xn)
.

We then need a way to combine these backward kernel components. For the two move

types above, a strategy which has been found to work in practice is simply to set, for all m,

βn−1,m(xn) = 1/M , where M is the total number of components in the proposal kernel. This

approach can be expected to perform well when there is little overlap in support of πn−1Kn,b

and πn−1Kn,a. Then, using the expression in (7), the corresponding importance weights are

given by the following expressions.

For the adjustment move applied to the most recent jump time τn,kn
, employing the

optimal proposal distribution, the incremental weight is given by:

wn(xn−1, xn) ∝
πn(xn)πn−1(θn−1,kn−1|xn−1 \ θn−1,kn−1)

αn,a(xn−1)πn−1(xn−1)πn(θn,kn
|xn \ θn,kn

)

=
1

αn,a(xn−1)

S(tn, τn,kn
)

S(tn−1, τn−1,kn−1)

f(τn,kn
|τn,kn−1)

f(τn−1,kn−1 |τn−1,kn−1−1)

·
q(θn,kn

|θn,kn−1, τn,kn
, τn,kn−1)

q(θn−1,kn−1|θn−1,kn−1−1, τn−1,kn−1 , τn−1,kn−1−1)

·
πn−1(τn−1,kn−1 |xn \ τn−1,kn−1)

πn(τn,kn
|xn−1 \ τn,kn

)

∏n

p=Rn
g(yp|ζn,(tp−1,tp])∏n−1

p=Rn
g(yp|ζn−1,(tp−1,tp])

, (12)

where Rn = inf{p : tp ≥ (τn,kn
∧τn−1,kn−1)} and with the convention

∏n−1
p=n g(yp|ζn−1,(tp−1,tp]) =

1. For the birth move, employing the optimal proposal distribution,

wn(xn−1, xn) ∝
πn(xn)

αn,b(xn−1)πn−1(xn−1)hn(τn,kn
|τn−1,kn−1)πn(θn,kn

|xn \ θn,kn
)

=
1

αn,b(xn−1)

S(tn, τn,kn
)

S(tn−1, τn−1,kn−1)

f(τn,kn
|τn,kn−1)

hn(τn,kn
|τn−1,kn−1)

·
q(θn,kn

|θn,kn−1, τn,kn
, τn,kn−1)

πn(θn,kn
|xn \ θn,kn

)

∏n

p=R′

n
g(yp|ζn,(tp−1,tp])∏n−1

p=R′

n
g(yp|ζn−1,(tp−1,tp])

, (13)

where R′
n = inf{p : tp ≥ τn,kn

)} and with the convention
∏n−1

p=n g(yp|ζn−1,(tp−1,tp]) = 1. When

other proposal distributions are used, the incremental weights are of the same form, but

with the proposal distributions employed substituted for the corresponding full conditionals

in (12) and (13).

Proposal Mixture Weights. If the proposal mixture weights, αn,a(xn−1) and αn,b(xn−1)

are chosen to depend only on a recent history of xn−1, then the incremental weights (12)

and (13) depend only upon a recent history of xn. A simple choice of these proposal mixture
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weights is in terms of prior probabilities. If employing a kernel which consists of a birth move

and an adjustment move, we could define the mixture weight for the adjustment, αn,a(xn−1),

move as follows:

αn,a(xn−1) = S(tn, τn−1,kn−1), (14)

which is the conditional prior probability of zero jumps in (τn−1,kn−1 , tn], given τn−1,kn−1 .

Ideally we would like to take into account information from the observations in order to adapt

the mixture weights and minimize the variance of the importance weights. Unfortunately

this is usually intractable in practice.

3.2 Computational Issues and Further Considerations

In order for the computational cost of evaluating the incremental importance weights to be

bounded uniformally over iterations of the algorithm, it is necessary to bound the random

number of likelihood terms which need to be evaluated in (12) and (13) (including implicitly

the full conditional distributions, (10) and (11), if they are employed). This can be achieved

by imposing some constraints on the proposal mixture weights and proposal distributions.

To bound the cost of evaluating (12), the proposal mixture weights can be chosen such that

an adjustment move is never applied when tn − τn−1,kn−1−1 exceeds some threshold, e.g.,

αn,a(xn−1) =





0 if tn − τn−1,kn−1−1 > tmax,

S(tn, τn−1,kn−1) otherwise,

where tmax is chosen by the user. In order for the computational cost of evaluating (13) to

be bounded, the support of hn(·|τn−1,kn−1) could be restricted to (tn− tmax, tn]∩ (τn−1,kn−1 , tn]

whenever tn − τn−1,kn−1−1 > tmax. Under this strategy, and on any event, the number of

likelihood evaluations in the importance weights and full conditionals is bounded by a de-

terministic constant which depends on tmax but not on n. In practice, tmax can be chosen to

be large enough so that the event such that tn − τn−1,kn−1 > tmax rarely occurs.

A technical requirement of importance sampling schemes is that support of the proposal

distribution includes that of the posterior distribution. It appears never to have been men-

tioned in the literature that in the context of trans-dimensional inference in time series, this

imposes the requirement that a forward kernel capable of proposing any positive number of

births in the interval (tn−1, tn] must be employed if there is a positive probability associated

with such configurations under the target distribution. In principle it might be sufficient to

employ a birth move which introduces 1+B new jumps, with B a Poisson random variable of
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Algorithm 1 PDP Particle Filter
1: n = 1
2: for i = 1 to N do

3: X
(i)
1 ∼ η(·) {where η(x) is an instrumental distribution.}

4: W
(i)
1 ∝

π1(X
(i)
1 )

η(X
(i)
1 )

5: end for

6: n← n + 1
7: for i = 1 to N do

8: X
(i)
n ∼ Kn(X

(i)
n−1, ·)

9: W
(i)
n ∝ W

(i)
n−1

πn(X
(i)
n )Ln−1(X

(i)
n ,X

(i)
n−1)

πn−1(X
(i)
n−1)Kn(X

(i)
n−1,X

(i)
n )

10: end for

11: Resampling can be conducted at this stage.
12: Optionally, move each X

(i)
n according to a πn-invariant Markov kernel.

13: goto 6

low intensity, to ensure convergence (asymptotically in the number of particles) to the target

distribution. In practice, for finite samples, if the intensity is small enough it is equivalent

to never proposing more than a single new jump.

Resampling should be carried out after any iteration which causes the effective sample

size (ESS), Kong et al. (1994), to fall below a reasonable threshold (typically around half

of the total number of particles), to prevent the sample becoming degenerate with a small

number of samples having very large weights. Post–resampling, the importance weights

are set to be uniform. After resampling at the nth iteration, a Markov kernel of invariant

distribution πn, for example a reversible jump Metropolis-Hastings kernel, can be applied to

the particle system.

The generic scheme for a PDP particle filter is given in algorithm 1. As is demonstrated

in the examples, inserting a mixture of the moves as described in 3.1.2 and the specified

weight expressions into this algorithm provides a generic technique for the filtering of PDPs.

3.3 Auxiliary Methods

The auxiliary particle filter of Pitt and Shephard (1999) introduces a set of auxiliary parti-

cle weights before the resampling step, with aim of ‘pre-selecting’ particles so as to reduce

the variance of the importance weights at the next time step. In Johansen and Doucet

(2008), the auxiliary method was reinterpreted as a standard sequential importance resam-

pling algorithm targeting a sequence of auxiliary distributions, which themselves form the

proposal distributions of an IS scheme. The generalisation from particle filters to general

SMC samplers has also been made in Johansen and Doucet (2007).

The idea is to use the observation at time n + 1 to guide the weighting of the particle
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set at time n so that resampling does not eliminate particles which will be more favourably

weighted once that observation has been taken into account. This pre-weighting is then

corrected for by importance weighting after the resampling step. An auxiliary version of the

algorithm presented above amounts to an SMC sampler targeting an auxiliary sequence of

distributions on (En)n≥0, which will be denoted by (µn)n≥1, and a sequence of importance

weights, (W̃n) which correct for the discrepancy between (µn)n≥1 and (πn)n≥1.

We will focus on auxiliary distributions of the following form:

µn(xn) ∝ Vn(τn,kn
, θn,kn

, yn+1)πn(xn)

where for each n, Vn : R
+ × Ξ → (0,∞) is a potential function, i.e. the algorithm will

pre-select particles on the basis of the most recent jump time and associated parameter and

their interaction with the next observation. It is important to choose the potential function

Vn sensibly, guidance is provided in Pitt and Shephard (1999) and Johansen and Doucet

(2007) taking into account recent developments. An example Vn is presented in section 4.2.

The application of the auxiliary method to the example sampler above is described in

Algorithm 2. Steps 5 and 13 in this algorithm indicate where the proposed scheme yields

particle sets targeting the distributions of interest, (πn)n∈N, in the sense of approximating

expectations with respect to these distributions. The theoretical properties of the proposed

Algorithm 2 Auxiliary PDP Particle Filter
1: n = 1
2: for i = 1 to N do

3: X
(i)
1 ∼ η(·) {where η(x) is an instrumental distribution.}

4: W̃1(X
(i)
1 ) ∝

π1(X
(i)
1 )

η(X
(i)
1 )

5:
∫

ϕ(x1)πn(x1)dx1 ≈
∑N

i=1 W̃1(X
(i)
1 )ϕn(X

(i)
n )

∑N
i=1 W̃1(X

(i)
1 )

6: W1(X
(i)
1 ) ∝ V1(τ

(i)
1,k1

, θ
(i)
1,k1

, y2)W̃1(X
(i)
1 )

7: end for

8: n← n + 1
9: Resample from distribution defined by {W (i)

n−1}
N
i=1

10: for i = 1 to N do

11: X
(i)
n ∼ Kn(X

(i)
n−1, ·)

12: W̃
(i)
n (X

(i)
n−1, X

(i)
n ) ∝ 1

Vn−1(τ
(i)

n−1,k
(i)
n−1

,θ
(i)

n−1,k
(i)
n−1

,yn)

πn(X
(i)
n )Ln−1(X

(i)
n ,X

(i)
n−1)

πn−1(X
(i)
n−1)Kn(X

(i)
n−1,X

(i)
n )

13:
∫

ϕ(xn)πn(xn)dxn ≈
∑N

i=1 W̃n(X
(i)
n−1,X

(i)
n )ϕn(X

(i)
n )

∑N
i=1 W̃n(X

(i)
n−1,X

(i)
n )

14: Wn(X
(i)
n−1, X

(i)
n ) ∝ Vn(τ

(i)

n,k
(i)
n

, θ
(i)

n,k
(i)
n

, yn+1)W̃n(X
(i)
n−1, X

(i)
n )

15: end for

16: goto 8
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method could be established using the results and techniques of Chopin (2004), Del Moral

et al. (2006) and Johansen and Doucet (2007).

4 Simulation Study

In the first example we illustrate a minimal SMC implementation showing that substantial

performance improvements can be obtained with a very slight increase in complexity. The

second example shows that, using a mixture of moves and the proposed auxiliary technique,

good results can be obtained without introducing additional MCMC moves.

4.1 Shot Noise Cox Process

The signal process is the intensity of a Shot noise Cox Process and takes values in Ξ = R
+.

The model is specified by the following distributions:

f(τj|τj−1) =λτ exp(−λτ (τj − τj−1))× I[τj−1,∞)(τj),

q(ζ0) = exp(−λθζ0)× I[0,∞)(ζ0),

q(θj|θj−1, τj, τj−1) =λθ exp(−λθ(θj − ζ−
τj

))× I[ζ−τj
,∞)(θj),

where ζ−
τj

= θj−1 exp(−κ(τj − τj−1)), and F (t, τ, θ) = θ exp(−κ(t− τ)).

Given ζ(tn−1,tn ], the observation Yn is an inhomogeneous Poisson process with intensity

ζ(tn−1,tn ]. The likelihood function is given by:

g(yn|ζ(tn−1,tn ]) = exp

(
−

∫ tn

tn−1

ζsds

) ∏

i

ζyn,i

where yn,i is the time of the ith event observed in (tn−1, tn]. In reinsurance pricing ap-

plications, the observed events model the claims on an insurance portfolio. The jumps of

the signal process model ‘primary events’: incidents which result in insurance claims. An

approximation to the optimal filter for this model was derived in Dassios and Jang (2005).

Their approximation of the optimal filter is poor when the rate of the primary event process,

λτ is low, as it is in economically-important settings. The method we propose suffers from

no such restrictions. Similar models find applications in the pricing of options, for example

Centanni and Minozzo (2006).

We compare the performance of the basic VRPF approach (referred to as Scheme 1) to

the proposed algorithm (Scheme 2), on data simulated from the model with the following
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parameter settings: κ = 0.01, λτ = 1/40, λθ = 2/3, tn − tn−1 = ∆ = 50 and 500 particles.

The true hidden trajectory and a histogram of the observed points are given in figure 1.

To demonstrate a simple approach to design of the proposal kernel, we used a single move;

the proposal kernel is a birth move, proposing a new jump time in the interval (tn−1, tn] and

then drawing the associated parameter from its full conditional distribution:

Kn(xn−1, dxn) = δkn−1+1(kn)δτn−1,1:kn−1
(dτn,1:kn−1)

× δθn−1,1:kn−1
(dθn,1:kn−1)hn(dτn,kn

)πn(dθn,kn
|xn \ θn,kn

),

where hn(dτn,kn
) is the proposal distribution for the time of the new jump time. This was

built from a histogram of the data observed on (tn−1, tn] in the following manner. Consider

partitioning the interval (tn−1, tn] into m bins of equal length. Let cp be the number of

observed events in the pth bin. For p ∈ {1, 2, ...,m− 1} define dp = cp+1− cp. Then define a

piecewise constant probability density function on (tn−1, tn] by partitioning the interval into

m− 1 sub-intervals of equal length. In the pth such sub-interval the density has the value:

hn(τ) =
exp(dp)∑m−1

q=1 exp(dq)
, τ ∈ (tn−1 + (p− 1)δ, tn−1 + pδ],

where δ = (tn − tn−1)/(m− 1). The corresponding component of the backwards kernel is:

Ln−1(xn, dxn−1) = δkn−1(kn−1)δτn,1:kn−1
(dτn−1,1:kn−1)δθn,1:kn−1

(dθn−1,1:kn−1).

Systematic resampling was applied when the ESS dropped below 40%. After resampling,

a trans-dimensional Metropolis-Hastings kernel consisting of a sequence of three moves was

applied. Firstly, a birth/death reversible jump move, with the birth being made by drawing a

new jump time from the uniform distribution on (τn,kn
, tn] and then drawing the parameter

from the full conditional distribution. Secondly, a perturbation of the most recent jump

time, τn,kn
, drawing from a Gaussian kernel centred at τn,kn

and truncated to the interval

(τn,kn−1, tn]. Thirdly, a perturbation of the parameter associated with the most recent jump

time, drawing from the full conditional distribution.

Resampling was required during fewer than 40% of the algorithm’s iterations. Despite the

fact that the proposal kernel consisted only of a birth move, it was found that the algorithm

did not significantly over-fit the data: for the date shown in figure 3a), the true number of

jumps is 34 and for a typical run, the MAP number of jumps was 39. The MMSE filtering

estimate of ζt obtained using the proposed algorithm is shown in figure 1.
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Figure 2 shows a count of the number of unique particles, over time, at the final iteration

of the algorithm. These plots were constructed as follows. The particle histories {ζ(i)
[0,2000]}

N
i=1

were stored at the final iteration of the algorithm. For each value of t, the number of unique

particles in {ζ(i)
t }

N
i=1 were then counted and plotted against t.

The diversity of particle locations alone does not tell us everything about the efficiency

of the algorithm. Whilst there may be many unique particles, the importance weights may

have high variance, in which case the quality of the particle approximation will be low. In

order to portray this characteristic, we also plot the same quantities, but after resampling is

applied (whilst resampling can increase the variance of an estimate made from the particle

set, for systematic resampling this increase is typically extremely small). These quantities

demonstrate the degree of degeneracy of both the particle locations and the degeneracy of

the importance weights. Pre-resampling, Scheme 1 exhibits some diversity in the recent

history of particle locations, note that the number of unique particles is less than the total

number. This is an example of the phenomenon described in section 2.3. Degeneracy of the

importance weights means that this diversity is reduced when resampling occurs. Scheme

2 exhibits diversity in particle locations much further back in time, with all particles being

unique in the recent history. Reduction in the number of unique particles when resampling

occurs is less severe than for Scheme 1, demonstrating that the importance weights have

lower variance.

0 200 400 600 800 1000 1200 1400 1600 1800 2000
0

5

10

0 200 400 600 800 1000 1200 1400 1600 1800 2000
0

20

40

Figure 1: SNCP model. Top: True intensity (solid) and MMSE filtering estimate (dotted) against
time (secs.). Bottom: histogram of realised observations with bin length 2.5.

4.2 Object Tracking

This example illustrates the performance of the proposed methods on a constant acceleration

tracking model applied to the benchmark fighter aircraft trajectory depicted in figure 3a),
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Figure 2: Unique particles at the final iteration vs time (secs.). Solid: Pre-resampling. Dotted:
Post-resampling. Left: Scheme 1. Right: Scheme 2.

which has duration 185 seconds. The model is as specified in subsection 2.2, with acceleration

components being drawn independently from an isotropic Gaussian distribution of mean zero

and standard deviation σθ = 10m/s2. 37 additive, isotropic Gaussian observations of the

position of the aircraft, with standard deviation σy = 200m, were generated at intervals

of tn − tn−1 = ∆ = 5s, also shown in figure 3a). The inter-jump times were chosen to be

Gamma distributed, with shape and scale parameters 10 and 2.5 respectively, corresponding

to a mean inter-arrival time 25s. For this conditionally linear-Gaussian model it is possible

to analytically integrate out the parameters θ0:kn
, and only jump times need be sampled.

This is the direct analogue of Rao-Blackwellised SMC for discrete-time filtering, see Doucet

et al. (2001) and Chopin (2004) for a discussion. Comparisons were made between three

schemes described below. In all cases, systematic resampling was employed.

Scheme 1. The basic VRPF algorithm, sampling from the prior, see the appendix for

specification of the kernels. Resampling was performed when the ESS fell below 50%.

Scheme 2. A forward mixture kernel with two components. The first component is a

birth move which adds a single point uniformally in (τn,kn−1, tn]:

Kn,1(xn−1, dxn) = δkn−1+1(kn)δτn−1,1:kn−1
(dτn,1:kn−1)×

dτn,kn

tn − τn,kn−1

I(τn,kn−1,tn](τn,kn
).

For this move, the corresponding component of the backwards kernel is:

Ln−1,1(xn, dxn−1) = δkn−1(kn−1)δτn,1:kn−1
(dτn−1,1:kn−1).

The second component is an adjustment move in which a Gaussian random walk kernel,

restricted to (τn,kn−1, tn] is applied to the most recent jump time. This component of the

kernel is given by:

Kn,2(xn−1, dxn) ∝ I(τn−1,kn−1−1,tn](τn,kn
)N (τn−1,kn−1 , σ

2
a)dτn,kn

× δkn−1(kn)δτn−1,1:kn−1−1
(dτn,1:kn−1).
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A Gaussian kernel of the same variance, restricted to (τn−1,kn−1−1, tn−1], is used for the

corresponding component of the backward kernel:

Ln−1,2(xn, dxn−1) ∝ I(τn−1,kn−1−1,tn−1](τn−1,kn−1)N (τn,kn
, σ2

a)dτn−1,kn−1

× δkn
(kn−1)δτn,1:kn−1

(dτn−1,1:kn−1−1).

The forward mixture weights were defined as in (14), with the backward mixture weights set

to uniform. Resampling was performed when the ESS fell below 50%.

Scheme 3. As 2. but with an auxiliary scheme using an approximation of the following

auxiliary weighting function:

Vn(τn,kn
, θn,kn

, yn+1) =
S(tn+1, τn,kn

)

S(tn, τn,kn
)

p(yn+1|y1:n, kn+1 = kn, τn,1:kn
)

+
1

(S(tn, τn,kn
))2

{∫

(tn,tn+1]

f(τn+1,kn+1 |τn,kn
)S(tn, τn+1,kn+1)

× p(yn+1|y1:n, kn+1 = kn + 1, τn+1,1:kn+1)dτn+1,kn+1

}
.

The one-dimensional integral is approximated using standard numerical techniques (note this

does not affect the theoretical validity of the algorithm). The motivation for this auxiliary

weighting function is that it approximates the predictive likelihood. Resampling was applied

at every iteration.

35 40 45 50
−10

0

10

20

30

35 40 45 50
−10

0

10

20

30

Figure 3: Benchmark 2D position trajectory (solid). The trajectory begins around (66,29), with
the aircraft executing several manoeuvres before the trajectory terminates after a duration of 185
seconds. Left: observations with additive Gaussian noise. Right: MMSE filtering estimate (dotted).
Scale is in km.

It was found that all three schemes yielded roughly the same error performance in es-

timating ζtn from each πn and little decrease in estimation error was observed using more
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than 200 particles. This can be attributed to the Rao-Blackwellised nature of the model.

For an example of a model in which the parameters are not integrated out, see Whiteley

et al. (2007); in this instance the VRPF exhibits significantly greater error in this filtering

task, and is substantially outperformed by an algorithm which includes adjustment moves.

MMSE estimates of the position of the vehicle using Scheme 3, and made before resampling,

are shown in figure 3b). However, as more of the recent history of the trajectory is con-
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Figure 4: Unique particles at the final iteration vs time (secs). Pre-resampling (solid), Post-
resampling (dotted). Top left: Scheme 1. Top Right: Scheme 2. Bottom: Scheme 3.

sidered, including the times of the jumps in acceleration, the superior performance of the

proposed method becomes apparent. Figure 4 provides insight into the relationship between

the particle diversity and weight degeneracy for the three algorithms, at the final iteration

of the algorithm.

In order to show the diversity of particle set, we plot the number unique particles at the

final iteration, as a function of time. Again we consider the particle set before and after

resampling, but note that in the case of the Scheme 3, for the purposes of these diagnostics,

we applied resampling at the final iteration according to the importance weights from which

an estimate over the target distribution would be drawn. The difference between the pre and

post-resampling plots for each algorithm indicate the variance of the importance weights:

when the variance is high, the number of unique particles is relatively low post-resampling.

For these tests the adjustment kernel standard deviation was set to σa = ∆/1000s.

From figure 4 it can be seen that Scheme 1 exhibits particle diversity only in the very

recent history, even before resampling. Scheme 2 exhibits much more diversity, especially

between the times of the last and penultimate observations. However, much of this diversity

is lost upon resampling. The plot of Scheme 3 shows that a significant proportion of diversity

arising from the adjustment move and the births in (τn,k−1, tn] is not lost after resampling. It
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(b) Scheme 2
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Figure 5: Weighted histograms of particle jump times at final iteration, pre-resampling against
time (secs.). In each sub figure, top to second bottom: τn,k, τn,k−1, τn,k−2, τn,k−3, τn,k−4 and
bottom: true acceleration magnitude (ms−2). σa = ∆/1000. N = 5000.
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was found that choosing σa to be of order less than that of the inter-observation time avoided

weight degeneracy. Figure 5 compares the performance of algorithms in terms of estimating

jump locations. The use of the adjustment move in Scheme 2 yields a small improvement

over Scheme 1. However, the results for Scheme 3 show a marked improvement. Note that,

in the model, jumps occur in the acceleration but it is only the position of the vehicle which

is observed. Therefore optimal estimates of jump times in the very recent history should

exhibit large variance, the results for Scheme 3 are commensurate with this.

5 Conclusions

We have presented a broad class of algorithms for the filtering of Piecewise Deterministic

processes and demonstrated that this class incorporates existing algorithms as particular

cases. The significance of this work is that the proposed algorithms allow for the use of

principled techniques which lead to substantial improvements in efficiency when compared

with existing techniques.

6 Supplemental Materials

Appendix: Specification of VRPF algorithm. (Appendix.pdf, portable document format)

Matlab Code: Various functions for implementing the algorithms. (smc.m, Matlab m-file)
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