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Abstract. We sketch a brief development of large cardinals as they apply to determinacy results and to inner model
theory.

1 Introduction
The following article grew out of a series of three tutorials at the conference on the development
of large cardinal hypothesis and connections to proofs of the determinacy of two person perfect
information Gale-Stewart games. The intention was to give a perspective, not to specialists in
set theory, who in any case either would have no need for such, or would know where to go find
it, but to those interested in the foundations of set theory already with some technical knowledge
of Zermelo-Fraenkel axiomatics, and the construction of Gödel’s universe L, but who may not
have seen a systematic production of the hierarchy of increasing strong axioms of infinity arising
from embeddings of the universe V and in particular to the connections of these axioms with
the descriptive set theory of the real continuum. It was hoped that the lectures would provide
a fast ascent without oxygen to some of the peaks of the last twenty years. In this we believed
that a lot could be learnt, not in detail, nor even attempting to provide a working knowledge (for
which a longer term devotion would be required, and again for which there are thorough texts)
but that would bring about at least some familiarity with the technical tools, and some insight as
to how they can be used. We should also like to urge the reader to study Jensen’s masterly, and
non-technical, overview [9] if they have not already done so.

1.1 Preliminaries:

Our notation and formalisms are quite standard and can be found in many text books, but in
particular we mention [8] and [10]. We let L∈̇ denote the first order language of set theory; by
ZF we mean a formulation of first order Zermelo-Fraenkel.

By L∈̇,Ȧ we mean the standard language of set theory with an (optional) predicate Ȧ. In
both these languages we freely make use of terms abstracts t = {z | ϕ(~y, z)} as if they were part
of the languages. ZFA is then a formulation of ZF with instances of the predicate Ȧ allowed in
the axioms. A set is transitive, Trans(x), if every element of x is at the same time a subset of x.

The class of all ordinals is denoted On; Sing is the class of singular ordinals; Card is
the class of all cardinals (we assume AC throughout and that cardinals are initial ordinals).
SingCard, Reg are the classes of singular cardinals and regular cardinals respectively. Inacc
is the class of (strongly) inaccessible cardinals. For a limit ordinal τ , by the “cofinality of τ”,

1The author would like to warmly thank the organisers of the meeting for the opportunity to give these lectures.
He would also like to thank the Isaac Newton Institute where these notes were completed whilst the author was a long
term Fellow on the program ‘Syntax and Semantics.’
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cf(τ), is meant the least δ so that there is a function f : δ −→ τ with ran(f) unbounded in τ
(τ ∈ Reg then, if cf(τ) = τ ). The rank function,“ρ(x) = α” is ∆ZF

1 and the relation of y and
α: “y = Vα” is ΠZF

1 . We let xy denote the set of all functions from the set x to y. It is often
customary to deviate from the practice when x = ω and we are considering, e.g. , ωω or ωX as
spaces and then we write ωω or Xω.

It is useful to fix a recursive enumeration 〈τi | i < ω〉 of Seq =df
<ωω so that:

(i) τ0 = (), τ1 = (0); (ii) i ≥ |τi| (=df lh(τi)); (iii) τi ⊂ τj −→ i < j. (We may similarly
define recursive enumerating sequences 〈τki | i < ω〉 for k(<ωω).)
The Kleene-Brouwer ordering is defined as follows: for s, t ∈ <ω On put

s <KB t↔ s ⊃ t ∨ (s(i) < t(i) where i ∈ ω is least with s(i) 6= t(i).
Finally recall that a set B ⊆ R is Π1

n if it can be defined in Z2 with
x ∈ B ↔ ∃f1∀f2 · · ·Qfn∀kR(k,

−→
fi � k, x � k) with R ∈ Σ0

1

with the fi ∈ NN and k ∈ N. (Z2 is a formalisation of second order number theory, or analysis,
see [26].) As is usual in set theory, we make little distinction between R and ωω, or even P(ω)
occasion.

2 Inner Models, Elementary Embeddings, and Covering Lemmas

Recall that Gödel constructed an inner model of V (here identified with the hierarchy of well-
founded sets WF =

⋃
α∈On Vα) by taking a “definable power set” operation x −→ Def(x)

where x is shorthand for the first order structure 〈x,∈〉 = 〈x,∈�x × x〉 (on occasion this is
augmented as relativised operation x −→ DefA(x) using definability over 〈x,A �x,∈�x × x〉
in the L∈̇,Ȧ language. These two Def functions are given by ∆ZF

1 or ∆ZFA
1 terms and hence are

absolute.
Then (“V = L”)L was shown by Gödel ([6]), as well as (“AC”)L, (“GCH”)L thereby

establishing: Con(ZF) −→ Con(ZFC + GCH). Why should V = L? As this is a hierarchy of
sets constructed by syntactico-semantical means, and not responding to any particular intuitions
about set existence, most set-theorists do not believe V = L (but see the discussion in [9]).

We shall see good reasons for asking whether there are other inner models, some associated
with the notions of elementary embeddings. We first define our terms.

Definition 2.1 (Inner Model of ZF) IM(M)↔ Trans(M) ∧On ⊆M ∧ (ZF)M .

In the above we are assuming that M is given by some term of the language. The notion of
being an inner model of ZF actually has a first order formalisation: it is well known (see Jech
[8]) that

ZF ` IM(M)↔ ∀u ⊆M∃v ⊇ u(Trans(v) ∧Def(〈v,∈〉) ⊆M).

We single out the following beautiful theorem as the motivation for this account:

Theorem 2.2 (ZF) The following are equivalent:
a) ∃j : L −→e L.
b) ∃γ(ω2 ≤ γ ∈ SingCard∧(γ /∈ SingCard)L);
c) Determinacy(Π1

1)

This is actually a culminative theorem established over several years: a)↔b) Jensen [3]; a)
→ c) Martin [15]; c) → a) Martin-Harrington [7].

Remarks 1) a) is sometimes stated as: “0# exists”. Martin actually showed that the determi-
nacy of games at the third level of the difference hierarchy of analytic sets, proved the existence
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of 0#. This was then reduced by Harrington in the work cited. For an elegant proof of the
Harrington result see [22].

2) Much large cardinal theory is about which ultrafilters can or do exist on (large) sets; in
particular when those large sets are the power set of some cardinal of an inner model, then there
is usually an equivalent formulation in terms of elementary embeddings, as defined below, of
that inner model such as stated at a).

We explore the background to Jensen’s a)↔b). Again we have to define some terms:

Definition 2.3 Let M,N be inner models of ZF, j : M −→ N is an elementary embedding if
the function j takes elements x ∈ M to elements j(x) ∈ N in a ‘truth preserving way’: for any
formula ϕ(v0, . . . , vn−1) and any ~x = x0, . . . , xn−1 ∈M, then

ϕ(~x)M ↔ ϕ(
−→
j(x))N .

In this case we write: j : M −→e N . (We shall always assume that j 6= id, and shall
write cp(j) for the critical point: the least ordinal α so that j(α) > α, if it exists.)

(ii) If the above holds, but with the formulae restricted to a certain class, eg. the Σk formulae,
then we write j : M −→Σk N .

In the above scheme, we have assumed that the models M,N satisfy IM(M), IM(N)
above and are given by terms of our basic set theoretical language, and the same holds true
for j. Our embeddings in this paper will all have critical points in the ordinals. It is an easy
consequence of the ZF axioms (using the definition of the rank function, the Vα hierarchy, and
Replacement) that if j : M −→Σ1 N , then by a (meta-theoretic) induction on k we may prove
j : M −→Σk N for any k ∈ ω.

If ∃j : L −→e L then we may define a derived measure U = Uj on κ = cp(j) as follows:
we set

X ∈ Uj ↔ X ∈ P(κ)L ∧ κ ∈ j(X).

Then Uj is a normal measure ([10],p 52) on P(κ)L. Suppose we have j : M −→e N ;
cp(j) = κ, define U = Uj . Then we construct an ultrapower defining:

|Ult(M,U)| = {[f ]∼ : f ∈ κM ∩M}
where

f ∼ g ↔ {α | f(α) = g(α)} ∈ U
and on which we can define a pseudo-∈ relation E:

fEg ↔ {α | f(α) ∈ g(α)} ∈ U.
Because of where Uj comes from, we are guaranteed E is wellfounded on Ult(M,U) and

in fact we have:
j : (M,∈)

π : ((Ult(M,Uj), E)) ∼= (N,∈)

(N,∈)

k

We can, and often do, have (M,∈) = (V,∈). Also starting from any κ-complete U on
P(κ)V , (for an uncountable regular κ, then we can define Ult(V,U) and we may prove outright
that the E relation on Ult(V,U) will be wellfounded. In general for wellfounded cases we may
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define by recursion along E the Mostowski-Shepherdson transitivising collapse isomorphism
π : (Ult(M,Uj), E) −→ (N,∈) with N transitive. Taking these facts together then:

Theorem 2.4 (ZFC) Let κ > ω. The following are equivalent:
(a)There is a κ-complete non-principle ultrafilter on P(κ).
(b) ∃j : V −→e M with cp(j) = κ

Theorem 2.5 (Scott) [25] (ZF) ∃κ(κ a measurable cardinal)−→ V 6= L.

Proof: If V = L, let κ be the least such measurable cardinal (MC), form the ultrapower and
so the embedding above. Then from j : V −→e N , and elementarity we have: (V = L)V −→
(V = L)N ; so as Trans(N), N = L. But “κ is the least MC ”−→ (“j(κ) is the least MC”)N .
But N = V ∧ j(κ) > κ ! �

The assumption of this theorem implies ∃j : V −→ M , but again by Gödel’s results on
the absoluteness of the L-construction, LM = L, so j � L : L −→e L. Note that no first
order formula ϕ(v0) can differentiate between κ and j(κ): ϕ(κ)L ↔ ϕ(j(κ))L. Moreover both
ordinals are inaccessible cardinals in the sense of L.

So we investigate the consequences of this embedding from L to L and shall discover
that such indiscernibility of these critical points in fact characterises such embeddings. Kunen
showed ([12]) that if ∃j : L −→ε L, then a number of consequences follow:

(i) Then there is such a j: L −→ L with cp(j) < ω1. Moreover defining U0 from such a j
with critical point κ0 least, we are guaranteed wellfoundedness of iterated ultrapowers: that is
we may define j01 : L −→e L by taking the ultrapower of L by U0; define U1 on P(κ1)L where
κ1 =df j01(κ0), and then Ult(L,U1) will also be wellfounded. We thus may take its transitive
isomorph and then have the ultrapower map j12 : L −→ L with critical point κ1; we then define
κ2 = j12(κ1) and U1 on P(κ2)L. The process may be iterated without breaking down, forming a
directed system 〈〈Nα〉, jαβ, κa, Uα〉α≤β∈On with (in this case) all Nα = L and elementary maps
into direct limits at limit stages λ, and the κα forming a class C of L-inaccessibles, which is
closed and unbounded below any uncountable cardinal.

(ii) The iteration points of such ultrapowers enjoy full-blooded indiscernibility properties in
L if ϕ(v0, . . . , vn) is any formula of L and ~γ ,~δ any two ascending sequences from [C]n+1 then
(ϕ(~γ)↔ ϕ(~δ))L.

Definition 2.6 (The 0#-mouse) Let jαβ etc. be as above. Let M0 = 〈Lκ+L0
,∈, U0〉. This

structure is called the “0#-mouse” which itself has iterated ultrapowers using maps that are the
restrictions of the

jαβ �Mα : Mα −→Mβ where Mα = 〈Lκ+Lα ,∈, Uα〉 etc.

Remark 2.7 The viewpoint is shifted to that of the mouse (M0) generating the model (in this
caseL). All of this is a paradigm for generalised constructible inner modelsK - the core models.

By these means we argue for

Theorem 2.8 (ZF) If ∃j : L −→ L then ∀γ((γ ∈ SingCard) −→ (γ Inacc)L).

Proof: The above implies that C∩γ is unbounded below γ. But C is closed, so γ ∈ C. Each
γ ∈ C is inaccessible in L. �

Theorem 2.9 (Jensen)(ZF) Suppose γ ∈ SingCard, γ ≥ ω2 but (γ ∈ Reg)L. Then ∃j : L −→
L, with j 6= id; that is “0# exists.”
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Proof: Suppose ¬∃j : L −→ L, but γ is chosen least with γ ∈ SingCard but (γ ∈ Reg)L.
Without loss of interest, we shall assume that (i) cf(γ) > ω (ii) δ < γ −→ δω < γ. Let
τ = cf(γ). By assumption then τ < γ and so we may choose X0 ⊆ γ with |X0| = τ but X0

unbounded in γ. By (ii) we’ll assume also that for some X ⊃ X0 we have (a) γ ∈ X ≺ Lγ+L
(b) ωX ⊆ X (c) |X| = τω < γ.

Let π : 〈X,∈〉 −→ 〈M,∈〉 = 〈Lδ,∈〉 be the collapsing isomorphism with π(γ) = δ say.
Then we have:

(1) cf(δ) = τ also, with |δ| = |M | = |X| < γ.

Suppose we had P(δ)M = P(δ)L. Then we could define a measure derived from π−1 in the
usual manner: let α = crit(π−1) and define U by

Z ∈ U ⇐⇒ Z ∈ P(δ)M ∧ α ∈ π−1(X).

Then U would be a countably complete ultrafilter on P(δ)L (that is why we chose ωX ⊆ X as
this implies ωM ⊆M ), and this in turn implies that Ult(L,U) is wellfounded. But that implies
∃j : L −→ L.

(X,∈) ∼= (Lδ,∈) ⊆ (L,∈)

(Lγ+ ,∈) ⊆ (L,∈) ∼= (Ult(L,U), E)

id
π−1 j ⊃ π−1

Hence we must have: P(δ)M ( P(δ)L. So:

(2) ∃β ≥ δ(Def(Lβ) ∩ P(δ)) * Lδ.

Choose β least so that (2) holds. By so-called fine structural methods Jensen showed how
there is a superstructure Lη for some η > γ+L and a sufficiently elementary map π̃ ⊃ π−1,
π̃ : Lβ −→ Lη, and because there is a ‘new’ subset of δ definable over Lβ there must also
be a ‘new’ subset of γ = π−1(δ) that is not in Lη. But this is absurd as by L’s construction
(P(γ) ⊂ Lγ+)L. �

Remark 2.10 The assumptions (i) and (ii) can be dropped, but not without some difficulty, in
particular when cf(γ) = ω; however the format of the argument remains roughly the same.

Theorem 2.11 ((Jensen - the full L-Covering Lemma) (ZF+¬0# exists))
For any X ⊆ On, if |X| > ω then there exists Y ∈ L with (a) |Y | = |X| and (b) Y ⊇ X .

The above result Theorem 2.9 is then a corollary of this. As are:

Corollary 2.12 (ZF+¬0# exists) (a) Let (τ ∈ Reg)L with τ ≥ ω2, then cf(τ) = |τ |.
(b) Let τ ∈ SingCard. Then τ+ = τ+L.

Remark 2.13 Part (b) of the last Corollary above is sometimes called WCL the Weak Covering
Lemma. The reason being that for other inner models M we may have WCL(M) provable
(obtained by replacing L by M in the Corollary’s statements) whilst the full CL(M) is not.
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Generalizations

If 0# = M0 exists as above, perhaps there is no non-trivial j : L[0#] −→e L[0#] and then
we have a CL(L[0#])? This is indeed the case; however if this new assumption fails then we
have “(0#)#”. We then get a theorem along the lines of a new Covering Lemma in the form of
CL(L[0#]) which holds iff ¬j : L[0#] −→e L[0#]. (0#)# is again a countable object and we
can repeat this process. After we have done this uncountably often our #-like mouse objects are
no longer countable and we have to resort to uncountable mice M .

Instead of toiling inductively through seas of such objects, Dodd & Jensen first proved the
following:

Theorem 2.14 (Dodd-Jensen [4]) (ZF) There is an inner model KDJ, so that if there is no inner
model with a measurable cardinal, then (a) there is no non-trivial embedding j;KDJ −→ KDJ

and (b) CL(KDJ).

This was the first core model to go beyond L (if one discounts the models L[0#] etc).

Theorem 2.15 (Steel [28]) (ZFC) If there is no inner model for a Woodin cardinal, then there is
a model KSteel, which is again rigid, and over which WCL(KSteel) holds.

Perhaps there is some ultimate model which, although not L, is an inner model L[E] say,
which is the “core” of V , with E coding up all possible ‘measures’ or means of generating em-
beddings of models, and hopefully one has say WCL(L[E])? Maybe, but to date the following
‘inner model program’ has worked on the following inductive template: assuming you have built
core models for any strictly weaker large cardinal assumption than “There is an inner model
with a Large Cardinal Γ”; so: assume there is no inner model for such a cardinal as Γ and build
KΓ, which, you should show under this assumption, is rigid and over which WCL(KΓ) holds.
Then if the latter fails you have an inner model with a Γ-cardinal. Continue. This programmatic
approach to filling out V with wider and thicker inner models depending on the strength of the
large cardinals existing in (inner models of) V , has become known as the “Inner Model pro-
gram”. Currently, however, the programme is stuck at the level roughly of Γ a Woodin limit of
Woodin cardinals.

Further remarks:

Theorem 2.16 (Magidor, [14]) (ZF) Assume ¬0#. Then if X ⊆ On is uncountable and closed
under the primitive recursive set functions, then X =

⋃
n<ω Yn with each Yn ∈ L.

This is thus a decomposition rather than a covering theorem, but its proof is essentially
(but perhaps surprisingly) a variant on Jensen’s argument. The primitive recursive set functions
mentioned are a mild collection of absolute functions on sets generalizing those on numbers, cf
[2].

The significance of the WCL over a modelM say is that as γ+ = γ+M for singular cardinals
of V , then for many ordinal combinatorial properties whose statements or constructions which
are performed insideM up to γ+M we have that that combinatorial property is valid in V as well
and is available for us for that construction to be performed in V . The Covering Lemma (under
the rigidity assumption as always) has thus delivered for us a piece of absolute knowledge about
V : one such combinatorial principle is called:
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�γ : There is 〈Cα | α ∈ Sing∩γ+〉 with
(i) Cα ⊆ α is closed; it is unbounded in α, if cf(α) > ω;
(ii) otp(Cα) < α;
(iii) β ∈ Cα −→ Cβ = β ∩ Cα.

(Such a sequence can be thought of as a uniformly presented sequence of witnesses to the
singularity of ordinals below γ+, which cohere or glue together nicely as expressed in (iii). This
is useful for inductive constrictions up to γ+ in particular for singular γ. Since the properties
(i)-(iii) are absolute betweenM and V , if such can be constructed inM and γ+ = γ+M we have
such a sequence good in V .)

Remark 2.17 Jensen first established �γ for all γ ∈ Card, in L. This was then established
in the core models over the years as they were developed (in KDJ by the author, in KSteel by
Schimmerling-Zeman [24], and with other results by other set theorists for intermediate models
which we have not defined, see also [23] for an overview.)

Remark 2.18 It is possible to establish the “correct successor cardinal” computation for certain
classes of regular limit cardinals γ than singulars: for γ weakly compact in V , (Jensen originally
for L); γ Ramsey (Mitchell [19] originally for KDJ, later [20] KSteel); γ Jonsson (Welch [29]
for KSteel) again showing that for cardinals in these classes, their successors in V also enjoy
certain combinatorial properties. However for inaccessibles in general this will fail.

3 Determinacy: The Martin-Harrington Theorem
We don’t give an account of the history of determinacy here which goes back to the work of
Banach-Mazur in the 1930’s (for this see Kanamori) but suffice it to say that when a pointclass
of sets of reals Γ (such as Γ= Σ0

α,∆
1
1,Π

1
n, . . . ,Σ

1
n, . . .) (thus the projective sets are those sets

of reals in some Σ1
n for some n < ω) are all determined, then all sets in that pointclass enjoy

substantial regularity properties, such as being Lebesgue measurable, if uncountable then having
a perfect subset (and hence size that of the continuum), and the Baire property (that is all have
meagre symmetric difference from some open set). Besides Kanamori a complete source for this
material is Moschovakis [21]. Another significant property is Uniformization: suppose Γ,H are
two pointclasses of sets of reals. We say that Unif(Γ,H) holds if whenever Q ∈ Γ∩P(kR×R)
(k < ω) then there is P ⊆ Q, P ∈ H and
∀x[∃yQ(y, x) −→ ∃!yP (y, x)]

(P thus acts as a function uniformising the relation Q by choosing a unique element in the rela-
tion for each x for which such is possible.) Classically one had (The Novikoff-Kondo-Addison
Theorem) Unif(Π1

1,Π
1
1). We let PU (Projective Uniformisation) abbreviate the statement that

every projective relation can be projectively uniformised.

Games.

Definition 3.1 For A ⊆ ωω (or more generally Xω) the infinite perfect information game GA is
defined between two players I, II playing elements ni,mi ∈ X:

I n0 n1 n2 · · · nk · · ·

II m0 m1 · · · mk · · ·

together constructing x = (n0,m0, . . . , nk,mk, . . .) ∈ Xω.
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We say that I wins iff x ∈ A; otherwise II wins. Notions of strategy and winning strategy are
defined in the obvious fashion. Notice that for A ⊆ ωω a strategy σ for, e.g. I is a map from⋃2k
k ω −→ ω. Since there is a recursive bijection <ωω ↔ ω, we can think of σ as essentially a

subset of ω or again, as a real number.
We speak of a topology of open and closed sets of a space Xω by letting a typical basic open

set to be a neighbourhood Ns where s ∈ SeqX is a finite sequence of elements of X:

Ns =df {x ∈ Xω | ∃k < ω(x � k = s}.

An open set is then a countable union of basic open neighbourhoods; a closed set is a com-
plement of an open etc. When X = ω and an open set, U , is given as a union of basic open
neighbourhoods defined by a recursively given set of sequences numbers s coding elements of
<ωω, then we say that U is semi-recursive, or Σ0

1. More generally we speak of open sets and Σ0
1

sets in parameter codes which are themselves subsets of ω or again real numbers.
The basic theorem here is:

Theorem 3.2 (Gale-Stewart) Let A ⊆ Xω be an open set. Then GA is determined, that is one
of the players has a winning strategy.

Proof: Note that if I wins it is because he has manœuvred the play so that there is a finite
stage (n0,m0, . . . , nk) so that N(n0,m0, . . . , nk) ⊆ A. Essentially he has won by this stage as it
matters not what nl he plays for l > k. II however, playing into the closed set which is Xω\A
must be vigilant to the end if she is to win. Suppose then I has no winning strategy. Then for
every n0 II has a reply m0 so that I has no winning strategy in the game GA/(n0,m0) where
A/(n0,m0) =df {x ∈ A | x(0) = n0, x(1) = m0}. For, if there was an n0 so that I did
always have a winning strategy in this latter game for whichever m0 II played, σ(m0) say, then
this would amount to a winning strategy for him in GA: first play n0, wait for m0 and then use
σ(m0). Thus given n0 II should play m0 so that I has no such strategy. But if she continues in
this way, this is a winning strategy for II: always respond so that I has no winning strategy from
that point on. The resulting play x cannot be in A. �

The motto here is that we can always in ZFC, prove Det(Open) for any space Xω and so
by taking complements Det(Closed) too. (AC is needed only to wellorder X if need be.) Many
proofs of determinacy of complicated sets in Xω, involve reducing the game to an open game
in some larger space Y ω. The latter are determined by Gale-Stewart. The difficulty arises in
showing that the player with the winning strategy for the open set on the space Y ω also has one
for the related, but much more, complicated set in Xω.

Definition 3.3 (i) A tree T on ω ×X (for X 6= ∅) is a set of sequences in
⋃
k
kω × kX where

if (σ, u) and k ≤ |σ| = |u| then (σ � k, u � k) ∈ T . Similarly defines trees on nω ×X .
(ii) For such a tree T we set

Tσ =df {u | (σ, u) ∈ T} ; T⊆σ =df

⋃
k≤|σ|

Tσ�k ; and Tx =
⋃
k

Tx�k.

Definition 3.4 For T a tree:
(i) [T ] =df {(x, f) | ∀k(x � k, f � k) ∈ T} - is the set of branches through T .
(ii) p [T ] =df {x ∈ ωω(or k(ωω)) | ∃f(x, f) ∈ [T ]} - the projection of T .
(iii) A setA ⊆ k(ωω) is κ-Suslin (for κ ≥ ω, κ ∈ Card) ifA = p[T ] for some tree on ω×κ.
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Clearly a tree is wellfounded (under ⊇) if [T ] = ∅. For a C ⊆ ω × X a closed set, there
is a tree T on ω × X with C = [T ]. In particular for X = ω. If C has a recursively open
complement, then we may take T as recursive set of sequences from

⋃
k(
kω × kω).

If A ⊆ ωω is Σ1
1 then A = p[T ] for a tree on ω × ω - thus such sets are projections of

closed sets, and conforms to the idea that x ∈ A ↔ ∃y ∈ ωω(x, y) ∈ [T ]. This classical
result (due to Suslin) is sometimes stated that analytic ( = Σ1

1) sets are “ω-Suslin”. Many of the
classical properties of analytic sets as studied by analysts can be attributed to this (and similar)
representations.

Given this last fact, we can represent Π1
1 sets, being complements of Σ1

1’s, as those sets
where the tree T for the complement is wellfounded. We may thus define rank functions for
such trees, by finding functions that map the nodes into the ordinals in a tree-order preserving
way. We do this next.

Let then A ∈ Π1
1 be a (lightface) co-analytic set. Then by the above discussion there is a

recursive tree T (meaning there is a recursive set of sequence numbers) on ω × ω with:

∀x(x ∈ A↔ Tx is wellfounded).

Tx being countable, we have that rk(Tx) < ω1. Consequently:

x ∈ A↔ ∃g(g : Tx −→ ω1 in an order preserving way).

That is we may define a tree T̂ on ω × ω1 as follows:

T̂ = {(τ, u) | ∀i, j < |τ | : τi ⊃ τj ∧ (τ � |τi|, τi) ∈ T −→ u(i) < u(j)}.

Then one can see that

x ∈ A↔ ∃g ∈ ωω1((x, g) ∈ [T̂ ])↔ x ∈ p[T̂ ].

The above reasoning thus shows that any Π1
1 set A is ω1-Suslin. Further:

(i) T̂ ∈ L, and by the absoluteness of well founded relations on ω between ZF−-models
containing all countable ordinals [T̂ ] 6= ∅↔ ([T̂ ] 6= ∅)L.

(ii) If the underlying set is a Π1
1(a) set for some real parameter a then T̂ ∈ L[a].

Now the argument can be stepped up to Σ1
2 sets: suppose x ∈ B ↔ ∃y(x, y) ∈ A (we write

‘B = pA’) with A ∈ Π1
1 and hence there is a tree T̂A on (ω × ω)× ω1 with

(x, y) ∈ A↔ ∃g ∈ ωω1

(
((x, y), g) ∈ [T̂A]

)
.

However there is a ∆ZF
0 definable bijection ω× (ω×ω1)↔ (ω × ω)× ω1 thus re-defining

the tree T̂A as T but on different sequences, so that for any x, y we have

(x, y) ∈ p[T̂A]↔ ∃g ∈ ωω1

(
((x, y), g) ∈ [T̂A]

)
↔ ∃g ∈ ωω1

(
(x, (y, g)) ∈ [T ]

)
.

However now we again use a ∆ZF
0 bijection ω × ω1 ↔ ω1to recast T as a tree Ton ω1 alone,

then:
x ∈ B ↔ x ∈ pA↔ x ∈ p[T ].

We have:

Theorem 3.5 (Shoenfield) Any Σ1
2 set is ω1-Suslin, as a projection of a tree T ∈ L.

Corollary 3.6 Let B be any Σ1
2 relation. The ∃xB(x) ↔ (∃xB(x))L. In particular Σ1

2 sen-
tences are absolute between L and the universe V . Moreover if A ⊆ N is Σ1

2 then A ∈ L.

Theorem 3.7 (Levy) There is an ordinal σ1 < ωL1 so that (Lσ1 ,∈) ≺Σ1 (V,∈).
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Proof: Let A be a Σ1 sentence in L true in V . By Löwenheim-Skolem, the following holds:
“there is a countable wellfounded transitive model (M,∈) with (A)M”.

The latter can be expressed as a Σ1
2 assertion about a real number x (coding such an (M,∈)).

By the last corollary there is such a x, Mx ∈ LωL1 . By the upward persistence of Σ1 sentences
(A)Mx =⇒ (A)L. Hence LωL1 ≺Σ1 V . �

We sometimes wish to be more specific about the tree for Π1
1 and for this we use the Kleene-

Brouwer ordering: <KB is a linear ordering, and it restricts to linear orderings on <ωκ for cardi-
nals κ ≥ ω. One may check:

If T is a tree on κ then T is wellfounded iff T is wellordered by <KB. In particular we have
for a Π1

1 set A that there is a tree T on ω × ω so that

x ∈ A↔ Tx is wellfounded ↔ Tx is wellordered by <KB .

For a tree T on ω×κ we then have a linear ordering <x corresponding to the KB ordering of Tx
with the following definition and properties:

i <x j ←→df (τi, τj /∈ Tx ∧ i < j) ∨ (τi /∈ Tx ∧ τj ∈ Tx) ∨ (τi, τj ∈ Tx ∧ τi <KB τj).

In fact <x is the union of orderings given by initial segments of x: for τ ∈ <ωω define

i <τ j ←→df i < j < |τ |∧(τi, τj /∈ T⊆τ ∧i < j)∨(τi /∈ T⊆τ ∧τj ∈ T⊆τ )∨(τi, τj ∈ T⊆τ ∧τi <KB τj).

Then:
(i) <x=

⋃
k <x�k.

(ii) Define T ∗A on ω × κ by (τ, u) ∈ T ∗A ←→df ∀i, j < |τ |(i <τ j ↔ u(i) < u(j)). Then

x ∈ A↔ ∃g ∈ ωκ((x, g) ∈ [T ∗A]).

In the above κ ≥ ω may be any cardinal of course. After the basic definitions were introduced
Det(Σ0

3) (M. Davies [1]) was the extent of provable determinacy (indeed provable within Z2).
Remarkably H. Friedman ([5]) showed that for Borel Determinacy roughly, order type α itera-
tions of the power set operation (together with some Replacement) would be needed to establish
Det(Σ0

α), thus establishing that Z 6 `Det(∆1
1). This phenomenon would start at Σ0

4. Paris then
showed (using ZFC) Det(Σ0

4) but there matters languished until

Theorem 3.8 (Martin [18]) ZF ` Det(Borel) for Borel subsets of ωω.

Theorem 3.9 (Martin-Harrington) ZF ` ∃j : L −→e L, j 6= id←→ Det(Π1
1).

Proof: (−→) (Martin) We assume the left hand side, and then by the work of Silver, Kunen,
we have a c.u.b. set C ⊆ ω1 of indiscernibles for (L,∈).

Let A ∈ Π1
1. The usual game GA involves integer moves but has a complicated payoff set.

We replace the space ωω with a larger one Xω for some X to be defined, and relate A to some
closed A∗ ⊆ Xω. By Gale-Stewart, this is determined. We have to show that winning strategies
in GA∗ can be translated to winning strategies for the same player in GA.

Definition 3.10 GA∗ is defined between two players I, II playing as follows:

I (n0, ξ0) (n1, ξ1) (n2, ξ2) · · · (nk, ξk)

II m0 m1 · · · mk
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together constructing

x = ((n0, ξ0),m0, (n1, ξ1),m1, (n2, ξ2),m2, · · · (nk, ξk), , . . .).
The Rules are that ni,mi ∈ ω, ξi ∈ ω1. We think of the ξi as laying out a function

g : ω −→ ω1 with g(i) = ξi, and the integers yielding x = (n0,m0, n1, . . . )
Winning Conditions: I wins iff (x, g) ∈ T ∗A. g then witnesses that Tx is wellfounded, by

giving an order preserving map from <x into ω1. Note that the game is closed in the sense that
if I loses he does so at some finite stage (by messing up his ordering, which cannot be redeemed
at a later stage). Equivalently, II is playing into an open set and if she wins, does so at a finite
round. Note that T ∗A is defined in L, and so by the Gale-Stewart theorem, is determined in L.

Claim: If σ∗ is a winning strategy for I (respectively II) in GA∗ in L, then there is a winning
strategy for I (respectively II) in GA.

Proof of Claim. If σ∗ is a winning strategy for I he can use it to play in GA by suppressing
the ordinal moves, and clearly wins (both in L and V ). Suppose then σ∗ ∈ L is, in L, a winning
strategy for II.

Idea: II simulates a run of GA∗ by using indiscernibles from C0 =df C ∩ ω1 as ‘typical’
ordinal moves for I . She defines a strategy σ :

⋃
n

2n+1ω −→ ω as follows; fix n < ω and
consider the formula ϕ(ω1, T

∗, σ∗, τ, ~ξ,m) which defines a term t(ω1, T
∗, σ∗, τ, ~ξ) = m:

~ξ ∈ n+1ω1 ∧ σ∗(τ � n+ 1, ~ξ) ∈ T ∗ ∧ σ∗(τ, ~ξ) = m.
As σ∗, T ∗ ∈ L the term t will have a fixed value m ∈ N for any ~ξ ∈ n+1C0 she chooses,

since the latter are indiscernibles for the formula ϕ. So she sets (in V where C0 lives):
σ(τ) = m = t(ω1, T

∗, σ∗, τ, ~ξ) for any ~ξ ∈ n+1C0.
Now argue that were x ∈ A even though II followed this strategy, then we’d have that there

is an order preserving embedding g : (ω,<x) −→ (C0, <) (as C0 is uncountable). However that
corresponds to a run of the game GA∗ (with ordinal moves delivered by g), where II has used σ∗,
which was supposed to be winning for her! Contradiction! �

It is an exercise to show that if a GA for A ⊆ ωω is determined, A is countable, or else
contains a perfect subset and hence is the size of the continuum. However in L there is an
uncountable Π1

1 set which has no perfect subset. Conclusion: Det(Π1
1) is false in L and so

ZF0Det(Π1
1). In the above we constructed a winning strategy for II in V . However the state-

ment “∃σ[σis a winning strategy for II in GA]” is a strictly Σ1
3 statement, and such are not in

general absolute to L.
We should like to establish Det(Π1

n) for other n > 1 but this requires considerably more
ingenuity. The key is to find representations of projective sets as projections of trees enjoying
so-called ‘homogenity properties’ which entail that there are measures (and more) on the trees.
This tree representation was implicit in the proofs of Det(Π1

1) of Martin and in Martin-Solovay
[16] where such trees were used to analyse Π1

2 sets. However the notion was only made explicit
in Kechris [11].

Definition 3.11 (Homogeneous Trees and Sets) Let T be a tree on ω × X and κ > ω be a
cardinal. (A) Then T is a κ-homogeneously Suslin tree iff ∃〈Uτ | τ ∈ Seq〉 where

(i) Each Uτ is a κ-complete measure on Tτ ;
(ii) For any τ ⊃ σ Uτ projects to Uσ: i.e. u ∈ Uσ ↔ {v ∈ Tτ : v � |σ| ∈ u} ∈ Uτ .
(iii) The Uτ form a countably complete tower: if σi ∈ Seq, Zi ∈ Uσi are such that i < j −→

σi ⊂ σj then there is a g ∈ ωX so that: ∀i(g � i ∈ Zi).
(B) We say A ⊆ ωω is κ-homogeneously Suslin if A = p[T ] for a κ-homogeneously Suslin

tree T.
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Notice that one way to phrase (iii) is to say that if x ∈ p[T ] then 〈Ux�i : i < ω〉 form
a countably complete tower. Although the notion had to be isolated in fact Martin had used
essentially the fact that if there exist a measurable cardinal κ then any analytic set is p[T ] for a
κ-homogenously Suslin tree on ω × κ.

Theorem 3.12 Suppose A is κ-homogeneously Suslin for some κ. Then GA is determined.

Proof: Suppose A = p[T ] with T κ-homogeneously Suslin on ω × λ (some λ ≥ κ.

Definition 3.13 GA∗ is defined between two players I, II playing as follows:

I (n0, ξ0) (n1, ξ1) (n2, ξ2) · · · (nk, ξk)

II m0 m1 · · · mk

together constructing

x = ((n0, ξ0),m0, (n1, ξ1),m1, (n2, ξ2),m2, · · ·).
Rules: ni,mi ∈ ω, ξi ∈ λ. Winning Conditions: as before I wins iff (x, g) ∈ [T ] where
g(i) = ξi.

Again this is a closed game, and so there is a winning strategy for one of the players in L[T ].
Now to show that if II has a winning strategy in GA if she has a winning strategy σ∗in GA∗ , we
use the ω1-completeness of the measures rather than indiscernibility.

She defines a strategy σ :
⋃
n

2n+1ω −→ ω as follows; for n < ω and then for τ ∈
2n+1ω, u ∈n+1 λ, define σ(τ, u) = σ∗(τ(0), u(0), · · · , τ(2n), u(2n)) ∈ ω.

Define Zτ,k =df {u ∈ T (τ � n + 1) : σ(τ, u) = k}. Since Uτ�n+1 is a measure on
T (τ � n+ 1), by its ω1-completeness, for precisely one value of k is Zτ,k ∈ Uτ�n+1. So let that
value of k, k0 say, be the response given by the strategy:

σ(τ) = k0 where k0 is the unique value of k0 with Zτ,k0 ∈ Uτ�n+1.
Again we check that σ is a winning strategy for II in GA. If x is a result of a play with

II using σ, but nevertheless x ∈ A, then by (iii) in the definition of κ-homogeneously Suslin
∃g ∈ ωX so that for every n g � n + 1 ∈ Zx�2n+1,σ(x�2n+1). This implies (x, g) ∈ [T ] and is
then a losing outcome of the game where II in fact uses σ∗, thus contradicting that the latter is a
winning strategy for II. Hence x ∈ A. �

Hence determinacy would follow if we could establish homogeneity properties for trees.

Definition 3.14 A ⊆ ωω is weakly homogeneously Suslin if A = pB where B ⊆ (ωω)2 is
homogeneously Suslin.

In fact this is not the official definition of weakly homogeneously Suslin which defines
“weakly homogenous trees” and is in terms of towers of measures, but nevertheless has this
equivalence. These were also studied by Kechris [11] and Martin.

Weakly homogeneously Suslin sets (being the projections of weakly homogeneous trees) can
be thought of as generalisations of analytic sets and are of great interest in their own right: we
have seen that if there is a measurable cardinal, then Σ1

2 sets are weakly homogeneously Suslin.

Theorem 3.15 If a set A is weakly homogeneously Suslin, then it has the regularity properties
(Lebesgue measurability, the Baire and Perfect subset properties ...).

It thus has the consequences of being determined, without actually being so. Unfortunately
A being weakly homogeneously Suslin does not imply that it is homogeneously Suslin. However
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one important feature is that they do have complements defined as projections of trees T̃ with
the latter definable from their weakly homogenously tree T :

Lemma 3.16 Let A be p[T ] with T weakly homogeneously Suslin. Then there is a tree T̃ with
ωω\A = p[T̃ ].

But on its own this is no help. The breakthrough was:

Theorem 3.17 (Martin-Steel [17]) Suppose that λ is a Woodin cardinal and T is a λ+ weakly
homogeneously Suslin tree. Then for γ < λ, the T̃ above is γ-homogeneously Suslin.

There is thus some trade off: the completeness of the measures drops. However we now
have:

Theorem 3.18 (Martin-Steel) Suppose λ0 is a Woodin cardinal, and κ > λ0 is measurable.
Then Det(Π1

2). Further if λn−1 < λn−2 < · · · < λ0 are n − 1 further Woodin cardinals, then
Det(Π1

n+1). Thus:
ZFC +“there exist infinitely many Woodin cardinals”` PD.

Proof: Let A ⊆ ωω be Π1
2. Then A is the complement of a Σ1

2 set on ωω which is itself the
projection of a Π1

1 set B ⊆ (ωω)2. B is κ-homogeneously Suslin for some homogeneously tree
T , as κ is measurable, and a fortiori is also λ+

0 -homogeneously Suslin. By Theorem 3.18 we
have a γ-homogeneously Suslin tree T̃ projecting to A with γ-complete measures. By Theorem
3.12 we have GA is determined, and we are done. The last two sentences follow by repetition of
the argument. �

The exact consistency strength of the assumption above is slightly stronger, with the (⇐=)
being very involved:

Theorem 3.19 (Woodin)
Con(ZFC +“there exist infinitely many Woodin cardinals”)⇐⇒ Con(ZFC + ADL(R)).

The final conclusion of Theorem 3.18 yields the boundary of the provability of PD from
large cardinal axioms; this is not a relative consistency result, and the phenomenon of course
recurs for any strong axiom(s) of infinity that imply the existence of sufficiently many Woodins:
PD holds outright. Set forcing can change the character of the seeming universe locally, but,
roughly speaking, does not destroy large cardinal properties beyond the rank of the partial order.
Consequently if V has a proper class of Woodin cardinals, then PD is not only provable outright
but is absolute into set forcing extensions. Much more is possible:

Theorem 3.20 (Woodin) Suppose there is a proper class of Woodin cardinals; then Th(L(R})
is absolute with respect to set forcing. Thus if V [G] is a set generic extension

(L(R))V ≡ (L(R))V [G]

The larger cardinals that we look at next will again all prove PD and in fact ADL(R) outright.
We have seemingly reached a particular stage beyond which these determinacy properties are
simply unavoidable.

4 Large Cardinals
We have seen that a measure U on P(κ) in V yields an ultrapower (Ult(V,U), E) which is
wellfounded and hence isomorphic to a transitive inner model (M,∈) of ZFC. The following
facts hold:
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• Vκ+1 = (Vκ+1)M

• (j(κ)is measurable)M ;
• U /∈M and thus Vκ+2 6= (Vκ+2)M .
• κ may, or may not, be measurable in M because of the presence in M of some other

measure U ). (If κ was the least measurable of V then it can not contain such a U , by the Scott
argument).

Thus given an elementary embedding j : V −→e M , the above shows precisely which initial
part of V can be expected to be in M in general, namely Vκ+1. Modern set theory now classifies
large cardinals (that previously were often argued for “by analogy with ω” or some such), into a
hierarchy given by the embedding properties that they enjoy.

Definition 4.1 A cardinal κ is α-strong if there is an embedding j : V −→e M with Va =
(Vα)M , with cp(j) = κ, and j(κ) ≥ α.

Thus a measurable cardinal is κ+ 1 strong. The larger the α, the stronger the embedding, as
more of the initial V hierarchy is preserved by the identity map into the inner model M .

Definition 4.2 A cardinal κ is strong if it is α-strong for all α.

(Note the order of quantifiers: for every α there is an embedding j, depending on α ...) One
may wonder about the first order formalizability of the above notions in ZF. However just as
the first statement of the existence of a measure on P(κ) is equivalent to the existence of a class
embedding j (which we might formulate in ZFCj̇ ) it is possible to give an extender representa-
tion of such embeddings. Thus: for an α-strong embedding j we may find a generalisation of a
measure on P(κ) called an extender which we may think of as given by a sequence of measures
〈Ea : a ∈ [α]<ω〉 with each Ea itself a measure on P([κ]|a|).

Given an α-strong embedding j;V −→ N we define an α-extender at κgeneralising what
we did for measures.

X ∈ Ea ↔df X ∈ P([κ]|a|) ∧ a ∈ j(X).

The sequence E = 〈Ea : a ∈ [α]<ω〉 then has satisfactory coherence properties, in fact
enough so that we can define an extender ultrapower (Ult(V, E), E) from it. In the situa-
tion described, this ultrapower has a wellfounded E-relation, and is again isomorphic to some
(M,∈) which in general is not necessarily equal to (N,∈) but which can be elementarily em-
bedded back into (N,∈) and we thus shall have:

j : (V,∈)

(Ult(V, E), E)

(N,∈)

π
k

It is possible to view the Ult(V, E) as a direct limit of the ‘ordinary’ ultrapowers by the
measures Ea. It is part of the flexibility of the approach that this is inessential though.

Having thus generalised the notion of measure ultrapower to extender ultrapower we can use
these to give us first order formulations of α-strong etc. A simplified statement is:

Lemma 4.3 Let α be a strong limit cardinal; then κ is α-strong iff there is an α-extender se-
quence E = 〈Ea : a ∈ [α]<ω〉 at κ, with Vκ+α ⊆ Ult(V, E) ∧ j(κ) > α.
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The notion of κ being strong is then also first order (although involving a quantifier over
On). One may note the following easily proven fact: κ strong implies that Vκ ≺Σ2 V .

Definition 4.4 κ is superstrong if there is j : V −→e M with Vj(κ) ⊆M .

Note that α-strong only asked for Vα ⊆ M whilst j(κ) > α. This seemingly innocuous
extension is in fact a powerful strengthening. Again it has a first order formalisation. We proceed
to a definition of Woodin cardinal. First we define a strengthening of the concept of strong.

Definition 4.5 Let A ⊆ V . We say that κ is A-strong in V if for every α there are M, B ⊆ V
with IM(M) and an L∈̇,Ȧ - elementary embedding

j : 〈V,A〉 −→e 〈M,B〉 such that cp(j) = κ, Vα ⊆M and Vα ∩A = Vα ∩B.

This is not a first order formalisation, but now consider an inaccessible λ and relativise the
notion from V down to Vλ

Theorem 4.6 An inaccessible cardinal λ is called Woodin if for every A ⊆ Vλ there is a κ < λ
which is A-strong in Vλ.

There are many other equivalent formulations (cf. Kanamori [10] Sect 26.). A Woodin
cardinal is necessarily Mahlo, but may fail to be weakly compact. It turned out that this is
precisely the right concept to analyse the various determinacy properties. Subsequently it turned
out to be precisely the right concept to gauge a whole host of other set theoretical phenomena,
and thus it has become one of the central notions of modern set theory.

Lemma 4.7 (i) If κ is superstrong then it is a Woodin limit of Woodins.
(ii) If λ is Woodin then (“there are arbitrarily large strong cardinals”)Vλ .

A particular constellation of cardinals is also of interest for determinacy of infinite games
played with reals, rather than integers. The assertion “ADR” is that for everyA ⊆ ωR , the game
GA is determined, where in the game now, players play a complete real number at each round
instead of a single integer. The following conjecture emerged.

Conjecture ( The “ADR hypothesis”) The consistency strength of ADR is that of a cardinal
µ that is simultaneously a limit of infinitely many Woodins λn < λn+1 · · · < µ and of µ-strong
cardinals κn < λn < κn+1.

The hypothesis is also interesting since (given a mild strengthening ofAD), theADR-hypothesis
is equivalent to the assertion that every set of reals is Suslin. The following is another connection
between the worlds of large cardinals and determinacy of games.

Theorem 4.8 (Woodin (←), Neeman-Steel (→))

Con(ZF +ADR)↔ Con(ZFC +ADR-hypothesis)

We continue our cataloguing of some more large cardinals through elementary embeddings.

Definition 4.9 (i) A cardinal κ is α-supercompact if there is a j : V −→e M with αM ⊆M .
(ii) κ is supercompact if it is α-supercompact for all α.

An embedding arising from a measurable cardinal κ in general only implies the closure of
M under κ sequences, so this definition only starts to have bite once α > κ. The closure under
all α-sequences is again a considerable strengthening over the “strong” hierarchy of principles. It
masks also a telling difference in the kind of embeddings: up to this point the embeddings j have
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always been “continuous at κ+” meaning that sup(j“κ+) = j(κ+). If j is a 2κ-supercompact
embedding, this fails with ‘<’ occurring. Whilst looking a rather technical difference this in
fact introduces a wide variety of new phenomena. Current inner model theory has a target of
producing a good fine structural inner model of a supercompact cardinal, but this target is not yet
met. It can do so for strong cardinals, Woodin cardinal, Woodin limit of Woodin cardinals, ..., but
although we know what the inner models should look like for example, for measurably Woodin
cardinals, we are unable to prove they exist. The chief difficulty being the inability to prove that
sufficiently many ultrapowers of the models are wellfounded in order for their construction to get
off the ground. This has been dubbed the “iterability problem”. Continuing onwards we come
the extendible cardinals of Reinhardt (see [27]):

Definition 4.10 (i) A cardinal κ is α-extendible if there are λ, j with j : Vκ+α −→e Vλ+α

∧ cp(j) = κ.
(ii) κ is extendible if it is α-extendible for all α.

Even 1-extendibility is a strong concept:

Lemma 4.11 If κ is 1-extendible, then it is superstrong (and there are many such below it.)

Lemma 4.12 If κ is extendible, it is supercompact; (ii) κ extendible implies Vκ ≺Σ3 V .

Ascending further:

Definition 4.13 A cardinal κ is huge if there is j : V −→e M with cp(j) = κ ∧ j(κ)M ⊆M .

However if we try to maximise the extendibility properties we run into inconsistency:

Theorem 4.14 (Kunen [13]) (ZFCj̇)
There is no non-trivial L∈̇-elementary embedding j : V −→e V .

It is unknown whether AC is necessary for this theorem. The proof of Kunen’s theorem
actually yields a direct ZFC result:

Theorem 4.15 (Kunen) (ZFC) There is no non-trivial elementary embedding j : Vλ+2 −→e

Vλ+2.

The “2” is an essential artefact of the argument. That there may be a non-trivial j : Vλ+1 −→e

Vλ+1 is not known to be inconsistent; if this is to be the case, then κ0 = cp(j) < λ and it can be
shown that λ has cofinality ω being sup{κ0, j(κ0), jj(k0), . . .}. There are now several proofs of
Kunen’s theorem - see Kanamori, [10].

For such Vλ+1 the model L(Vλ+1) and its possible elementary embeddings has become an
object of intense study, and is likely to be significance.
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