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Abstract. The concepts of closed unbounded (club) and stationary sets are generalised to γ-club and γ-
stationary sets, which are closely related to stationary reflection principles. We use these notions to define gen-
eralisations of Jensen’s combinatorial principles 2 as 2γ and 2<γ sequences. We define Π1

γ -indescribability
and and show first that in L if γ < κ is an ordinal and κ is Σ1

γ -indescribable but not Π1
γ -indescribable, and

A ⊆ κ is γ-stationary, then there is EA ⊆ A and a 2<γ sequence S on κ such that EA is γ-stationary in
κ and S avoids EA. This generalises a result of Jensen for γ = 1. As a corollary we also extend the result of
Jensen that in L a regular cardinal is stationary reflecting if and only if it is Π1

1-indescribable by showing that
such a κ as above is not γ-reflecting, yielding a different proof of a result appearing in [3]. Thus in L a cardinal
is Π1

γ -indescribable iff it reflects γ-stationary sets. We define 2γ(κ), as stating that there is an unthreadable
2γ -sequence at κ; we show this implies that κ is not γ + 1-reflecting. Certain assumptions on the γ-club filter
allow us to prove that γ-stationarity is downwards absolute to L, and allows for splitting of γ-stationary sets.
We define γ-ineffability, and look into the relation between γ-ineffability and various♦γ principles.
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§1. Introduction. This paper is inspired by [2] where the authors introduced generalisations
of stationarity. Essentially the idea is to iterate stationary reflection. A cardinal κ is called
stationary reflecting, if for every stationary S ⊆ κ there is an α < κwith S∩α is stationary. The
authors built simultaneously hierarchies of increasing strength of stationarity, and of stationary
reflection at a cardinal κ. Such ideas have been studied over a long period (see e.g. [24] and [25]).

One conceptual difference here with the presentation in [2] is the introduction of γ-club sets,
which are interesting combinatorial objects in their own right and also enable us to lift some
arguments straight from the club and stationary set context. As combinatorial objects, γ-clubs
allow us to generalise the combinatorial notion of a 2 sequence, which is one of the main results
of this paper.

Parts of the extant literature have close connections with γ-stationary and γ-club sets - for ex-
ample in [8], Ben-Neria uses a “strong simultaneous reflection” property, this is stated as the aim
of his Theorem 19, although the definition is only implicit in the proof. Let κ be an inaccessible
cardinal and 〈Sα | α < κ〉 any sequence of sets stationary in κ. Strong simultaneous reflection
requires that there is γ < κ so that 〈Sα ∩ γ | α < γ〉 are all stationary in γ. It is an exercise in
the definitions to see that this principle is equivalent to the normality of our 1-club filter C1(κ)
(for which see Def. 2.18 below).

The notions of γ-club and γ-stationary sets S ⊆ κ where we adopt the convention that κ will
be a ordinal greater than γ, are natural, even without the study of stationary reflection. One way
to see this is to think about how we might want to measure the size or thickness of subsets of a

Most of the results in this paper formed part of the first author’s 2017 PhD thesis under the second author’s
supervision. This research was made possible by funding from the EPSRC, for which the first author is very
grateful. The authors would also like to warmly thank Joan Bagaria for many useful discussions on this topic.
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particular ordinal - not in terms of cardinality but rather in a way that takes into account more of
the combinatorial aspects of ordinals. Starting with a stationary set S ⊆ α, we can “thicken” this
set by requiring that S is stationary closed, i.e. whenever S is stationary below any β < α then
we have β ∈ S. We shall call such sets 1-club. Exactly this notion was defined, unbeknownst
to us, much earlier by Sun in [29]. There Sun further defined κ to be a stationary cardinal if the
1-club filter was non-trivial and normal. It then follows from Sun, (op.cit.) and Meckler-Shelah
([25]) that the consistency strength of a stationary cardinal is strictly intermediate between that of
a greatly Mahlo and a weakly compact cardinal.

Sun did not define n-clubs for n > 1, but a related notion called n-club is given by Hellsten in
[15], and very recently explored further in [12]. (Hellsten’s notion of, e.g.,
1-club is slightly different, in that it requires closure of sets at points that are strongly inac-
cessible, whilst Sun’s and ours require this only for weakly inaccessibles. Hellsten’s definitions
of n + 1-clubs build in closure of points α of a set X where X ∩ α is Π1

n -indescribable. Ours
do not. Our philosophy here is that simultaneous reflection is the guiding concept, rather than
indescribability. Further work in this area can be cited: see [16], [17], [11] and [9]. Such 1-club
sets need not be club (a set can be unbounded without being stationary), so in terms of size they
come between stationary and club sets. The family of 1-club sets share something of the struc-
ture of the club sets as they are defined by simply replacing “closure” with “stationary-closure”,
and the “unbounded” with “stationary” in the definition, but do the 1-club sets generate a normal
filter? They do at Π1

1-indescribables see Lemma 2.21 and at such indescribables the filter will
equal the Π1

1-indescribability filter (see Theorem 2.23) as Sun had also showed. However more
generally this is where we see the connection with stationary reflection - if an ordinal α reflects
any two stationary sets simultaneously, i.e. if for any stationary A,B ⊆ α there is some β < α
such that A ∩ β and B ∩ β are both stationary in β, then the 1-clubs do indeed generate a filter -
see Prop.2.6. At such ordinals, we can then define the 2-stationary sets as those which intersect
every 1-club (i.e. are of positive measure with respect to the 1-club filter). We can continue by
defining a 2-club set to be a 2-stationary set which is also 2-stationary closed, and then, where an
ordinal simultaneously reflects 2-stationary sets we can show that these 2-clubs generate a filter.
Hence, we can there define 3-stationary sets, and so on.

Our definitions of γ-club and γ-stationarity are similar to those of [2]; they are not quite the
same, but the two types of definition, which were made independently of each other, coincide if
V = L (see the Remark before Prop.2.14). It can be seen from Prop.2.14 that our γ-stationarity
is exactly the γ-s-stationarity Bagaria independently defined in a more recent paper [3]. He gives
a rather different motivation for his notion of γ-s-stationarity, using derived topologies and the
definition grew out of questions in proof theory and modal logic raised in [6]. We shall not
discuss these connections to proof theory and modal logic here (for details see [3] and [6]), but
this shows that the notions we shall define have very broad range of application. There are many
other possible applications to explore with these notions.

Outside of L this is a different matter. The recent paper [1] examines the status of ξ-reflecting
cardinals and they show for example that n + 1-reflection does not imply that the cardinal is
Π1
n-indescribable (and similarly in the transfinite), thus generalising Meckler-Shelah mentioned

above.
In this paper we generalise the combinatorial principles of 2 (in Section 3) and♦ (in Section 4)

using γ-club and γ-stationary sets. We also look in some detail at how these properties manifest in
Gödel’s constructible universe L. The 2 sequences constructed in Section 3 and 4 give important
results about the γ-club filter in L, which are used to show that, under certain assumptions, γ-
stationarity is downward absolute to L.

In Section 2 we define the notions of γ-closed and unbounded (γ-club) and γ-stationary set.
We shall not give the definition in full here, but indicate its nature to show it extends that the usual
notions.
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Following [2] we denote this by d0(C) the ‘first derivative’ of C. In general we shall have that
dγ(S) = {α < κ | S ∩ α is γ-stationary in α}.

Our definition of a 1-reflecting cardinal κ is that any two 1-stationary (which equals stationary
here) subsets S, T of the cardinal, have a common point below which both are stationary: there
is α < κ with both S ∩ α and T ∩ α stationary. Next κ is 2-reflecting if for any two 2-stationary
subsets S, T there is α < κ with both S ∩ α and T ∩ α 2-stationary. This then generalises
to “γ” replacing “2” in the last sentence. Thus for a γ-reflecting cardinal κ we shall obtain the
simultaneous reflection of any two γ-stationary subsets of κ.

Just as the first derivative of a set unbounded in κ is a club in κ, so the γ’th derivative of a
suitable set should be a γ-club:

PROPOSITION 2.9. If κ is γ-reflecting and S is γ-stationary in κ then dγ(S) is γ-club in κ.

The γ-club subsets of a γ-reflecting κ form a filter (Prop.2.6) but prima facie not necessarily a
normal one. Conditions can be imposed to ensure its normality, and normality is provable in L.

After giving the basic properties of these sets in Section 2.1, we consider the main result of [2]
which was that for n < ω we have that in L a regular cardinal κ is n+1-stationary in their sense,
iff κ is Π1

n-indescribable.
We give our statement of what is essentially this theorem of [2]:

THEOREM 2.14. ([2]) Assume V = L. Then a regular cardinal κ is n-reflecting iff κ is Π1
n-

indescribable.

We proceed to define the γ-club filter Cγ(κ) and then for finite γ we investigate the relation
between the γ-club filter and Π1

γ-indescribability.

LEMMA 2.20. For any n < ω and Π1
n-indescribable cardinal κ we have

1. Cn(κ) is contained in the Π1
n-indescribability filter.

2. Cn(κ) is normal.

A Solovay-style splitting theorem is provable:

COROLLARY 2.25. Let κ be Π1
n-indescribable, n ≥ 1. Then any n+ 1-stationary subset of κ

can be split into κ many disjoint n+ 1-stationary sets.

This will be extended for transfinite γ once we have definitions of Π1
γ-indescribability.

Section 3 contains one of the central results, where we prove the existence of certain 2 se-
quences which give a characterisation of the γ-stationary reflecting cardinals in L in terms of
indescribability:

THEOREM 3.32. (V = L) Let γ < κ be an ordinal and κ be Π1
η-indescribable for every

η < γ but not Π1
γ-indescribable, and let A ⊆ κ be γ-stationary. Then there is EA ⊆ A and

a 2<γ sequence S on κ such that EA is γ-stationary in κ and S avoids EA. Thus κ is not
γ-reflecting.

Section 3.1 gives the key tool used in the proof of Theorem 3.32 which here serves as the ver-
sion of the primary club sequences derived from Σn-hulls which occur in the fine structural proof
of 2: the notion of a trace. In Section 3.2 we prove the existence of certain 2γ sequences for
finite γ (Theorem 3.2). Although this result falls out as a corollary from Theorem 3.32 in Section
3.4, the proof of Theorem 3.2 gives the key moves of the later proof, i.e. that of Theorem3.32,
while in the more familiar context of Π1

n-indescribability and without the added complication that
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limit cases necessitate.

Transfinite Π1
γ-indescribability for infinite γ is defined in Section 3.3: this is essentially that

of [27]. We point out (see the Remark before Lemma 3.25) that our definitions concerning Π1
γ-

indescribability all work to define a weak notion of indescribability using second order quantifi-
cation over (κ,∈, A1, A2, . . . ) etc. However we seemingly have to quantify over strategies for
gamesGγ(β, ϕ,A) for β < κ if we wish to get that Π1

γ-indescribability of κ is Π1
γ+1 expressible,

which requires a quantification over Vκ and this requires dealing with a strong indescribability
notion.

We also need to change our type of 2 sequence to deal with limit cases. The reason becomes
apparent at stage ω: we need to work with cardinals κ that are Π1

n-indescribable for every n but
are not Π1

ω-indescribable. For these we need to show that they are not ω-reflecting. To this end,
we define and use 2<ω sequences. Here each element Cα of the sequence acquires a tag nα < ω
indicating that Cα is an nα-club. An enhanced coherency requirement states that for the relevant
β, Cβ = Cα ∩ β and Cβ should also be an nα = nβ-club.

In fact the definition 2<γ works for both limit and successor γ, so we use this for all transfinite
γ, regarding now the finite case 2n as a proof-of-concept exercise for the general case.

Nevertheless for successor ordinals we have as a corollary for the more straightforward 2γ-
sequences:

COROLLARY 3.39. (V = L) Let γ < κ and κ be a Π1
γ-indescribable but not Π1

γ+1-
indescribable cardinal, and let A ⊆ κ be γ + 1 stationary. Then there is EA ⊆ A and a
2γ-sequence S on κ such that EA is γ + 1-stationary in κ and S avoids EA.

In Section 3.4 we give the main result of Theorem 3.32 and then its application:



GENERALISATIONS OF STATIONARITY, CLOSED AND UNBOUNDEDNESS, AND OF JENSEN’S 2 5

COROLLARY 3.25. (V = L) The following are equivalent for a regular cardinal κ > ω and
ordinals 0 < γ < κ:
(i) κ is Π1

γ-indescribable;
(ii) there is no 2<γ sequence on κ that avoids a γ-stationary E ⊆ κ;
(iii) κ is γ-reflecting.

Using an alternate definition of Π1
γ-indescribability, Bagaria independently in [3] proved a version

of the result for (i) ⇐⇒ (iii). It is not clear to us that these two notions of indescribability are
equivalent. Bagaria does not define or use 2-sequences. However here in clause (ii) then we have
a new characterisation.

Jensen’s theorem is Corollary 3.25 with γ = 1. It should be noted here that the proof of
Jensen’s theorem required a very close analysis of condensation and satisfaction in L - Jensen
used fine-structure; Beller and Litman [7] gave a proof of this γ = 1 case using Silver machines.
However we shall see that we do not need such a fine analysis for the cases when γ > 1 -
essentially this will be replaced by a coarser analysis using traces and filtrations.

In Sections 3.4 and 3.5 we extend the results of Section 2.2 on Π1
γ-indescribability and the γ-

club filter to transfinite γ, including the splitting of stationary sets. This is fairly straight forward,
proceeding very much as in the finite case once we have the relevant lemmas. In Section 3.5.3
we generalise the notion of non-threaded square. Recall that a non-threaded square is a sequence
〈Cα | α < κ,Lim(α)〉 so that for such α (i) Cα ⊆ α is club; (ii) ∀β ∈ C∗, Cβ = α ∩ Cα,
which has no thread, that is a S ⊆ κ which is club and ∀β ∈ S∗, S ∩ β = Cβ . Such a coherent
sequence without a thread is called a 2(κ)-sequence, and such implies that there are stationary
sets A,B ⊆ κ so that for any Lim(α), C∗α ∩ A = ∅ or C∗α ∩ B = ∅ (see [22, Prop.27]). Thus
witnessing that simultaneous stationary reflection fails.

Here C∗ = d0(C) is the set of limit points of C. Roughly speaking then a 2γ(κ)-sequence is
defined like a 2(κ) sequence, replacing d0 by dγ , club and stationary by γ-club and γ-stationary.

Generalising the non-simultaneous reflecting result above from 2(κ) we have the analogous
statement: (Theorem 3.50) if the γ-club filter is normal and 2γ(κ) holds then κ is not γ + 1-
reflecting, i.e. simultaneous reflection of γ + 1-stationary sets fails.

COROLLARY 3.51. (V = L). Suppose κ is Π1
γ-indescribable. Then the following are equiv-

alent: (i) κ is not Π1
γ+1-indescribable; (ii) 2γ(κ).

(The authors of [10] also considered a prima facie slightly weaker version of our threaded
square for finite n which they call 2n(κ). This involves the Π1

n−1-indescribability ideal both in
the definition of n-clubs and in its definition of where the Cα’s must cohere. They show that our
2n(κ) implies 2n(κ), but leave the question of their equivalence open.)

In Section 4 we prove the main theorem Theorem 4.5 which shows that under certain assump-
tions, γ-stationarity is downwards absolute to L. The following corollary is a simpler, albeit
weaker, statement of downward absoluteness.

COROLLARY 4.8. Assume that for any ordinal γ < κ with κ a γ-reflecting regular cardi-
nal, that the γ-club filter on κ is normal. Then if S ⊆ κ is γ-stationary with S ∈ L we have
(S is γ-stationary in κ)L.

This extends the result of Magidor in [24] which essentially gives the case γ = 2. As well as
being an interesting result in itself, Theorem 4.5 shows (together with the main result of Section
5) that if the existence of a γ-reflecting cardinal plus some mild assumptions is consistent, then
so is the existence of a Π1

γ-indescribable cardinal.
Finally, in Section 5 we use γ-stationarity to generalise the notion of ineffability and the com-

binatorial principle ♦. The notion of γ-ineffability is introduced in section 5.1 and we show that
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many results about ineffable cardinals generalise well to this context. These γ-ineffable cardi-
nals are shown to satisfy the assumptions needed for Theorem 4.5, and hence (Theorem 5.12)
any γ-ineffable cardinal is γ-ineffable in L. In section 5.2 we define generalisations of ♦ and
♦∗ and look into their connection with γ-ineffability. In particular we show that in L, the cardi-
nals at which ♦∗γ holds can be entirely characterised in terms of γ-ineffability (Corollary 5.23).
Although many of the proofs in this chapter lift straight from the standard cases of club and
stationary set for successor cases, the limit cases are generally a different matter.

§2. Generalising closed and unbounded sets.
2.1. Definitions and Basic Properties. We define here the central notions of γ-club set and γ-

stationary set. The notion of γ-club is new, and helps us to generalise many of the basic properties
of stationary sets. In order for γ-clubs to do what we want, we also define a notion of γ-reflecting
ordinal which we restrict ourselves to when defining γ+ 1-stationary sets - just as we only define
stationary sets at ordinals of uncountable cofinality.

DEFINITION 2.1. Let κ be an ordinal and S, C sets of ordinals. We define by simultaneous
induction for γ < κ:

(1) S is 0-stationary in κ if S is unbounded in κ.
(2) C is γ-stationary-closed below κ if for any α < κ such that C is γ-stationary in α, we

have α ∈ C.
(3) C is γ-club in κ if C is γ-stationary-closed below κ and γ-stationary in κ.
(4) κ is γ-reflecting if for any A,B ⊆ κ with A and B γ-stationary in κ there is some α < κ

such that A and B are γ-stationary in α.
(5) S is γ-stationary in κ for γ > 0 and for all η < γ we have that κ is η-reflecting and for

every C which is η-club in κ, S ∩ C 6= ∅.

Whenever we speak of the notion of “γ-club in κ”, or “γ-stationarity of κ” &c. it is to be
understood that γ < κ, perhaps even without mentioning κ if the context is clear. (Thus γ will
be less than κ for the rest of this section.) It is easy to see that our ordinary notions of club and
stationary sets are the 0-clubs and 1-stationary sets. The 1-clubs in κ are then stationary-closed
sets which are also stationary in κ. We shall see shortly that for γ = η + 1, (5) reduces to the
usual definition of stationary sets in terms of clubs: S is η + 1 stationary if it intersects every
η-club. For limit γ it is easy to see that S is γ-stationary if for every η < γ, S is η-stationary.
The requirement of (4), a simple reflection property, is needed to ensure the η-clubs generate a
filter - for 0-reflecting this is just having uncountable cofinality.

The following notation from [2] will be very useful in exploring these concepts:

DEFINITION 2.2. For a set S ⊆ κ we set

dγ(S) = {α < κ : S ∩ α is γ-stationary in α}.

This is a version of Cantor’s derivative operator, giving the limit points of a set in a certain
topology (see [3]). Thus d0(S) is the set of limit points of S, d1(S) is the set of points below
which S is stationary, etc.

REMARK. Using this notation we see that (2), γ-stationary-closure, is simply the condition
that dγ(C) ⊆ C. Further (4) can be restated as “κ is γ-reflecting if for any A,B ⊆ κ with A and
B γ-stationary in κ, dγ(A) ∩ dγ(B) 6= ∅”. Finally note that if γ < κ and dγ(S) is γ-stationary
in κ then min dγ(S) > γ just by definition of γ-stationarity in κ.

For the rest of this section we look at some basic properties of such sets.

PROPOSITION 2.3. Let A ⊆ κ and γ′ < γ < κ. Then:
(i) If A is γ-stationary then it is γ′-stationary.
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(ii) Thus dγ(A) ⊆ dγ′(A).
(iii) If κ is η-reflecting for all η < γ, then A is γ′-club implies A is γ-club.

PROOF: Formally a proof by induction on κ. We suppose the proposition true for all κ′ < κ.
(i) is clear by (5) of the definition. (ii) then holds using clause (i) of the inductive hypothe-
sis on α < κ and Definition 2.2. To show (iii): fix γ and γ′ < γ. By (i) and (ii) γ′-
stationary closure below κ implies γ-stationary closure below κ as if C is γ′-stationary closed
then dγ(C) ⊆ dγ′(C) ⊆ C . Suppose C and C′ are γ′-club. Then as κ is γ′-reflecting
dγ′(C) ∩ dγ′(C′) 6= ∅ and dγ′(C) ∩ dγ′(C′) ⊆ C ∩ C′. As C′ was an arbitrary γ′-club,
we have C is γ′ + 1 stationary. By (i) therefore, C must be γ-stationary and hence γ-club. QED

REMARK. By (ii) above to see that a set is γ+1-stationary we need only check that it intersects
every γ-club (and that κ is γ-reflecting).

The following three propositions we prove together by a simultaneous induction.

PROPOSITION 2.4. If S is γ-stationary and C is γ′-club in κ for some γ′ < γ then S ∩ C is
γ-stationary.

PROPOSITION 2.5. If κ is γ-reflecting and A, B are γ-stationary subsets of κ then dγ(A) ∩
dγ(B) is γ-stationary.

PROPOSITION 2.6. If κ is γ-reflecting and C1 and C2 are γ-club in κ then C1 ∩C2 is γ-club
in κ. Thus the γ-clubs generate a filter on κ.

PROOF: We prove this as a simultaneous induction on γ. First note that if γ = 0 then 2.4 is
vacuous, and 2.5 and 2.6 are immediate from the definitions.

Suppose then Proposition 2.6 holds for every 0 ≤ γ′ < γ. First we show Proposition 2.4
holds for γ. Let S be a γ-stationary subset of κ and γ′, η′ < γ. Let C be γ′-club in κ and let C′

be η′-club in κ. Set η = max{γ′, η′}. By Proposition 2.3 C and C′ are both η-club. Now by
Proposition 2.6 we have C ∩C′ is η-club. Thus (S ∩C)∩C′ = S ∩ (C ∩C′) 6= ∅, so as η′ and
C′ were arbitrary S ∩ C is γ-stationary.

Now supposing we have Proposition 2.4 for γ we show Proposition 2.5 holds for γ. Let κ be
γ-reflecting, A,B ⊆ κ be γ-stationary and let γ′ < γ with C γ′-club. By Proposition 2.4 we
have C ∩A is γ-stationary, so as κ is γ-reflecting dγ(C ∩A)∩dγ(B) 6= ∅. But dγ(C ∩A) ⊆ C
as C γ-stationary in α implies that C is γ′-stationary in α, and the latter implies α ∈ C, and then
clearly also dγ(C ∩A) ⊆ dγ(A). Thus C ∩dγ(A)∩dγ(B) ⊇ dγ(C ∩A)∩dγ(B) 6= ∅. Hence
dγ(A) ∩ dγ(B) is γ-stationary.

Finally we show Proposition 2.5 implies Proposition 2.6. Take C1 and C2 to be γ-club in κ.
By Proposition 2.5 we have dγ(C1)∩dγ(C2) is γ-stationary so as dγ(C1)∩dγ(C2) ⊆ C1∩C2

we just need to show γ-stationary closure. But this is simple as if C1 ∩C2 is γ-stationary below
α < κ then C1 and C2 are both γ-stationary below α so by the γ-stationary closure of C1 and
C2 we must have α ∈ C1 ∩ C2. QED

PROPOSITION 2.7. If κ is γ-reflecting and C is γ-club in κ then dγ(C) is also γ-club in κ.

PROOF: By Proposition 2.5 we have dγ(C) is γ-stationary. To see we have closure, if dγ(C)
is γ-stationary below α then, as dγ(C) ⊆ C we have C is γ-stationary below α, so by stationary
closure of C we have α ∈ dγ(C). QED

The following is a useful way of building γ-stationary sets.

LEMMA 2.8. Let A ⊆ κ be γ-stationary in κ and 〈Aα : α ∈ A〉 be a sequence of sets such
that each Aα is γ-stationary in α. Then

⋃
{Aα : α ∈ A} is γ-stationary in κ.
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PROOF: This is clearly true for γ = 0 so suppose γ > 0 and let γ′ < γ and C ⊆ κ be
γ′-club in κ. Then as A is γ-stationary in κ we must have κ is γ′-reflecting so by Proposition 2.7
dγ′(C) is γ′-club. Then we can find some α in dγ′(C)∩A. Now C is γ′-club in α so asAα is γ-
stationary in α we must haveC∩Aα 6= ∅. ThusC∩

⋃
{Aα : α ∈ A} 6= ∅ and we’re done. QED

We can now prove a stronger result than 2.7:

PROPOSITION 2.9. If κ is γ-reflecting and S is γ-stationary in κ then dγ(S) is γ-club in κ.

PROOF: As κ is γ-reflecting dγ(S) is γ-stationary by Proposition 2.5. To show closure sup-
pose dγ(S) is γ-stationary in α. Then S ∩ α =

⋃
{S ∩ β : β ∈ dγ(S) ∩ α} with each S ∩ β

being γ-stationary in β, so by Lemma 2.8 S is γ-stationary in α. Hence α ∈ dγ(S) and we have
γ-stationary closure. QED

The following shows that there are also many ordinals below which a set is not γ-stationary:

PROPOSITION 2.10. If A is γ-stationary in κ then

A \ dγ(A) = {α ∈ A : A ∩ α is not γ-stationary}
is γ-stationary.

Note that A \ dγ(A) can never be γ + 1-stationary as if κ is γ-reflecting then Proposition 2.9
gives us that dγ(A) is γ-club.

PROOF: Let γ′ < γ and C be γ′-club in κ. Then dγ′(C) is γ′-club, using Prop.2.7 as κ is
γ′-reflecting; hence it is γ′-stationary and thus its minimum is greater than γ′. So we can find α
minimal inA∩dγ′(C) and we shall have γ′ < α. ThenC is γ′-club in α. If α is not γ′-reflecting
then A cannot be γ-stationary in α so we’re done. If α is γ′-reflecting then by Proposition 2.7
dγ′(C) is also γ′-club in α. But A ∩ α ∩ dγ′(C) = ∅ so A ∩ α is not γ-stationary. QED

We can now show how closely this definition of γ-stationarity is related to that in [2], and to
notions of reflection:

PROPOSITION 2.11. Let κ be η-reflecting for all η < γ and S ⊆ κ. Then S is γ-stationary iff
for any η < γ and any η-stationary A ⊆ κ we have dη(A) ∩ S 6= ∅.

PROOF: (⇒) is clear as by Proposition 2.9 dη(A) is η-club. (⇐) : if C is η-club then C is
η-stationary so we have dη(C) ∩ S 6= ∅, but dη(C) ⊆ C. QED

The following is an easy consequence:

PROPOSITION 2.12. If κ is γ-reflecting then κ is η-reflecting for all η ≤ γ.

REMARK. Comparing this characterisation to the definition in [2] (which we do not detail
here) we see the only difference between our γ-stationary sets and those defined in [2] is that
we always obtain simultaneous reflection as it is built in to our notion of γ-stationarity through
reflection. Indeed it is easy to see that if V = L then the two notions completely agree as we
shall anyway get simultaneous reflection in this case. We do also see, however, that our definition
of γ-stationary is equivalent to the definition of γ-s-stationary given in [3]:

DEFINITION 2.13. Define γ-s-stationary in κ inductively as follows, starting with 0-s-stationary
being unbounded. Let S be γ-s-stationary in κ if for every η < γ and A, B which are η-s-
stationary in κ there is some α ∈ S such that A ∩ α and B ∩ α are both η-s-stationary in α.

PROPOSITION 2.14. A set S is γ-s-stationary in α iff S is γ-stationary in α.

PROOF: By induction on γ. Suppose we have for η < γ and any ordinal α that a set is
η-stationary iff η-s-stationary.
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Let S be γ-s-stationary in κ. First we see that κ must be η-reflecting for any η < γ: if A and
B are η-stationary then they are η-s-stationary by the inductive hypothesis, and hence there is
some α ∈ S such that A ∩ α and B ∩ α are both η-s-stationary in α. But then A ∩ α and B ∩ α
are both η-stationary in α, so κ is η-reflecting. Now suppose C is η-club for some η < γ. Then
C is η-s-stationary so there is some α ∈ S such that C ∩ α is η-s-stationary in α, i.e. C ∩ α is
η-stationary in α. So by η-stationary closure, α ∈ C ∩ S. As C was arbitrary, we must have S is
γ-stationary.

Now suppose S is γ-stationary and let η < γ and A and B be η-s-stationary. By the inductive
hypothesis, A and B are both η-stationary. By our definition of γ-stationarity we have that κ is
η-reflecting. Thus by Proposition 2.9 dη(A) and dη(B) are both η-club. Then by Proposition 2.6,
still using η-reflection, dη(A)∩dη(B) is η-club, and hence we can find α ∈ S∩dη(A)∩dη(B).
But A and B are both η-stationary below such an α, and hence A and B are both η-s-stationary
below such an α, so we have that S is γ-s-stationary. QED

It is easy to show (see Proposition 2.20) that any Π1
n-indescribable is n-reflecting. So a simple

induction shows that we get this result for our definitions too.

THEOREM 2.15. [2] Assume V = L. Then a regular cardinal κ is n-reflecting iff κ is Π1
n-

indescribable.

In Section 3 we shall give an alternative proof of this, and after defining Π1
γ-indescribability

in section 3.3 we shall extend it to replace n with any ordinal γ < κ. Nevertheless, our result
is still of further interest as we are proving the existence of certain 2-sequences, which are not
constructed in either [2] or [3].

One question now is where the γ-stationary sets can occur if V 6= L. We have that if a
cardinal is Π1

1-indescribable then it is 2-stationary (i.e. 1-reflecting), and the above shows that it
is consistent for these to be the only 2-stationary regular cardinals. However, known results show
that it is also consistent, relative to certain large cardinal assumptions, that non-weakly compact
cardinals be stationary reflecting, and indeed 1-reflecting (see [21], [29, Thms. 1.18, 1.25]).

It is well known that a regular cardinal cannot be stationary reflecting unless it is either the
successor of a singular cardinal or weakly inaccessible. Observe that Eλ

+

λ =df {α < λ+ |
cf(α) = λ} does not reflect for λ ∈ Reg. Furthermore note that singular ordinals are not so
interesting in this context as γ-stationarity for subsets of a singular reduces to γ-stationarity for
subsets of its cofinality:

PROPOSITION 2.16. Let α be a singular ordinal and C ⊆ α be club, with π : 〈C,∈〉 ∼=
〈ot(C),∈〉. Then for γ ≥ 1 any S ⊆ α is γ-stationary in α iff π“S ∩C is γ-stationary in ot(C).
Hence α is γ-reflecting if and only if cf(α) is.

PROOF: This is proven by induction. Fix α and γ and suppose the claim is true for all β < α
and for all η < γ. Fix C, S and π : 〈C,∈〉 ∼= 〈ot(C),∈〉. If D is η-club in α then by the
inductive hypothesis and the closure of C, π“D ∩C is η-club in ot(C), and hence if π“S ∩C is
γ-stationary in ot(C) then S is γ-stationary in α. Similarly if D is η-club in ot(C) then π−1“D
is η-club in α, so if S is γ-stationary in α then π“S ∩ C is γ-stationary in ot(C). QED

A cardinal can be stationary reflecting without simultaneously reflecting stationary sets (i.e.
without being 1-reflecting) as shown in [25], and in fact the consistency strength of the existence
of a stationary reflecting cardinal is much less than the existence of a 1-reflecting cardinal. This
follows from results of Mekler-Shelah in [25] and Magidor in [24]. In the latter it is shown that
if a regular cardinal is 1-reflecting then it is weakly compact in L, and thus if the existence of
a 1-reflecting cardinal is consistent then so is the existence of a weakly compact cardinal. we
shall generalise this result on downward absoluteness in Section 4 (although we have to add some
assumptions there).
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Kunen has shown [21] that it is consistent relative to the existence of a weakly compact cardinal
that there is a stationary reflecting cardinal that is not weakly compact - this is proven by giving
a forcing which adds a Suslin tree to a cardinal κ that is weakly compact in the ground model. It
is clear from the proof that in this model κ reflects any two stationary sets simultaneously and is
thus 1-reflecting. It is also easy to see that the 1-club filter is normal there (see Definition 2.18).

Magidor in [24] starts from the much stronger assumption that there are infinitely many su-
percompact cardinals, and produces a forcing extension in which ℵω+1 reflects stationary sets.
Again, it is clear from the proof that ℵω+1 is in fact 1-reflecting. Here, however, the 1-club filter
is not even countably complete, as shown by the following easy argument. For each n < ω let
Cn = {α < ℵω+1 : cf(α) ≥ ℵn}. Then eachCn is 1-club - it is clearly stationary, and cannot be
stationary below any ordinal of cofinality ≤ ℵn so is also stationary closed. But

⋂
n<ω Cn = ∅.

It is also easy to see that ℵω+1 cannot be 2-reflecting, as ℵω+1 is the minimum ordinal that can
be 2-stationary so there is nowhere for 2-stationary sets to reflect to.

2.2. Results at Indescribables. Indescribability is a central concern of this paper. We recall
its definition, and mention that an uncountable cardinal κ is weakly compact if and only if it is
Π1

1 indescribable.

DEFINITION 2.17. An uncountable cardinal κ is Π1
n-indescribable if for any R ⊆ Vκ and Π1

n

formula ϕ such that 〈Vκ,∈, R〉 � ϕ, there is some α < κ such that

〈Vα,∈, R ∩ Vα〉 � ϕ.

This turns out to be closely connected to n-stationarity.
2.2.1. The Club and Indescribability Filters. In this section we shall be focusing on the re-

lationship between Π1
n-indescribability and our generalised notions of club and stationarity, in

particular the n-club filter. For this reason, we shall be mostly restricting to finite levels of the
club and stationary set hierarchy here. We shall extend these results to the transfinite in section
3.5, after we have introduced a notion of Π1

γ-indescribability. Analysing this relationship will al-
low us to generalise some deeper properties of stationary sets and the club filter to n+1-stationary
sets and the n-club filter at a Π1

n-indescribable cardinal. By Theorem 2.15 this generalisation will
be full in L, but limited if we only have n-reflecting cardinals which are not Π1

n-indescribable.
We first look at the relationship between the n-club filter and the Π1

n-indescribability filter.

DEFINITION 2.18. For a γ-reflecting cardinal κ we denote by Cγ(κ) the γ-club filter on κ:

Cγ(κ) := {X ⊆ κ : X contains a γ-club}.

DEFINITION 2.19 (Levy). [23] If κ is Π1
n-indescribable letFn(κ) denote the Π1

n-indescribable
filter on κ:

Fn(κ) := {X ⊆ κ : for some Π1
n sentence ϕ with parameters such that Vκ � ϕ,

Vα � ϕ implies α ∈ X}.

REMARK. (1) By a P1
n sentence here, we mean a usual Π1

n of the second order language, but
with both first and second order parameters allowed substituted in for the free variables.
(2) The statement “X is n-stationary in κ” is Π1

n expressible over Vκ. This can be seen by
induction - clearly “X is unbounded” is Π1

0. “X is n+1-stationary” is equivalent (by Proposition
2.11) to ”X is n-stationary ∧∀S, T (S, T are n-stationary → ∃α ∈ X S ∩ α, T ∩ α are n-
stationary in α)”. Further assuming n-stationarity is Π1

n expressible this is clearly Π1
n+1.

(3) By a result of Levy if κ is Π1
n indescribable then Fn(κ) is normal and κ-complete.

PROPOSITION 2.20. If κ is a Π1
n-indescribable cardinal then κ is n-reflecting and furthermore

any set X ∈ Fn(κ) is n+ 1-stationary.

PROOF: Suppose κ is Π1
n-indescribable. We have seen that being n-stationary in κ is Π1

n

expressible over Vκ, so for any S, T ⊆ κ if we have Vκ � “S, T are n-stationary” then for
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some α < κ we have Vα � “S ∩ α, T ∩ α are n-stationary” and hence κ is n-reflecting. For
X ∈ Fn(κ) let ϕ be a Π1

n formula such that Vκ � ϕ and Vα � ϕ → α ∈ X . For an n-club C,
taking “ψ = C is n-stationary ∧ϕ”, we have that ψ is Π1

n and hence for some α < κ, Vα � ψ.
But then Vα � ϕ so α ∈ X and C ∩ α is n-stationary so by n-stationary closure, α ∈ C. Thus
X meets any n-club and so X is n+ 1-stationary. QED

First we show that at a Π1
n-indescribable cardinal the n-club filter is normal. For n = 1 this is

due to Sun [29].

LEMMA 2.21. For any n < ω and Π1
n-indescribable cardinal κ we have

1. Cn(κ) ⊆ Fn(κ),
2. Cn(κ) is normal (and hence κ-complete) .

PROOF: (1) Let C be n-club in κ. Then dn(C) ⊆ C and dn(C) = {α < κ : Vα �
“C is n-stationary”}. As being n-stationary is Π1

n we see dn(C) ∈ Fn so C ∈ Fn.
(2) Let 〈Cα : α < κ〉 be a sequence of n-clubs. Defining C := 4α<κCα we have

C ∈ Fn (using the normality of Fn and (1)). As each element of Fn is n + 1-stationary
we thus have C is n-stationary. To show closure suppose C is n-stationary in α < κ. As
C ∩ α = {β < α : β ∈

⋂
γ<β Cγ} we see that for any β < α we have (β, α) ∩ C ⊆ Cβ so

Cβ ∩ α includes an end-segment of an n-stationary set and thus Cβ is n-stationary in α. Then
α ∈ Cβ as Cβ is n-club. Thus α ∈

⋂
β<α Cβ , i.e. α ∈ C. QED

REMARK. As the referee has kindly pointed out, there is a version of the last result where we
weaken the notion ofFn to that of being the weak indescribability filter at a weakly indescribable
cardinal κ. One then has the same conclusions - this corresponds to [29, Lemmata 1.14,1.15 &
1.16].

COROLLARY 2.22. (Fodor’s Lemma for n-stationary sets) If κ is Π1
n-indescribable and A ⊂

κ is n-stationary, then for any regressive function f : A → κ there is an n-stationary B ⊆ A
such that f is constant on B.

In the next theorem the case of n = 1 is originally due to Sun [29].

THEOREM 2.23. At any weakly compact cardinal κ, C1(κ) = F1(κ) and assuming V = L
we have Cn(κ) = Fn(κ) for any n < ω and Π1

n-indescribable κ.

PROOF: Firstly we show C1(κ) = F1(κ); the later part will be an induction using that all
n-reflecting cardinals are Π1

n-indescribable, which holds in L.
Let ∀Xϕ(X) be a Π1

1 sentence (possibly with parameters) such that Vκ � ∀Xϕ(X). Note that
ϕ(X) is Σ1

0 so ¬ϕ(X) is Π1
0. We define A ⊆ {α < κ : Vα � ∀Xϕ(X)} and show A is

1-club. Set A := {α < κ : α is inaccessible ∧ Vα � ∀Xϕ(X)}. Then as inaccessibility is Π1
1

expressible, A ∈ F1(κ) and so A is stationary. To show A is stationary-closed take α < κ a
limit of inaccessibles.
(i) If α is regular then α is inaccessible. Suppose α /∈ A. Then Vα � ¬ϕ(Y ) for some Y ⊆ α so
by the inaccessibility of κ, {β < α : Vβ � ¬ϕ(Y ∩ β)} is club in α. Thus if A is stationary in α
then α ∈ A.
(ii) If α is singular then A is not stationary in α: set λ = cf(α) and take C club in α with
ot(C) = λ. Then no inaccessible above λ can be a limit point of C, so d0(C) ∩A is bounded in
α. Thus A is stationary-closed and hence 1-club, so we have C1(κ) = F1(κ).

Now we assume V = L. Suppose κ is Π1
n+1 indescribable and for all α < κ if α is Π1

n

indescribable then Cn(α) = Fn(α). Let ∀Xϕ(X) be a Π1
n+1 sentence (possibly with param-

eters) such that Vκ � ∀Xϕ(X). Take A := {α < κ : α is inaccessible ∧ Vα � ∀Xϕ(X)}.
As before A is a subset of the points where ∀Xϕ(X) is reflected, and A is n + 1-stationary
as A ∈ Fn+1(κ). Also as above, if α < κ is singular then A is not stationary (and hence not
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n+1-stationary) inα. So supposeα is regular andA is n+1-stationary inα. ThenAmust be Π1
n-

indescribable as only n-reflecting ordinals admit n + 1-stationary sets, and in L the n-reflecting
regular cardinals are exactly the Π1

n-indescribables (Theorem 2.15). Suppose for a contradiction
Vα � ¬ϕ(Y ) for some Y ⊆ α. Now ¬ϕ(Y ) is Π1

n so setting B = {β < α : Vβ � ¬ϕ(Y ∩ β)}
we have B ∈ Fn(α) = Cn(α) by the inductive hypothesis, so A is not n + 1 stationary in α,
contradiction. Thus A is n+ 1-club, so Fn+1(κ) = Cn+1(κ). QED

2.2.2. Splitting Stationary Sets. We show that at a Π1
n-indescribable κ each n + 1-stationary

set can be split into κ many disjoint n + 1-stationary sets. This is a generalisation of Solovay’s
result [28] that any stationary subset of a regular κ can be split into κ many disjoint stationary
sets, but the proof is very different. The difficult part of this is actually to show that each n + 1-
stationary set can be split into two disjoint n + 1-stationary sets, i.e. to show that the ideal of
sets which are not n + 1-stationary is atomless. Splitting into κ sets then follows. After we
have introduced Π1

γ-indescribability in section 3.3 we shall extend the results below to γ + 1-
stationarity (see section 3.5.2).

LEMMA 2.24. (n > 0) If Cn−1(κ) is κ-complete then any n-stationary subset of κ is the
union of two disjoint n-stationary sets.

PROOF: Let S be n-stationary in κ and suppose S is not the union of two disjoint n-stationary
sets. Define

F = {X ⊂ κ : X ∩ S is n-stationary in κ}
Claim: F is a κ complete ultrafilter

Upwards closure is clear. If A, B ∈ F then we have S\A and S\B are both non-n-stationary
sets, as S cannot be split. Thus A ∪ (κ\S) and B ∪ (κ\S) are both in the n − 1-club filter,
and hence their intersection contains an n − 1-club C. But then C ∩ S is n-stationary and
C ∩ S ⊆ A ∩ B ∩ S, so A ∩ B ∈ F . For maximality, if X ∈ F then as S cannot be split we
must have κ\X /∈ F . That X /∈ F ⇒ κ\X ∈ F follows from the fact that the n − 1-clubs
form a filter. The κ-completeness of F follows from the κ-completeness of the n− 1-club filter,
in the same way as the intersection property. Also, F is clearly non-principal as it contains all
end-segments.

Claim: F is normal
As we have shown that F is a κ complete non-principal ultrafilter on κ, we have that κ is mea-
surable and hence κ is Π1

n−1-indescribable. Thus Cn−1(κ) is normal by Proposition 2.21. Let
〈Xα : α < κ〉 be a sequence of sets in F . Then each S\Xα is in the non-n-stationary ideal on
κ, so Xα ∪ (κ\S) ∈ Cn−1(κ). Now by the normality of Cn−1(κ), we have, setting

X := 4α<κXα ∪ (κ\S)

that X ∈ Cn−1(κ), and so X ∩ S is n-stationary. But

X = {α < κ : ∀β < κ α ∈ Xβ ∪ (κ\S)}
= {α < κ : α ∈ κ\S ∨ ∀β < κ α ∈ Xβ}
= (κ\S) ∪4α<κXα

so X ∩ S = 4α<κ(Xα ∩ S), and thus4α<κ(Xα ∩ S) is n-stationary and hence in F .

As we have shown that F is a normal measure, and measurables are Π2
1-indescribable: for any

R ⊆ Vκ and ϕ that is Π2
1 we have that if 〈Vκ,∈ R〉 � ϕ then

{α < κ : 〈Vα,∈, R ∩ Vα〉 � ϕ} ∈ F.

Thus setting R = S and ϕ = “S is n-stationary” we have

{α < κ : S ∩ α is n-stationary in α} ∈ F.
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By definition of F therefore,

A = {α ∈ S : S ∩ α is n-stationary}
is n-stationary. But by Proposition 2.10 we have

A′ := {α ∈ S : S ∩ α is not n-stationary}
is n-stationary. This contradicts our assumption on S as A′ and A are two disjoint, n-stationary
subsets of S. QED

Adding the assumption of weak compactness we can now split S into κ many pieces.

THEOREM 2.25. (n > 0) If κ is weakly compact and Cn−1(κ) is κ-complete then any n-
stationary subset of κ can be split into κ many disjoint n-stationary sets.

PROOF: We defer the proof to that for arbitrary γ rather than n at Theorem 3.46. QED

COROLLARY 2.26. (n > 0) Let κ be Π1
n-indescribable. Then any n+ 1-stationary subset of

κ can be split into κ many disjoint n+ 1-stationary sets.

PROOF: For n ≥ 1, Π1
n-indescribability implies weak compactness and Lemma 2.21 gives us

the κ-completeness of Cn(κ), so we can apply Theorem 2.25. QED

§3. Generalising. Jensen proved [18] that in L, a regular cardinal being weakly compact is
equivalent to being stationary-reflecting, by constructing a square sequence below a non-weakly
compact κ which avoids a certain stationary set. We aim to generalise this, replacing the notion
of stationary set with γ-stationary set, and defining a new notion of 2-sequence using γ-clubs.

Firstly, for finite n, we shall use the natural generalisation of 2 notions to the context of n-
clubs by defining a 2n-sequence that will witness the failure of a n + 1-stationary set to reflect.
This will subsequently be generalised for transfinite γ > n.

DEFINITION 3.1. A 2n-sequence on Γ ⊆ κ is a sequence 〈Cα : α ∈ Γ ∩ dn(κ)〉 such that
for each α:

1. Cα is an n-club subset of α and
2. for every β ∈ dn(Cα) we have β ∈ Γ and Cβ = Cα ∩ β.
We say a 2n-sequence 〈Cα : α ∈ dn(κ)〉 avoidsE ⊂ κ if for all α we haveE∩dn(Cα) = ∅.
So, for instance, Jensen’s characterisation in [18] of non-weakly compact cardinals κ is a 20-

sequence below κ which avoids a certain stationary set. We can now state our first generalisation
of Jensen’s Theorem:

THEOREM 3.2. (V = L) Let n ≥ 0 and κ be a Π1
n- but not Π1

n+1-indescribable cardinal,
and let A ⊆ κ be n+ 1-stationary. Then there is EA ⊆ A and a 2n-sequence S on κ such that
EA is n+ 1-stationary in κ and S avoids EA. Consequently κ is not n+ 1-reflecting.

COROLLARY 3.3. Under the assumptions of the last theorem, the sequence S is non-threadable,
and hence 2n(κ) holds.

For a proof of the Corollary assuming the Theorem, see that of Theorem 3.50. In order to
prove this theorem for n > 0 we shall need some technical machinery, which will be introduced
in the next subsection. In section 3.2 we give the proof of the above theorem.

However, we want to generalise this result further, replacing n in the above with an arbitrary
ordinal γ < κ. To do this, we need a concept of Π1

γ-indescribability, which is introduced in
section 3.3.1. We shall also need a new type of 2-sequence, because although Definition 3.30
makes sense for infinite ordinals γ, we shall need to deal with limit cases where that definition is
not adequate, an intermediate form is needed. This is the 2<γ-sequence introduced in 3.3.2, and
then in section 3.4 we state and prove the most general version of our theorem.
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3.1. Traces and Filtrations. We define some notation for familiar concepts.

DEFINITION 3.4. For a transitive set M together with a well-ordering of M which we fix for
this purpose, if X ⊆ M , let M{X} be the Skolem hull of X in M using the Skolem functions
defined from the (suppressed) well-ordering.

Although stated generally, we shall just use structures M which are levels of the L-hierarchy,
possibly with additional relations. The well-ordering is then the standard one of the levels of L.

DEFINITION 3.5 (Trace and Filtration). LetM be a transitive set equipped with a Skolem hull
operator M{.} and let p ∈ M<ω (we say p is a parameter from M ) and α ∈ M . The trace of
M,p on α is the set

∫(M,p, α) := {β < α : α ∩M{p ∪ β ∪ {α}} = β}
The filtration of M,p in α is the sequence

〈Mβ = M{p ∪ β ∪ {α}} : β ∈ ∫(M,p, α)〉
REMARK. Note that the filtration is continuous and monotone increasing. If α is a regular

cardinal we shall have as usual the filtration is unbounded, and the trace will be club in α.

Let Γ be a class of L∈ formulae such that each Γ formula ϕ has a distinguished variable v0 .

DEFINITION 3.6. A model 〈M,∈〉 is Γ correct over α if α ∈ M and for any Γ formula
ϕ(v0, . . . vn) with all free variables displayed and A1, . . . An from P(α) ∩M ,

M � ϕ(α,A1, . . . An) iff ϕ(α,A1, . . . An).

REMARK. Note that if we set ¬Γ = {¬ϕ : ϕ ∈ Γ} then Γ-correctness is the same as ¬Γ-
correctness. We shall initially be using this for Γ = Π1

n and later for Π1
γ .

We can thin out the trace and filtration by requiring that the hulls collapse to transitive models
which are Γ correct over ᾱ, where ᾱ is the collapse of α. More formally:

DEFINITION 3.7. The Γ-trace of M,p on α is denoted ∫Γ(M,p, α) and consists of all β < α
such that β ∈ ∫(M,p, α) and if π : M{p ∪ β ∪ {α}} ∼= N is the transitive collapse then N is
Γ-correct over β = π(α).

We now work under the assumption V = L and prove some elementary properties of traces of
levels of L.

LEMMA 3.8. 1. If α < µ < ν are limit ordinals with p a parameter from Lν , q a parame-
ter from Lµ and Lν = Lν{p ∪ α+ 1} then there is some β0 < α such that

∫(Lµ, q, α) ⊇ ∫(Lν , p, α)\β0

2. If in addition we assume Lν and Lµ are Γ-correct over α, the same holds for the Γ-trace
∫Γ(Lν , p, α).

PROOF: (1) As Lν = Lν{p ∪ α+ 1} there is β0 < α such that Lµ, q ∈ Lν{p ∪ β0 ∪ {α}}.
It is easy to see that this β0 works as Lµ � ϕ(β)⇒ Lν � ϕ(β)Lµ .

(2) Suppose β ∈ ∫Γ(Lν , p, α)\β0. Let Lν̄ ∼= Lν{p∪ β ∪ {α}} and Lµ̄ ∼= Lµ{q ∪ β ∪ {α}},
with π and π′ the respective collapsing maps. As β > β0, we have Lµ{q ∪ β ∪ {α}} ⊆
Lν{p ∪ β ∪ {α}} and α ∩ Lµ{q ∪ β ∪ {α}} = β = α ∩ Lν{p ∪ β ∪ {α}}. Thus

π′�P(α) = π�P(α) ∩ Lµ{p ∪ β ∪ {α}}.
Suppose ϕ(β,A) for some Γ formula ϕ and A ⊆ β with A ∈ Lµ̄. Then by Γ-correctness
Lν̄ � ϕ(β,A) and so Lν � ϕ(α, π−1(A)). But π−1(A) = π′

−1
(A) by the remark above, so

π−1(A) ∈ Lµ. Then as Lν and Lµ are both Γ-correct over α we must have Lµ � ϕ(α, π−1(A))
and hence Lµ̄ � ϕ(β,A). By essentially the same argument we have the converse: if Lµ̄ �
ϕ(β,A) then ϕ(β,A). Thus Lµ̄ is Γ-correct over β so β ∈ ∫Γ(Lµ, p, α). QED
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LEMMA 3.9. If p is a parameter from Lµ with µ > α and π : Lµ{p ∪ β ∪ {α}} ∼= Lµ̄ with
π(α) = β and π“p = q then

∫(Lµ̄, q, β) = β ∩ ∫(Lµ, p, α).

The same holds for the Γ trace etc.

PROOF: Straightforward from the definitions. QED

LEMMA 3.10. If p ∈ P(α)<ω and ν > α is the least limit ordinal such that
(i) p ∈ Lν and (ii) Lν is Γ-correct over α, then Lν = Lν{p ∪ α+ 1}.
If in addition ∫Γ(Lν , p, α) is unbounded in α then Lν is the union of the filtration, i.e.

Lν =
⋃

β∈∫Γ(Lν ,p,α)

Lν{p ∪ β ∪ {α}}

PROOF: Suppose π : Lν{p ∪ α + 1} ∼= Lν̄ . Then π“p = p as α is not collapsed. Also
we must have Lν̄ is Γ-correct: Let ϕ be a Γ formula with A ∈ P(α) ∩ Lν̄ . As π(α) = α and
π(A) = A we have:

Lν̄ � ϕ(α,A) iff Lν � ϕ(α,A) iff ϕ(α,A)

So by the minimality of ν, we must have ν = ν̄. The second part is an easy consequence. QED

The final, and most important lemma in this section gives a close relationship between the
traces for specific classes Γ and generalised clubs. Just as, at a regular cardinal the trace will form
a club, if we are at Π1

n-indescribable cardinal then the Π1
n-trace forms an n-club. Note that the

claim here is not just that the Π1
n-trace is in the n-club filter, but it is actually n-stationary-closed.

This is important, as we shall use these Π1
n-traces as our n-clubs when we define a 2n-sequence

in the next section. When in section 3.3 we define the class Π1
γ , we shall extend this lemma to

show that the Π1
γ-trace is γ-club.

The class of Π1
n formulae are defined here as the set of formulae of the form

∀x1 ⊆ v0∃x2 ⊆ v0 . . . Qxnψ(v0, v1, x1, x2, . . . , xn) ∧ v1 ⊆ v0

where ψ is ∆0
ω and v0 is the distinguished variable. Again, we simplify our notation by only

allowing 1 parameter (the assignment of v1). We also only quantify over subsets of α (rather
than Vα) and as we are working in L this does not restrict us. Note that the Π1

0-trace is just the
trace. This is because the Π1

0 formulae have no quantification over subsets of v0, so as the models
in the filtration are all transitive below the ordinal for which we require Π1

0-correctness and ∆0
ω

satisfaction is absolute between transitive models, all the models in the filtration are Π1
0- correct.

LEMMA 3.11. If κ is Π1
n-indescribable then for any limit ν > κ with Lν Π1

n-correct over κ
we have ∫Π

1
n(Lν , p, κ) is n-club in κ.

PROOF: For each β ∈ ∫(Lν , p, κ) set Nβ = Lν{p ∪ β ∪ {κ}}, and πβ : Nβ ∼= Lνβ . Note
πβ(κ) = β. We first show that for n-stationary many β we have Lνβ is Π1

n-correct.
Let A = 〈Aα : α < κ, lim(α)〉 enumerate the subsets of κ which occur in the filtration such

that for any β in the trace, P(κ) ∩Nβ is just some initial segment of A. As κ is regular we have
on a club D that P(κ) ∩Nβ = {Aα : α < β}. Fix some ordering 〈ϕn(v0, v1) : n ∈ ω〉 of Π1

n

formulae. Then for each limit α < κ we set

Cα+n = {β < κ : ϕn(β,Aα ∩ β) holds} if ϕn(κ,Aα) holds

and Cα+n = κ otherwise. Now setting

C = D ∩4α<κCα
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we have thatC is n-stationary as it is the diagonal intersection of elements of the Π1
n-indescribability

filter, which is normal. We claim for each β ∈ C that Lνβ is Π1
n-correct. So suppose β ∈ C.

Then β ∈ D so P(κ) ∪Nβ = {Aα : α < β} and β ∈ 4α<κCα so for each α < β we have if
ϕn(κ,Aα) then ϕn(β,Aα∩β). Now we have π−1 : Lνβ → Lν is elementary, Lν is Π1

n-correct
over κ and π(κ) = β, and for α < β, π(Aα) = Aα ∩ β. Thus if ϕ is Π1

n and Y ⊆ β with
Y ∈ Lνβ and Lνβ � ϕ(β, Y ) then this is just Lνβ � ϕn(β,Aγ ∩β) for some n < ω and γ < β.
Hence we have Lν � ϕn(κ,Aγ) and by Π1

n-correctness of Lν we have ϕn(κ,Aγ) holds. Then
as β ∈ 4α<κCα and γ < β we have β ∈ Cγ+n, i.e ϕn(β,Aγ ∩ β) holds.

For the other direction, suppose Lνβ � ¬ϕn(β,Aδ ∩ β). This is ∃x ⊆ βψ(β, x,Aδ ∩ β)

for some ψ which is Π1
n−1. As a Π1

n−1 formula is also Π1
n we have by the above that if Lνβ �

ψ(β, x,Aδ ∩ β) then ψ(β, x,Aδ ∩ β) holds, and thus so does ∃x ⊆ βψ(β, x,Aδ ∩ β), i.e.
¬ϕn(β,Aδ ∩ β). Thus Lνβ is Π1

n-correct. So we have shown that ∫Π
1
n(Lν , p, κ) is n-stationary.

(This part of the argument goes through in V . We do need L to get n-stationary closure though
in the next part.)

We now want to show that ∫Π
1
n(Lν , p, κ) is n-stationary closed. So suppose β < κ with

∫Π
1
n(Lν , p, κ) n-stationary below β. We must have that β is regular: regularity of α is a Π1

1 over
Vα so as κ is regular so must be each α ∈ ∫Π

1
n(Lν , p, κ). Thus, as the regular cardinals do not

form a stationary set below any singular, β must also be regular. Now as β has an n-stationary
subset it must be n − 1-stationary reflecting, and as we are in L and β is regular this means β
is Π1

n−1-indescribable. As ∫(Lν , p, κ) is unbounded below β we have β ∈ ∫(Lν , p, κ), so if
β /∈ ∫Π

1
n(Lν , p, κ) we must have Lνβ is not Π1

n-correct. Thus for some Π1
n sentence ϕ and

X ⊆ κ with ϕ(κ,X) holding, we have ¬ϕ(β,X ∩ β). Fixing such ϕ and X we have by the
Π1
n−1 indescribability of β that {α < β : ¬ϕ(α,X∩α)} contains an n−1-club. But this cannot

be, as ∫Π
1
n(Lν , p, κ) is n-stationary below β. Thus we must have ϕ(β,X) and so Lνβ is Π1

n-

correct and β ∈ ∫Π
1
n(Lα, p, κ). So ∫Π

1
n(Lν , p, κ) is n-stationary closed, and hence n-club. QED

3.2. The Finite Case. We can now generalise the construction of 2-sequences, constructing
a 2n-sequence below a cardinal which is Π1

n-indescribable but not Π1
n+1-indescribable. This

theorem will in fact be a corollary of the more general Theorem 3.32, but we give the proof of
this first, as here we can give the essence of the construction without getting caught up in too
many new concepts and tricky details. In this subsection we assume V = L throughout.

We say S′ = 〈C′α : α ∈ dn(κ)〉 is a refinement of S = 〈Cα : α ∈ dn(κ)〉 iff for each α we
have C′α ⊆ Cα.

THEOREM. 3.2. (V = L) Let n ≥ 0 and κ be a Π1
n-indescribable but not Π1

n+1-indescribable
cardinal, and let A ⊆ κ be n+ 1 stationary. Then there is EA ⊆ A and a 2n-sequence S on κ
such that EA is n+ 1-stationary in κ and S avoids EA.
Thus κ is not n+ 1-reflecting.

PROOF: For n > 0 we produce the 2n-sequence in two steps. For the first step, we define
S′ = 〈C′α : α ∈ Reg ∩ dn(κ)〉 and show that it is a 2n-sequence below κ. This does not yet
depend on the particular A. Then we set

EA = {α ∈ A ∩Reg : C′α ∩A is not n-stationary in α or dn(C′α) = ∅}
and in the second step we construct a refinement of S′ which avoids EA. If we are just looking
for any n+ 1-stationary set with a square sequence avoiding it (so we can take A = κ) then this
second step is superfluous. This is because if A = κ then EA = {α ∈ κ ∩ Reg : α /∈ dn(κ)}
as C′α is always n-stationary by definition, and hence the coherence of S′ already guarantees that
S′ avoids EA. We now fix κ and and an n+ 1-stationary set A ⊆ κ.

Constructing S′:
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As κ is Π1
n- but not Π1

n+1-indescribable we can fix ϕ(v0, v1, v2) a Π1
n formula (for ease of the

construction, we use a formula with three free variables) and Z ⊆ κ such that:

∀X⊆κ ¬ϕ(κ,X,Z)

but for all α < κ

∃X⊆α ϕ(α,X,Z ∩ α)

Let α ∈ dn(κ). We set Xα to be the <L-least subset of α such that ϕ(α,Xα, Z ∩ α) holds. We
take να > α to be the least limit ordinal such thatLνα is Π1

n-correct overα andXα, Z∩α ∈ Lνα .
We set pα = {Xα, Z ∩ α} and then we set:

C′α =

{
∫Π

1
n(Lνα , pα, α) if this is n-club in α

an arbitrary non-reflecting n-stationary set otherwise

Note that if α is n-reflecting we shall have that it is Π1
n-indescribable and so by Lemma 3.11 we

shall be in the first case. Thus C′α is always well defined. We set

S′ = 〈C′α : α ∈ dn(κ)〉

E = EA = {α ∈ A ∩Reg : C′α ∩A is not n-stationary in α or dn(C′α) = ∅}
as above.

CLAIM. S′ is a 2n-sequence.

PROOF: It is immediate from the definition that each C′α is n-club (in the second case trivially
so), so we just need to show that we have the coherence property. So let α ∈ dn(κ) and suppose
C′α is defined as in the first case (otherwise dn(C′α) = ∅ so coherence is trivial). Let β ∈ dn(C′α).
Let Nβ = Lνα{pα ∪ β ∪ {α}} and π : Nβ ∼= Lν̄β be the collapsing map. We need to show
π“pα = pβ and νβ = ν̄β .

Clearly π(Z ∩ α) = Z ∩ β. Let X = π(Xα) = Xα ∩ β. Then we have

Lνα � ∀U ⊆ α [U <L Xα → ¬ϕ(α,U, Z ∩ α)]

Then by elementarity we have

Lν̄β � ∀U ⊆ β [U <L X → ¬ϕ(β, U, Z ∩ β)]

and so by absoluteness

∀U ⊆ β [U <L X → Lν̄β � ¬ϕ(β, U, Z ∩ β)].

Thus by Π1
n-correctness of Lν̄β we do not have have Xβ <L X . Also

Lν̄β � ϕ(β,X,Z ∩ α)

and so by Π1
n-correctness Xβ = X .

It remains to show that νβ = ν̄β . We already have that pβ ⊆ Lν̄β and that Lν̄β is Π1
n-correct

over β, so we only need to show the minimality requirement. Now for each limit ordinal γ > α
with γ < να we have:

Θ(γ) : (Xα /∈ Lγ) ∨ (Z ∩ α /∈ Lγ) ∨ ∃U /∈ Lγ∃n ∈ ω(U is minimal with ψ(n,U))

where ψ(. . . ) is the universal Π1
n−1 sentence. A little thought will show that this is one way to

formalise the requirement that να is minimal.
By Π1

n-correctness we have for each γ < να that Lνα � Θ(γ) and thus

Lνα � ∀γΘ(γ)⇒ Lν̄β � ∀γΘ(γ)⇒ ∀γ < ν̄β Lν̄β � Θ(γ)

So by Π1
n-correctness we have Θ(γ) for each limit γ < ν̄β , so we do indeed have νβ = ν̄β . QED

We can now define a part of our system S. We set

Γ1 = {α ∈ dn(κ) : C′α ∩A is n-stationary in α}.
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If α ∈ Γ1 we set

Cα =

{
dn(C′α ∩A) if dn(C′α ∩A) is n-stationary
an arbitrary non-reflecting n-stationary set otherwise

Cα is well-defined because as α ∈ Γ1 we have C′α ∩ A is n-stationary so if α is n-stationary
reflecting then α is Π1

n-indescribable and hence dn(C′α ∩A) must be n-club. Now it is clear that
this defines a 2n-sequence on Γ1: each Cα is n-club by definition and coherence follows from
the coherence of S′, as if β ∈ dn(C′α ∩ A) then C′β = Cα ∩ β and so β ∈ Γ1. Also, each such
Cα avoids EA as either dn(Cα) = ∅ or dn(Cα) ⊆ dn(dn(C′α ∩A)).

Now we need to define Cα for α ∈ Γ2, where

Γ2 = {α ∈ dn(κ) : C′α ∩A is not n-stationary in α} = dn(κ)\Γ1.

For suchαwe shall findCα ⊆ C′α such that (i)Cα avoidsA and henceE and (ii) for β ∈ dn(Cα)
we have C′β ∩ A is not n-stationary (i.e. β ∈ Γ2) and Cβ = Cα ∩ β. Once we have (i) and (ii)
it is easy to see that S = 〈Cα : α ∈ dn(κ)〉 will satisfy Theorem 3.2, and it will only remain to
show that EA is n+ 1-stationary.

For α ∈ Γ2 set p′α = {C′α, A ∩ α} ∪ pα, and take ηα ≥ να to be the minimal limit ordinal
such that C′α ∈ Lηα and Lηα is Π1

n-correct over α. Note that if Dα is the <L least n − 1-club
avoiding A ∩ C′α then Dα ∈ Lηα by Π1

n-correctness. We now set

Cα =

{
Dα ∩ ∫Π

1
n(Lηα , p

′
α, α) if this is n-club in α

an arbitrary non-reflecting n-stationary subset of C′α otherwise.

Then Cα is well defined because if α reflects n-stationary sets then α is Π1
n-indescribable. Then

the Π1
n-trace of Lνα is n-club, and hence so also is its intersection with Dα.

IfCα is defined as in the first case, thenCα ⊆ dn(C′α) because for each β ∈ ∫Π
1
n(Lηα , p

′
α, α)

we have C′ ∩ β is n-stationary. Thus Cα ⊆ C′α. Also because Cα ⊆ Dα or dn(Cα) = ∅ we
have (i): Cα avoids A. If β ∈ dn(Cα) then Cα is defined as in the first case so β ∈ dn(C′α)
and hence C′β = C′α ∩ β. Then we have A ∩ C′β is not n-stationary in β by elementarity and
Π1
n-correctness, so β ∈ Γ2. Also by elementarity and Π1

n-correctness, Dβ = Dα ∩ β and so by
Lemma 3.9

∫Π
1
n(Lηβ , p

′
β , β) = ∫Π

1
n(Lηα , p

′
α, α) ∩ α.

Thus

Cβ = Dβ ∩ ∫(Lηβ , p
′
β , β) = β ∩Dα ∩ ∫(Lηα , p

′
α, α) = Cα ∩ β.

So we have (ii). This completes our construction of the 2n-sequence on the regulars avoiding
EA.

This defines the square sequence for regular α ∈ dn(κ); for singular α ∈ dn(κ) we argue as
follows: as EA has been defined, it is a set of regular cardinals, and so cannot even be stationary
below a singular ordinal. Thus we can simply use Jensen’s global square sequence below sin-
gulars - let 〈Dα : α ∈ Sing〉 be a global square sequence. Then for any singular α, we have
d0(Dα) ⊆ Sing and thus Dα avoids EA, and of course we have coherence.

It remains to show that EA is n+ 1-stationary.

DEFINITION 3.12. We define H ⊆ A by letting α ∈ H iff α ∈ A and there is µα > α and q
a parameter from Lµα such that:

1. Lµα is Π1
n-correct over α;

2. µα < να;
3. A ∩ ∫Π

1
n(Lµα , q, α) = ∅.

LEMMA 3.13. H ⊆ EA.
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PROOF: Suppose α /∈ EA, so we have C′α∩A is n-stationary and dn(C′α) 6= ∅. Thus C′α was
defined as in the first case: C′α = ∫(Lνα , pα, α). Let µ < να and q ∈ Lµ. Then using lemma 3.8
for some β < α we have q ∈ Lνα{β∪pα∪{α}} and so ∫(Lµ, q, α)\β ⊇ ∫(Lνα , pα, α) = C′α.
Thus α /∈ H . QED

LEMMA 3.14. H is n+ 1-stationary.

PROOF: Let C ⊆ κ be n-club. Take µ > κ minimal such that C,Z ∈ Lµ and Lµ is Π1
n-

correct. Set D = ∫(Lµ, {C,Z}, κ) and note that D ⊆ dn(C) ⊆ C, and D is n-club by Lemma
3.11. Take δ = min(D ∩A). Set µδ to be the ordinal such that Lµ{{C,Z, κ} ∪ δ} ∼= Lµδ . We
show that δ ∈ H , with µδ and {C ∩ δ, Z ∩ δ} witnessing this.

Claim 1: µδ < νδ .
We have that for every X ∈ P(δ) ∩ Lµδ

Lµδ � ¬ϕ(δ,X,Z ∩ δ).
As Lµδ is Π1

n-correct this means:

∀X ∈ P(δ) ∩ Lµδ ¬ϕ(δ,X,Z ∩ δ).
But we know by the choice of νδ that

∃X ∈ P(δ) ∩ Lνδ ϕ(δ,X,Z ∩ δ).
Hence we must have νδ > µδ .

Claim 2: A ∩ ∫(Lµδ , {C ∩ δ, Z ∩ δ}, δ) = ∅.
We have (Lemma 3.9)A∩∫(Lµδ , {C∩δ, Z∩δ}, δ) = A∩δ∩∫(Lµ, {C,Z}, κ) = A∩δ∩D = ∅.

To justify the final sentence of the Theorem, if we had that κ was n + 1-reflecting, then
dn+1(EA) would be n+ 1-club; choosing some δ ∈ dn(κ) ∩ dn+1(EA) we should have the n-
club Cδ defined, and with Cδ intersecting the n+ 1-stationary in δ set EA∩ δ. But Cδ ∩EA = ∅
as S avoids EA- a contradiction. QED (Theorem 3.2)

3.3. Qγ games, Π1
γ-indescribability and 2<γ . In this section we introduce the definitions

we shall need to generalise Theorem 3.2 of the previous section: Π1
γ-indescribability and 2<γ-

sequences.
3.3.1. Π1

γ-indescribability. We now turn to a generalisation of the notions Π1
n and Σ1

n intro-
duced in [27]; there the authors introduced Π1

γ and Σ1
γ classes of properties for transfinite γ to

extend those of Π1
n and Σ1

n for finite n.1 To our knowledge, this was the first time that such
second order classes were defined game theoretically. This approach was thus also behind the
concomitant notions of Π1

η-indescribabilty. We shall use these ideas to strengthen Theorem 3.2,
obtaining 2<γ-sequences below cardinals which are Π1

η-indescribable for all η < γ but not Π1
γ-

indescribable. There are some comments to be made about the possible choices. The notions
of γ-clubs, γ-stationarity etc., lend themselves naturally to a concept of indescribability that is
more akin to the weak indescribability of [23], [4]. There the basic structure is some (κ,∈, R)
(Baumgartner includes a pairing function p : κ2 → κ) and the second order quantifiers have
domain P(κ). Then a Π1

n-indescribable becomes a weakly inaccessible cardinal with reflection
properties. These were first analysed by Levy in [23]. Indescribability over (Vκ,∈, R) for an
R ⊆ Vκ and quantifiers over P(Vκ) lead to strongly inaccessible cardinals. (And Kunen showed
[20] that it was consistent that for all n < ω the least Π1

1-indescribable cardinal - thus weakly
compact - was greater than all the least weakly Π1

n-indescribables.) The sequence of definitions
and lemmata to come can be taken to conform to a ‘weak’ notion and be read as being second

1 Later Bagaria in [3] introduced a definition of Π1
γ property different to the one we present and showed

that in L a cardinal is γ-stationary reflecting iff it is Π1
γ -indescribable in his sense. We believe the proof of

the following section constructing a 2<γ -sequence would also work with his definition.



20 H. BRICKHILL AND P. D. WELCH

order statements over some (κ,∈, p, R). However the definitions involve a game-theoretic no-
tion. Obtaining universal Π1

γ-formulae, and, say, the classification that being Π1
γ-indescribable is

Π1
γ+1 expressible then involves quantifying in our setting over strategies for those games. This

then is something more naturally done by using quantification over Vκ. So for this reason if we
wish to analyse Π1

γ-indescribability this far we should take the statements involving reflection of
game theoretic statements as being evaluated over a (Vκ,∈, R).

The following definitions are variants of Definitions 3.15, 3.16 and 3.21 of [27].

DEFINITION 3.15. (The Qα game on κ, [27]) We define a two player game Gα(κ, ϕ,A) of
finite length, with parameter A ⊆ κ and a ∆0

ω formula ϕ with three free set variables (and no
other parameters), as follows.

Case 1: α is an even ordinal (including the case α is a limit).
In round n (n ≥ 1) Player Σ plays a pair, (αn, Xn) and player Π follows, playing Yn, with

the following constraints:

1. Each αn is an odd ordinal and setting α0 = α we have αn < αn−1 ;
2. Xn, Yn ⊆ κ ;
3. Player Π must play Yn such that ϕ( ~Xn, ~Yn, A) holds, where ~Xn = 〈X1, . . . , Xn〉 and

~Yn = 〈Y1, . . . , Yn〉.

The first player to be unable to move loses.

Case 2: α is an odd ordinal.
The game here is similar: the players switch roles but Σ still starts. Again for n ≥ 1 player Σ

plays a Yn and player Π follows, playing (αn, Xn), with the following constraints:

1. Each αn is an odd ordinal and setting α0 = α we have αn < αn−1 ;
2. Xn, Yn ⊆ κ ;
3. Player Σ must play Yn such that ϕ( ~Xn−1, ~Yn, A) holds (setting ~X0 = ∅), where ~Xn−1 =

〈X1, . . . , Xn−1〉 and ~Yn = 〈Y1, . . . , Yn〉.

REMARK. (1) The decreasing sequence of ordinals ensures the games are always finite in
length, so by the familiar Gale-Stewart argument they are determined - one player always has a
winning strategy. So without ambiguity, we shall say “Σ wins Gα” to mean Σ has a winning
strategy for Gα.
(2) We write “ that ϕ( ~Xn, ~Yn, A) holds...” to abbreviate (Vκ, ~Xn, ~Yn, A) |= ϕ(Ẋ, Ẏ , Ȧ) (al-
though we might just as easily take this to mean that (κ, p, ~Xn, ~Yn, A) |= ϕ(Ẋ, Ẏ , Ȧ) if ϕ were
appropriate). Recall that we have definable pairing functions over any Vκ (for cardinals κ) and
thus we can view ~Xn as a single subset of κ which can be decoded as 〈X1, . . . , Xn〉 &c. We can
then assume ϕ has just the 3 second order variables shown.
(3) Again note any first order object (in other words a set or ordinal of Vκ) can be coded as a
subset of κ and could be absorbed into such a sequence code ~Xn. We thus can safely ignore
fussiness about first order parameters or longer sequences of second order variables than three.
We leave it to the reader to make adaptations to explicit bring out these features if they so desire.
In short, in the sequel we shall write as if for a pair A,Z ⊆ κ, 〈A,Z〉 were also a subset of κ via
the pairing function (and similarly for longer sequences without further comment).

There are a number of facts which are easy consequents of the above definitions which we
give as lemmata, some of which we state without arguments but for which the reader can easily
provide arguments.
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LEMMA 3.16.
(1) If γ < κ is odd (respectively even) and Σ (respectively Π) wins Gγ(κ, ϕ,A) then

∀α < γ(α odd (resp. even) → Σ (resp. Π) wins Gα(κ, ϕ,A).

(2) If γ < κ is even (respectively odd) and Σ (respectively Π) wins Gγ(κ, ϕ,A) then

∀α ≥ γ(α even (resp. odd) → Σ ( resp. Π) wins Gα(κ, ϕ,A).

PROOF: This is just by observing ordinals, for example in (2), if Σ wins Gγ(κ, ϕ,A) then
she can win any Gα(κ, ϕ,A) for α ≥ γ by using as first move in the latter game the move her
strategy gives her in the former. The ordinal associated with that move is then less than γ < α.
The other implications are justified in the same way. QED

And similarly:

LEMMA 3.17. Suppose Lim(γ) ∧ γ < κ. Then
(1) Σ wins Gγ(κ, ϕ,A) if and only if

∃α < γ(α even ∧ Σ wins Gα(κ, ϕ,A).

(2) Π wins Gγ(κ, ϕ,A) if and only if

∀α < γ(α even ∧Π wins Gα(κ, ϕ,A).

Let ϕo and ϕe be the following formulae (recalling that X0 = ∅).
ϕe(〈X0X1 · · ·Xn−1〉, 〈Y1 · · ·Yn〉, 〈A,Z〉)↔ ϕ(〈ZX1 · · ·Xn−1〉, 〈Y1 · · ·Yn〉, A)

ϕo(〈X1 · · ·Xn〉, 〈Y1 · · ·Yn〉, 〈A,Z〉)↔ ϕ(〈X0 · · ·Xn−1〉, 〈ZY1 · · ·Yn〉, A).

It can be then argued that with this notation:

LEMMA 3.18. (1) If α + 1 is even, then Σ wins Gα+1(κ, ϕ,A) iff there exists Z ⊆ κ such
that Π wins Gα(κ, ϕe, 〈A,Z〉).
(2) If α + 1 is odd, then Π wins Gα+1(κ, ϕ,A) iff for all X ⊆ κ we have that Σ wins
Gα(κ, ϕo, 〈A,X〉).

Using the above we have first the following reformulation of Lemma 3.17.

LEMMA 3.19. Suppose Lim(γ) ∧ γ < κ. Then Σ wins Gγ(κ, ϕ,A) if and only if

∃α < γ∃Z ⊆ κ(α odd ∧Π wins Gα(κ, ϕe, 〈A,Z〉).

This leads to the following definitions:

DEFINITION 3.20. A property expressed by a formula of the second order language Φ(A) in
the parameter A ⊆ κ is said to be Π1

γ (respectively Σ1
γ) in A, over Vκ, for any γ < κ, if it is

equivalent to the set-theoretical statement “Π (resp. Σ) wins the game Gγ(κ, ϕ,A)” for some
∆0
ω formula ϕ with 3 free second order variables (for subsets of κ).

Interpreted over Vκ a ∆0
ω formula ϕ has the second order variables interpreted as subsets of

κ. But note that with a judicious use of pairing and unpairing functions a subset of κ may code a
sequence of such subsets, but also of ordinals less than or equal to κ as well as finitely many code
sets for set-parameters x ∈ Vκ. In this way first order truth for Vκ, can be decoded from truth for
such ∆0

ω formulae with such parameters allowed.
We could define a notion of Π1

γ set here as the class of subsets of Vκ of the form {x : Π wins
the game Gγ(κ, ϕ, 〈A, x〉)}.

The following shows that this is a good candidate for a generalisation of Π1
n for our purposes.

(Again a version, mutatis mutandis, of this appears independently in [3].)

PROPOSITION 3.21. The property of being γ-stationary in κ is Π1
γ (uniformly in γ) over Vκ.
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PROOF: We consider the case γ even, the other case is only superficially different. We in
fact show that generalised stationarity is uniformly expressible in the sense that there is a ∆0

ω

formula Θ with three free variables such that for any κ and any (even) γ < κ and A ⊆ κ, Π wins
Gγ(κ,Θ, A) iff A is γ-stationary in κ. We shall have that in each round i, Σ plays 〈αi, Xi〉 with
Xi = 〈βi, S1

i , S
2
i 〉 and Π plays Yi = 〈δi, T 1

i , T
2
i 〉. In round 1, Σ tries to show that A is not γ-

stationary by choosing β1 < γ and β1-stationary S1
1 , S

2
1 ⊆ κ such that dβ1(S1

1)∩dβ1(S2
1)∩A =

∅. Then Π tries to show that Σ fails, by choosing δ1 < β1 and T 1
1 , T

2
1 to witness that either S1

1

or S2
1 is not β1-stationary. Then Σ tries to show that either T 1

1 or T 2
1 is not δ1-stationary, and

so on. The game will end when either player chooses 0. To parse the displayed formula below
which will be our Θ, note that it is a disjunction of three square-bracketed expressions. The first
disjunct, on the second line, has Σ asserting that the sets S1

1 , S
2
1 witness the non-β1-stationarity of

A. The third line registers Σ’s attempt to show that one of Π’s sets T 1
i , T

2
i is not βi+1-stationary.

In the second disjunct we see these sets T 1
i , T

2
i deployed by Π to attempt to show that one of Σ’s

sets S1
i , S

2
i is not δi-stationary.

A slight adjustment has to be made as we don’t want to have γ as a parameter in Θ. This is
effected by the third disjunct.

∃i ≤ lh( ~X) ¬
[(
Xi = 〈βi, S1

i , S
2
i 〉 with S1

i , S
2
i unbounded

)
∧
(
dβ1(S1

1) ∩ dβ1(S2
1) ∩A = ∅

)
∧
(
βi+1 < δi

)
∧
(
dβi+1(S1

i+1) ∩ dβi+1(S2
i+1) ∩ T 1

i = ∅ ∨ dβi+1(S1
i+1) ∩ dβi+1(S2

i+1) ∩ T 2
i = ∅

)]
∨ ∀i ≤ lh( ~X)

[(
Yi = 〈δi, T 1

i , T
2
i 〉 with T 1

i , T
2
i unbounded

)
∧ (δi < βi)

∧
(
dδi(T

1
i ) ∩ dδi(T

2
i ) ∩ S1

i = ∅ ∨ dδi(T
1
i ) ∩ dδi(T

2
i ) ∩ S2

i = ∅
)]

∨ ∀i < lh( ~X)
[
βi 6= 0 ∧ δi 6= 0 ∧ βi+1 6= 0

]
This final disjunct ensures that Σ cannot “cheat” by choosing β1 ≥ γ - i.e. for a γ-stationary

A, Π has a winning strategy in Gγ(κ,Θ, A) even if β1 ≥ γ. Recall Σ must choose odd or-
dinals αi+1 < αi with α1 < γ. In the first round, Π chooses Y1 = 〈α1, A,A〉 if β1 ≥ γ,
noting α1 < γ so α1 < β1. The game then proceeds as if starting from round 2, but this
time Σ cannot “cheat”. The final disjunct means that it doesn’t matter that Π’s first move
doesn’t satisfy the second disjunct, unless Σ gets down to choosing βi = 0 and S1

i , S
2
i with

S1
i , S

2
i unbounded and d0(S1

i )∩ d0(S2
i )∩ T 1

i−1 = ∅ or d0(S1
i )∩ d0(S2

i )∩ T 2
i−1 = ∅ - but then

Σ could have won fair and square, without starting with β1 ≥ γ. QED

DEFINITION 3.22. A cardinal κ is Π1
γ-indescribable (respectively Σ1

γ-indescribable) if for
every ∆0

ω formula ϕ with 3 free variables and every parameter A ⊆ κ such that Π (resp. Σ) wins
the game Gγ(κ, ϕ,A) we have that there is some α < κ such that Π (resp. Σ) also wins the
game Gγ(α,ϕ,A ∩ α).

LEMMA 3.23. (i) A Π1
γ property is also both a Π1

γ+1 property, and a Σ1
γ+1 property.

(ii) If α < β < κ, and κ is Π1
β-indescribable, then it is Π1

α-indescribable.

PROOF: We outline the ideas, but leave the details are left to the reader. (i) To show that a
Π1
γ property is also a Π1

γ+1 property, the point is to construe a run of play of a Gγ(κ, ϕ,A)
game which Π wins, as one for a Gγ+1(κ, ϕ̃, A) game, which again Π wins (and conversely).
Suppose that γ is odd. The sequence of moves in Gγ(κ, ϕ,A): Y1, (α1, X1), Y2, . . . with the
requirement on Σ that she must play Yn such that ϕ( ~Xn−1, ~Yn, A) holds (setting ~X0 = ∅),
become in Gγ+1(κ, ϕ̃, A) a sequence of moves (β1, Y1), X ′1, (β2, Y2), . . . with β1 < γ + 1
etc. but now X ′i is a subset of κ, and is required to be of the form 〈αi, Xi〉. The requirement
ϕ̃(~Yn, X

′
n, A) on Π is that for all i ≤ n (a) the X ′i are chosen of this form; (b) if ϕ( ~Xi−1, ~Yi, A)
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then Π must have chosen the ordinal components αi < αi−1 < γ of X ′i correctly. But Π can
win this game using the same αi and ~X , as from Gγ(κ, ϕ,A).

The argument when γ is even is similar. To show that a Π1
γ property is also a Σ1

γ+1 property,
again suppose, e.g. , γ is odd. To the sequence of moves Y1, (α1, X1), Y2, . . . in a Gγ(κ, ϕ,A)

game with the requirement on Σ that she must play Yn such that ϕ( ~Xn−1, ~Yn, A) holds (setting
~X0 = ∅) we can set up a Gγ+1(κ, ϕ′, A) game with moves (γ, ∅), Y1, (α1, X1), Y2, . . . and
have

ϕ′(〈X1 · · ·Xn〉, 〈Y2 · · ·Yn〉, 〈Y1, A〉) ≡ ϕ(〈X0 · · ·Xn〉, 〈Y1 · · ·Yn〉, A).

Then, for (ii), we first remark that Π1
γ+1-indescribability, implies Π1

γ-indescribability. Let
Gγ(κ, ϕ,A) be a γ-game that Π wins. We saw above how to recast this as a Gγ+1(κ, ϕ̃, A)-
game which Π also wins. By Π1

γ+1-indescribability then, we have that Π also wins some
Gγ+1(ζ, ϕ̃, A). Translating back they also win the gameGγ(ζ, ϕ,A). This justifies Π1

γ-indescribability.
That Π1

λ-indescribability, implies Π1
γ-indescribability for γ < λ with λ a limit, again follows by

similar variations that we leave for the reader. QED

LEMMA 3.24. (i) A cardinal κ is Π1
γ-indescribable if and only if it is Σ1

γ+1-indescribable;
(ii) a cardinal κ is Π1

γ-indescribable for all γ < λ if and only if it is Σ1
λ-indescribable.

PROOF: In the substantiative direction of (i) suppose, for example, γ is odd and κ is Π1
γ-

indescribable. Let Σ have a winning strategy for Gγ+1(κ, ϕ,A). Let 〈α1, X1〉 be their first
move according to this strategy. Then taking

ϕ̃(〈X2 · · ·Xn〉, 〈Y0 · · ·Yn−1〉, 〈A,X1〉) ≡ ϕ(〈X1 · · ·Xn〉, 〈Y1 · · ·Yn〉, A)

we have that Π wins this Gγ(κ, ϕ̃, 〈A,X1〉) using Σ’s strategy in the Gγ+1 game, with the
sequence of moves Y1, (α2, X2), Y2, . . . . Now use Π1

γ-indescribability, and there is some ζ < κ
with a winning strategy for Π in Gγ(ζ, ϕ̃, 〈A ∩ ζ,X1 ∩ ζ〉). But then Σ has a winning strategy
in Gγ+1(ζ, ϕ,A ∩ ζ) beginning with first move (γ,X1 ∩ ζ).

(ii) (⇐) By (i) and Lemma 3.23 it suffices to show that for arbitrarily large odd γ < λ that
κ is Σ1

γ+1-indescribable. Let γ < λ be then an odd ordinal, and let Gγ+1(κ, ϕ,A) be a game
that Σ wins. Then this would also be a a Gλ(κ, ϕ,A) game that Σ wins if Σ’s first ordinal
move is with an α1 < γ + 1. To ensure this we tweak the game Gγ+1(κ, ϕ,A) to a game
Gγ+1(κ, ϕ′, 〈A, γ〉) by requiring that Σ’s first move is of the form (α1, 〈α1, X1〉) (with, as usual
〈α1, X1〉 coded as some X ′1 ⊆ κ), and unless α1 < γ then ϕ′(〈α1, X1〉, Y1, 〈A, γ〉) imposes
no constraints whatsoever on the subsequent ~Yi (which would lead to Π winning), but otherwise
the constraints of ϕ( ~Xi, ~Yi, A) should hold. So Gλ(κ, ϕ′, 〈A, γ〉) is a game that Σ wins, and
by Σ1

λ-indescribability there is some ζ < κ so that Σ wins Gλ(ζ, ϕ′, 〈A, γ〉) (w.l.o.g. we may
assume γ < ζ). However then by using this strategy, Σ can win Gγ+1(ζ, ϕ,A). (⇒) is easier,
again using (i), as then for arbitrarily large even γ < λ then κ is Σ1

γ-indescribable, and we leave
it as an exercise. QED

Note that a consequence of Proposition 3.21 is that any Π1
γ-indescribable cardinal is γ-reflecting.

REMARK. Up to this point our definitions and arguments concerning Π1
γ-indescribability

could have been simply with the intention of defining a weak notion using second order quan-
tification over (κ,∈, A1, A2, . . . ) etc. But in the next lemma we need to quantify over strategies
for games Gγ(β, ϕ,A) for β < γ to get that Π1

γ-indescribability is Π1
γ+1 expressible, which

requires a quantification over Vκ and thus requires dealing with a strong indescribability notion.

LEMMA 3.25. (i) For each γ, we have a Π1
γ-property over Vα which is uniform in γ and for

limit α > γ and A, and which is universal for Π1
γ(A) properties over Vα2. That is there is some

Ψ( ~Xm, ~Ym, 〈A,n〉) ∈ ∆0
ω , with

2Bagaria [3] also introduces a Π1
γ formula, universal for all Π1

γ properties in his sense.
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Π wins Gγ(α,Ψ, 〈A,n〉) iff Π wins Gγ(α,ϕn, A).

(ii) “α is Π1
γ-indescribable” is expressible, uniformly in γ, α, as a Π1

γ+1-property over Vα.

PROOF: (i). We essentially appeal to the fact that there is a canonically defined predicate
Sat(R ~Xm,~Ym

) which holds if and only if R ~Xm,~Ym
is a satisfaction class for first order for-

mulae with set parameters over (Vα,∈, ~Xm, ~Ym, A). Thus Sat(R ~Xm,~Ym
) holds just in case

∀n∀~x(R ~Xm,~Ym
(n, ~x) ↔ ϕn( ~Xm, ~Ym, A, ~x)), where we have fixed a recursive enumeration

〈ϕn : n ∈ ω〉 of ∆0
ω formulae with 3 free second order variables (with first order variables for ~x

allowed, but which we think of as coded as (bounded) subsets of κ). Then there is a first order for-
mula Ψ̄, so in ∆0

ω , so that for any limit ordinal αwe have (Vα,∈, ~Xm, ~Ym, A) |= Sat(R ~Xm,~Ym
)

iff (Vα,∈, ~Xm, ~Ym, A,R) |= ∀n∀~xΨ̄( ~Xm, ~Ym, A, n, ~x). (See the discussion in [13], pp.96-97
for a construction of Ψ̄, or at [23] Thm. 8.)

Let Ψ be the ∆0
ω formula such that:

Ψ( ~Xm, ~Ym, 〈A,n, ~x〉)↔ ϕn( ~Xm, ~Ym, A, ~x).

Then Π wins Gγ(α,Ψ, 〈A,n, ~x〉) iff Π wins Gγ(α,ϕn, (A, ~x)). Thus the Π1
γ property “Π wins

Gγ(α,Ψ, X, 〈A,n, ~x〉)” is universal.
(ii) In the usual way: “α is Π1

γ-indescribable” is expressible by a Π1
γ+1-property over Vα as:

∀Z[“II wins Gγ(α,Ψ, Z)”→ ∃β(“II wins Gγ(β,Ψ, Z ∩ β))”]
the consequent here being first order over (Vκ, Z), the matrix within square brackets is Σ1

γ . QED

COROLLARY 3.26. A cardinal κ being Π1
η-indescribable for all η < λ for limit λ, is Π1

λ

expressible.

PROOF: Consider the following G = Gλ(κ, ϕ̃, A) game which Π will win, and demonstrates
that κ is Π1

η-indescribable for all η < λ. From the last lemma let
Gγ+1(κ, ϕ̄,∅) be the game (uniform in γ) which Π wins iff κ is Π1

γ-indescribable. In G, Σ
must first play (as specified by ϕ̄) some (α1, 〈α1, X1〉), and further it will be required that α1 be
odd, but greater than η + 2 where η is the largest limit less than α1.

Then Π’s first move here in G is some (any) Y1. We consider this as just as a preamble to
a Gα1−1(κ, ϕ̄,∅) game where Σ’s first move is posited as (α2, X2). Π’s first move in this
Gα1−1(κ, ϕ̄,∅) is a response X2 to Y2. (Thus essentially X1 and Y1 are discarded.) Now Π
wins this game iff κ is Π1

α1−2-indescribable. Consequently Π wins G if and only if it is the case
that for any odd α+ 1 < λ of this form, we have that κ is Π1

α+1-indescribable. By Lemma 3.24
this means it is in fact Π1

α-indescribable for all α < λ. QED

Note that, by Lemma 3.24, being Σ1
γ+1-indescribable is Π1

γ+1-expressible. The Π1
γ-indescribability

filter is defined in the obvious way. (Independently from this, [3] defines in Section 4.1 a similar
filter analogous to the notion of indescribability given there.)

DEFINITION 3.27. The Π1
γ-indescribability filter on κ, Fγκ , for γ < κ, is the filter generated

by the sets Cϕ,A, where A ⊆ κ, ϕ(X0, X1, X2) ∈ ∆0
ω has 3 free variables and:

Cϕ,A =df {α < κ : Π wins both Gγ(κ, ϕ,A) and Gγ(α,ϕ,A ∩ α)}.

REMARK. As being γ-stationary is Π1
γ expressible, and the collection of Π1

γ properties is
closed under conjunction, each F ∈ Fκγ is γ + 1-stationary.

The proof of the following Lemma is similar to that of Levy for the case when γ = n < ω. We
give the proof here for the sake of completeness. (A similar version of this appears independently,
in [3], see Prop 4.4.)
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LEMMA 3.28. If κ is Π1
γ-indescribable, for some γ < κ, then the Π1

γ-indescribable filter is
normal and κ-complete.

PROOF: Fix an ordinal γ and κ > γ with κ Π1
γ-indescribable, and let X ⊆ κ be positive with

respect toFγκ and f : X → κ be regressive. Suppose for a contradiction that for each β < κ there
is an element of Fγκ that avoids f−1“{β}. For each β < κ choose nβ and Aβ ⊆ κ witnessing
this, i.e. such that Π wins Gγ(κ, ϕnβ , Aβ) but if f(α) = β then Σ wins Gγ(α,ϕnβ , Aβ). Thus
for each α ∈ X we have

Σ wins Gγ(α,ϕnf(α)
, Af(α))(∗)

Claim: “∀β < κ Π wins Gγ(β, ϕnβ , Aβ)” is Π1
γ .

SetA = {〈β, 0, δ〉 : δ ∈ Aβ}∪{〈β, 1, nβ〉}, so thatA ⊆ κ codesAβ and nβ for each β ∈ κ.
The following ∆0

ω sentence Φ with parameter A produces an appropriate game: X0 is / is not
a pair X0 = 〈β,X ′0〉 with β ∈ κ,X ′0 ⊆ κ and/or Ψ(β,X ′0

_ ~Xm, ~Ym, 〈nβ , Aβ〉), with “is . . .
and” if γ is odd and “is not . . . or” if γ is even, and ψ is universal as in Lemma 3.25.

Now we have Π wins Gγ(κ,Φ, A) so by the Π1
γ-indescribability of κ, for some α ∈ X we

have Π wins Gγ(α,Φ, A ∩ α). Thus, by definition of Φ and the fact that f is regressive, Π wins
Gγ(α,ϕnf(α)

, Af(α)). But this contradicts (∗). QED

Now we have introduced these notions, we apply them to prove the analogue of Lemma 3.11
for Π1

γ . The proof is essentially the same as before, except that in the proof of Lemma 3.11 we
used the fact proven in [2] that in L, any regular cardinal which reflects n-stationary sets, and
hence any which admits n + 1-stationary sets, is Π1

n-indescribable. As we have not yet shown
this for γ-stationary sets and Π1

γ-indescribability, this lemma must be proven inductively along
with Theorem 3.32.

LEMMA 3.29. (V = L) Let γ be an ordinal and assume that for all γ′ < γ we have that any
regular cardinal which is γ′-reflecting is Π1

γ′ -indescribable. If κ > γ is Π1
γ-indescribable then

for any limit ν > κ such that Lν is Π1
γ-correct over κ, we have ∫Π

1
γ (Lν , p, κ) is γ-club in κ.

PROOF: We proceed as in 3.11. For each β ∈ ∫(Lν , p, κ) set Nβ = Lν{p ∪ β ∪ {κ}}, and
πβ : Nβ ∼= Lνβ . Note πβ(κ) = β. We first show that for γ-stationary many β we have Lνβ is
Π1
γ-correct.
Let A = 〈Aα : α < κ∧ lim(α)〉 enumerate the subsets of κ which occur in the filtration such

that for any β in the trace, P(κ) ∩Nβ is just some initial segment of A. As κ is regular we have
on a club D that P(κ) ∩Nβ = {Aα : α < β}. Fix some ordering 〈ϕn(v0, v1, v2) : n ∈ ω〉 of
∆0
ω formulae with all free variables displayed. Then for each limit α < κ we set

Cα+n =

{
{β < κ : Π wins Gγ(β, ϕn, Aα ∩ β)} if Π wins Gγ(β, ϕn, Aα)
κ otherwise.

Now setting
C = D ∩4α<κCα

we have thatC is γ-stationary as it is the diagonal intersection of elements of the Π1
γ-indescribability

filter, which is normal by Lemma 3.28. We claim for each β ∈ C that Lνβ is Π1
γ-correct. So

suppose β ∈ C. Then β ∈ D so P(κ) ∪ Nβ = {Aα : α < β} and β ∈ 4α<κCα so for
each α < β we have if Π wins Gγ(κ, ϕn, Aα) then Π wins Gγ(β, ϕn, Aα ∩ β). Now we have
π−1 : Lνβ → Lν is elementary, Lν is Π1

γ-correct over κ and π(κ) = β, π(Aα) = Aα ∩ β
for α < β. Thus if ψ is Π1

γ then Lνβ � ψ(β,X) is just Lνβ � Π wins Gγ(β, ϕn, Aδ ∩ β) for
some n < ω and δ < β. Hence we have Lν � Π wins Gγ(κ, ϕn, Aδ) and by Π1

γ-correctness
Π does indeed win Gγ(κ, ϕn, Aδ). Then as β ∈ 4α<κCα and δ < β we have β ∈ Cδ+n, i.e.
Π wins Gγ(β, ϕn, Aδ ∩ β).
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As for γ′ < γ, Π1
γ′ properties are also Π1

γ , we have the other direction by induction. Thus

Lνβ is Π1
γ-correct. So we have shown that ∫Π

1
n(Lν , p, κ) is γ-stationary. (Again, this part of the

argument goes through in V , but we need L to get γ-stationary closure.)
We show that ∫Π

1
n(Lν , p, κ) is γ-stationary closed. Suppose β < κ with ∫Π

1
γ (Lν , p, κ) γ-

stationary below β. As in 3.11, β must be regular. Now as β has a γ-stationary subset it must be
γ′-stationary reflecting for every γ′ < γ, and as we are in L and β is regular by our hypothesis
we have β is Σ1

γ-indescribable. As ∫(Lν , p, κ) is unbounded below β we have β ∈ ∫(Lν , p, κ),
so if β /∈ ∫Π

1
γ (Lν , p, κ) we must have Lνβ is not Π1

γ-correct. Thus for some ∆0
ω formula ϕ with

Π wins Gγ(κ, ϕ,X) we have Σ winsGγ(β, ϕ,X ∩β). This means by the remark above that for
some Y ⊆ β and γ′ < γ we have Π wins Gγ′(β, ϕ′, 〈X ∩ β, Y 〉). By the Π1

γ′ -indescribability
of β, {α < β : Π wins Gγ′(α,ϕ′, 〈X ∩ α, Y ∩ α〉)} contains an γ′-club. But if Π wins
Gγ′(α,ϕ

′, 〈X ∩ α, Y ∩ α〉) then Σ wins Gγ(α,ϕ,X ∩ α) and so α /∈ ∫Π
1
γ (Lν , p, κ).

But this cannot be, as ∫Π
1
γ (Lν , p, κ) is γ-stationary below β. Thus we must have Π wins Gγ(β, ϕ,X∩

β) and so Lνβ is Π1
γ-correct3 and β ∈ ∫Π

1
γ (Lα, p, κ). So ∫Π

1
γ (Lν , p, κ) is γ-stationary closed,

and hence γ-club. QED

3.3.2. 2γ and 2<γ . Definition 3.1 (defining a 2n-sequence) can easily be stated for general
ordinals γ as follows.

DEFINITION 3.30. Let γ < κ be ordinals. A 2γ-sequence on κ is a sequence 〈Cα : α ∈
dγ(κ)〉 such that for each α:

1. Cα is a γ-club subset of α and
2. for every β ∈ dγ(Cα) we have Cβ = Cα ∩ β.

However, this is not the type of 2-sequence we shall need to take Theorem 3.2 into the transfi-
nite. The problem here is the limit levels. To continue inductively along the ordinals, we first need
to show that, in L, if a regular cardinal is Π1

n-indescribable for every n, but not Π1
ω-indescribable,

then it does not reflect ω-stationary sets, and similarly for further limit ordinals. To witness this,
we need to define a new type of 2-sequence. The following definition yields a sequence of an in-
termediate nature, that for example in the case of γ = ω we are discussing, avoids an ω-stationary
set A, and witnesses that A does not reflect.

DEFINITION 3.31. Let γ < κ be ordinals. A 2<γ sequence on Γ ⊆ LimOrd ∩ κ is a
sequence 〈(Cα, ηα) : α ∈ Γ〉 such that for each α:

1. ηα < γ and Cα is an ηα-club subset of α
2. for every β ∈ dηα(Cα) we have β ∈ Γ with ηα = ηβ and Cβ = Cα ∩ β
We say a 2<γ-sequence 〈Cα : α ∈ κ〉 avoidsA ⊂ κ if for all α ∈ κ we haveA∩dηα(Cα) =

∅.
We say S′ = 〈(C′α, η′α) : α ∈ Γ〉 is a refinement of S = 〈(Cα, ηα) : α ∈ Γ〉 iff for each α

we have η′α = ηα and C′α ⊆ Cα.

Equipped with this definition, we can see that a 2<γ-sequence avoiding some γ-stationary
set A witnesses that A does not reflect (i.e. dγ(A) = ∅), even in the case γ is a limit. This is
because, for α ∈ κ, Cα is an ηα-club avoiding A ∩ α and thus A is not ηα + 1-stationary in
α, and as ηα + 1 ≤ γ we have α /∈ dγ(A). As this works for both limit and successor γ, we
shall use only 2<γ in our proof of Theorem 3.32 and thus deal with the limit and successor cases
simultaneously. The analogue of Theorem 3.2 for the infinite ordinals is a corollary: restricting
the domain of a 2<γ+1-sequence to the ordinals in dγ(κ) gives a 2γ-sequence.

3The other direction follows by upwards absoluteness of Σ1 formulae.
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3.4. The Main Result: 2<γ at a Non-Π1
γ-Indescribable. We are now ready to state and

prove the main theorem of this section:

THEOREM 3.32. (V = L) Let γ < κ be an ordinal and κ be Π1
η-indescribable for every

η < γ but not Π1
γ-indescribable, and let A ⊆ κ be γ-stationary. Then there is EA ⊆ A and a

2<γ-sequence S on κ such that EA is γ-stationary in κ and S avoids EA. Consequently κ is not
γ-reflecting.

REMARK. By Cor. 3.24, we could rephrase the antecedent as requiring that κ be Σ1
γ-indescribable,

but not Π1
γ-indescribable.

COROLLARY 3.33. (V = L) The following are equivalent for a regular cardinal κ > ω and
ordinals 0 < γ < κ:
(i) κ is Π1

γ-indescribable;
(ii) there is no 2<γ sequence on κ that avoids a γ-stationary E ⊆ κ;
(iii) κ is γ-reflecting.

PROOF OF COROLLARY FROM THE THEOREM: We only need to show that (i) =⇒ (iii).
By Prop.3.21 we have that being γ-stationary is Π1

γ-expressible over Vκ. If then κ is Π1
γ-

indescribable, then arguing as in Lemma 2.20 we have any two γ-stationary sets in κ reflect
simultaneously to some point α < κ. Hence κ is γ-reflecting. QED

PROOF OF THEOREM: We assume V = L. The proof is an induction on γ making repeated
use of Lemma 3.29. Thus we fix γ and assume we have that for any γ′ < γ, if α is γ′-reflecting
and regular then α is Π1

γ′ -indescribable.
As before, we produce the 2<γ-sequence in two steps: first we define

S′ = 〈(C′α, ηα) : α ∈ Reg ∩ κ〉
which is a 2<γ-sequence below κ, then we set

EA = {α ∈ A ∩Reg : C′α ∩A is not ηα-stationary in α or dηα(C′α) = ∅}
and we construct a refinement of S′ which avoids EA. To streamline notation for this proof, we
shall abbreviate ∫Π

1
γ to ∫γ .

Constructing S′:
As κ is not Π1

γ-indescribable we can fix a ∆0
ω formula ϕ(v0, v1, v2) and Z ⊆ κ such that:

Π wins Gγ(κ, ϕ, Z)

but for all α < κ
Σ wins Gγ(α,ϕ, Z ∩ α)

and so for each α < κ

∃η < γ,X ⊆ α such that Π wins Gη(α,ϕ′, 〈Z ∩ α,X〉).
Let α ∈ κ. Let η̄α be be maximal such that A ∩ α is η̄α-stationary (or 0, if A is not even un-

bounded), and letDα be the<L least η̄α-club avoidingA∩α. We have Σ wins Gγ(α,ϕ, Z∩α),
so we set Yα to be<L-least subset of α such that Σ wins with first move Yα, if γ is odd, and with
first move 〈η, Yα〉 with η minimal, if γ is even. We split into cases and define ηα and Xα:

Case (i): γ is odd, A ∩ α is γ − 1-stationary, and if η̄α = γ − 1 we have Yα <L Dα. Set
ηα = γ − 1 and Xα = Yα.

Case (ii): If γ is even, let η be least (odd) ordinal such that Σ wins the gameGγ(α,ϕ, Z) with
first ordinal move η (choosing α1 = η), i.e. ,

Σ wins Gη+1(α,ϕ, Z) but for any for any even η′ < η, Π wins Gη′(α,ϕ, Z).
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We put α under case (ii) if A ∩ α is η-stationary and if η̄α = η then Yα <L Dα. In this case, set
ηα = η and Xα = Yα.

Case (iii): Otherwise: set ηα = η̄α and set Xα = Dα. Note that if α falls into this case then
ηα < γ, as if η̄α ≥ γ then A ∩ α is γ-stationary so the conditions of (i) or (ii) are fulfilled.

We take να > α to be the least limit ordinal such that Lνα is Π1
ηα correct over α and Xα, A∩

α,Z ∩ α ∈ Lνα . We set pα = {Xα, A ∩ α,Z ∩ α} and then we set:

C′α =

{
∫ηα(Lνα , pα, α) if this is ηα-club in α
an arbitrary non-reflecting ηα-stationary set otherwise

This is well defined as we know α is ηα stationary and a cardinal, and so if the trace is not ηα-club
we must have that α is not Π1

ηα -indescribable so a non-reflecting set can be found.
We set S′ = 〈(C′α, ηα) : α ∈ κ ∩Reg〉.

CLAIM. S′ is a 2<γ-sequence.

PROOF: It is immediate from the definition that each C′α is ηα-club, so we just need to show
that we have the coherence property. So let α < κ be regular and suppose C′α is defined as
the trace (otherwise dηα(C′α) = ∅ so coherence is trivial). Let β ∈ dηα(C′α). Let Nβ =
Lνα{pα ∪ β ∪ {α}} and π : Nβ ∼= Lν̄β be the collapsing map. We need to show ηβ = ηα,
π“pα = pβ and νβ = ν̄β .

Clearly π(A ∩ α) = A ∩ β and π(Z ∩ α) = Z ∩ β. Let X = π(Xα) = Xα ∩ β.
If α falls into case (i) then γ is odd and

Lνα � “A ∩ α is ηα-stationary and for any D <L X if D is ηα-club then A ∩ dηα(D) 6= ∅”

and so by elementarity

Lν̄β � “A ∩ β is ηα-stationary and for any D <L X if D is ηα-club then A ∩ dηα(D) 6= ∅”

thus by Π1
ηα correctness of Lν̄β we have that we are again in case (i) with ηβ = ηα.

If α falls into case (ii), we have

Lνα � “Σ wins Gηα+1(α,ϕ, 〈Z ∩ α〉) with first move Xα”

i.e.
Lνα � “Π wins Gηα(α,ϕ′, 〈Z ∩ α,Xα〉)”.

Now by elementarity,

Lν̄β �“Π wins Gηα(β, ϕ′, 〈Z ∩ β,X〉), A ∩ β is ηα-stationary

and for any D <L X if D is ηα-club then A ∩ dηα(D) 6= ∅.”

As this is a Π1
ηα statement we have Π wins Gηα(β, ϕ′, 〈Z ∩ β,X〉) by Π1

ηα -correctness of Lν̄β ,
and thus Σ wins Gηα+1(β, ϕ, Z ∩ α) with first move X . We also have A ∩ β is ηα-stationary
etc. and so β falls into case (ii) and ηβ ≤ ηα.

For even η ≤ ηα we have Lνα � Π wins Gη(α,ϕ, 〈Z ∩α〉) and so by elementarity and Π1
ηα -

correctness, for such η we have Π wins Gη(β, ϕ, 〈Z ∩ β〉) and so we must have η < ηβ . Thus
ηβ = ηα in this case.

Finally, if α falls into case (iii) then we have ηα = η̄α and X = π(Dα) so by definition of the
case and elementarity,

Lν̄β �“A is ηα-stationary and X is ηα-club avoiding A and for all Y <L X ,

Σ does not win Gηα+1(β, ϕ, 〈Z ∩ β〉) with first move Y.”

Thus by Π1
ηα -correctness we are in case (iii) and ηα = ηβ .
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Now in all cases ηβ = ηα, so we set η = ηα = ηβ . To show X = Xβ : we have already seen
that β falls into the same case as α. For case (i) or (ii) we have

Lνα � ∀U ⊆ α [U <L Xα → Σ wins Gη(α,ϕ′, 〈Z ∩ α,U〉)]

Then by elementarity we have:

Lν̄β � ∀U ⊆ β [U <L X → Σ wins Gη(β, ϕ′, 〈Z ∩ β, U〉)]

and so by absoluteness

∀U ⊆ β [U <L X → Lν̄β � Σ wins Gη(β, ϕ′, 〈Z ∩ β, U〉)]

Thus by Π1
η-correctness of Lν̄β we do not have have Xβ <L X . Also

Lν̄β � Π wins Gη(β, ϕ′, 〈Z ∩ β,X〉)

and so by Π1
η-correctness Xβ = X . In case (iii), we can repeat the same argument but instead of

ϕ take the sentence giving us that A ∩ α is not ηα + 1-stationary.
It remains to show that νβ = ν̄β . We already have that pβ ⊆ Lν̄β and that Lν̄β is Π1

η-correct
over β, so we only need to show the minimality requirement. Now for each limit ordinal γ > α
with γ < να we have:

Θ(γ) :
(
Xα /∈ Lγ

)
∨
(
A ∩ α /∈ Lγ

)
∨
(
Z ∩ α /∈ Lγ

)
∨ ∃U /∈ Lγ ∃n ∈ ω ∃η′ < η

(
U is minimal with ψη′(n,U)

)
where ψη(., .) is the universal Π1

η sentence. We finish off as before. By Π1
η-correctness we have

for each γ < να that Lνα � Θ(γ) and thus

Lνα � ∀γΘ(γ)⇒ Lν̄β � ∀γΘ(γ)⇒ ∀γ < ν̄β Lν̄β � Θ(γ)

So by Π1
η-correctness of Lν̄β we have Θ(γ) for each limit γ < ν̄β , and νβ = ν̄β . QED

We can now define a part of our 2<γ-sequence that will satisfy Theorem 3.32. This will be a
refinement of S′, so the ηα’s that were defined above will stay the same. We set

Γ1 = {α ∈ κ : C′α ∩A is ηα-stationary in α}.

If α ∈ Γ1 we set

Cα =

{
dηα(C′α ∩A) if dηα(C′α ∩A) is ηα-stationary
an arbitrary non-reflecting ηα-stationary set otherwise.

It is clear that 〈(Cα, ηα) : α ∈ Γ1〉 is a 2<γ-sequence on Γ1. Setting

E = EA = {α ∈ A ∩Reg : C′α ∩A is not ηα-stationary in α or dηα(C′α) = ∅}

we show that each such Cα avoids E. If dηα(Cα) 6= ∅ then for β ∈ dηα(Cα) we have
dηα(C′α ∩ A) is ηα-stationary below β, so C′β = C′α ∩ β with ηα = ηβ and dηβ (Cβ) 6= ∅, and
by Lemma 2.8 C′α ∩A = C′β ∩A is ηα = ηβ-stationary below β.

Now we need to defineCα for α ∈ Γ2 = {α ∈ κ : C′α∩A is not ηα-stationary in α} = κ\Γ1.
For such α we shall find Cα ⊆ C′α such that (i) Cα avoids A and hence E and (ii) for β ∈
dηα(Cα) we have C′β ∩A is not ηα-stationary (i.e. β ∈ Γ2) and Cβ = Cα ∩ β (we shall already
have ηβ = ηα as Cα ⊆ C′α). Once we have (i) and (ii) it is easy to see that S = 〈Cα : α ∈ κ〉
will satisfy Theorem 3.32, and it will only remain to show that E is γ-stationary.

For α ∈ Γ2 we take ρα ≥ να minimal limit ordinal such that C′α ∈ Lρα and Lρα is Π1
ηα -

correct over α. Note that if Dα is the <L least η-club, for some η < ηα, that avoids A∩C′α then
Dα ∈ Lρα by Π1

ηα -correctness. We now set

Cα =

{
Dα ∩ ∫ηα(Lρα , {C′α} ∪ pα, α) if this is ηα-club in α
an arbitrary non-reflecting ηα-stationary set otherwise.
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Then we have Cα ⊆ dηα(C′α) ⊆ C′α and it is clear that we have (i): Cα avoids A. For
β ∈ dηα(Cα) we have β ∈ dηα(C′α) hence C′β = C′α ∩ β. Then we have A ∩ C′β is not ηα-
stationary in β by elementarity and Π1

ηα -correctness, so β ∈ Γ2. Also Dβ ∩ ∫ηα(Lρβ , {C
′
β} ∪

pβ , β) = β∩Dα∩∫ηα(Lρα , {C′α}∪pα, α) = Cα∩β so we are in the first case of the definition
and Cβ = Cα ∩ β. This gives (ii) and so we have a 2<γ-sequence on the regulars avoiding EA.

We have thus far only given our 2<γ-sequence on the regulars below κ. To deal with singulars
we use Jensen’s global 2-sequence just as before. It remains to show that E is γ-stationary.

DEFINITION 3.34. We define H ⊆ A by letting α ∈ H iff α ∈ A and there is µα > α and q
is a parameter from Lµα such that:

1. Lµα is Π1
ηα -correct over α

2. µα < να
3. A ∩ ∫ηα(Lµα , q, α) = ∅

LEMMA 3.35. H ⊆ E.

PROOF: Suppose α /∈ E, so C′α∩A is ηα-stationary and C′α = ∫ηα(Lνα , pα, α). Let µ < να
and q ∈ Lµ. Then using lemma 3.8 for some β < α we have q ∈ Lνα{β ∪ pα ∪ {α}} and so
∫ηα(Lµ, q, α)\β ⊇ ∫ηα(Lνα , pα, α) = C′α. Thus α /∈ H .

QED

LEMMA 3.36. H is γ-stationary.

PROOF: Let η < γ and let C ⊆ κ be η-club. Take µ > κ minimal such that C ∈ Lµ
and Lµ is Π1

η-correct. Set D = ∫η(Lµ, {C,Z}, κ) and note that D ⊆ dη(C) ⊆ C, and
D is η-club by Lemma 3.29. Take δ = min(D ∩ A). Set µδ to be the ordinal such that
Lµ{{C,Z, κ} ∪ δ} ∼= Lµδ . We show that δ ∈ H , with µδ and {C ∩ δ, Z ∩ δ} witnessing this.

Claim 1: ηδ = η
First to see ηδ ≥ η. If δ falls into case (i) then ηδ = γ − 1 so this is trivial. If δ falls into case
(iii) then we know that A ∩ δ is not ηδ + 1-stationary, but Lµδ � A ∩ δ is η stationary and so by
Π1
η-correctness we must indeed have A ∩ δ is η-stationary and hence η ≤ ηδ .
If δ falls into case (ii) then ηδ is odd and we know Σ wins Gηδ+1(α,ϕ, Z∩δ), but for any even

ordinal η′ ≤ η we have Lµ � Π wins Gη′(κ, ϕ, Z) and so by elementarity and Π1
η-correctness

of Lµδ , we have Π wins Gη′(δ, ϕ, Z ∩ δ). Thus we must have η < ηδ + 1, i.e. η ≤ ηδ .
Now we have to show ηδ ≤ η. First, suppose δ is Π1

η-indescribable. Then by Lemma 3.29
we have ∫η(Lµδ , {C ∩ δ, Z ∩ δ}, δ) is η-club below δ. But ∫η(Lµδ , {C ∩ δ, Z ∩ δ}, δ) =
δ ∩ ∫η(Lµ, {C,Z}, κ) = D ∩ δ so we must have A is not η + 1 stationary below δ. But in each
of the three cases A is ηδ-stationary, so ηδ ≤ η.

Now, if δ is not Π1
η-indescribable we know that δ is not η+ 1-stationary, so again we have that

A is not η + 1-stationary and as above ηδ ≤ η.
Claim 2: µδ < νδ

We have that for every X ∈ P(δ) ∩ Lµδ
Lµδ � Σ wins Gη(δ, ϕ′, 〈Z ∩ δ,X〉).

As Lµδ is Π1
η-correct this means

∀X ∈ P(δ) ∩ Lµδ , Σ wins Gη(δ, ϕ′, 〈Z ∩ δ,X〉).
But we know by the choice of νδ that

∃X ∈ P(δ) ∩ Lνδ , Π wins Gη(δ, ϕ′, 〈Z ∩ δ,X〉).
Hence we must have νδ > µδ

Claim 3: A ∩ ∫ηα(Lµδ , {C ∩ δ, Z ∩ δ}, δ) = ∅
We have (Lemma 3.9) A ∩ ∫ηα(Lµδ , {C ∩ δ, Z ∩ δ}, δ) = A ∩ δ ∩ ∫ηα(Lµ, {C,Z}, κ) =
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A ∩ δ ∩ ∫η(Lµ, {C,Z}, κ) = A ∩ δ ∩D = ∅.

The last sentence of the Theorem follows exactly as the last sentence of Theorem 3.2 did.
QED (Theorem 3.32)

We can now state Lemma 3.29 without the assumption that for all γ′ < γ any regular cardinal
which is γ′-reflecting is Π1

γ′ -indescribable, as this is a consequence of Theorem 3.32.

LEMMA 3.37. (V = L) Let γ be an ordinal and κ > γ be Π1
γ-indescribable. Then for any

limit ν > κ where Lν is Π1
γ-correct over κ, we have ∫Π

1
γ (Lν , p, κ) is γ-club in κ.

We finish by deriving a 2γ-sequence from a 2<γ+1-sequence, showing that Theorem 3.2 and
its generalisation to infinite γ is indeed an easy corollary of Theorem 3.32.

PROPOSITION 3.38. Let γ < κ be ordinals. If S = 〈(Cα, ηα) : α ∈ Γ〉 is a 2<γ+1-sequence
on Γ ⊆ κ, then 〈Cα : α ∈ Γ ∩ dγ(κ)〉 is a 2γ-sequence.

PROOF: Let α ∈ Γ ∩ dγ(κ). Then Cα is ηα-club and ηα ≤ γ and α is γ-stationary, so Cα
is γ-club. Suppose β ∈ dγ(Cα). Then as ηα ≤ γ, β ∈ dηα(Cα), so Cβ = Cα ∩ β. Also
β ∈ dγ(κ), so we have coherence. QED

COROLLARY 3.39. (V = L) Let γ < κ and κ be a Π1
γ-indescribable but not Π1

γ+1-indescribable
cardinal, and let A ⊆ κ be γ + 1 stationary. Then there is EA ⊆ A and a 2γ-sequence S on κ
such that EA is γ + 1-stationary in κ and S avoids EA.

PROOF: This follows easily from the preceding proposition - just restricting the domain of
the 2<γ+1-sequence from Theorem 3.32 to dγ(κ) gives a 2γ-sequence avoiding EA as defined
there. QED

3.5. The γ-club Filters and Non-Threaded 2γ-sequences. In this subsection we look in
more detail at the γ-club filter and what we can prove from certain assumptions about it. In
the first subsection we shall revisit the results of 2.2 and generalise our result from there to γ-
stationarity. In the second subsection we generalise the notion of non-threaded 2, and show that
this 2γ(κ) must fail at any γ+ 1-reflecting cardinal where the γ-club filter is normal. In the final
section we show that with a certain requirement on the generalised club filters γ-stationarity is
downward absolute to L. If we make the stronger (and easier to state) assumption that for any
ordinal η the η-club filter is normal on any η-reflecting cardinal, then we have that for any ordinal
γ, γ-stationarity is downward absoluteness to L at any regular cardinal (Corollary 4.8).

3.5.1. The γ-Club and Π1
γ-Indescribability Filters. Here we look in more detail at the γ-club

filter, revisiting the material from 2.2.1 in the light of the definition of Π1
γ-indescribability given

in 3.3.

PROPOSITION 3.40. If Cγ(κ) is normal, then for any η < γ we have Cη(κ) is also normal.

PROOF: This is because each η-club is γ-club, and so by the normality of Cγ(κ), the diagonal
intersection of η-clubs must be γ-club and hence η-stationary. The η-stationary closure is auto-
matic. QED

PROPOSITION 3.41. If γ is a limit ordinal and κ > γ then
⋃
η<γ C

η(κ) is not γ complete.

PROOF: Unless κ is γ-stationary
⋃
η<γ C

η(κ) is not even a filter, so suppose κ is γ-stationary.
For η < γ set Cη = dη(κ). Then each Cη is η-club and

⋂
η<γ Cη = dγ(κ). By Proposition 2.10

we have that for each η < κ, κ\dη+1(κ) is η + 1-stationary and hence dγ(κ) /∈ Cη(κ). Thus
dγ(κ) /∈

⋃
η<γ C

η(κ). QED
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Recall (Definition 3.27) that the Π1
γ indescribability filter on κ, Fγ(κ) is the filter generated

by sets of the form {α < κ : Π wins Gγ(κ, ϕ,A) and Gγ(α,ϕ,A ∩ α)}.

LEMMA 3.42. If κ is Π1
γ-indescribable then the γ-club on κ filter is a subset of Fγ(κ) and

hence it is normal.

PROOF: The proof is essentially the same as Lemma 2.21 for finite γ. Firstly, any γ-club
is in Fγ(κ). Suppose C is γ-club. “C is γ-club” is Π1

γ and so reflects to a set in the Π1
γ-

indescribability filter on κ. But this is the set of α < κ such that C ∩ α is γ-club, i.e. dγ(C). As
dγ(C) ⊆ C we have that C ∈ Fγ(κ). Now suppose 〈Cα : α < κ〉 is a sequence of γ-clubs and
set C = 4α<κCα. By the normality of Fγ(κ) and the fact that each Cα ∈ Fγ(κ), we have that
C ∈ Fγ(κ) and hence C is γ + 1-stationary. γ-closure is easily verified. QED

COROLLARY 3.43. (Fodor’s Lemma for γ-stationary sets) If κ is Π1
γ-indescribable and A ⊂

κ is γ-stationary, then for any regressive function f : A→ κ there is a γ-stationary B ⊆ A such
that f is constant on B.

The following generalisation of Theorem 2.23 is a consequence of Lemma 3.29 and Theorem
3.32.

COROLLARY 3.44. If V = L the γ-club filter coincides with the Π1
γ-indescribability filter at

any Π1
γ-indescribable cardinal.

PROOF: Suppose Π wins Gγ(κ, ϕ,X). Then ∫Π
1
γ (Lκ+ , {X}, κ) is γ-club by Lemma 3.37,

and for each α ∈ ∫Π
1
γ (Lκ+ , {X}, κ), we have Π wins Gγ(α,ϕ,X ∩α). Thus {α < κ : Π wins

Gγ(α,ϕ,X ∩ α)} is in the γ-club filter and in general F γ(κ) is included in the γ-club filter. By
3.42 we have the reverse inclusion. QED

3.5.2. Splitting Stationary Sets. In this section we extend the results of 2.2.2 to split γ + 1-
stationary sets. We should note here that the methods of section 2.2.2 and what follows do not
allow us to show that γ-stationary sets can be split when γ is a limit ordinal. This is because
by Proposition 3.41, if γ is a limit ordinal then the filter corresponding to the γ-stationary sets,⋃
η<γ C

η(κ), is not γ complete, and our results require κ completeness.

LEMMA 3.45. If Cγ(κ) is κ complete then any γ+1-stationary subset of κ is the union of two
disjoint γ + 1-stationary sets.

This lemma is proven in the same way as Lemma 2.24, the key points to enable the generali-
sation being Lemma 3.42 and the fact that a measurable κ is Π1

γ-indescribable for any γ < κ.
PROOF: Let S be γ + 1-stationary in κ and suppose S is not the union of two disjoint γ + 1-

stationary sets. Define

F = {X ⊂ κ : X ∩ S is γ + 1-stationary}
Claim: F is a κ complete ultrafilter.

Upwards closure is clear. Intersection follows by the fact that S cannot be split, as well as X ∈
F ⇒ κ\X /∈ F . That X /∈ F ⇒ κ\X ∈ F follows by the definition of γ-stationary, and κ
completeness follows from the κ completeness of the γ-club filter.

Claim: F is normal.
As we have shown that F is a κ complete ultrafilter on κ, we have that κ is measurable. Now,
all measurables are Π2

1-indescribable, and it is easy to see that Π winning the game Gγ(κ, ϕ,A)
for ϕ a ∆0

ω formula and A ⊆ κ is Π2
1 expressible over Vκ, as in describing the game we only

quantify over finite sequences of subsets of κ. Hence κ is Π1
γ-indescribable and so by Lemma
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3.42, Cγ(κ) is normal. Let 〈Xα : α < κ〉 be a sequence of sets in F . Then each S\Xα is in
the non-γ + 1-stationary ideal on κ, so Xα ∪ (κ\S) ∈ Cγ(κ). Now by the normality of Cγ(κ),
we have for X := 4α<κXα ∪ (κ\S) that X ∈ Cγ(κ), and so X ∩ S is γ + 1-stationary. But
X = {α < κ : ∀β < κ α ∈ Xβ ∪ (κ\S)} = {α < κ : α ∈ κ\S ∨ ∀β < κ α ∈ Xβ} =
(κ\S)∪4α<κXα. So X ∩S = 4α<κXα ∩S, and thus4α<κXα ∩S is γ + 1-stationary and
hence in F .

Now we have that F is a normal measure, Π2
1-indescribability of measurables again yields that

for any R ⊆ Vκ and formula ϕ that is Π2
1, if 〈Vκ,∈ R〉 � ϕ then

{α < κ : 〈Vα,∈, R ∩ Vα〉 � ϕ} ∈ F.
Setting R = S and ϕ = “S is γ + 1-stationary” we can conclude

{α < κ : S ∩ α is γ + 1-stationary} ∈ F.
Then by definition of F we have A := {α ∈ S : S ∩ α is γ + 1-stationary} is γ + 1-

stationary. But by Proposition 2.10 we have A′ := {α ∈ S : S ∩ α is not γ + 1-stationary}
is γ + 1-stationary. This contradicts our assumption on S as A′ and A are two disjoint, γ + 1-
stationary subsets of S. QED

THEOREM 3.46. If κ is weakly compact and Cγ(κ) is κ-complete then any γ + 1-stationary
subset of κ can be split into κ many disjoint γ + 1-stationary sets.

PROOF: Let S ⊆ κ be γ + 1-stationary. We construct a tree T of γ + 1-stationary subsets of
S ordered by ⊇, using Lemma 3.45: each γ + 1-stationary set can be split in two. T will have
height κ and levels of size < κ so as κ has the tree property it has a κ length branch, from which
we can construct a partition of S.

We define T inductively such that each level (i) consists of disjoint γ + 1-stationary sets, (ii)
has size< κ, and (iii) is non-empty. Let T0 = {S}. Now let α < κ and suppose we have defined
Tβ for each β < α such that (i)-(iii) hold. If α is a successor, say β + 1, for each set A ∈ Tβ we
use Lemma 3.45 to choose A′ ⊆ A such that A′ and A\A′ are both γ + 1-stationary, and take
Tβ+1 = {A′, A\A′ : A ∈ Tβ}. Clearly, (i)-(iii) are preserved.

If α is a limit, we define

Tα = {
⋂
b : b is a branch in T<α and

⋂
b is γ + 1-stationary}.

Now (i) is clear and as |{
⋂
b : b is a branch in T<α}| ≤ 2|T<α| < κwe also have (ii). To demon-

strate (iii) first note that by the construction of T we have S =
⋃
{
⋂
b : b is a branch in T<α}

(For each a ∈ S, {A ∈ Tα : a ∈ A} is clearly a branch although it may have height < α). Now
we know |{

⋂
b : b is a branch in T<α}| < κ so by κ-completeness of Cγ(κ) we must have at

least one branch b such that
⋂
b is γ + 1-stationary. But then b must have height α, for if b had

height β < α, then b must have limit height so by definition
⋂
b ∈ Tβ which would make b not

maximal. So
⋂
b ∈ Tα, and hence (iii) holds (and the definition of Tα makes sense).

Now by the tree property T has a κ branch. Take B to be such a branch. For A ∈ B let A+

denote the immediate successor of A in B, and note that A\A+ is disjoint from any set in B
succeeding A. Then {A \A+ : A ∈ B} is a partition of S into κ many disjoint γ + 1-stationary
sets. QED

COROLLARY 3.47. Let κ be Π1
γ-indescribable, γ ≥ 1. Then any γ + 1-stationary subset of κ

can be split into κ many disjoint γ-stationary sets.

PROOF: A Π1
γ-indescribable cardinal κ is of course weakly compact, and by Lemma 3.42, the

γ-club filter on κ is normal and hence κ-complete. QED
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It is also easy to see that if κ is inaccessible and Cγκ is κ-complete then for any α < κ we can
split any γ + 1-stationary set into α many γ + 1-stationary pieces.

3.5.3. Non-Threaded 2γ-sequences. In this section we generalise a nice folklore result4 that
relates non-threaded 2 (Definition 3.49) to simultaneous stationary reflection: if we have a non-
threaded 2-sequence on a cardinal κ then there are two stationary subsets of κ which are not both
stationary in any α < κ. Thus non-threaded 2 fails at any 2-stationary cardinal. We start by
recalling the definitions.

DEFINITION 3.48. A 2γ-sequence (for γ ≥ 0) on κ is a sequence 〈Cα : α ∈ dγ(κ)〉 such
that for each α:

1. Cα is a γ-club subset of α
2. for every β ∈ dγ(Cα) we have Cβ = Cα ∩ β
We say a 2γ-sequence 〈Cα : α ∈ dγ(κ)〉 avoidsA ⊂ κ if for all α we haveA∩dγ(Cα) = ∅.
The generalisation of non-threaded 2 is straight-forward:

DEFINITION 3.49. 2γ(κ) is the statement that there is a 2γ-sequence on κ which has no
thread, i.e. there is no C ⊆ κ, such that C is γ-club and for all α ∈ dγ(C) we have Cα = C ∩α.
Such a sequence is called a 2γ(κ)-sequence.

THEOREM 3.50. Suppose κ is a regular γ-reflecting cardinal and the γ-club filter on κ is
normal. Let S = 〈Cα : α ∈ dγ(κ)〉 be a 2γ-sequence. Then the following are equivalent:

1. S is a 2γ(κ)-sequence, i.e. S has no thread.
2. For any γ + 1-stationary set T there are γ + 1-stationary S0, S1 ⊆ T such that for any
α ∈ dγ(κ) we have dγ(Cα) ∩ S0 = ∅ or dγ(Cα) ∩ S1 = ∅

Thus 2γ(κ) implies κ is not γ + 1-reflecting.

We give the proof for γ > 0, following the proof given in [22], though the generalisation is
not straight-forward. For γ = 0 see [22] Proposition 27 or the following but adding a “−1-club”,
where C ⊆ κ is −1-club if C is an end-segment of κ.

PROOF:
We start with (2)→ (1), so let S0 and S1 satisfy (2) and assume for a contradiction that C is

an γ-club subset of κ which threads S. Then we have α < β < δ in dγ(C) such that α ∈ S0 and
β ∈ S1. Now Cδ = C ∩ δ so we have α ∈ Cδ ∩S0 and β ∈ Cδ ∩S1 - but this is a contradiction.

Now suppose S has no thread and T ⊆ κ is γ + 1-stationary. We split into two cases.
Case 1: There is an η < γ and an η-club set D such that {α < κ : dγ(Cα) ∩D = ∅ or α /∈ T}
contains an γ-club.

If we define T ′ = {α ∈ T ∩ D : dγ(Cα) ∩ D = ∅} then T ′ is γ + 1-stationary as it is the
intersection of a γ-club with T . Firstly, suppose for each α ∈ dγ(κ) we have |dγ(Cα)∩T ′| ≤ 1.
Then for any pair S0 and S1 of disjoint γ + 1-stationary subsets of T ′ and any α we must have
dγ(Cα) ∩ S0 = ∅ or dγ(Cα) ∩ S1 = ∅, so we’re done.

If this is not the case, we show that S avoids T ′ and hence we can use Lemma 3.45 to split T ′

into 2 disjoint γ + 1-stationary sets, which will give (2). So suppose for some α ∈ dγ(κ) that
|dγ(Cα)∩ T ′| ≥ 2. Take β0 < β1 both in dγ(Cα)∩ T ′. Then we have Cβ1 ∩ β0 = Cα ∩ β0 =
Cβ0 , so β0 ∈ dγ(Cβ1) - but this is a contradiction with the definition of T ′ since β1 ∈ T ′ but
β0 ∈ D.

Case 2: For any η < γ and any η-club D we have {α ∈ T : dγ(Cα) ∩ D 6= ∅} is γ + 1-
stationary.

For α ∈ dγ(κ) we set
Sα0 = {β ∈ T\α : α /∈ dγ(Cβ)}

4With thanks to Philipp Lücke for pointing out this result as something which may generalise.
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and
Sα1 = {β ∈ T\α : α ∈ dγ(Cβ)}.

Then it is clear that for any given α either Sα0 or Sα1 is γ + 1-stationary.

Claim There is some α ∈ dγ(κ) such that Sα0 and Sα1 are both γ + 1-stationary.
PROOF OF CLAIM: Suppose not. Then for each α we have either Sα0 is not γ+ 1-stationary or

Sα1 is not γ+ 1-stationary. Set A = {α ∈ κ : Sα0 is not γ + 1-stationary}. We claim that A is γ-
stationary. So letD be η-club for some η < γ. Then as we are in Case 2, {α ∈ T : dγ(Cα)∩D 6=
∅} is γ + 1-stationary. Define a regressive function on T by α 7→ min(dγ(Cα) ∩ D). By
normality of the γ-club filter, we can fix T ′ ⊆ T ∩ D and α such that for any β ∈ T ′ we have
min(dγ(Cβ) ∩D) = α. Then Sα1 ⊇ T ′ so Sα1 is γ + 1-stationary and so we have α ∈ A ∩D.
As η < γ and D were arbitrary and we have shown that A ∩D 6= ∅ we can conclude that A is
γ-stationary.

Now let α < α′ be elements of A and Dα, Dα′ by γ-clubs witnessing, respectively, that Sα0
and Sα

′
0 are not γ + 1-stationary. Fix β ∈ Dα ∩Dα′ ∩ T . Then α ∈ dγ(Cβ) so Cα = Cβ ∩ α.

Similarly, Cα′ = Cβ ∩ α′ so we have Cα = Cα′ ∩ α. Setting C =
⋃
α∈A Cα we have that C is

γ-club: as each Cα is γ-closed C is γ-closed and as the γ-stationary union of γ-stationary sets,
C must be stationary. But then C is a thread through S - contradiction. QED (Claim)

Now let α be such that Sα0 and Sα1 are both γ + 1-stationary. Set S0 = Sα0 and S1 = Sα1
and note that for any β ∈ S0 ∪ S1 we have β > α. We show these sets satisfy (2). Suppose
δ ∈ dγ(κ). If β ∈ dγ(Cδ) ∩ S0 and β′ ∈ dγ(Cδ) ∩ S1 then α ∈ Cβ and α /∈ Cβ′ by definition
of S0 and S1, but Cβ ∩β′ = Cδ∩β∩β′ = Cβ′ ∩β. As α < β∩β′ this gives us a contradiction.
Hence Cδ must avoid either S0 or S1.

QED (Theorem 3.50)

COROLLARY 3.51. (V = L). Suppose κ is Π1
γ-indescribable. Then the following are equiv-

alent: (i) κ is not Π1
γ+1-indescribable; (ii) 2γ(κ).

PROOF: Our supposition yields the hypotheses of the last theorem. (ii) implies that κ is not
γ + 1-reflecting, and so not Π1

γ+1-indescribable by Cor.3.33. Thus (i). In turn (i) yields via
Thm.3.32 for any γ + 1-stationary T , the γ + 1-stationary ET which avoids the given 2γ-
sequence the theorem delivers. Hence by 2 of the last theorem, with ET = S0 = S1 we have (i)
as required. QED

§4. Downward Absoluteness. The downward absoluteness toL of a cardinal being 1-reflecting
was proven by Magidor in [24] §1 (the theorem was stated there for κ = ω2, but the proof is the
same for any regular κ). There, the only assumption needed on κ was regularity. To generalise
this and get γ-reflecting cardinals in L, we shall require some extra assumptions, as we see below.
The proof works inductively, and we shall need a slightly stronger statement than the downward
absoluteness of κ being 1-reflecting: we shall require the downward absoluteness of 2-stationarity
for sets in L. At higher levels of stationarity the first assumption we require is the normality of
the η-club filter - in the case of 1-reflecting cardinals the club filter was guaranteed to be normal
by assuming κ is regular. We shall also need a further assumption that “many” cardinals below κ
have the properties guaranteeing downward absoluteness of lower levels of stationarity.

The proof will be split into three cases - limit ordinals, successors of limit ordinals, and double
successors. The proof for double successors case is based on Magidor’s proof (which essentially
gives downward absoluteness of 2-stationarity) though there is more work to be done for the
higher levels as we do not have absoluteness of γ-clubs for γ > 0. This will be seen particularly
in the last part of the proof. The limit stages are straightforward, but for the successors of limits
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we need a slight variation on the notion of normality. The following definition gives us the
appropriate notion.

DEFINITION 4.1. For γ > 0 we say that a cardinal κ is γ-normal if κ is γ-reflecting and for
any γ + 1-stationary S ⊆ κ and regressive function f : S → κ, f is constant on a γ-stationary
set.

For successor ordinals this reduces to normality of the η-club filter:

PROPOSITION 4.2. If γ > η then κ is γ-normal implies Cη(κ) is normal. If γ = η + 1 and κ
is γ-reflecting then we have the converse: Cη(κ) being normal implies κ is η + 1-normal.

Thus κ is 1-normal iff the club filter is normal iff κ is regular.
PROOF: Suppose γ > η and κ is γ-normal. Let 〈Cα : α < κ〉 be a sequence of η-club subsets

of κ. Then4α<κCα is η-stationary closed so if4α<κCα is not η-club then it is not η-stationary.
Let η′ < η and C be a η′-club avoiding 4α<κCα. Then setting C′α = Cα ∩ C we have C′α is
η-club and4α<κC′α = ∅. Define f : κ → κ by f(α) is the least β such that α /∈ C′β . Then as
4α<κC′α = ∅, f is regressive on κ and so by the γ-normality of κ there is some β < κ such that
f−1(β) is a γ-stationary set. But this contradict C′β being η-club. QED

Note that for a limit ordinal γ, the domain of f must be γ+ 1-stationary, so this requirement is
weaker than

⋃
η<γ C

η being normal (which is always false for limit γ, see Proposition 3.41), but
stronger than each Cη being normal (the latter can occur when κ is not γ-reflecting). The notion
gets stronger as γ-increases:

PROPOSITION 4.3. If γ > η and κ is γ-normal then κ is η-normal.

PROOF: Fix γ > η and suppose κ is γ-normal. By Proposition 4.2 we have Cη(κ) is normal,
and hence by Fodor’s Lemma, for any η + 1-stationary S any regressive f : S → κ is constant
on an η + 1-stationary, and hence an η-stationary, set. QED

PROPOSITION 4.4. If κ is Π1
γ-indescribable then

1. κ is γ-normal, and
2. {λ < κ : λ is η-normal for all η < γ} is γ + 1-stationary in κ.

PROOF: If κ is Π1
γ-indescribable then Cγ(κ) is normal by Lemma 3.42, so κ is γ-normal. We

have that “∀η < γ(κ is Π1
η-indescribable)” is Π1

γ expressible (by Cor. 3.26) so

{λ < κ : ∀η < γ(λ is Π1
η-indescribable)}

is in the Π1
γ indescribability filter, and so by Lemma 3.42 is γ + 1-stationary. However, by part

(1),

{λ < κ : ∀η < λ(λ is Π1
η-indescribable)} ⊆ {λ < κ : λ is η-normal for all η < γ}

and thus the latter is γ + 1-stationary. QED

We now state our main theorem.

THEOREM 4.5. Let γ be an ordinal and κ > γ a regular cardinal such that

1. for all η < γ κ is η-normal and
2. setting

Aγ = {α < κ : for all η with 1 < η + 1 < γ, α is η-normal}

we have that Aγ is γ-stationary in κ.
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Then (κ is γ-stationary)L and hence (κ is Σ1
γ-indescribable)L. Furthermore, for any S ⊆ κ such

that S ∈ L and S∩Aγ is γ-stationary we have (S is a γ-stationary subset of κ)L. Consequently,
if Aγ is η-club for some η < γ then γ-stationarity at κ is downward absolute to L.

A few notes before we begin the proof. Assumption (2) is needed so that there are enough
α < κ where we can apply the inductive hypothesis. For γ = η + 2, Aγ = {α < κ :
α is η-normal} and if η is a limit ordinal and γ = η or γ = η + 1 then Aγ = {α < κ :
for all η′ < η α is η′-normal}. For γ = 2 requirement (1) reduces to regularity and (2) is vacu-
ous. For γ = 3 requirement (1) is just the 1-club filter is normal, and (2) that the regular cardinals
are 3-stationary - but this is a consequence of (1) as we shall see below.

PROOF: We prove this by induction, so suppose the theorem is true for any η < γ and κ
satisfies the assumptions (1) and (2) of the theorem. First suppose γ is a limit ordinal . Then

Aγ = {α < κ : for every η + 1 < γ α is η-normal}
= {α < κ : for every η < γ α is η-normal}
=
⋂
η<γ

Aη

and so each Aη is γ-stationary and hence η-stationary. Thus we have κ satisfies, for all γ′ < γ
(1) for all η < γ′ κ is η-normal and (2) Aγ′ is γ-stationary. Also, if S ⊆ κ is such that S ∩ A
is γ-stationary, then for any η < γ, S ∩ Aη is γ- (and hence η-) stationary. Therefore for any
such S the inductive hypothesis gives that, for each η < γ, (S is η-stationary)L. But then (S is
γ-stationary)L by definition.

Now suppose γ = η + 1 and η is a limit ordinal. By (1), κ is η-normal. Suppose we have
S ⊆ κ with S ∈ L such that S ∩Aγ is γ-stationary. To show that S is η + 1-stationary in L, let
B ⊆ κ with B ∈ L such that for every α ∈ S

L � B ∩ α is not η-stationary.

For each α ∈ S set ηα to be the least ordinal such that B ∩ α is not ηα stationary. As η is a limit
ordinal, ηα < η for all α ∈ S ∩Aγ . Therefore, by the η-normality of κ there is some δ < η such
that setting Xδ = {α ∈ S : ηα = δ} we have Xδ ∩ Aγ is η-stationary. Fix such a δ, and note
Xδ ∈ L.

As δ < η, by the inductive hypothesis κ is δ-reflecting in L and X is δ + 1-stationary in L.
Now working in L, suppose B were δ-stationary. Then dδ(B) would be δ-club below κ, so we
would have some α ∈ dδ(B) ∩X . But this is a contradiction as for any α ∈ X , B ∩ α was not
δ-stationary. So we have B is not δ-stationary in L. Thus

L � B is not η-stationary in κ

and so S is η + 1 = γ-stationary in L.
Finally, if γ is not a limit ordinal or a successor of a limit ordinal, we have more work to do.

The proof will proceed roughly as Magidor’s proof for the case γ = 2 (γ = 1 is the downward
absoluteness of stationarity, which is obvious). There will be several points of departure from
Magidor’s proof, as we shall have to take into account the non-absoluteness of η-clubs and η-
stationary sets. To simplify the presentation we shall assume that γ > 2.

Let γ = η + 2 with η ≥ 1. Let κ be regular and satisfy (1) and (2) of the theorem and S ⊆ κ
be such that S ∩Aγ is γ-stationary with S ∈ L. Then (1) gives us that Cη(κ) is normal.

CLAIM. The regular cardinals are 1-club below κ.

PROOF: As η ≥ 1 and we have assumed the η-club filter on κ is normal, C1(κ) must be normal.
Suppose the singulars were 2-stationary below κ. Let f : Sing ∩ κ → κ with f(α) = cof(α).
Then f is regressive so the normality of C1(κ) would give a 2-stationary set A of ordinals all
having the same cofinality. But this is impossible, as for any α ∈ A taking a club of order type
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cf(α) its limit points would all have smaller cofinality, so A ∩ α could not be stationary. QED

We now show that we can assume for each α in S, we have that in L, α is regular and η-
reflecting.

Now let S′ = {α ∈ S : (α is regular and η-reflecting)L}. Clearly S′ ∈ L. So we just need to
show S′∩Aγ is γ-stationary in V . We have S∩Aγ is η+2-stationary and as κ is η+1-reflecting
dη+1(Aγ) is η + 1-club. Also, by the above claim, the regulars are 1-club, so setting

S∗ = S ∩Aγ ∩ dη+1(Aγ) ∩Reg

we have S∗ is η + 2 = γ-stationary. We show S∗ ⊆ S′, so let α ∈ S∗. Then α is regular
and η-normal. Also as α ∈ dη+1(Aγ) we have Aγ , and hence Aη , is η + 1-stationary in α.
Thus α satisfies the assumptions of the theorem for η+ 1 and so by the inductive hypothesis α is
η-reflecting and regular in L.

From now on we assume S = S′, so for all α ∈ S, (α is regular and η-reflecting)L, and
S∗ = S ∩Aγ ∩ dη+1(Aγ)∩Reg is a γ-stationary subset of S. Furthermore, for any α ∈ S∗ we
have by the inductive hypothesis that for any T ⊆ α such that T ∩ Aγ is η + 1-stationary, (T is
η + 1-stationary)L.

We now want to show that S is η + 2-stationary in L, so we let B ⊆ κ with B ∈ L such that
for every α ∈ S

L � B ∩ α is not η + 1-stationary.
we shall show

L � B is not η + 1-stationary in κ.
Now working in L: For α ∈ S we have α is η-reflecting and B is not η + 1-stationary, so

we can find an η-club D ⊆ α which avoids B. Let Dα be the minimal such set in the canonical
well-ordering of L. Now we can take να to be minimal such that B ∩ α,Dα ∈ Lνα and Lνα is
Π1
η-correct for α. (In Magidor’s proof η-stationary correctness was not required, because there it

was 0-stationary correct; and a set being unbounded is absolute for transitive models.) It is clear
that |να| = |α|. Also, if α is regular then any Lβ for β > α will be correct about dη below α,
and thus Dα can be uniformly defined within any level of L which is Π1

η-correct for α, contains
B ∩ α and sees that B ∩ α is not η + 1-stationary.

Set Mα = 〈Lνα ,∈, α,B ∩ α,Dα〉. Now following Magidor’s proof, as the structure Mα is
no bigger than α in L it is isomorphic to a structure Nα = 〈α,Eα, µα, B′α, D′α〉. We take Nα
minimal and let hα be the inverse collapse, hα : Mα → Nα. Set fα = hα�α. Now we go back
to working in V .

LEMMA 4.6. There is an η-club G ⊆ κ such that for any α, β ∈ G ∩ S∗ if α < β then
〈Nα, fα〉 ≺ 〈Nβ , fβ〉.

PROOF: Let LN be the language L∈ with added constant symbols µ,B,D and function sym-
bol f . First we show that for any particular formula ϕ ∈ LN with k free variables and any
α1, . . . , αk ordinal parameters from κ we have (where µ,B,D and f are interpreted in the obvi-
ous way as µβ , B′β , D

′
β and fβ) that either

Xϕ(~α) = {β < κ : 〈Nβ , fβ〉 � ϕ(~α) or β /∈ S∗}

or
X¬ϕ(~x) = {β < κ : 〈Nβ , fβ〉 � ¬ϕ(~α) or β /∈ S∗}

contains an η-club. The lemma will then follow by taking the diagonal intersection over parame-
ters and formulae.

Fix ϕ etc. Working in V, assume for contradiction that setting

A1 := {β ∈ S : α1, . . . , αk < β,Nβ � ϕ(~α)}

A2 := {β ∈ S : α1, . . . , αk < β,Nβ � ¬ϕ(~α)}
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we have A1 ∩ S∗ and A2 ∩ S∗ are both η + 1-stationary, and A1, A2 ∈ L. As S∗ is η + 2-
stationary, we can find a regular α ∈ S∗ such thatA1∩S∗ andA2∩S∗ are both η+1-stationary
in α. Thus we have α satisfies the assumptions (1) and (2) for η + 1, and so by the inductive
hypothesis α is Π1

η-indescribable in L, and as Aη+1 ⊇ Aγ ⊇ S∗ we have A1 ∩ α,A2 ∩ α are
also η + 1-stationary in L. Without loss of generality suppose Nα � ϕ(~α). We now work in L
and show that on an η-club below α we have Nβ � ϕ(~α) and hence we have a contradiction with
A2 being η + 1-stationary.

So, let ρ > να be an admissible ordinal such that Lρ is Π1
η-correct for α. Now α is Π1

η-
indescribable in L so by Lemma 3.37, we have

∫Π
1
η (Lρ, {B ∩ α,D ∩ α, α1, . . . , αk}, α)

is η-club below α. Let β ∈ ∫Π
1
η (Lρ, {B ∩ α,D ∩ α, α1, . . . , αk}, α), let δ be such that Lδ ∼=

Lρ{β∪{α,B∩α,D∩α, α1, . . . , αk}}, and π be the collapsing map. It is clear that π(B∩α) =
B∩β and δ is admissible. As theDβ’s were uniformly definable fromB∩β at Π1

η-correct levels
of L, we have π(Dα) = Dβ .

As ρ > να, we have

Lρ � ∃γ Lγ is Π1
η-correct for α and B ∩ α,Dα ∈ Lγ .

Thus we have
Lδ � ∃γ Lγ is Π1

η-correct for β and B ∩ β,Dβ ∈ Lγ
and because Lδ is Π1

η-correct this statement hold in L, so we have νβ < δ. Thus π(Nα) = Nβ ,
and so Nβ � ϕ(~α). Hence, on an η-club (the Π1

η trace) below α we have Nβ � ϕ(~α) and hence
we have a contradiction with A2 being η + 1-stationary in α. Thus we must have either A1 ∩ S∗
is not η + 1-stationary in κ or A2 ∩ S∗ is not η + 1-stationary in κ. But this means either Xϕ(~α)

or X¬ϕ(~α) contains an η club, which is what we wanted to show.
Now we conclude by taking the diagonal intersection. Let 〈ϕn : n ∈ ω〉 list all the formulae

in the language LN . Let 〈~αδ : δ < κ ∧ lim(δ)〉 enumerate <ωκ in order type κ. On a club of
C we have 〈~αδ : δ < α〉 lists all of <ωα. Then for limit δ < κ we can set Cδ+n = κ if ϕ does
not have lh(~αδ) free variables. Otherwise we set Cδ+n = Xϕn( ~αδ) if this contains an η-club and
if not Cδ+n = X¬ϕn( ~αδ), which must then contain an η-club. Then C ∩ 4β<κCβ contains an
η-club, and for any α < β with α, β ∈ S∗ ∩ C ∩4β<κCβ , and for any ϕ ∈ LN and ~α ∈ <ωα
we have that

〈Nα, fα〉 � ϕ(~α) iff 〈Nβ , fβ〉 � ϕ(~α)

and thus 〈Nα, fα〉 ≺ 〈Nβ , fβ〉. (Although each Xϕ(~x) ∈ L, as containing a η-club is not abso-
lute between V and L, the appropriate sequence of Xϕ(~x) to take the diagonal intersection of and
obtain G need not be in L, and hence we cannot guarantee G ∈ L at this stage.) QED

To finish the proof we want to show B is not η + 1-stationary in L, so we shall produce an
η-club set D with D ∩ B = ∅. For each α < β ∈ S∗ ∩ G we have Mα ≺ Mβ . Let M be the
direct limit lim−→〈Mα〉α∈G∩S∗ . As each Mα � V = L we have M � V = L, and thus M is just
some Lρ. Also setting D =

⋃
α∈S∗∩GDα, it is clear that M = 〈Lρ,∈, κ, B,D〉 (remember

B =
⋃
α∈S Bα). we shall show that in L, dη(D) ∩B = ∅ before checking that D is stationary.

It is clear that for any α < β from G ∩ S∗ we have Dβ is an end extension of Dα. So if
D is η-stationary below some α < κ then for some (any) β > α with β ∈ S∗ ∩ G we have
Dβ ∩α = D∩α so by definition ofDβ we have α /∈ B as required. It remains to show thatD is
η-stationary. We want to use the fact that an η-stationary union of η-stationary sets is η-stationary
- but to apply this we need to find an η-stationary set H ∈ L with Dα = D ∩ α for each α ∈ H .
(Note we cannot do this in V and use the inductive hypothesis to show D is η-stationary in L,
because the Dα’s need not be η-stationary in V .) The obvious candidate for this is G ∩ S∗, but
as noted above, we needn’t have G ∩ S∗ ∈ L.
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CLAIM. There is H ∈ L with G ∩ S∗ ⊆ H and for each α ∈ H , Mα ≺M .

PROOF:
Let H = S ∩ ∫Π

1
η (Lρ, {B,D}, κ). Note that we do not assume Lρ is Π1

η-correct, so we do
not yet know that H 6= ∅.

First we show that for α in H we have Lρ{α,B,D} ∼= Lνα with π(B) = B ∩ α and
π(D) = Dα and hence Mα ≺ M . Fix α ∈ H and let δ be such that Lδ ∼= Lρ{α ∪ {B,D}},
and π be the collapsing map. Clearly π(B) = B ∩ α and as D was defined from B in the same
way that Dα was defined from B ∩ α, and Lδ is Π1

η-correct and sees that B ∩ α is not η + 1-
stationary, we must have π(D) = Dα. Thus to show δ = να we only need to verify minimality
of Lδ . Let Θ(β) be the following statement, where ψγ is the universal Π1

γ formula.

Θ(β) : ∀γ > β
[(
B ∩ β /∈ Lγ

)
∨
(
Dβ /∈ Lγ

)
∨ ∃U /∈ Lγ ∃n ∈ ω ∃η′ < η

(
U is minimal with ψη′(β, n, U)

)]
.

Then if Lν is Π1
η-for β and Lν � Θ(β) we must have Lν is the minimal Π1

η-correct level
containing B ∩ β and Dβ .

Now for any β ∈ G ∩ S∗
Lνα � Θ(β)

so by elementarity
Lρ � Θ(κ)

and again by elementarity
Lδ � Θ(δ).

Thus δ is minimal so δ = να and Mα ≺M .
Now assume α ∈ S∗ ∩G. We show Lνα ∼= Lρ{α ∪ {B,D, κ}} and so as Lνα is Π1

η-correct
α ∈ H . Let j : Mα ≺M By Lemma 3.10 Lνα{{B ∩ α,Dα} ∪ α+ 1} = Lνα and thus

Lνα ∼= Lρ{j“Lνα} = Lρ{{j(B ∩ α), j(Dα)} ∪ j“α+ 1} = Lρ{{B,D, κ} ∪ α}
and we’re done. QED

Now as H ⊇ S∗ ∩ G we have in V that H is η-stationary in κ, and hence by the induction
L � H is η-stationary in κ. Also, for every α ∈ H we have Mα ≺ M and hence Dα = D ∩ α
and Dα is η-stationary. Then in L, D is the η stationary union of η-stationary sets, so L � D is
η-stationary in κ. As dη(D) avoids B we have

L � B is not η + 1-stationary in κ

and so we’re done. QED

This gives us the following equiconsistency result, showing that assumption on the γ-club
filters can be as strong as Π1

γ-indescribability.

COROLLARY 4.7. Fix an ordinal γ. It is consistent that there is a regular cardinal κ > γ such
that

1. for all η < γ + 1, κ is η-normal and
2. {α < κ : for all η with 0 < η < γ, α is η-normal} is γ + 1-stationary in κ.

if and only if it is consistent that there is a Π1
γ-indescribable cardinal.

PROOF: Assuming κ satisfying (1) and (2) as above, Theorem 4.5 tells us that in L, κ is Σ1
γ+1-

indescribable and hence Π1
γ-indescribable. Thus if the existence of a regular cardinal satisfying

(1) and (2) is consistent with ZFC so is the existence of a Π1
γ-indescribable cardinal. Proposi-

tion 4.4 gives the converse. QED
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If we make a stronger assumption on κwe can get the following much simpler (though weaker)
statement of downward absoluteness:

COROLLARY 4.8. Assume that for any ordinal γ < κ with κ a γ-reflecting regular cardinal,
that the γ-club filter on κ is normal. Then if S ⊆ κ is γ-stationary with S ∈ L we have
(S is γ-stationary in κ)L.

We shall see in the next section that we need the stronger statement to get the downward
absoluteness of γ-ineffability.

§5. Some applications: Ineffability and ♦ Principles. In this section we give generalisa-
tions of ineffability and ♦ principles using γ-stationary sets. As we shall see, many of the old
results follow through in this context. We shall also detail the relations between the different
levels of these generalised principles. In this section γ is an ordinal less than the cardinal κ unless
otherwise stated. We first recall the definition of ineffability:

DEFINITION 5.1. A regular, uncountable cardinal κ is ineffable iff whenever f : [κ]2 → 2
there is a stationary set X ⊆ κ such that |f“[X]2| = 1.

5.1. γ-Ineffables. We start by defining a new, natural generalisation of ineffability, and ex-
ploring its basic properties.

DEFINITION 5.2. A regular, uncountable cardinal κ is γ-ineffable for γ < κ iff, whenever
f : [κ]2 → 2, there is a γ-stationary set X ⊆ κ such that |f“[X]2| = 1.

REMARK. It is clear that γ-ineffability implies β-ineffability if β < γ. Note that 1-ineffable
reduces to the ordinary definition of ineffability, and 0-ineffable is weakly compact.

From now on we shall assume γ ≥ 1. The following theorem gives a useful characterisation
of γ-ineffability, well-known for γ = 1.

THEOREM 5.3. Let κ be a regular, uncountable cardinal. Then κ is γ-ineffable iff whenever
〈Aα : α < κ〉 is such that for all α, Aα ⊆ α, there is a set A ⊆ κ such that {α < κ : Aα =
A ∩ α} is γ-stationary in κ.

PROOF: (⇒) Suppose κ is γ-ineffable and let 〈Aα : α < κ〉 be as above. Define a function
h : [κ]2 → 2 by h({α, β}) = 0 iff, assuming α < β, there is some δ such thatAα∩ δ ( Aβ ∩ δ.
By γ-ineffibility, let X be γ-stationary such that |h“[X]2| = 1. Suppose first h“[X]2 = {0}.
Then for α, β ∈ X with α < β we have Aα ∩ δ ( Aβ ∩ δ for some δ.

For each ν < κ, let αν be least in X such that αν ≥ ν and for all β ∈ X with β > αν ,
we have Aβ ∩ ν = Aαν ∩ ν. This is possible as if 〈βi : i < κ〉 enumerates X \ ν we have
sup{α < κ : Aν ∩ α ⊆ Aβi ∩ α} is strictly increasing, so will pass ν. Then after this Aβi ∩ ν
is subset-increasing, so as κ is regular it must eventually be constant.

LetC = {δ ∈ κ : ∀ν < δ αν < δ}, which is closed unbounded. Thus Y = X∩C∩LimOrd
is γ-stationary in κ. Now for lim(ν) we have αν is the least α ∈ X such that α ≥ supη<ναη ,
so if ν ∈ Y then αν = ν. Hence for any α ∈ Y and β ∈ X with β > α we have Aβ ∩ α = Aα.
Thus setting A =

⋃
α∈Y Aα we have Y ⊆ {α ∈ κ : A ∩ α = Aα} so we’re done.

Now suppose h“[X]2 = {1}. Then for α < β in X we have Aα = Aβ or Aα ∩ δ ) Aβ ∩ δ
for some δ. For each ν < κ we can define αν exactly as before, for similar reasons, and the
construction goes through in the same way.

(⇐) Let f : [κ]2 → 2 be given. For α < κ set

Aα = {β < α : f({β, α}) = 1}

Then by assumption there is A ⊆ κ such that

X = {α < κ : A ∩ α = Aα}
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is γ-stationary. It is easy to see that f“[A ∩ X]2 = {1} and f“[X \ A]2 = {0}. But
X = (X ∩A) ∪ (X \A), so one of these must be γ-stationary and we’re done. QED

We cannot fully generalise the implication from ineffability to Π1
2-indescribability, the reason

being that γ-club filter may not coincide with the Π1
γ-indescribability filter outside of L, although

we cannot provide an example of these filters being different. We do however have that any
γ-ineffable is γ + 1-reflecting (Theorem 5.5 below).

THEOREM 5.4. If V = L or γ ∈ {1, 2}, and κ is γ-ineffable then κ is Π1
γ+1-indescribable.

The case for γ = 1 is given in [14] VII.2.2.3. We do an induction essentially following that
proof.

PROOF: Assume the theorem holds for any η < γ. Suppose for a contradiction that ϕ is ∆0
ω ,

A ⊆ κ and
∀X ⊆ κ Σ wins Gγ(κ, ϕ, 〈A,X〉)

but for any α < κ

∃X ⊆ α Π wins Gγ(α,ϕ, 〈A ∩ α,X〉)
For each α < κ fix some Xα ⊆ α such that Π wins Gγ(α,ϕ, 〈A,Xα〉). By γ-ineffability of
κ, take X ⊆ κ such that S := {α < κ : Xα = X ∩ α} is γ-stationary. Now we have
Σ wins Gγ(κ, ϕ, 〈A,X〉), so we can fix η < γ and Y ⊆ κ such that Π winsGη(κ, ϕ′, 〈A,X, Y 〉).
Now inductively we have that κ is Π1

η-indescribable, so if V = L or η = 0, 1, by Theo-
rem 2.23 and Lemma 3.44 this statement reflects to an η-club C. Let α ∈ C ∩ S. Then as
α ∈ S we have Π wins Gγ(α,ϕ, 〈A,Xα〉), i.e. for any γ′ < γ and any Y ′ ⊆ α, Σ wins
Gγ′(α,ϕ

′, 〈A,X ∩ α, Y ′〉). But α ∈ C so Π must win Gη(α,ϕ′, 〈A ∩ α,X ∩ α, Y ∩ α〉) so
we have a contradiction. QED

Outside of L, we can still obtain the following:

THEOREM 5.5. If κ is γ-ineffable, then κ is γ + 1-reflecting.

PROOF: Suppose κ is γ-ineffable, S ⊆ κ with S not γ + 1-stationary in any α < κ. We show
S is not γ + 1-stationary. For each α ∈ κ take Cα ⊆ α to be γα-club avoiding S, for some
γα ≤ γ. By γ-ineffability, let C and γ′ be such that X = {α < κ : Cα = C ∩ α, γ′ = γα} is
γ-stationary. We claim C is γ′-club and avoids S. C is γ′-stationary as X ⊆ C: to see this, let
α < β ∈ X . ThenCα is γ′-stationary in α by definition ofCα. Now as α, β ∈ X ,Cβ∩α = Cα,
and as Cβ is γ′ stationary closed, thus α ∈ Cβ and so α ∈ C. Also, C is γ′-stationary closed as
each Cα with α ∈ X is. So C is γ′ club and avoids S, and we’re done. QED

In order to prove that γ-ineffability is downwards absolute to L, we now look in more detail at
the theory of γ-ineffables. The following shows that if κ is γ + 1-ineffable then the γ-club filter
on κ is normal.

LEMMA 5.6. If κ is γ-ineffable then κ is γ-normal.

PROOF: Let κ be γ-ineffable. First we show that any f : κ→ κwhich is regressive is constant
on a γ-stationary set. So let f be such a function and for each α < κ set Aα = {f(α)}. By
ineffability, there is some A ⊆ κ such that

X = {α < κ : A ∩ α = {f(α)}}
is γ-stationary. But then for α, β ∈ X we must have f(α) = f(β).

Now suppose for a contradiction that S is γ + 1-stationary and f : S → κ is regressive such
that for any α < κ, f−1(α) is not γ-stationary. For each α < κ take ηα < γ and Cα ⊆ κ
such that Cα is ηα-club and avoids f−1(α). Then as each Cα is γ-stationary closed,4α<κCα is
γ-closed. Also, as each Cα avoids f−1(α) and f is regressive,4α<κCα must avoid S. Thus we
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must have that 4α<κCα is not γ-stationary. Let η < γ and C be a η-club avoiding 4α<κCα.
Then setting C′α = Cα ∩C we have C′α is max{η, ηα}-club and4α<κC′α = ∅. Let f : κ→ κ
be defined by f(α) is the least β such that α /∈ C′β . As each α /∈ 4α<κC′α we have that f is
well defined and regressive. By above, f is constant on a γ-stationary set X , so there is δ < κ
such that for each α ∈ X , α /∈ C′δ . But this contradicts C′δ being ηδ-club. QED

DEFINITION 5.7. We say S ⊆ κ is γ-ineffable in κ iff whenever f : [S]2 → 2, there is
X ⊆ S such that |f“[X]2| = 1 and X is γ-stationary in κ.

REMARK. It is easy to see that if some S ⊆ κ is γ-ineffable in κ then κ is γ-ineffable.

It is clear that to be γ-ineffable a subset of κ must be γ-stationary, but we shall see that such a
set must in fact be γ + 2-stationary. There are always proper subsets of κ which are γ-ineffable:

PROPOSITION 5.8. If κ is γ-ineffable and C is η-club for some η < γ then C is γ-ineffable.

PROOF: Extend f : [C]2 → 2 to g : [κ] → 2 arbitrarily. By γ-ineffability of κ there is a
γ-stationary set X ⊆ κ such that g is constant on [X]2. As X is γ-stationary, X ∩ C is also γ
stationary, and as g extended f , we must have f is constant on X ∩ C. QED

We also have the analogue of Theorem 5.3 for γ-ineffable subsets:

THEOREM 5.9. Let κ be a regular, uncountable cardinal. Then S ⊆ κ is γ-ineffable iff when-
ever 〈Aα : α ∈ S〉 is such that for all α ∈ S, Aα ⊆ α, there is a set A ⊆ κ such that
{α ∈ S : Aα = A ∩ α} is γ-stationary in κ.

PROOF: The proof of Theorem 5.3 works in exactly the same way relativised to S.
QED

PROPOSITION 5.10. If S ⊆ κ is γ-ineffable then S is γ + 2-stationary.

PROOF: This is essentially the same argument as Theorem 5.5. Suppose S is γ-ineffable but
not γ + 2-stationary. Let T ⊆ κ be γ + 1-stationary with dγ+1(T ) ∩ S = ∅. Then for each
α ∈ S, T ∩ α is not γ + 1-stationary in α so we can find Cα ⊆ α which is γ-club and avoids
T ∩ α. Now, using the γ-ineffability of S we can find C ⊆ κ such that {α ∈ S : C ∩ α = Cα}
is γ-stationary. Then C is γ-club and avoids T - but this contradicts T being γ + 1-stationary.
QED

LEMMA 5.11. If κ is γ-ineffable then the set

Eγ = {α < κ : α is η-ineffable for every η < γ}
is γ-ineffable.

PROOF: Let κ be γ-ineffable. Suppose 〈Bα : α ∈ Eγ〉 is such that Bα ⊆ α for each α ∈ Eγ .
We show that there is a B ⊆ κ such that {α ∈ Eγ : B ∩ α = Bα} is γ-stationary. For α ∈ Eγ
set Aα = {β+ 1 : β ∈ Bα}. For each α /∈ Eγ let ηα < γ be such that α is not ηα-ineffable and
let Bα = 〈Bβα ⊆ β : β < α〉 be a sequence witnessing that α is not ηα-ineffable. Let Aα ⊆ α
code the sequence Bα and ηα such that 0 ∈ Aα.

By γ ineffability we have a A ⊆ κ such that

X = {α < κ : A ∩ α = Aα}
is γ-stationary. Now if 0 /∈ A we have X ⊆ Eγ and so we’re done - setting B = {α < κ :
α+ 1 ∈ A} we have for limit α that A∩α = Aα iff B ∩α = Bα, so B is as required. If 0 ∈ A
then X ∩ Eγ = ∅. We show that this leads to a contradiction.
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So suppose each α ∈ X is not η-ineffable for some η < γ. Then A codes B = 〈Bβ ⊆ β :
β < κ〉 and η such that for each α ∈ X , B�α = Bα and ηα = η.. Using the γ-ineffability of κ
again, let C ⊆ κ be such that

Y = {α < κ : C ∩ α = Bα}
is γ-stationary. As κ is η-reflecting dη(Y ) is η-club. But then for α ∈ dη(Y ) ∩ X we have
{β < α : C ∩β = Bβα} = {β < α : C ∩β = Bβ} = Y ∩α and must therefore be η-stationary
in α. But this contradicts our assumption that 〈Bαβ : β < α〉 was a witness that α was not
ηα-ineffable, as C ∩ α correctly guesses Bβ on a η = ηα-stationary subset of α. So we have a
contradiction and Eγ is γ-ineffable. QED

We can now show that γ-ineffability is downward absolute to L. Recall that ([14] VII.2.2.5) if
κ is ineffable then (κ is ineffable)L. To generalise this proof we shall use Theorem 4.5.

THEOREM 5.12. If κ is γ-ineffable then (κ is γ-ineffable)L.

PROOF: Let κ be γ-ineffable. First we show that κ satisfies (1) and (2) of Theorem 4.5. By
Lemma 5.6 we have that κ is γ-normal and hence η-normal for any η < γ. By Lemma 5.11 we
have {α < κ : for all η < γ, α is η-ineffable} is γ-ineffable. But if α is η-ineffable then α is
η-normal so setting E = {α < κ : for all η < γ, α is η-normal} then E is γ-ineffable in κ and
hence γ + 2-stationary. Thus

Aγ = {α < κ : for all η with 1 < η + 1 < γ α is η-normal} ⊇ E
and so Aγ is γ-stationary.

Now, using the characterisation of γ-ineffability from Theorem 5.3, let 〈Aα : α < κ〉 be a
sequence in L with each Aα ⊆ α. This is clearly such a sequence in V , so as E is γ-ineffable we
can find a set A ⊆ κ such that

X = {α < κ : Aα = A ∩ α and for every η < γ, α is η-normal}
is γ-stationary. Then by the weak compactness of κ, as each Aα ∈ L and X is unbounded in κ,
we have A ∈ L. Setting X ′ = {α < κ : Aα = A ∩ α}, we have X ′ ∈ L and X ∩ X ′ = X
is γ-stationary. Thus by Theorem 4.5X ′ is γ-stationary inL, and hence (κ is γ-ineffable)L. QED

5.2. Diamond Principles. We now turn to generalising diamond (♦) principles, and relate
them to our generalised ineffability. Like 2(κ), ♦κ asserts the existence of a sequence of sets
Sα ⊆ α for α < κ - in the case of ♦ the sequence must “guess” any subset of κ sufficiently
often. For the original ♦, “sufficiently” is “stationarily”, so by altering this to γ-stationarity we
can define a new notion:

DEFINITION 5.13. ♦γκ is the assertion that there is a sequence 〈Sα : α < κ〉 such that for any
S ⊆ κ we have {α < κ : Sα = S ∩ α} is γ-stationary in κ.

The original principle is thus ♦1
κ.

REMARK. As with ineffability, these principles get stronger as γ increases: for β < γ we
have ♦γκ ⇒ ♦βκ.

THEOREM 5.14. If κ is γ-ineffable then ♦γκ holds.

PROOF: Define by recursion a sequence 〈(Sα, Cα, ηα) : α < κ〉: let (Sα, Cα) be any pair of
subsets of αwith ηα < γ such thatCα is ηα-club in α and for any β ∈ Cα we have Sα∩β 6= Sβ .
If there is no such pair, set Sα = Cα = ηα = ∅. We now use γ-inneffability to see that
〈Sα : α < κ〉 is a ♦γκ-sequence.

By the characterisation of γ-ineffability in Theorem 5.3 and some simple coding (noting that
successor levels are irrelevant), we can find S,C ⊆ κ and η < γ such that

A = {α < κ : S ∩ α = Sα ∧ C ∩ α = Cα ∧ ηα = η}
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is γ-stationary.
Let X ⊆ κ and suppose that B := {α < κ : Sα = X ∩ α} is not γ-stationary in κ. Take D

γ′-club in κ witnessing this, i.e γ′ < γ and for any α ∈ D, X ∩ α 6= Sα. By γ-stationarity of
A we can pick α < β both in A ∩ dγ′(D). Then Cβ ∩ α = C ∩ β ∩ α = C ∩ α = Cα. Now
as (X ∩ α,D ∩ α, γ′) works for the definition of (Sα, Cα, ηα) we must have that Cα is η-club
in α. Hence Cβ ∩ α = Cα is η-stationary in α, and so Cβ 6= ∅ and we have by η-stationary
closure that α ∈ Cβ . Then by definition of (Sβ , Cβ , ηβ) we must have Sα 6= Sβ ∩ α. But this is
a contradiction as α, β ∈ A so Sα = S ∩ α = Sβ ∩ α. QED

The♦ principle itself is not a large cardinal notion, and in fact within the constructible universe
♦κ holds at every regular uncountable cardinal κ (see [14] Chapter IV). Our new ♦γκ principles
also hold in L, with minimal assumptions on κ, as we shall now see.

As γ stationarity is Π1
γ expressible we have, as a corollary to Lemma 3.37, the following:

LEMMA 5.15. If V = L and κ is Π1
γ-indescribable then for any limit ν > κ with Lν Π1

γ-
correct over κ we have ∫γ(Lν , p, κ) is γ-club in κ.

DEFINITION 5.16. A model 〈M,∈〉 is γ-stationary correct at κ if for any S ∈ P(κ) ∩M ,
M � “S is γ-stationary in κ” iff S is γ-stationary in κ.

PROPOSITION 5.17. If V = L and κ is a γ-stationary regular cardinal then ♦γκ holds.

PROOF: By recursion we define, for each α < κ, an ordinal ηα < γ and a pair of subsets of α
(Sα, Cα) (the Sα’s will form our ♦γ-sequence).

Assume we have defined 〈Sβ : β < α〉. Let ψ(α, η, C, S) be the statement that η is an ordinal
below γ, and (S,C) is a pair of subsets of α with C η-club in α and for any β ∈ C, S ∩β 6= Sβ .

If there are η, S andC such thatψ(α, η, S, C) holds, we take ηα to be the least such η, and then
(Sα, Cα) the <L least pair with ψ(α, ηα, Sα, Cα). If no such η exists set Sα = Cα = ηα = ∅.

Suppose 〈Sα : α < κ〉 is not a ♦γκ-sequence and take η and (S,C, η) to be the least witness
to this, i.e ψ(κ, η, S, C) holds and if η′ < η or (S′, C′) <L (S,C) then ¬ψ(κ, η′, S′, C′). Note
that all this can be carried out in Lκ+ , and that as η < γ and we are in L, κ is Π1

η-indescribable
and hence by Lemma 3.37 the η trace forms an η-club.

Suppose α ∈ ∫η(Lκ+ , κ, {S,C, η}) with α > η and Lν ∼= Lκ+{α, {S,C, η}}.
Lν � “η is the least ordinal such that there exists a pair (C′, S′) with ψ(α, η, S′, C, ) and

(C ∩ α, S ∩ α) is the <L least such pair”
As α is in the η trace, we have Lν is η-stationary correct so ψ(α, η, S ∩ α,C ∩ α) must hold

and ψ(α, η′, S′, C, ) fail for η′ < η or (S′, C′) <L (S ∩ α,C ∩ α). But this was the definition
of Sα so Sα = S ∩ α, contradiction. QED

A stronger principle than ♦ is ♦∗, which requires sets to be guessed on a club set of α, but
allows for more guesses at each α. Unlike ♦, ♦∗ is incompatible with ineffability (see [5]). The
original principle is ♦∗1 in the following definition.

DEFINITION 5.18. ♦∗γκ is the assertion that there is a sequence 〈Aα : α < κ〉 such that
Aα ⊆ P(α) and |Aα| ≤ |α| for each α < κ, and for any X ⊆ κ there is some γ′ < γ such that
{α < κ : X ∩ α ∈ Aα} is in the γ′-club filter on κ.

REMARK. In contrast to the case for ♦, here we have that at γ-reflecting cardinals κ, ♦∗γ
′

κ

implies ♦∗γκ for γ′ < γ.

As for the original principle, ♦∗γκ cannot hold at a γ-ineffable cardinal κ:

THEOREM 5.19. If κ is γ-ineffable then ♦∗γκ fails.

PROOF: Suppose κ is γ-ineffable and let 〈Aα : α < κ〉 be a sequence such that Aα ⊆ P(α)
and |Aα| ≤ |α| for each α < κ. We findB ⊆ κ such that {α < κ : B∩α /∈ Aα} is γ-stationary.
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For each α < κ let Bα ⊆ α be a set different from each set in Aα - we can find such a set as
|Aα| = α. Now by γ-ineffability there is B ⊆ κ such that X = {α < κ : Bα = B ∩ α} is
γ-stationary. But then B is not guessed by 〈Aα : α < κ〉 on X , so 〈Aα : α < κ〉 cannot be a
♦∗γ-sequence. As 〈Aα : α < κ〉 was arbitrary, ♦∗γκ fails.

QED

In fact, the notion of ♦γκ is only really of interest for a successor ordinal γ < κ:

PROPOSITION 5.20. If γ is a limit ordinal and ♦γκ holds iff there is some γ′ < γ such that
♦γ
′
κ .

PROOF: Suppose γ is a limit ordinal and ♦γκ holds. Let A = 〈Aα : α < κ〉 a se-
quence such that Aα ⊆ P(α) and |Aα| ≤ |α| for each α < κ. Assume that A is con-
structibly closed, in that for each α, Aα = P(α) ∩ Lν [Aα] for some limit ordinal ν with
α < ν < α+ - clearly we can always expand A to satisfy this condition, and A will remain
a ♦∗γκ -sequence. Suppose for each γ′ < γ, A is not a ♦∗γ

′
κ -sequence, and take Bγ′ to witness

this, setting Xγ′ = {α < κ : Bγ′ ∩ α /∈ Aα}, which is γ′-stationary. Set X =
⋃
Xγ′ and

let B code (definably and uniformly) each of the Bγ′ ’s. Then X is γ-stationary and we claim
X ⊆ {α < κ : B ∩ α /∈ Aα}. Suppose α ∈ X and B ∩ α ∈ Aα. Then as the coding was
definable, each Bγ′ ∩ α ∈ Aα - contradiction. QED

COROLLARY 5.21. If γ is a limit ordinal and κ is γ′-ineffable for every γ′ < γ then♦∗γκ fails.

In L we have that, given the precondition of γ-stationarity, the failure of♦∗γκ characterises the
γ-ineffables - but only for successor ordinals γ.

THEOREM 5.22. Assume V = L and let κ be a regular cardinal that is γ-stationary with γ a
successor ordinal. Then κ is not γ-ineffable iff ♦∗γκ holds.

PROOF: (⇒) Let κ be a regular uncountable cardinal which is not γ-ineffable. Let 〈Aα :
α < κ〉 be the <L least sequence such that Aα ⊆ α for each α and for any A ⊆ κ we have
{α < κ : Aα = A ∩ α} is not γ-stationary. For each α < κ set Mα to be the least M ≺ Lκ
such that α+ 1 ⊆Mα and 〈Aα : α < κ〉 ∈M . Let σα : Mα

∼= Lνα .
Set Sα = P(α) ∩ Lνα , and note |Lνα | = |να| = |α|, so |Sα| ≤ |α|. we shall show that

if η + 1 = γ then for any X ⊆ κ, setting C = ∫η(Lκ+ , {X}, κ) we have C is η-club and
X ∩ α ∈ Sα for all α ∈ C. Fix such an X and take α ∈ ∫η(Lκ+ , {X}, κ). Let π : Nα ∼= Lµ.
Then π�α = α, π(κ) = α and π(X) = X ∩ α, so X ∩ α ∈ Lβ . Thus we are done if we can
show µ ≤ να. Suppose to the contrary that µ > να. As 〈Aα : α < κ〉 is definable in Lκ+ and
α ∈ Mα we have 〈Aγ : γ ≤ α〉 ∈ Mα. Then σα(〈Aγ : γ ≤ α〉) = 〈Aγ : γ ≤ α〉 because
α + 1 ⊆ Mα, so 〈Aγ : γ ≤ α〉 ∈ Lνα ⊆ Lβ . Setting E = {γ < α : Aγ = Aα ∩ γ} we have
E ∈ Lβ and π−1(E) = {γ < κ : Aγ = γ ∩ π−1(Aα)}. First suppose Lβ � “E is γ-stationary
in α”. Then π−1(E) is γ-stationary in κ by elementarity. Also we have (in Lκ+ and hence in L)
that π−1(Aα) ⊆ κ and π−1(E) = {β < κ : Aβ = β ∩ π−1(Aα)}. But this is a contradiction
as 〈Aα : α < κ〉 was chosen to witness κ not being γ-ineffable.

So we must have Lβ � “E is not γ-stationary in α”. Thus for some C ⊆ α, Lβ � “C is
η-club in α and C ∩ E = ∅”. Then inverting the collapse we get C′ = π−1(C) is η-club in κ
and C′ ∩π−1(E) = ∅”. As Lβ is in the η-trace it is η-stationary correct for α. Now C′ ∩α = C
and by η-stationary correctness, we have that C′ ∩ α is η-stationary, and hence α ∈ C′. Thus
by the definition of E we have Aα 6= α ∩ π−1(Aα). But this is a contradiction as π�α = id�α.
Thus we must have µ ≥ να and we’re done.

The converse direction (⇐) follows from Theorem 5.19. QED

In fact this characterisation can fail for limit γ: Assuming there is an ω-ineffable we can take
κ to be the least cardinal which is n-ineffable for every n < ω. Then κ is not Π1

ω-indescribable
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as being n-ineffable is Π1
n+2 over Lκ, so being n-ineffable for every n < ω is Π1

ω . Hence (as
we are in L), κ is not ω-reflecting, and so κ is not ω-ineffable. Now, for each n < ω, as κ is
n-ineffable ♦∗n fails, so by Proposition 5.20 ♦∗ω also fails. We can however give a complete
description of when ♦∗γκ holds in L:

COROLLARY 5.23. If V = L then ♦∗γκ holds iff κ is γ-stationary and one of the following:
1. γ is a successor and κ is not γ-ineffable
2. γ is a limit and κ is not γ′-ineffable for some γ′ < γ.

PROOF: For γ a successor this is just Theorem 5.22. For γ a limit by Proposition 5.20 if ♦∗γκ
holds then for some γ′ < γ, ♦∗γ

′
κ holds so by Theorem 5.19 κ is not γ′-ineffable. The converse

direction is immediate from Theorem 5.22, remembering that for γ′ < γ, ♦∗γ
′

κ implies ♦∗γκ .
QED

Now we turn to the relationship between ♦ and ♦∗. In the classical case Kunen showed that
♦∗κ implies ♦κ (see [26], 5.38). If the γ-club filter on κ is normal then we can generalise this:
♦∗γ+1
κ implies ♦γ+1

κ . The proof goes via a weaker principle, ♦−γ :

DEFINITION 5.24. ♦−γκ is the assertion that there is a sequence 〈Aα : α < κ〉 such that
Aα ⊆ P(α), |Aα| ≤ |α| for each α < κ, and for any X ⊆ κ the set {α < κ : X ∩ α ∈ Aα} is
γ-stationary in κ.

This is a clear weakening of both ♦∗ and ♦. The following proof is essentially based on one
of Kunen: see [19], Theorem 7.14.

THEOREM 5.25. If the γ-club filter on κ is normal then♦γ+1
κ ↔ ♦−γ+1

κ , and hence♦∗γ+1
κ →

♦γ+1
κ .

PROOF: It is clear that♦γ+1
κ → ♦−γ+1

κ . Suppose the γ-club filter on κ is normal and♦−γ+1
κ

holds. Let 〈Aα : α < κ〉 be a ♦−γ+1
κ -sequence such that each A ∈ Aα codes a subset of α×α.

Let {Aβα : β < α} enumerate these coded sets in Aα.
For a given α and β < α, set Sβα = {ν ∈ α : (ν, β) ∈ Aβα}. We shall see that for some

β < κ, 〈Sβα : α < κ〉 is a ♦γ+1
κ -sequence. Suppose this is not the case. For each β < κ take

Xβ ⊆ κ and Cβ γ-club such that for α ∈ Cβ , Xβ ∩ α 6= Sβα . Set

X =
⋃
β<κ

Xβ × {β}

and
C = 4β<κCβ .

By the normality of the γ-club filter, C is γ-club. Then for α ∈ C, if β < α then Xβ 6= Sβα and
so X ∩ (α × α) 6= Aβα. Thus X /∈ Aα. But this contradicts 〈Aα : α < κ〉 being a ♦−γ+1

κ -
sequence. QED
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