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1 Introduction

We give an account of the basic determinants of the courses of computation of
an Infinite Time Turing machine (ITTM), a model of computation which allows
for transfinitely many steps of computation. One such basic theorem relates the
ordinal codes capable of being output on halting computations to those capable
of being produced eventually by some non-terminating computation. This so-
caled “λ-ζ-Σ”-theorem is reproven here, and it is newly related to a theorem of
Friedman & Harrington on the levels of the Gödel Constructible hierarchy of
sets.

In a second part we provide further new results: (i) a Normal Form Theo-
rem (corresponding to Kleene’s Normal Form Theorem for standard Turing ma-
chines) in which a code for a course of computation can be produced, uniformly
on all inputs, in the lengths of time close to that of the original computation;
(ii) a characterization of which ordinals start gaps in the class of ordinal halt-
ing times; (iii) an example of divergence between halting points of one-tape and
three-tape ITTM architecture answering a question of Hamkins and Seabold [12].
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Prerequisites

The reader will be assumed to be familar with the paper of Hamkins and
Lewis [10], for the basic notions (although we have outlined most of the basic
notions above). They will need some knowledge of ordinal numbers for which
see, e.g. [6], and some of the Gödel hierarchy of constructible sets L for which
[5], or the early parts of [4] can be consulted. For notions associated with stan-
dard Turing Machine theory, such as recursive ordinal, Turing degree, etc. then
see [27] or [25]. For the theory of admissible sets and ordinals, vide [1].

Structure of the paper

The next subsection provides the general setting for the Infinite Time Tur-
ing Machines (ITTM’s) concept. This is a general introduction serving as a less
specialised motivation for the specialised results that follow. Section 1.2 relates
the ITTM context to that of other work: to Kleene’s work on an equational
calculus for computation in higher types, and to higher type recursion theory
generally. We mention that the degree theory on the integers that emerges from
ITTM theory is more similar to that of hyperdegrees or ∆1

2-degrees than Tur-
ing degrees. We mention other connections to circular definitions coming from
the Gupta-Belnap revision theory. We finally indicate some points of connection
with ordinal analysis in proof theory.

In Section 1.3 we summarise the contents of Section 2 and the new results of
this paper. The reader familiar with ITTM-lehre may wish to go straight there
to learn the precise statements of what is appearing here.

Acknowledgements: We should like to thank various people who have con-
tributed questions, queries and discussion of the notions involved and struggled
with the incomprehensibility of some of our previous proofs. We mention here:
Sy Friedman (in particular for some comments and arguments on the points
raised here), Joel Hamkins, Benedikt Löwe, Robert Lubarsky (again in particu-
lar for working through a draft of this paper), Joost Winter, inter alia and should
like to take this opportunity of thanking them.

1.1 The General Context

Infinite Time Turing Machines (ITTM’s) are a model of discrete computation
based on the standard Turing machine, but where the “time” or stages of compu-
tation are allowed to transcend the finite. They were invented by Hamkins and
Kidder in the 90’s but first appeared in print in a paper authored by Hamkins
and Lewis [10] in 2000. For a detailed description of the machine the reader is
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urged to consult that paper. We shall be assuming the reader has done so in order
to fully understand this paper, but nevertheless we give a brief account here: the
hardware of such a machine is that of a standard one-way tape of a strip of cells
numbered 〈Ci|i ∈ N〉; a read/write head moves in each stage one cell to the left
or right (unless it is viewing C0 in which case it may of course only move to C1)
upon reading and possibly changing the cell symbol, which we shall restrict here
to being from an alphabet consisting of “0” and “1”. (This symbol, in cell Ci say,
will be called the cell value, and if the cell value at time α is j ∈ {0, 1} we shall
set Ci(α) = j.) The software remains the standard Turing machine program, as
given for example, by a transition table. The definition of [10] introduces a new
state symbol qL to add to the usual finitely many states. This symbol acts simply
as one new kind of state, the limit state.

The novelty is in defining a behaviour for the machine after it has possible
been through stages for every finite time n. We consider stages of “time” to be
given by ordinal numbers α. This is done by fiat: at time α the head is inspecting
a cell, in a certain state and its action is entirely determined by the transition table
- in short it behaves literally as a standard Turing machine. However at time µ
where µ is a limit ordinal we must specify its action which we do as follows: the
head returns to the starting cell C0, the machine enters state qL; lastly we specify
the cell values at limit time µ, Ci(µ), by setting

Ci(µ) =df lim inf〈Ci(α) | α < µ〉 =
⋃

α<µ

⋂
α<β<µ

Cβ(i).

To paraphrase: if the cell value stabilizes by stage µ then the value Ci(µ) at
that time is that stabilized value. Otherwise it is set to 0. (On the right equality
we are using the convention that the ordinals are the von Neumann ordinals, in
particular that 0 =df ∅ and 1 =df {0}.)

Variants on this straightforward model are possible: one may specify that
the value of a cell is blank at a limit time µ, whenever the cell value had changed
value unboundedly in the time µ (and thus have an alphabet of three symbols);
one may dispense with the special state qL for limit stages µ, and demand that
the machine enter into the state qi where i is the liminf of the state numbers of
qj at times less than µ (this has the attractive computational feature of putting
the machine, at limit stages of time, at the beginning of the outermost loop it
was cycling through before µ). Finally, and this we shall adopt for this paper,
just as the authors of [10] originally did, we allow for multiple tapes. We shall
allow for three tapes input, scratch, and output arranged side by side, with the
the read/write head viewing a triple of cells, one from each tape, simultaneously,
and allowed to write likewise to all three such cells, again simultaneously, in a
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single step. (It is one of the differences between such 1 tape and 3 tape models
that we shall investigate in this paper.) We continue to enumerate the cells in the
same way however as 〈Ci|i ∈ N〉.

It is quite natural then to ask “to what extent do properties of the standard
Turing machine model transfer to the ITTM model?”.

The first obvious feature is that ITTM’s not only subsume standard TM’s in
terms of the times they are allowed, they are in essence computing at a higher
type: they can read and write infinite strings of 0’s and 1’s which we consider
as elements of Cantor space 2N. We identify such x, y ∈ 2N with real numbers.
(If we wish to compute simply on integer input, we can code an integer n of
course on the input tape as a 1 entered into the first n cells of the input tape,
and 0’s in the others.) As the programs (or transition tables etc. ) are still clearly
enumerable we let Pe be the e’th progam. If this program halts on input x (and
with y on the output tape), we write Pe(x) ↓ or (Pe(x) ↓ y).

Entirely appropriate questions are:

Q1 What is: (a) {e | Pe(0) ↓}; (b) {〈e, x〉 | Pe(x) ↓} ; (c) {y ∈ 2N | Pe(x) ↓ y} ?

Q1a) and b) here are versions of the halting problem for such machines, a) of
course is just b) restricted to the bottom type of integer inputs. Here c) raises the
question of what reals can be computed by such machines.

Definition 1 [10] A real y ∈ 2N is called writable if ∃ePe(0) ↓ y. We say that an
ordinal number α (or a set A) is writable if a code for α, or A, is writable.

(By a code for α we mean a y ∈ 2N so that if we set n <y m↔ y(〈n, m)〉 = 1
then 〈ω, <y〉 ∼= 〈α, <〉; in this case we write “‖y‖ = α”. A code for a transitive
set A is any z ∈ N×N so that 〈N, z〉 ∼= 〈A,∈〉.) Clearly only countable ordi-
nals and countable sets in the above sense can be writable. We let WO stand for
the set of reals that code wellorderings. We may ask then:

Q2 What are the writable reals? What are the writable ordinals?

Definition 2 [10] λ =df sup{α | α is a writable ordinal};
(ii) H(λ) = {A | A is a writable set}.

It is easy to see that if α is writable, then so is any β < α. (If y codes α
then for some n ||y � n‖| = β, where y � n gives value 1 only to those pairs
〈k, m〉 where k <y m <y n; we then modify the program that outputs y to
output y � n instead.) The writable ordinals thus form an initial segment of the
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countable ordinals, and λ ⊆ H(λ). It can also be shown that H(λ) is a transitive
class of sets.

Considering further the computational process, we may next consider the
halting times of computations Pe(x) ↓ y. Hamkins and Lewis partly analysed
such halting times on integer inputs. They defined:

Definition 3 [10, §3] (i) α is a clockable ordinal, if for some e Pe(0) ↓α, where the
latter indicated that the computation halted in exactly α steps, that is its action at
time α is to go into a halting state.

(ii) γ =df sup{α | α is clockable}.

Hamkins and Lewis proved in [10] two basic facts: (Thm 3.4) that not all
ordinals below γ are clockable; (Thm 3.8) that λ ≤ γ.

Q3 What are the clockable ordinals? Does λ = γ? That is, are all clockables
writable?

Hamkins and Lewis pursued the Turing machine model by analysing appro-
priate notions of ITTM-degree corresponding to Turing degrees, and provided a
wealth of results. It is the view (with the benefit of hindsight!) taken here that
the emphasis is better placed on looking not at halting computations and their
outputs, but by analysing what is the essential feature of these machines: that
any computation stabilizes (we can regard a halting computation as a ‘degener-
ate’ case of stabilization). Let us make the following definition:

Definition 4 Let S(α) = 〈Ci(α)|i ∈ N〉 be the sequence of cell values at time α;
let us call the snapshot of the computation Pe(x) at time α to be the sequence S(α)
together with any other appropriate specificatory information, such as the current
position of the head, and the current line of the transition table.

As there are only continuum many possible snapshots of any given compu-
tation, we see that as α increases through the ordinals there must be some stage
ξ so that a snapshot S(ξ) reappears at some later stage, and indeed the com-
putation must at some stage enter an infinite repeating loop. Indeed for some
computations of the form Pe(x) although the machine has not formally halted,
the contents y of the output tape remain unaltered from some point on (“the
output tape has stabilized”). Such a real y is, in a very concrete sense, “eventually
computable”. Hamkins and Lewis’s term for this was eventually writable.

Definition 5 [10, §3] (i) If there is some point in time δ so that for all later δ′ the
content of the output tape of Pe(0) is fixed with content y ∈ 2N (“Pe(0) ↑ y”) we say
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that y is eventually writable. (ii) For the least such δ occurring in (i) (if it exists), we
shall write Pe(0) ↑δ y. (iii) ζ =df sup{β | β has an eventually writable code}. (iy)
H(ζ) is the class of sets A with eventually writable code.

Again, any ζ ′ < ζ has eventually writable code, and H(ζ) is a transitive class
of sets. We may then ask:

Q4 What are ζ and H(ζ)?

An important point to note is that any computation that starts to cycle will
in fact do so after a countable number of stages (a simple Löwenheim-Skolem
argument shows this, or it can be done directly (see [10, Thm 1.1])). The ordinal
ζ (and the set H(ζ)) are thus necessarily countable.

Lastly we define a third class of sets: those whose code appears on the output
tape of some computation, although such appearance may be evanescent:

Definition 6 [10, §3] (i) A real y ∈ 2N is accidentally writable if there is some e
so that y appears on one of the computation tapes of Pe(0) at some point in time. (ii)
Σ =df sup{β | β has an accidentally writable code}; (iii) H(Σ) is the class of sets
with accidentally writable codes.

There is the obvious version of Q4 for Σ and for accidentally writable sets. In
the papers [32] and [33] we answered the above questions Q1-Q4 (and Q5 below).
The first paper [33] was primarily motivated with answering the “clockables =
writables?” query, and missed out on the fundamental relationship (that we
called the λ-ζ-Σ-Theorem), which was published in [32]. We take the opportu-
nity here in the first part of the paper to give a cleaner account of these arguments
and recast the above theorem. We shall also use this to give a machine-theoretic
proof of a theorem of Friedman and Harrington.

Before doing this we give one definition that is begging to be made.

Definition 7 (i) x ⊆ N is said to be decidable iff there is some e ∈ N so that
∀n ∈NPe(n) ↓ and ∀n(n ∈ x ↔ Pe(n) ↓ 1).
(ii) A ⊆ 2N is said to be decidable iff there is some e ∈ N so that ∀x ∈ 2NPe(x) ↓
and ∀x ∈ 2N(x ∈ A↔ Pe(x) ↓ 1).

We then may ask:

Q5 What are the ITTM decidable sets of integers, or reals?
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1.2 Relationships to other work

In the immediate ITTM neighbourhood, we have indicated the pioneering pa-
per of Hamkins and Lewis [10] where all the basic architecture, definitions, and
results are stated. The same authors pursue the Turing machine analogy in [11]
where they investigate Post’s problem for both integer and real computation us-
ing ITTM’s. Hamkins and Seabold looked at the single tape model in [12] as
alluded to, and for most purposes their results show that the 1 tape model is
sufficient to replace the 3 tape model.

It is one of our themes that proper comparison of ITTM degree and com-
putational structure should not be that with ordinary standard Turing degrees,
but with that obtained from generalized recursion theory or higher type recursion
theory. We have pursued this analogy in [31] (the former appearing, by the va-
garies of the publication processes even before [10]!) and [34]. It is our view that
ITTM’s provide a model of computation that is stronger than that of Kleene’s Re-
cursion (see [17]). However the resulting degree structure is more akin to that of
hyperdegrees or even ∆1

2-degrees. (Hamkins and Lewis’s negative result to Post’s
problem in ITTM theory, as opposed to Post’s positive solution for standard Tur-
ing degrees, points in this direction, and the results on complete sets in degrees
of the ITTM jump hierarchy being recursively isomorphic to codes of levels of the
Gödel hierarchy in [32] confirm this.) In order to view ITTM’s as providing a
model of recursion however, one needs the λ-ζ-Σ-Theorem characterisation of the
relevant ordinals, and then at that point one can obtain a “Normal Form Theo-
rem” (Corollary 5). This then links ITTM theory qua a recursion theory with the
generalised theory of Spector classes in Higher Type Recursion Theory. Further
discussion of this would take us too far afield.

Whatever one’s view on the connection with higher recursion theory, one
does seem to need to analyse the theory at a more abstract level (meaning not
at the level of machine programs) and see the connections with lower level set
theory, mainly that of the constructible sets, and in particular with that of theory
of admissible sets (see [1]). Kripke and Platek formulated the theory KP which is
a weakening of the Zermelo-Fraenkel axioms of set theory so that, in brief, we
have instances of ∆1-Separation and Σ1-Replacement (meaning that the relevant
schemes are restricted to apply to formulae in the mentioned classes). Models of
KP are then called admissible sets.

As Kleene Recursion is tied up intimately with a higher type recursion at
the level of such sets (see for example [16]), so ITTM Recursion is tied up with
models of an enhanced theory of KP (namely Σ2-KP obtained by enhancing
the Replacement scheme to require Σ2-Replacement) which enjoy an extendabil-
ity property (namely that between Lζ and LΣ). Just as the higher type Kleene
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Recursion is at the level of admissible sets, so our contention is that ITTM com-
putation on sets of reals, is at the level of “Σ2-extendable sets". However we have
to make use of these sets even when analysing computation on sets of integers,
i.e. at one type down.

This particular “liminf” inductive constructive has its parallels in other ar-
eas. (1) Löwe was the first to point out the similarities of the ITTM compu-
tation sequences with certain so-called revision sequences in the theory of truth
of Herzberger. This was pursued in [22], [21], and [23]. In fact we now see
that formally these structures are mutually interpretable: any computation can
be coded into a revision sequence, so that the eventual output/tape values etc. ,
are recursive in the stability set of a Herzberger revision sequence. (2) Kreutzer
[20] used essentially a revision rule akin to Herzberger’s when defining a new
partial fixed point semantics. (3) Burgess [2] abstracted from Herzbergerian revi-
sion semantics the notion of a (arithmetically) quasi-inductive definition. This is
the mathematical analogue appropriate to procedures involving infinitary liminf
rules, of (monotone) inductive definitions (and operators). Questions then relat-
ing to one area from ITTM’s, revision sequences, and quasi-inductive definitions
have their formal equivalents in either of the the other two. One question of
foundational interest is: “How much of analysis is needed to show that ITTM
computations halt or enter a loop?” One can formulate this as a statement of sec-
ond order number theory, and it can be shown that this is provable in Π1

3-CA0
but not Π1

2-CA0 (see Simpson [29] for the relevant notions here).
There are connections with ordinal analysis is proof theory. Rathjen ([26])

has given an ordinal analysis of Π1
2-CA0 which is tied up with analysing chains

of Σ1 extendible levels of the L-hierarchy. The presumed ordinal analysis of
Π1

3-CA0 will involve chains of Σ2 extendibles in the L-hierarchy. Analysis of
computability on integers here involves statements concerning the first link in
such a chain (see Theorem 1 below).

Lastly there is the question of what these virtual machines are “good for”.
One aspect is that, as Hamkins and Lewis say in their introduction, is that the
machines have a defined behaviours at limit stages: we do not have to agonize
over any physically imposed constraints or configurations. We may then think
of ITTM’s as a mathematical laboratory for analysing other modes of infini-
tary or transfinite computational model making. For example, the purely physi-
cal models of Hogarth [13],[14], and Etesi-Németi [7] concerning possible levels
of computation in various spacetimes can be simulated on ITTM’s. Insights
gained from the “conceptual” ITTM models can be used to feed back to those
putative physical models. (It turns out that the Hogarth models can be con-
siderably “amplified" see [30]. One should perhaps not make too much of this,
since ITTM’s are themselves subject to a particular infinitary rule at limit times,
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that might conceivably not be compatible with some yet-to-be-devised physical
models. However in general the physical GR-models are in the case of Etesi-
Németi, at the level of ∆0

2 or “trial and error predicates” and can be modelled
just on an ITTM with just a single limit point in time; the Hogarth model of
[14] decides arithmetical statements, and these can be done in ω2 many steps on
an ITTM and hence in an arrangement using just infinitely many limit points -
or as Hogarth does - an ω-sequence of standard Turing machines in a particu-
lar space-time arrangement that allows appropriate communication between the
devices. The “amplification” referred to above, is to see that Hogarth’s set-up
can sustain hyperarithmetical queries, and thus can be simulated on an ITTM
working through the recursive ordinals. One could go further, but the physical
interpretation starts to stretch incredulity (if it has not done so already!). We do
not investigate these matters further here.)

1.3 A detailed outline and a description of new results

Section 2 continues with some basic definitions and facts mostly taken from [10].
We then proceed to look at cell stabilization times Lemma 1. That the height
of the ordinals ζ, Σ gives the first repeating snapshots in the universal machine
program is established in Lemma 2. The main theorem characterising in terms
of the notion of Σ2-extendability of levels of the L-hierarchy, is Theorem 1.

The statement connecting all of λ, ζ, Σ is at Corollary 2 of the main Theorem
1, and the ”clockables are writable” question is answered at Corollary 3. From
this we can derive the Normal Form Theorem for ITTM computation (Corollary
5), by way of analogy with Kleene’s Normal Form Theorem for Turing compu-
tation, see e.g. [27, §14 Thm III] or more precisely [18, §53 Thm.IX]. The last
three theorems of this section are cited from other work to illustrate the rela-
tions with degree theories such as hyperdegrees, as they establish Spector criteria
for the degree orderings (see [27, §16, Cor. XXXVI] or [28, II.Thm 7.6]). This
indicates the nature of the ITTM degrees on sets of integers.

S-D Friedman asked, given the relationship between ITTM’s and Gödel’s
L-hierarchy (as embodied in the λ-ζ-Σ-Theorem, Cor. 2, whether the ITTM
viewpoint enabled any new proofs about the lower end of this hierarchy. (This
hierarchy is so well studied that one could not expect that there be new set theo-
retical results, but new proofs or insights could perhaps be obtained). In Section 2
we give what could perhaps be called a purely “machine-theoretic” proof of a the-
orem of his and Harrington, where they in turn answered a question of Richter.
Richter’s question was whether the first two levels of the L hierarchy with the
same Σ2-theories (meaning the same set Σ2-sentences in the language of set the-
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ory were true at both levels) was also the first pair with this Σ2-extendability
property. Friedman and Harrington answered affirmatively, and although one
might automatically expect that the answer be positive, it required some ar-
gument. Friedman’s original proof involved finestructural considerations and
utilised an argument showing that in this region of the L-hierarchy one has uni-
form Σ2-skolem functions (see [8]). For us the argument drops out of the fact
that between S(ζ) and S(Σ), the snapshots of the universal machine are those
of a permanently looping cycle (in tandem with the fact that codes for levels of
the Lα-hierarchy are accidentally writable for levels α < Σ). This is at Lemma
8. We let the reader decide what new insight this gives, if any, on the Friedman-
Harrington result.

In the second part of this paper (Sections 3 and 4) we consider a number of
open questions. In Section 3 we answer:

Q6 If Pe(0) ↓α then how fast can one write down a code for α itself?

We show (Lemma 9) that if α is a halting time of a program, then in fact
there is another program that halts in time ≤ α with a real code y ∈ WO on its
output tape with ||y|| = α. This allows us to claim that in the Normal Form
Theorem (Cor 5) we may always find a code for a course of a computation very
close to the same time as the length of the original computation (uniformly on
all inputs). A more precise form of this is stated at Theorem 7.

We characterise those ordinals that initiate gaps in the clockable ordinals.
Hamkins and Lewis had shown that if α is admissible then no computation Pe(n)
halts in precisely α steps, and admissible α either start gaps in the halting times of
such computations, or are already interior to one. The converse question arises:

Q7 If α starts a gap in the clockable ordinals, is it admissible?

We answer affirmatively at Theorem 8.
In Section 4 we discuss some differences between the ‘standard’ 3 tape ma-

chine of [10] and a 1 tape machine of [12]. The class of computable functions
f : 2N −→ N is identical for both models, but there are slight differences if
one wishes to consider functions f : 2N −→ 2N. As Hamkins and Seabold
demonstrated, this arises just out of small technicality: a final stage of simulating
a 3 tape computation of a function f : 2N −→ 2N on a 1 tape machine cannot
halt without an additional piece of, either hardware (an extra reserved cell, or
extra piece of information stored in the r/w head)) or changing the alphabet (a
3 symbol alphabet allows the storage of a bit more information). In discussing
the 1 tape machine Hamkins and Seabold again looked at halting times of such
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machines; one expects some vagaries of difference here between the two models.
They catalogued many halting times, but left open whether any halting time of
a 3 tape machine which was a simple limit ordinal could be the halting time of
a 1 tape machine. We give a counterexample to this suggestion, Theorem 9, by
showing that if α is the least Π3-reflecting ordinal then α + ω is the halting time
of a 3 tape machine but not of a 1 tape version.

2 The basic λ-ζ-Σ relation.

We start our investigation of this relationship by first listing some basic facts of
the ITTM concept. 2.1-2.4 are due to Hamkins and Lewis and are in [10]:

Fact 2.1 ([10, Cor. 2.3] ) Any Π1
1 predicate of reals is decidable by some Pe: meaning

that if A ∈ Π1
1 then there is e ∈ ω so that ∀x[Pe(x) ↓ ∧ (x ∈ A←→ Pε(x) ↓ 1)]

Hence it is possible, given a standard method for coding hereditarily count-
able sets, for a machine to verify if y ∈ 2N is such a code.

It is an exercise in dovetailing (see [35] and the argument at (1) of Theorem 9
below) to see that there is an algorithm so that if B ∈ 2N is written on the input
tape (equivalently the scratch tape) portion then after ω many steps the charac-
teristic function of the complete ΣB

2 set is written on the output tape (meaning
that k ∈ B′′ iff the k’th cell on the output tape contains a 1). This operation
B −→ B′′ is characteristic of such machines.

Fact 2.2 λ < ζ < Σ and H(λ), H(ζ) are transitive admissible sets which are
unions of such. (cf [10] 8.1, 8.2, 8.5, 8.6). λ and ζ are highly closed ordinals: they
are admissible limits of admissibles (and more).

There is a universal machine U which we often consider as running simulta-
neously all the computations Pe(0) for e ∈ ω. We organise this of course by
dividing up the scratch and output tapes of U recursively into infinitely many
other virtual ‘tapes’.

Definition 8 (cf. [10] proof of 8.6.) We let σ(ν) denote the “grand sum” function
that adds together all the ordinals that are coded on U ’s ‘tapes’ at time ν.

We may thus think of σ(ν) as a temporary ‘approximation’ to Σ, but not in any
sense that it is monotonically increasing to that limit: once ν > ζ then σ(ν)
remains in the interval (ζ, Σ) in an oscillatory fashion. It is easy to see also that
(by the same reasons for 2.2):

Fact 2.3 H(Σ) is a transitive set.
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Although it turns out not to be admissible ([33, Cor 3.4]). In [10] it is shown
that if one has a real y ∈ WO which is code for the ordinal α on a tape then
it is easy to arrange a computation that computes, by iterating the definition
of the constructible Lγ-hierarchy along the ordering coded by y, a code for Lα.
(This is also done in detail in [9].) This construction proceeds formally by an
induction along y and can be done inside any sufficiently closed set containing
the real y. Very weak closure conditions are needed for this. Closure under
the rudimentary functions (see [4]) suffices here. As Fact 2.2 asserts that H(λ)
and H(ζ) are unions of admissible sets (and are ‘sufficiently closed’ in the above
sense), it is then straightforward to see that:

Fact 2.4 ([10, Thm. 8.6]) Lλ ⊆ H(λ), Lζ ⊆ H(ζ).

We may thus view the above as saying that the machines as also capable of
producing codes for initial segments of the L-hierarchy, at least up to ζ.

However an easy argument shows that:

Fact 2.5 (cf [33, 3.4]) Σ is either an admissible ordinal or is a union of such; further
LΣ ⊆ H(Σ).

Proof: We give the argument in this case as we shall build on it in the sequel.
We may consider variations on a universal machine U that pause automatically
at fixed intervals of time and given any accidentally writable y ∈ 2N appear-
ing on some ‘tape’ of U at such a stage, it initiates simulations of the stan-
dard turing machines to compute the ranks ‖{e}y‖ for those e ∈ ω, so that
{e}y ∈ WO. (It is unproblematic for a machine to check the Π1

1-question as to
whether {e}y ∈ WO by Hamkins and Lewis’ result [10, 2.3] mentioned at Fact
2.1 above). Hence if y ∈ H(Σ) then so are all the ordinals of the form ‖{e}y‖,
and then so all sets of the form L||e||y [y], from which (i) follows. Q.E.D.

However it is readily seen that the ITTM construction and processes are
highly absolute. Thus any computation Pe(0) for example can be performed
inside any rudimentary closed setM, and the computation sequence is seen to
be absolute for as many stages as there are ordinals inM. We thus have:

Fact 2.6 ([33] 3.3, 3.5) Lλ ⊇ H(λ), Lζ ⊇ H(ζ) and LΣ ⊇ H(Σ) and thus with
Facts 2.4, 2.5 above we have equality as well.

However at this stage we have not identified these ordinals in any way, nor have
we any hold as to what the ITTM-decidable sets of integers may be.

It is a small but important point to note that one may have identical snap-
shots at different points in time ν < ν′ (or even at points νn < νn+1 for
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n < ω) without the computation being in a final infinite loop (perhaps Ci(νn) =
1 = Ci(νn+1), but for some νn < ξn < νn+1 we may have Ci(ξn) = 0; if
ν̃ = supn{νn} we shall have Ci(ν̃) = 0). To get a permanently repeating loop
in the snapshot sequence one needs to know the above scenario is not occurring:
one needs to know that there are no such ξn times as in the example given: then
we know there are no switches in value and any limit point snapshot of an ap-
parent looping sequence really is a final, repeating loop. Such snapshots then
reappear on a closed and unbounded class of ordinal stages.

We now prove a lemma on the stabilization points of cells Ci during a com-
putation Pe(0). We make the following definition:

δi(σ) ' inf{δ < σ|∀δ′ ∈ [δ, σ) Ci(δ′) = Ci(δ) } if the latter set is non-empty;
otherwise δi(σ) is undefined.

Thus δi(σ) < σ when it is defined.

Lemma 1 Let Pe(0) be any program, and let the cell values be Ci(ν) at time ν. Then
Ci(Σ) = Ci(ζ) for any i < ω. In particular:
Either δi(ζ), δi(Σ) are both defined and equal, or they are both undefined.

Proof: We let Pf (0) be the program that (i) computes ‘grand sum’ ordinals σ(ν)
as above; (ii) calculates δi(σ(ν)), by simulating a run of Pe(0) and looking at cell
values in that run.

(iii) it then writes the value of δi(σ(ν)) (if it is defined) to a reserved area
of tape, R1, but only after inspecting the current contents of R1, and if that
contents codes an ordinal δ1 say, it checks that δ1 < δi(σ(ν)). Thus, if δ1 is
not a smaller ordinal than δi(σ(ν)), for whatever reason, then δ1 is left on R1,
unchanged. Otherwise the code to hand for δi(σ(ν)) replaces that for δ1 on R1.
If now ∃ν′ < Σ∀ν ∈ (ν′, Σ)Ci(ν′) = Ci(ν), that is, if δi(Σ) is defined (and so is
< Σ) once σ(ν) > ν′ a code for an ordinal ν0 ≥ ν′ ≥ δi(σ(ν)) will be present
on the segment R1 at the end of this stage, never to be overwitten. Thus ν0 is
eventually writable, and so ν0 < ζ. We deduce that δi(Σ) ≤ ν0 < ζ. However it
is now obvious that δi(ζ) is defined and must equal δi(Σ).

Now suppose that δi(ζ) is defined. Let Pg be any program that eventually
has a code for the eventually writable ordinal δi(ζ) on its output tape. Suppose
at time σ(ν) Pg has on its output tape a code for δν. Let Pf ′ be the following
modification of the above program Pf : a further task (iv) is added: on calculating
δi(σ(ν)) if it sees it must write this as a new ordinal code to R1, it additionally
writes to R2, say, a code for the least ξ ∈ (δν, δi(σ(ν)) where Ci changed value
(if such exists); otherwise it does nothing. Now at stage (iv), if we suppose σ(ν)
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sufficiently large so that a code for the eventual value δi(ζ) is present on Pg
for all times later than ν, and then an ordinal code is written on R2, it would
stay permanently there: it is thus eventually writable. However that contradicts
the definition of δi(ζ)! Hence Ci cannot change value throughout the interval
(δi(ζ), Σ).

Finally note that if one (equivalently both) of δi(ζ), δi(Σ) is undefined, then
Ci(ζ) = Ci(Σ) = 0 by the liminf rule on cell values. Q.E.D.

If we let Pe be the program of the universal machine U we see that U thus has
repeating snapshot sequences SU (ν) for ν = ζ and Σ. The above argument (for
U now rather than Pe) shows that no cell stabilized at ζ changes value for the
universal machine in (ζ, Σ). Further, the cells stabilized at Σ are then precisely
those stabilized at ζ: all other cells then have value 0 at both these times by the
liminf rule.

We thus have shown the first part of (i) of the next Lemma. The second part
of (i) (which we have also just established) merely emphasises this point: we do
have a permanently repeating loop: the “snapshot sequence” 〈SU (τ)|ζ ≤ τ <
Σ〉 is destined to repeat exactly with SUΣ.µ+τ = SUζ+τ for any τ < Σ. It thus has
periodicity Σ− ζ = Σ.

Lemma 2 (i) SU (ζ) = SU (Σ). Additionally for every i, CUi stable at Σ implies CUi
does not change value in (ζ, Σ).

(ii) Moreover (ζ, Σ) is the lexicographically least pair of ordinals satisfying (i).

Proof: We are only left with observing (ii). If (z, s) were a lexicographically
lesser pair, we could write a program that, simulating U , searches for such a pair,
and may then eventually write them (indeed may halt after finding them!) Thus
both z, s < ζ. But then we have that the universal machine U has started loop-
ing before time ζ, but this is absurd as then we should have that the eventually
writable ordinals all have codes in the smaller Lz - and this cannot happen as Lζ

is a union of admissible sets, Q.E.D.

In the sequel we shall only refer to snapshot sequences for the universal ma-
chine U so for brevity we shall drop the superscript on SU (ζ) etc.

Definition 9 [32, Def.2.11] 0̃ =df {e ∈ ω | ∃yPe(0) ↑ y}.

0̃ is thus a jump operator, which codes indices of all programs of eventually
stable output (we include all halted programs as also being of stable output).
For the universal machine U by inspecting the ‘tapes’ of the programs Pe(0) we
can consider it calculating, we may ‘read off’ by inspecting certain cell values in
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S(ζ) which indices are in 0̃ and we have that 0̃ is thus (1-1) reducible to S(ζ). The
converse is also true: given any cell Ci whose value we are interested in during the
computation of the universal machine U , we may write two programs Pe(i), Pe(i)′

to flash its 0 value to the output tape of Pe(i) when it changes ( or to Pe(i)′ when
the value becomes 1). We can thus read that value eventual value (if it exists) off
from 0̃. We can then conclude that 0̃ and S(ν) are recursively isomorphic. We
thus shall have:

Lemma 3 0̃ ≡1 S(ζ).

Lemma 4 [33, Cor.3.1] Suppose ∃yPe(0) ↑ y. Then the least δ so that ∀δ′ > δ(y is
on the output tape of Pe(0)) is less than ζ.

Proof: This is really a corollary to (the argument of) Lemma 1: one writes a code
for the least δ = δ(σ(ν)) so that the whole of a simulated run of Pe(0) along
σ(ν) in the interval [δ, σ(ν)) has constant output tape. The argument concludes
that such a δ is eventually writable, thus is less than ζ. Q.E.D.

Lemma 5 If y is eventually writable then y ≤T S(ζ).

Proof: The last lemma shows that y is on a recursive slice of the universal ma-
chine’s output tape which is devoted to simulating the computation of Pe(0),
and it is there by stage ζ. Information as to the values y(k) can be read off from
S(ζ) in an (ordinary Turing) recursive fashion. Q.E.D.

Lemma 6 ([33, Cor. 3.4]) H(Σ) is not admissible: there is a Σ1(H(Σ)) definable
(in the parameter S(ζ)) function g : ω −→ Σ which is cofinal.

Proof: Note that we have seen that H(Σ) = LΣ (Fact 2.6). Let

E =df {i ∈ ω | ∃δ∀β ∈ (δ, ζ) CUi (β) = CUi (β + 1)}.

It is easy to see that E is recursive in S(ζ): we let the universal machine itself
be simulated by some program Pk writing down cell values from that simulation
on a recursive slice of its scratch tape. Those that settle down provide us with a
(recursive copy of) E, and this we can read off, again recursively, from S(ζ).

For i /∈ E let Fi =df {β ∈ (ζ, Σ) | CUi (β) 6= CUi (β + 1)}; then each Fi
is a ∆1(LΣ)-definable class unbounded in Σ. Straightforwardly by its definition,
α −→ S(α) is a Σ1 function defined over LΣ. If LΣ were admissible, a simple
closure argument would provide a τ < Σ which is a common limit point of each
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of the Fi. This goes as follows. We may define by a Σ1-recursion the function g
defined by

g(0) = ζ,
g(k + 1) =df the least γ > g(k) so that ∀i < k(i /∈ E −→ Fi is unbounded in
γ).

That g is Σ1 definable over LΣ from ζ is easily checked, and moreover is de-
fined on all of N. If LΣ were admissible its range would be bounded in Σ. If
τ = sup(ran(g)) this would mean S(τ) = S(ζ) contradicting the minimality
of Σ in Lemma 2(ii). Q.E.D.

Corollary 1 Every u ∈ H(Σ) is of the form Pe(S(ζ)) ↑ u for some e ∈ ω.

Proof: Suppose a code for u appears on Pf (0) at time β. Suppose β < g(n)
(where g(n) is taken from the last lemma). Note that g(n) is Σ1(H(Σ)) from
the snapshot S(ζ). Given S(ζ) then by computing grand sums below Σ as usual
we may search along σ(ν) < Σ running a program Pe(n)(S(ζ)) to search for a
code for the g(n). Suppose this code is y ∈ WO. If now b is the integer in the
field of y coding that part of the ordering of order type β, we may then find a
code for u by looking at the universal course of computation for Pf (0) at the
y � b ∼= β’th ordinal place. The overall computation may then halt with this
code. Q.E.D.

Remark Note that there will be many snapshots S(ζ ′) from which a given u can
be computed. Indeed for any u ∈ Lζ it can be shown that the least ζ ′ for which
this can be done is less than ζ.

We now prove the principal theorem of this section. It relates the pair of
ordinal suprema of two of the kinds of ordinal the ITTM universal machine can
produce: the eventually writable which have supremum ζ and the accidentally
writable which have supremum Σ. The theorem appeared first in [32], but we
give a clean presentation here, which we can use for a machine-theoretic proof
of the Friedman-Harrington theorem (Theorem 2) to follow. The import of
Theorem 1 (and why we are taking the trouble to reprove it here) is that it is
the clear that all the corollaries, and most of the answers to the questions raised
earlier can now be seen to follow from it. Previously the questions were answered
in a somewhat more piecemeal fashion over several papers. We now can see that,
for example, that the “Clockables are writables" Theorem (that γ = λ) from
[33], is actually a corollary to it. Moreover the Normal Form Theorem again
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becomes a corollary to it. We thus unify the results under one umbrella. The
theorem is an equivalence between two notions defined in completely different
ways: ordinals appearing on the "tapes" of a computational model involving
transfinitely many stages in time, on the one hand, and on the other, the first pair
of ordinals appearing at an appropriate level of definability of Gödel’s hierarchy
of constructible sets, with which he proved the consistency of the Axiom of
Choice and the Continuum Hypothesis.

We could have put this and the next Theorem 2 together and have a three
way equivalence, but choose not to cloud the main event. Theorem 2 is the first
example whereby a result proper to set theory is proven (admittedly not for the
first time) by appeal to an (admittedly infinitary) model of computation.

Theorem 1 ([33, 2.1]) The pair (ζ, Σ) as defined above from ITTM’s, is also the lex-
icographically least pair satisfying either of the following conditions:

(i) (ζ, Σ) is a pair of ‘final repeat ordinals’ where (a) the snapshot S(ζ) at time ζ
of the universal machine U equals S(Σ), the snapshot at time Σ, and (b) S(ζ) then
reappears for ever with periodicity Σ;

(ii) Lζ ≺Σ2 LΣ;

Proof: That (ζ, Σ) satisfy (i) has been shown at Lemma 2. We first show that
(ζ, Σ) satisfy (ii). Suppose

(2) LΣ � ϕ(ξ) ≡ ∃u∀vψ(u, v, ξ)

where ψ is Σ0, and as an eventually writable parameter sequence we take the
single ordinal ξ < ζ. Let u0 ∈ LΣ be such that

(3) LΣ � ∀vψ(u0, v, ξ).

For e a program index, write “Pe(0)≤τu” to abbreviate “ u appears on Pe(0)’s
computation tape at some time before or at time τ”. Make also the obvious defini-
tion replacing “≤ τ” with “< τ”. Let e0 be a program index so that Pe0(0)<Σu0.
Let e1 be an index which “eventually writes” a code for ξ. The following Claim
proves (ii).

Claim 1 There is u ∈ Lζ satisfying Lζ � ∀ψ(u, v, ξ).

17



Proof of Claim 1 By Corollary 1 there exists e so that Pe(S(ζ)) ↓ u0. Thus

(4) LΣ � ∃u(Pe(S(ζ)) ↓ u ∧ ∀vψ(u, v, ξ)).

(5) If ζ ′ < ζ ∧ Pg(S(ζ ′)) ↓<Σ then Pg(S(ζ ′)) ↓<ζ .

[Proof of (5): let ζ ′, g be as in the antecedent. We may find a program Ph
that (i): using grand sum ordinals σ(ν) eventually writes down a code for the
snapshot S(ζ ′) and (ii): letting at time ν the approximation to S(ζ ′) currently
available be S(ζ ′)ν, it writes down, if possible, a halting time αν ≤ σ(ν) for a
simulation Pg(S(ζ ′)ν) along σ(ν). This will be possible, if the latter converges
before σ(ν). In this manner, if Pg(S(ζ ′)ν) ↓α, then we see that αν is eventually
α, and α is thus less than ζ.]

Thus if ζ ′ < ζ is assumed to satisfy (4) and Pe(S(ζ ′)) ↓ u1 then we shall
have u1 ∈ Lζ and LΣ � ∀ψ(u1, v, ξ)) and then by Π1 reflection, that Lζ �
∀ψ(u1, v, ξ)) and we’d have:

(6) Lζ � ∃u(Pe(S(ζ ′)) ↓ u ∧ ∀vψ(u, v, ξ)).

We should then be finished with Claim 1.
We thus only need to show that there is such a ζ ′ < ζ satisfying (4). So we

devise along by now familiar ways, a computation that eventually writes the least
such ζ ′ satisfying (4), thus ensuring it is less than ζ.

Let Pk(0) be the program that: (i) incorporates a program Pf (0) which even-
tually computes on its output tape a code for ξ; we set ξν for the value on this
incorporated output tape at time ν; (ii) computes grand sum ordinals σ(ν) and
searches Lσ(ν) for the least ζ ′ such that

(7) Lσ(ν) � Pe(S(ζ ′))↓ u′ ∧ ∀vψ(u′, v, ξν))

and writes a code for such a ζ ′ (if it exists) to a reserved area R1 of the output
tape; again it only does this latter step after first checking that the new ζ ′ is
greater than the current ordinal coded into R1. We know (by Lemma 4) that
once σ(ν) is sufficiently large below ζ then ξν = ξ holds; we also know that once
it is sufficiently large, above some ordinal τ say, which satisfies Pe(S(ζ)) ↓<τ u0,
that it certainly can write down an ordinal ζ ′ ≤ ζ, so the process is not vacuous.
We claim the only ordinals written in this process to R1 are less than ζ.

However once σ(ν) is above τ, then this ζ ′ would remain there - it would
not be the case at any later stage µ > ν with σ(µ) > σ(ν), that for any lesser
ζ ′′ < ζ ′, we should then find u′′ such that Pe(S(ζ ′′)) ↓ u′′ with u′′ fulfilling
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the requirement (7) (because by (5) Pe(S(ζ ′′) ↓−→ Pe(S(ζ ′′)) ↓<ζ , and thus
Lσ(ν) � Pe(S(ζ ′′))↓<ζ u′′ already). Likewise no snapshot S(ζ ′′) for ζ ′′ > ζ is
necessary to find our u0. However that makes ζ ′ eventually writable. Hence
ζ ′ < ζ. Q.E.D. Claim 1

We have thus shown:

Claim 2 Lζ ≺Σ2 LΣ.

Claim 3 (ζ, Σ) is the least pair satisfying Lζ ≺Σ2 LΣ.

Proof: Suppose for a contradiction that (z, s) <lex (ζ, Σ) also satisfied Lz ≺Σ2

Ls. However note by consideration of the universal machine U running inside
Ls, that Lz ≺Σ2 Ls alone implies that firstly that S(z) = S(s), and secondly that
U is actually entering a final loop at time z - which will repeat at time s, again as
part of a permanent cycle and thus both constraints (a) and (b) of (i) would also
be satisfied. We show this more formally, letting Ci = CUi etc. :

Subclaim: if Ci(z) = 1 then for no ν ∈ (z, s) will we have Ci(ν) 6= Ci(ν + 1).
Proof: Let D = {ν < s |Ci(ν) 6= Ci(ν + 1)}, and let δi(z) < z is the point

where cell Ci stabilized below z (δi(z) exists since Ci(z) = 1). If Ls �“∃ν(Ci(ν) 6=
Ci(ν + 1)∧ ν > δi(z)” this would go down to Lz by Σ1-reflection, contradicting
the definition of δ(z). � Subclaim

The point of the subclaim is that although we have S(z) = S(s) we have
to again justify that the U has really finally entered a looping cycle and no cell
which has value 1 at time z will at some later time have value 0, in other words
that constraint (b) of (i) holds. Having established that, we have from Lemma
2(ii) that (z, s) must be (ζ, Σ). Q.E.D. Claim 3 and Theorem

We shall add another characterisation to the pair (ζ, Σ) when we give a
machine-theoretic proof Theorem 6 below. We now can note:

Lemma 7 (a) H(ζ) = Lζ is Σ2-admissible (and is a limit of such), and (b) H(Σ) =
LΣ is a union of admissibles (in fact Σ2-admissibles).

Proof: (a) is proven by standard methods: Σ2-admissibility requires closure un-
der ∆2 Comprehension and Σ2 replacement schemes, and the Σ2 extendability
of Lζ gives us (more than) this. (b) is a simple application of Σ2-extendability of
Lζ . Q.E.D.

Remark 1 It can be shown that (ζ, Σ) is the lexicographically least pair such
that for the universal machine U , S(ζ) = S(Σ), using the “Theory Machine” of
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[9]. There a very explicit calculation is made as to the points of occurrence of
codes of Lα levels and their Σ2-truth sets, for α < Σ.

We mention some further results that can be obtained from the above. By
an addition to Theorem 1 we obtain:

Corollary 2 (The λ-ζ-Σ-Theorem) Lλ ≺Σ1 Lζ ≺Σ2 LΣ.

Proof: The new part here is the Σ1-elementarity of H(λ) = Lλ in H(ζ). But if
Lζ � ∃uϕ(u, ξ) where ξ < λ, then we run an algorithm that halts after it finds
at some point an α with ξ < α < ζ for which there is such a u ∈ Lα and then
halts with an output code for Lα. Hence Lα ∈ Lλ and thus Lλ � ∃uϕ(u, ξ).
Q.E.D.

Corollary 3 (“All clockables are writables”)
γ =df sup{α | ∃e ∈ ωPe(0) halts in exactly α steps } = λ. That is, the writable
ordinals are unbounded in the “clockable” ordinals of [10] Sect.3.

Proof: If Pe(0) halts in time α then this is a Σ1-statement true in LΣ. By the last
corollary it is true in Lλ. Hence γ ≤ λ. However γ is easily seen to be no less
than λ, since if (a code for) λ′ < λ is the output of Pf (0) , then we may follow
Pf (0) by the algorithm that checks through the code for λ′ for wellfoundedness;
this takes at least λ′ steps before halting. Hence there is a clockable ordinal≥ λ′.
Q.E.D.

Corollary 4 The ITTM decidable sets of integers x ⊆ N are precisely those sets
x ∈ P(N) ∩ Lλ.

Proof: If x ⊆ N is ITTM decidable, using some procedure Pe then the queries
?Pe(n) ↓ 1? will all be decided by a computation of the universal machine U
by time ζ. The statement “∃y(y codes a halting course of computation wit-
nessing Pe(n) ↓ 1)” is a Σ1 statement in the language of set theory, and by the
λ-ζ-Σ-Theorem, if true in LΣ is true in Lλ by Σ1-elementarity. Hence the set
x = {n ∈ N | Pe(n) ↓ 1} is a set Σ1 definable over Lλ. Conversely, if x ∈ Lλ

we may set an ITTM machine running to produce a code for the set A = Lα

where α is least with x ∈ Lα. We may then adjust this machine’s program to
output all of x and a fortiori x is seen to be decidable. Q.E.D.

The following is an analogue of Kleene’s Normal Theorem involving the
T-predicate which, in the (standard) Turing case, gives integer codes for halting
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computations sequences. This classical theorem due to Kleene gives integer codes
y (using prime power coding or some such) for a course of computation Pe(n)
as “inputs” to a universal T predicate T1(e, n, y). (Here the output of Pe(n)
would be coded into the last element of the sequence that is coded by y.) For
us we have similarly a universal predicate, indeed we have the universal machine
alluded to above, and this machine may simulate all Pe(n) for all e and n at once.
We have to have a real now to code the whole course of computation that is
naturally transfinite in general. This real y codes snapshots of each stage of the
computation. Without knowing that every halting computation halts before λ
one would not be in a position to know that we could find for each e an index
of a program that yields as halting outputs a code of the whole computation
sequence - essentially a sequence of snapshots S(τ) for τ less than the length of
the computation ϕe(n).

We thus need to have for each length of a halting computation a writable
real of that length along which we encode these snapshots. That is what the last
Corollary provides.

The effectivity in the Normal Form Theorem of the transition e −→ e′ is
obtained merely by observing that if we are interested in program Pe then the
following algorithm P′e works. “Watch the universal machine’s simulation of all
programs Pf . Given n some program Pf (n) will halt with output some real y′

coding a wellorder of length longer than it takes for Pe(n) to halt; now build a
code for the course of computation Pe(n) ↓ utilising the ordering y′ to form y.
When this code y is complete with a final stage snapshot of the halting position
of Pe(n), then halt.”

The algorithm sketched in quotation marks is then capable of being put into
ITTM terms and is thus our Pe′ . Although we have not given a complete numer-
ical blow-by-blow description of the algorithm, it should be enough to see that
we have something in close analogy to Kleene’s T1. If e is the e’th standard Tur-
ing computable function, Kleene shows us that {e}(n) ↓↔ ∃y ∈ N T1(e, n, y).
In the ITTM setting we see this is also essentially obtained by considering “uni-
versal” processes or machines, just as we are doing here. The universal machine
U provides a “universal ITTM T predicate”, T1 say, so that we have Pe(n) ↓↔
∃y ∈ 2N T1(e, n, y). The above does not show the fact we establish below in the
next Section at Cor. 7 that we can provide tight bounds on the times needed to
produce a code y. However the above reasoning establishes the following.

Corollary 5 (Normal form theorem I) For any ITTM computable function ϕe
we can effectively find another ITTM computable function ϕe′ so that on any input n
from ω if ϕe(n) ↓ then ϕe′(n) ↓ y ∈ 2N, where y codes a wellordered computation
sequence for ϕe(n).
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If the reader lets us informally define (without going into all the details) Last(y) =
z iff y codes a halting course of computation with the last output tape containing
z ∈ 2N, we may summarise the above discussion.

Corollary 6 (Normal form theorem I contd.) There is an ITTM decidable pred-
icate T1 so that ∀e∀n:

Pe(n) ↓ z ↔ ∃y ∈ 2N[T1(e, n, y) ∧ Last(y) = z].

There is a higher type version obtained by relativising all the results (now for
λx, ζx etc.) above to real number inputs:

Corollary 7 (Normal form theorem II) (a) For any ITTM computable function
ϕe we can effectively find another ITTM computable function ϕe′ so that on any
input x from 2N if ϕe(x) ↓ then ϕe′(x) ↓ y ∈ 2N, where y codes a wellordered
computation sequence for ϕe(x). (b) The universal predicate T1 satisfies ∀e∀x:

Pe(x) ↓ z ↔ ∃y ∈ 2N[T1(e, x, y) ∧ Last(y) = z].

The effectivity is again established in the same way, noting that the input
(whether n ∈N or x ∈ 2N) does not affect the above description of an algorithm
in any dynamic way.

Although this is not necessary for what follows, we may relate some of the
above to the Σ2-mastercode of Lζ this is a constructible theoretic notion (see
[4]) and essentially is a set coding the whole of the structure Lζ , however in this
arena it essentially can be taken to be the set T2

ζ , the Σ2-truth set. We define these
theories in generality as follows.

Definition 10 For n < ω ≤ α, let Tn
α =df {pϕq | Lα � ϕ & ϕ is a Σn sentence of

L}.

Then T2
ζ is recursively isomorphic to those ITTM indices that index halting or

eventually stable computations on zero input - this is the set 0̃ defined above.
Let A = A2

ζ be that Σ2-mastercode of Lζ . (The reader to whom the notion of
mastercode is unfamiliar, may simply drop the “A” from the following.)

Theorem 2 (cf. [32, Thm. 2.6]) 0̃ ≡1 A ≡1 T2
ζ .

There are also intimate connections between the jump operator derived from
the halting problem for ITTM’s. Hamkins and Lewis define:

Definition 11 [10, Sect.5] Let x ∈ 2N. Then xO =df {e|Pe(x) ↓}.
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Theorem 3 (i)([32, Thm 1.7]) xO is recursively isomorphic to the Σ1-theory of Lλx [x].
In particular 0O is recursively isomorphic to the Σ1-theory of Lλ.

(ii)[32, Thm 1.5] The assignment x � λx satisfies Spector’s Criterion:

x ≤∞ y −→ (xO ≤∞ y←→ λx < λy)

where x ≤∞ y⇐⇒ ∃e ∈ N(Pe(y) ↓ x).

One could compare the above with the analogous result that Kleene’s O
is recursively isomorphic to the Σ1-truth set of Lωck

1
(the latter is the level of

the Gödel constructible hierarchy indexed by the least non-recursive ordinal).
Given that the relation x ≤∞ y defined in the last theorem is ∆1

2 one sees that
we have here a degree notion on sets of integers that is intermediate between
hyperarithmetic, or ∆1

1 and ∆1
2. A completely precise characterization awaits.

The notion of ≤∞ reducibility is a very natural one, when thinking of a
machine model. However the nature of the machines is determined by the limit
rule specification: and that is a Σ2-notion (cell Ci’s values are 0 at a limit stage
unless ∃ν∀ν′ > ν(Ci(ν′) = 1).) The ultimate behaviour of such machines is
tied in, as we have seen, with the looping behaviour of the universal machine U
and the ordinals ζ, Σ; and here the Σ2 nature of the machinery is apparent. We
may thus define a notion of relative computability not by when a machine halts
with some t on its output tape, but by what it eventually has on its output tape
(if anything). There is thus a central notion of x is eventually computable in y:

Definition 12 [32, 2.10]) (i) We set x ≤∞ y iff for some index e we have Pe(y) ↑ x.
In other words: x ≤∞ y⇐⇒df ∃e ∈ N(Pe(y) ↑ x);
(ii)([32, 2.11]) we define the concomitant notion of jump by:

x̃ =df {e ∈ N | Pe(x) ↑}

There is an argument to be made that this reducibility, and notion of rela-
tive computability should be the fundamental notion of ITTM computability.
We have seen that we can obtain the results on clockable ordinals, and on what
are the decidable sets of integers etc, only after settling all the Σ2 questions con-
cerning repeating snapshots etc. Further note that the universal machine U on
0 input is constructing the whole of the L hierarchy permanently up to ζ (and
somewhat more ephemerally, up to LΣ). There are natural Spector classes (see [24,
4C]) associated with this notion of computation and [10, 7.3] demonstrates the
existence of that associated with the notion of semi-decidable; similar arguments
show that the much larger Spector Class is intimately associated with “eventu-
ally semi-decidable” sets of reals, and is available from the ITTM architecture.
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These concepts are discussed further in [35]. As the ordinary degree structure
≤∞ turns out not to be much like Turing degrees, but more like hyperdegrees,
there is less psychological need to stick with halting computations, as with sta-
ble computations - and then we regard ‘halting’ as a particularly stable kind of
stability!

If we make this decision then ITTM definable sets can then be related to
the notion of arithmetically quasi-inductive ([2]) which we have mentioned in the
introduction. Again the relation x ≤∞ y is ∆1

2. We then have:

Theorem 4 (i)([32, 2.13]) x̃ is recursively isomorphic to the Σ2-theory of Lζx [x]. In
particular 0̃ is recursively isomorphic to the Σ2-theory of Lζ .

(ii)([32, 2.12]) The assignment x � ζx satisfies Spector’s Criterion:

x ≤∞ y −→ (x̃ ≤∞ y←→ ζx < ζy).

Along these lines, A. Klev has defined in [19] an extension of Kleene’s O to
an O++, that mirrors exactly Kleene’s original definition as a tree (indeed the
tree is literally an extension of Kleene’s), and is to the complete Σ2(Lζ) set what
O is to Σ1(Lωck

1
).

The relevant definition and the L-hierarchy equivalent formulation at the
higher type run as follows:

Definition 13 Let A, B ⊆ 2N. Then A ≤∞ B iff there is some program index
e ∈ ω, and some y ∈ 2N, so that for any x ∈ 2N we have:

∀x ∈ 2N[x ∈ A↔ Py,B
e (x) ↑ 1∧ x /∈ A↔ Py,B

e (x) ↑ 0.

Theorem 5 Let A, B ⊆ 2N. Then A ≤∞ B iff for some pair of Σ2 formulae
ϕ0, ϕ1 ∈ L∈̇,ẋ,ẏḂ, for some y ∈ 2N, we have for any x ∈ 2N:

x ∈ A↔ Lζx,y,B [x, y, B] � ϕ0[x, y, B]

and
x /∈ A↔ Lζx,y,B [x, y, B] � ϕ1[x, y, B]

where we set ζx,y,B to be least ζ so that there is some least Σ > ζ with Lζ [x, y, B] ≺Σ2

LΣ[x, y, B].

W. Richter asked (communication with Friedman and Harrington) whether, for
any 2 ≤ n, the lexicographically least pair of ordinals (ζn, Σn) with Tn

ζn = Tn
Σn

was the lexicographically least pair satisfying: Lz ≺Σn Ls. This was positively
answered, independently by L. Harrington and by S-D. Friedman.
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Theorem 6 (Friedman [8], Harrington (unpublished)) Let n ≥ 2. If (z, s) is the
lexicographically least pair satisfying Tn

z = Tn
s then Lz ≺Σn Ls.

For n = 2 this question arises naturally in ITTM theory, and adds another
characterisation to Theorem 1.

Lemma 8 If (z, s) is the least pair satisfying T2
z = T2

s then (z, s) = (ζ, Σ) and
hence Lz ≺Σ2 Ls.

Proof: We use the notation of Theorem 1. For a contradiction suppose that
(z, s) <lex (ζ, Σ) satisfied T2

z = T2
s . Again we see that S(z) = S(s) as these

snapshots are coded into the Σ2-theories. Just as in Claim 3 (of Theorem 1) these
cannot be snapshots of the final looping sequence of U . So for some i and D
defined as in the Subclaim of this Claim 3 there, δ =df sup(D) < s and “d = δ”
is a Π1 definable relation over Ls. Note that Lδ+1 �“δ is countable” (otherwise,
Lδ+1 �“δ is a cardinal” but then we should have many pairs u < v < d with
Lu ≺ Lv). Hence every ordinal δ′ < δ is ∆1(Lδ+1) definable from δ (via the
usual L-least map of ω onto the countable ordinal δ, which is again definable
over Lδ). But then we have a parameter free Π2 definition of T2

s over Ls as fol-
lows:

pϕq ∈ T2
s ⇐⇒

∀d[d = δ −→ Ld+1 �“pϕq ∈ T2
f (k) where f : ω � Ld is the <L-least onto

map”]

and k is such that f (k) = z. But the Σ2-theory of Ls does not have a Π2, and
a Σ2, parameter free definition over Ls which the above provides. So this is a
contradiction. As T2

Σ clearly equals T2
ζ , we obtain the desired result. Q.E.D.

Having thus set out the basic fundamentals of the theory we turn to two sets
of problems which are left unanswered by the above.

3 Halting and Writing Times

In this section we address two issues: once a machine computing, say Pe(0), has
stopped, how quickly could we produce a code for that course of computation? If
for example the machine halts after α steps, the Normal Form Theorem tells us
that there is a y, a code for that course of computation, but gives no information
as to where/when/how to find it. In order to produce such a y, one must first
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start out by producing a code for α itself. Once that is done, one can run another
computation that takes the given code for α and simulates along the ordering
coded the original course of computation of Pe(0) ↓. For a machine to build a
course of computation it must have the materials consisting of an ordering along
which to work (and the original instructions embodied in Pe of course).

The first theorem below says that in fact we can compute a code for α ex-
tremely fast: in fact there is another program that will do it in α + ω steps at
worst.

The second issue is whether the gaps in the clockable ordinals noted by
Hamkins and Lewis ([10, Gap Existence Theorem 3.4]) are all initiated at stages
in time which correspond to admissible ordinals. (They had noted that admissi-
ble ordinals can start gaps, since they had shown that no admissible ordinal can
be the precise length of any halting computation.) We show here that gaps must
be started by admissible ordinals.

3.1 Quick Writing

We prove here a result which we have announced, and has been used in the
literature, (see [3]), but whose proof has not yet appeared. It concerns quick
writing: if a program halts after α many steps, how soon can a machine produce a
code for α? That it can produce a code is the ‘‘Clockables are Writables” theorem
(Cor. 3). But how quickly? We previously had announced a slightly weaker
result that required α + ω many steps to write α. We observe here that it can be
done in ≤ α steps.

Lemma 9 Suppose e is such that Pe(0) ↓ in exactly α ≥ ω steps. Then there is f
such that Pf (0) ↓ y in ≤ α steps with y ∈WO∧‖y‖ = α.

Proof: If Pe(0) ↓ in exactly α steps then α is inadmissible (by [10, Thm 8.8]). Set
γ =df the largest admissible, or limit of admissibles, ≤ α. We split into cases:
although these could all be absorbed into Case 3, the other arguments are not
unilluminating.
Case 1 γ = α. Then α is a limit of admissibles. The program Pe(0) is halting at
the limit time α because it is viewing a particular configurations of 0, 1’s in the
three cells C0(α), C1(α), C2(α) (recall that the read/write head views three cells
on each of the tapes at the same time; at time α it is in the limit state qL and due
to a line on its transition table, immediately goes next into a halting state because
of the configuration it sees. Let the triplet 〈C0(α), C1(α), C2(α)〉be 〈k0, k1, k2〉.
Then not all of the k j are 1: if so there would be some previous limit stage
α′ < α at which the r/w head would be viewing precisely this configuration and
it would have halted earlier. So at least one of the k j is a 0. We could now divide
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into subcases as to which particular combinations of these three cells contains
0’s; but let us just pretend it is the cell C0(α) that has value 0 at this limit stage,
and it is this appearance of a 0 at this limit point in time alone that causes the
machine to halt. It therefore cannot be that C0 contained a 0 at any previous
limit time: we conclude that there is only a 0 at time α because there has been a
strictly increasing sequence of stages βn + 1 for n < ω with C0(βn + 1) = 0 6=
C0(βn + 2). Perforce sup{βn + 1|n < ω} = α, (otherwise, again, there would
have been an earlier halt). We now run the universal machine U , and look for
grand sums of ordinals σ(ν) for ν < α along the way. By admissibility, ν <
α −→ σ(ν) < α (as we can think of running the machines inside Lα). We devise
a modification to this program that (i) simulates the original Pe(0), and (ii) that
for the first time it sees an ordinal γ0 + 1 with (a) C0(γ0 + 1) = 0 6= C0(γ0 + 2)
and (b) C1(γ0 + 1) = 1 = C2(γ0 + 1) it writes a code for γ0 to a reserved area
of tape R again. At a later time when a larger γ1 is found satisfying (a) and (b),
it first checks: (c) that the values C1(γ′), C2(γ′) have been constantly 1 in the
interval [C1(γ0 + 1, γ1 + 1) (if this fails she must scrap the contents of R setting
it to 0’s), she then “adds” the codes for the wellordering γ1 to the ordinal code in
R (this takes at most ω steps) to obtain (if in this case (c) did not fail), γ0 + γ1.
We can organise these additions in a continuous way (as we know that we shall
have exactly order type ω many successful lengthenings of these wellorderings),
so that continuing in this fashion at stage α it will have a code for the unbounded
sum of the ordinals βn in the area R; this will take as many steps as the calculation
of Pe(0), namely α. When the simulated Pe(0) halts, so does this program. A
code for α in this case is then computable in precisely α steps.

Case 2. γ < α < γ + ω.
Hamkins and Lewis (in the ‘Speed-Up Lemma’)[10, Lemma 3.3] show in gen-

eral that if δ + n is clockable then so is δ. Hence there is e′ so that Pe′(0) halts
in exactly γ steps. It suffices to write a code for γ in the manner of Case 1, with
k further points added on the end, where α = γ + k for some k < ω. This can
be done (providing we write the k many extra points first!), as we have seen, in
γ many steps.

Case 3. γ < γ + ω ≤ α.
We consider the following algorithm Ph for computing truth sets of struc-

tures 〈Lδ,∈〉. Ph effects the following:

(i) Simulates U the universal ITTM;

(ii) Looks on U ’s “tape” for codes of wellfounded models of the form Lβ, for
increasing β:

(iii) When it finds an Lβ it writes T2
β , the Σ2-truth set for Lβ to a reserved part
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R1, of its scratch tape; it does this by writing a 0 in cell Ci if the gödel
number of the i’th Σ2 sentence is in T2

β , and 1 otherwise.

(iv) when (iii) is done, we require it to flash a Flag cell “1, 0, 1”; then it goes
back to (ii) to look for a larger Lβ′ to repeat the process, and overwrite T2

β

with its new values T2
β′ .

Each time it cycles through (ii) - (iv) the flag is flashed. The result being that at
some limit stage with the flag at ‘0’, we know we have some Tβ∗ on the scratch
tape, for β∗ = supn βn where all T2

βn
have previously appeared on the scratch

tape. Note that this “eventual theory” Tβ∗ ⊇ T2
β∗ , but in general will not be

equal. (We are obliged to Sy Friedman for pointing out that we had not taken
care of this in our previous proof.) Some Σ2 sentence may be true for arbitrarily
large γ′ < γ without being true at γ.

Here we appeal instead to Lemma 1 of [9]: which shows that the Σ2 theory
of Lβ∗ , T2

β∗ , is then uniformly (in β∗) recursively enumerable in this ‘eventual
theory’ Tβ∗ . From T2

β∗ we can define recursively a real coding a wellorder of
length β∗. This gives us a new, larger, ordinal to work on, and the algorithm at
(iv), when it returns to (ii) can continue. In short we have a procedure which
over any admissible Lδ is a Σ1-definable: if on the η’th time we loop around
this process the theory T2

η∗ is obtained, then η → η∗ is an increasing function Σ1
definable over any admissible Lδ where it will define a function δ→ δ. Moreover
at time δ it will have Tδ on R1.

As γ is a limit of admissibles, then at stage γ this process has written Tγ to
R1. We now note that the next admissible ordinal γ+ > γ is the least ordinal
not recursive in Tγ, i.e. γ+ = ω

Tγ

1ck = ω
T2

γ

1ck. As α ≥ γ + ω there is a subset, G of
ω, recursive in Tγ by some (standard) Turing reduction {g}Tγ for some g ∈ ω
with G coding a wellorder of type α. However now recall that if B is any set
on the scratch tape at time δ, then at time δ + ω we may arrange for B′′ to be
written to the output tape. As G ≤T Tγ we may similarly arrange instead for G
to be written by time γ + ω ≤ α. To complete the Lemma we need to observe
that we can also get this algorithm to halt at exactly time α: this can be effected
by running the original program Pe(0) that halted in time α in parallel and si-
multaneously with the above. Since our “arrangement” described above will be
writing many different “G” as {g}Tδ for different δ ≤ γ we need to know when
to stop. We thus run Pe(0) as a clock to tell us. Q.E.D.

From this kind of thinking we may obtain some information extra concern-
ing possible normal form course of computations. The division into cases above
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can be overcome, if we allow ourselves some more steps to play with. We can
then find a bound on the times needed to produce codes in the Normal Form
Theorem Cor.5. We omit the details of the proof.

Theorem 7 If ϕe is an ITTM computable function then we may effectively find an
e′ ∈ ω satisfying the Normal Form Theorem so that for any n ∈ ω if ϕe(n) ↓ in α
steps (where α ≥ ω) then ϕe′(n) ↓ y in < ω2.(α + 2) steps

Proof: We briefly sketch the argument which uses the “Theory Machine” of
[9]. We use the Jα Jensen hierarchy for the constructible sets (see [15] or [4]). If
Pe(n) ↓α then by absoluteness of the machine construction (Pe(n) ↓α)Jα+1 , and
there is a course of computation code y witnessing this with y ∈ Jα+1. With
care one can wrote this out as a parameter free definition of y which is ΣJα+1

2 .
However the Theory Machine continually produces codes for levels of the J-
hierarchy together with their theories, on its output tape (without ever halting),
and it turns out that this machine will have a real c = cα+1 on its output tape at
time ω2.(α + 1)+ ω which codes the structure Jα+1. Recursively in c then (using
the index e to define the reduction), we may define the code y. This takes an-
other ω many steps, and we have a code for y written out in ω2.(α + 1) + ω + ω
many steps. Q.E.D.

There is a similar corollary for the Normal Form Theorem II, (Cor. 7),
involving real number inputs x which is again uniform in x. We leave this to the
reader to formulate.

3.2 Only admissibles start gaps

We now show that only admissible ordinals start gaps. Previously it was known
that many gaps were started by admissible ordinals, and that no admissible was
the length of any halting computation of the form Pe(n) ↓. The short argument
that follow shows that admissibility is required for this to happen. This was
announced (but unproven) as Theorem 17 in [35].

Theorem 8 If γ starts a gap in the clockable ordinals, then γ is admissible.

Proof: We suppose this fails, and that γ0 starts a gap, but is inadmissible. By this
supposition then:

Lγ0 � ∀n ∈ ω∃αψ(n, α, ξ)

for some Σ1 ψ, some ordinal parameter ξ, where ψ is defining a function F :
ω → γ0 monotone cofinally. Note that γ0 is a limit of clockable ordinals,
(otherwise it could not be starting a gap in the clockables, but would be interior
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to one!) Hence ξ < ξ ′ < γ0 for some clockable ξ ′ and by applying Lemma 9
as above, there is a program index f ′ producing in ξ ′ steps a code for ξ ′ and by
a trivial modification that writes down a suitable initial segment, an index f can
be effectively found from f ′ so that Pf (0)τ ↓ yξ ∈WO∧||yξ || = ξ and τ ≤ ξ ′.

We consider the following algorithm P: it simulates Pf until this has con-
verged. We have, by using a universal machine, that there is a program index
e0 ∈ ω so that ϕe0 continually computes (without ever halting) a code on its
scratch area for levels Lσ of the L-hierarchy, where σ is the (current) grand sum
of all ordinals coded on all halted output computations as simulated by the uni-
versal machine.

Once Pf has converged, we run Pe0 at the same time checking within the Lσ’s
constructed whether Lσ � ∃αψ(n, α, ξ) for each n. It lists those n for which this
holds to a piece of scratch tape, and flashes the lead cell C0 1,0,1 each time a new
n is added to the list (otherwise C0 is untouched). Pe finally halts if at any limit
stage C0 contains a 0. But it is easy to check that this happens exactly at γ0.
Hence γ0 does not start a gap. Contradiction! Q.E.D.(Theorem 8)

This finishes our results on the “standard models” of ITTM’s.

4 3 Tape and 1 Tape limit halting times

We consider now the 1 tape model of [12]. Here, the 3 tape model is replaced
with a single tape, and a read/write head viewing just one single cell at a time.
In all other respects the machinery, software, behaviour at limit times etc., is
identical to the 3 tape machine. It is shown that in [12] that the 1 tape machine
is not exactly the same in its behaviour as the 3 tape machine: the classes of
computable functions on integers, or even function f : 2N −→ N are identical.
However there is a difficulty of simulating 3 tape computations for functions
f : 2N −→ 2N. One way around this difficulty is by allowing a 3-symbol
alphabet. We outlined one method for this in [31], where we allowed a ‘B’ for
a blank symbol as well as 0, 1, and the B (for ambiguity) would be written at a
limit stage λ in a cell that had changed value cofinally in λ. Such an arrangement
is also fully powerful as regards the 3 tape model. In [35] we discussed further
the relationship of the 1 tape model to the 3 tape model, principally in terms of
classifying what is on the tapes at limit ordinal stages. One advantage of the 1
tape model is that one can get a definable pointclass of sets that is adequate (in
the sense of Moschovakis [24] p.158). With a 3 tape model, and the R/W head
reading 3 cells simultaneously at the start position, one obtains classes one step
up in a difference hierarchy which are not adequate. (Adequacy is desirable as
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it allows for parametrization and some closure properties to be enjoyed). The
paper [35] further classified descriptive set-theoretically pointclasses on 1 tape
machines defined by halting times. A very nice suggestion coming from work
on ordinal length tape Turing machines (from Dawson and Koepke) is that we
do not place the R/W back on cell C0 at a limit time λ, but on the liminf of the
cell positions up to time λ, and moreover the machine state qi at time λ is the
liminf of the machine states up to this time also. This very elegantly puts the
current ‘instruction’ to be at the outermost loop of any subroutines that were
being enacted up to time λ. This would probably alter the nature of some of the
results just mentioned.

The following Lemma holds for both the standard 0, 1 valued 3 tape and 1
tape models, for an enumeration of the cells 〈Ci | i < ω〉. It also holds for the 1
tape model using blanks mutatis mutandis. Roughly speaking the tape’s contents
at a reasonably closed ordinal time γ is Σ2 definable over Lγ; after a further ω
many steps of calculation we expect to get a double (standard) Turing jump of
that to be written to the tape. Hence Σ4 definability of those cell values is in
order here:

Lemma 10 In the language L{∈̇,ẋ}, there are Σ4 formulae ϕ0(v0, v1), ϕ1(v0, v1),
so that during any computation of the form Pe(x), for any primitively closed ordinal
γ: Cm(γ + ω) = i (i < 2) if and only if Lγ[x] � ϕi[x, m].

Proof: First assume only that γ is a limit stage in the computation of Pe(x). Let
s0 be the “snapshot" at stage γ; that is let s0 code 〈Ci(γ)|i < ω〉. We note just
as above that there is an (ordinary) Turing recursive total function F, so that if
n < ω “F(s0 � n) = u" iff u is a sequence of length n representing the cell
sequence 〈Ci(γ + n)|i < n〉 after n stages of the operation of Pe(x) beyond γ.
Then

Claim 1) “F(v) = u” is ∆1(Lγ).

Now assume that γ is reasonably closed, for example, p.r. closed. Then

Claim 2) “Ci(α) = j” is ∆Lγ[x]
1 ({α}).

Claim 3) “u = s0 � n” is (Σ2 ∨Π2)(Lγ[x]).

Proof: We exhibit a formula demonstrating this:
u = s0 � n⇐⇒ Fun(u) ∧ dom(u) = n ∧ ranu ⊆ 2∪ B ∧ ∀i ∈ dom(u)
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[(u(i) = j ∧ ∃γ < γ∀γ′ > γ(γ′ < γ −→ Ci(γ′) = j) ∨
(u(i) = j = B ∧ ∀γ < γ∃γ′ > γ(γ′ < γ ∧ Ci(γ′) 6= Ci(γ′ + 1))]

Q.E.D.Claim 3)

Claim 4) Cm(γ + ω) = i < 2⇐⇒
∃k < ω∀l > k(∀u((u = s0 � l) −→ (F(u))m = 1)).

The formula on the right hand side of Claim 4) yields our result. Q.E.D.

Theorem 9 There is a limit ordinal γ + ω which is the halting time of a 3 tape
machine computation of the form Pe(0) for some e; but which is not the halting time
of any 1 tape machine program.

Proof: Let γ be least that is Π3-reflecting. Then γ is in fact an admissible limit
of admissibles. (Any Π2 reflecting ordinal is admissible, and the admissibility
axioms themselves allow a Π3 axiomatisation.) We note for later that Lγ has no
proper Lα ≺Σ1 Lγ substructures (for that it would have to be much more than
Πn-reflecting for all n).
Claim 1) γ is 3 tape clockable.
Proof: By the minimality of γ, it is not Π4-reflecting, i.e. there is a sentence σ
and a Π2 formula ψ(v0, v1) so that σ⇐⇒ ∀n∃mψ(n, m) is true at Lγ but at no
earlier level. We may assume (as we have done) that without loss of generality,
the quantifiers in σ are natural number quantifiers (this again follows from the
leastness assumptions on γ that every x ∈ Lγ has a parameter free Σ1 definition.)

We run the algorithm Pe above, of Case 3 of Lemma 9 which writes Σ2
theories to a scratch tape. By the comment there, the admissibility of γ ensures
that T2

γ is indeed the tape’s contents at time γ.
We shall modify this procedure so that the resulting program halts at stage

γ + ω. By the remark following the description of Pe (concerning p.r. closed
ordinals, and the fact that admissibles are limits of such), we shall have that the
Flag of Pe at stage γ is a ‘0’. We’ll make the additional assumption that this Flag
of Pe was in fact the cell C1. We assume also we have left C0 free for our use
now. We add the condition that whenever the Flag (i.e. C1) is 0, at a limit stage,
which it recognises by being in the limit state, ql, we change it to 1, and also
ensure that C0 is 0 also; When additionally the Flag is ‘0’ at a limit (as opposed
to the flashing 1,0,1 at some successor stages in the above description of Pe) we
then arrange to have inspected in the next ω many steps the current Σ2-truth set
which we can assume is present on the tape as described above. We set up C0 so
that it flashes 0, 1 each time we find some 〈0, k0〉, 〈1, k1〉, . . . so that for some i
pψ(i, ki)q appears in this truth set.
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Subclaim At γ + ω we have C1 = 1, C0 = 0, and this is the first limit where this
happens. Hence we can modify Pe to halt exactly at stage γ + ω when this happens.
Straightforward. Q.E.D. Claim 1)

Claim 2) γ + ω is not 1 tape clockable.
Proof: Deny for a contradiction.
First suppose γ + ω was clockable via an algorithm that was programmed to halt
when C0 contained a 1 and thus it did so because ∃n∀m > n C0(γ + m) = 1.
This is Σ4(Lγ), and also by Π3-reflection must reflect down to some γ < γ.
That is, C0(γ + ω) = j. Contradiction! Hence γ was clockable using an algo-
rithm that halts on 0 and in which the contents of C0 altered cofinally in γ + ω.
Thus we must have for some 0 < n < ω “C0(γ + n) 6= C0(γ + n + 1)”. This is
∆3(Lγ) (see (3) of the proof of Lemma 10). By Π3-reflection we shall have that
C0(γ + n) 6= C0(γ + n + 1) for unboundedly many γ < γ′, for some γ′ < γ
and the program would thus halt at such a γ′. Q.E.D. Claim 2)

For completeness we just additionally note:
Claim 3) γ + ω + 1 is 1 tape clockable.
Proof: With the extra step we can run the argument of (1) and inspect the cell
C1 and halt at the right point. Q.E.D.Theorem 9
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