Chapter 1

Discrete transfinite computation models

P.D. Welch

School of Mathematics,
University of Bristol,
Bristol, BS8 1TW,
England

1.1. Introduction

1.1.1. The Contents

In the past few years there has been a resurgence of interest in discrete mod-
els of computation that are allowed to act transfinitely. Such conceptual
machines act in simple steps or stages, and have as a paradigm the standard
Turing machine. This, during its progress moves one cell at a time, to the
left or the right along an unbounded tape that it is reading, and subse-
quently alters symbols, changes states and moves on. This paradigm has
been with us for 70 years, and for much of this chapter we shall consider
variants of such a device.

Our models will all be discrete acting computational digital models. We
shall consider how Turing and other computing machines could possible
behave when allowed to perform supertasks (by which we mean that they
are allowed to complete an infinite sequence of tasks or operations). Such
a machine is usually envisaged with an unbounded tape. If supertasks are
allowed then naturally the whole of that tape comes into play, and we can
imagine that tape already having some characteristic function written on it.
The machine can then act on that tape and is then essentially a computer
acting at a higher type, namely that of infinite sequences of 0, 1’s, in other
words of real numbers.

Surprisingly, even if one restricts one’s model to, say, a register machine

2 P.D. Welch

model, where the registers are finite in number with natural number entries,
then simply defined behaviour at transfinite limit stages of computation
lead to quite powerful decision procdures. This chapter will look at these as
well. Whereas at the finite level the power of Turing and register machines
is the same, at the transfinite level they diverge markedly.

We shall not deal here with any machine that is, broadly speaking,
an analog machine or computes in an analog fashion. Indeed apart from
Section 2.1 we shall not be entering into any discussion of physical via-
bilities, feasibilities etc. We thus do not wish to discuss various machine
proposals that could be seen to fall under the rubric we are setting our-
selves, in that they seek to to compute functions whilst being constructed
to conform to some ambient physical theory or constraint. We have in
mind models such as Davies [Davies (2001)], and the models of Beggs and
Tucker [Beggs and Tucker (2007)] that attempt to compute any set of nat-
ural numbers, by some kinematic-based device, and thus do so within a
fragment of Newtonian mechanics; nor do we consider the interaction of
standard machines with physically based ‘advice’ functions or oracles, such
as is done in [Beggs et al. (2008)]. We also shall not particularly consider
classical quantum computation, as functions computed by such models are
also turing computable.

Section 2.1 is somewhat of an exception, in that we do consider a par-
ticular construction in detail due to Etesi and Németi [Etesi and Németi
(2002)], and to Hogarth [Hogarth (1992)], that allows Turing machines to
be placed or arranged within particular spacetimes to allow for the algorith-
mic decision of II; (and beyond) predicates without supertask phenomena.
We can calculate somewhat precisely, the bounds to what can be computed
in such models. We also recount the observation from [Welch (2008)], that
separability of the spacetime manifold puts a universal countable bound
on formal systems of computation within that spacetime (under some mild
assumptions).

A major lacuna is that we do not consider finite automata on infinite
graphs, or in particular on infinite binary trees. This would have fitted
well in any discussion of discrete models, and is admittedly a serious omis-
sion. Lastly this chapter is not about computation with an algebraic or
structural flavour, and we include here, inter alia, the Blum, Shub, Smale
model of computation on the reals ([Blum et al. (1989)]). Although we do
want to consider computation on the reals, R is considered primarily as un-
ordered Baire space, or Cantor space, and there is not any other algebraic
or structural feature that distinguishes the models considered here.

Discrete transfinite computation models 3

1.1.2. Argument

In the 1960’s and 70’s much research was undertaken deriving ultimately
from Kleene’s theory ([Kleene (1959)], [Kleene (1963)]) of recursion in
higher types (Generalized Recursion Theory, Kleene Recursion), and the
pioneering work of Aczel, Gandy, Moschovakis amongst others, that would
lead to Spector classes, the theory of inductive definitions, and the theory
of admissible sets, Barwise, Kripke, Platek.)

Our motivation is that we wish to revisit some of these older theories
and results and see how some recent activity in a class of models of com-
putation fits in the older picture. Some of these later models are no more
than familiar models with different style of inputs (register machines on
ordinals say); others such as Infinite Time Turing Machine of Hamkins and
Kidder ([Hamkins and Lewis (2000)]) are versions of the standard model
adapted to enable larger computations to be performed by allowing trans-
finite sequences of operations or stages; yet a third class simply consists
of ‘standard computation’ placed in an unconventional framework (Turing
machines stacked up, or regarded as inhabiting particular spacetimes). We
want to see how these models fit in with our conceptions of recursion and
computation formed in the earlier period.

We emphasise the logico-mathematical part of this, in particular the
descriptive set theoretical descriptions. No apology is needed for this: to
understand the model is to understand what the model produces: if this
transcends that produced by finitary operations (in whatever form) then
we are obliged to consider the underlying set-theoretical fundamentals. We
consider further in Section 5 the connections of the computation models to
the theory of inductive definitions (either monotone or not), and to sub-
systems of second order arithmetic. We do not consider this an accurate
account on historical principles and we do not even claim to do justice to
the concepts and individuals involved, but are merely taking a snapshot,
as we rush past a fast-evolving subject.

1.2. Computation on Integers

We start ahistorically in terms of the published literature, but with a fact
that surely must have been known to early recursion theorists such as Post:
that allowing a Turing machine to at least run out indefinitely allows for the
printing of the characteristic function not just of the halting problem (as a
complete ¥;-set) but of a Ay-set. This has been called ‘truth in the limit’.

4 P.D. Welch

A Turing machine may answer any II;-question, if it is allowed w-many
stages: given a recursive predicate R(vg,v1) we may program a machine to
investigate in turn R(0,n), R(1,n),...,R(k,n)... in turn, and if for some
k —R(k,n), then we require it to halt with a “0” for “no” as output. If
the machine does not halt, then were we able to “transcend time” we could
look back and say that the machine verified VogR(vg, n). If we assume the
machine has an output tape as well as a scratch tape, and if we assume the
output tape starts out with every cell having a “1” written to it, we could
dovetail all the queries ?VvgR(vg,n)? for each n, and have the machine
change a 1 to a 0 as soon as it verified that VvgR (v, n) failed. Then after
w many stages, if we still could look at the output tape, we’d have written
the characteristic function of the II; set A =g¢ {n | VogR(vg,n)}. If we
asked the question, Is A non-empty? this is a Xo-query: JviVogR(vg,v1)?
We cannot, in general, answer this, without allowing ourselves some further
infinitary operation.
Putnam, much later, made the following definition:

Definition 1.1. (Putnam [Putnam (1965)]) P is a trial and error predicate
if and only if there is a general recursive function f such that for every
T1y...,Tn
P(z1,...,2,) =limy o0 f(z1,...,20,y) =1
—P(x1,...,2,) = limy_o f(21,...,25,y) =0.

Putnam asked, and answered, the question as to the complexity in the
arithmetical hierarchy of such predicates: they are A, = ¥, N1II, in the
arithmetical hierarchy. We obtain the truth of P(z1,...,2,) “in the limit”
as y — o0.

If we imagine the recursive function f as being computed by a Tur-
ing machine M writing its 0/1 output to a particular cell Cy on its tape,
the clauses above amount to a prescription of M’s behaviour on any in-
put x1,...,x, that the contents of the cell Cy, after computing in turn
flxy, . 20,0), f(z1,. .20, 1), .., flZ1, . 20y Y), ..., “settles down”
as y increases: it must be either eventually 1/0 depending. We may thus
rephrase Putnam as:

P C N"™ is a trial and error predicate if there is a Turing machine My
so that

P(x1,...,x,) < the eventual value of My’s output cell on input n is 1
—P(z1,...,z,) < the eventual value of My’s output cell on input n is 0.

Continuing with this model for a moment, one sees that if there is in

advance a fixed bound on the number of alternations that M, makes on

Discrete transfinite computation models 5

the output cell Cy’s value, then that knowledge allows us to compute the
characteristic functions of predicates in particular levels of the difference
hierarchy of ¥, sets. Briefly: we say that P(Z) is in the k’th level of
the difference hierarchy, if there are 3; sets Qo,...,Qak—1 with P(Z) <
Vi< (Q2i—2(Z)A=Q2i—1(Z)); if we specify that M) may only write to the cell
Cp at most 2k+1 times, then M may decide P(Z). Note that it is the fixity
of the value k that determines the complexity within the class of Boolean
combinations that is capable of being decided by such an arrangement.
However even allowing k£ to be unbounded, is not quite sufficient. The
following can be shown.

Fact As long as the number of times that M{, can change its mind about
the value of Cy is a recursive function, f(Z) say, of the input T, then still
such predicates do not exhaust Ay: to put it another way, there cannot be
any recursive constraint on the number of alterations if the process is to
decide all Ao predicates.

There is the possibility of using the output of one Turing Machine as
input to another. For functions on integers, this could be regarded as just
composition of recursive functions. If we allow the output of a machine
after w many stages, either as a truth-in-the-limit operation or otherwise
then we can display this as an infinitary operation on an infinite sequence
of 0’s and 1’s (or whatever the alphabet of the machine is). How one does
this, or under what preconditions one allows such models to be considered
depends on how fastidiously one takes exception to ‘supertasks’, the latter
being roughly defined here as a process that at some stage has completed
infinitely many subtasks.

We now consider various mechanisms for this.

1.2.1. Transcending the finite through stacking Turing Ma-
chines

One obvious objection to an infinitely running process is the ‘Thomson
Lamp’ ([Thomson (1954-55)]) objection: if a switch has been thrown at
times %7 %7 %, R nLJrl’ ... at what position is it at, or what value does it
have, at time “1”7 Similarly if a cell on the turing machine tape has changed
value infinitely often from 0 to 1 and back again at finite stages, what value
should we allot it at ‘time’ w? Placing models in certain spacetimes neatly
sidesteps this puzzle.

6 P.D. Welch

1.2.1.1. General Relativistic models: Malament Hogarth Space-
times

Pitowsky [Pitowsky (1990)] gave an account of an attempt to define space-
times in which the effect of infinitely many computational tasks could be
seen by an observer O, in that spacetime. (By ‘spacetime’ we mean here
a Hausdorff, paracompact, Riemannian manifold which is a solution to
the Einsteinian GR equations - we refer the reader to [Hawking and Ellis
(1973)].) He used the example of the, at the time, unresolved Fermat’s Last
Theorem but we can consider any other task that involves looking at a 19
question: for example, the consistency of the axioms of Peano Arithmetic,
or Goldach’s Conjecture, both of which involve a simple universal quantifier
Vn over a recursive predicate. Let us take the latter: another observer O,
performs the tasks of checking that each even number in turn is the sum of
two primes. This they do along their worldline 7;, the proper time of which
is infinite (as each calculation takes some finite unit of time). If they find a
counterexample they send a signal to O, travelling along her worldline v,.
The point of the example is to arrange that the proper time of 5 is finite,
and has the the whole of +; in her chronological past. As Earman and
Norton [Earman and Norton (1993)] mention, there are problems with this
account not least that along v; O, must undergo unbounded acceleration.
Since then more sophisticated spacetimes due to Hogarth [Hogarth (1992)]
and Etesi & Németi [Etesi and Németi (2002)], have been devised. For the
moment we follow formally [Earman and Norton (1993)] to define:

Definition 1.2. M=(M, g.},) is a Malament-Hogarth (MH) spacetime just
in case there is a time-like half-curve v; C M and a point p € M such that
f'Yl dr = 0o and v; C I~ (p) (where 7 denotes proper time and I~ (p) the
causal past of p).

This seemingly makes no reference to the word-line of the observer O,
travelling along their path =5, but they point out that there will be in any
case such a future-directed timelike curve 7, passing through a point ¢ €
I~ (p) to p such that fw(q,p) dr < oo, with ¢ chosen to lie in the causal future
of the past endpoint of 7;. The important point is that the whole of v, lies
in the chronological past of O,. As Hogarth showed in [Hogarth (1992)]
such spacetimes are not globally hyperbolic, thus ruling out many standard
space-times (such as Minkowski space-time). (See [Earman and Norton
(1993)] for a discussion on global hyperbolicity and a family of Penrosian
Causal Censorship Hypotheses in this context - this is a interesting debate

Discrete transfinite computation models 7

on how one might add extra axioms to GR to limit the types of spacetimes
permissible - but would take this chapter too far off course.)

To obtain a spacetime as above, they take Minkowski spacetime Ny =
(R*,map) and choose a scalar field Q which is everywhere equal to 1 out-
side of a compact set C, and which rapidly goes to +o0o as the point r
is approached. The point r is removed and the MH spacetime is then
N = (R*\{r}, gap), where g1, = Q?nap. Q and 71 can be chosen so that 7
is a timelike geodesic. This ‘toy’ spacetime is pictured on the left.

" Y " |

Fig. 1.1. A ‘toy’ MH Spacetime. On the right Hogarth’s representation.

Earman and Norton discuss various possible spacetimes already in the
literature that conform to being MH: Goédel spacetimes are MH but are
causally ‘vicious’; anti-de Sitter spacetime is MH, but fails a strong en-
ergy condition; Reissner-Nordstrom spacetime meets this, but as in all MH
spacetimes there is divergent blue-shift of the signal to O,; further, of the
unbounded amplification of signals that O, may have to receive, etc., etc.
Again this is beyond the terms of our discussion here, and apart from the ro-
tating Kerr black hole solution of Etesi & Németi [Etesi and Németi (2002)]
to which we shortly turn, our aim is only to analyse the logico-mathematical
possibilities inherent in these models.

1.2.1.2. Etesi & Németi’s rotating black hole model

The authors consider an observer sent axially into the region containing a
rotating black hole of a certain size, and rotating at certain speeds - a Kerr
solution. The first notable feature of such a black hole is that the primary
singularity is ring-formed around the axis of rotation (see [Hawking and
Ellis (1973)]). The observer, O,, is sent along the axis of rotation and
receives signals sent from a turing machine that is orbiting forever around

8 P.D. Welch

the black hole. The machine is again looking for counterexamples, say, to a
II;-predicate and will transmit one if it is found to O,. A clear desideratum
for them is

Assumption 1 “No swamping” : it should not be the case that any part of
the machinery or any observer should have to transmit or receive infinitely
many signals.

Initially, the orbiting machine and O,, should send and receive respec-
tively, a single signal: the witness to the failure of the II; predicate under
inspection. They further remark though (their Prop. 2) that in fact the
computational arrangement allows deciding queries 7n € R? for sets R
slightly more complicated than IT; or ¥;1: R can be taken as a union of a
3, and a II; set for example. Indeed they indicate an argument (at their
Proposition 3), that if the machine-observer O,, is allowed to send k dif-
ferent signals, (they take k = 2) then any k-fold Boolean combination of
¥y and II; sets R = (;.,_,(S* U PY) (with S* € £1 and P* € II;) can
be decided. They ask how far in the arithmetical hierarchy this can kind
of argument can be taken. The discussion above concerning A, predicates
shows:

Theorem 1.1. [Welch (2008)] The relations R C N computable in the
Etesi-Németi model form a subclass of the Ao predicates of N; this is a
proper subclass if and only if there is a fixed finite bound on the number of
signals sent to the observer O,.

We have seen (at the Fact above) that for a A predicate R there is
no recursive bound on the input n as to how many times the machine will
have to change its mind concerning whether n € R, and a fortiori no fixed
in advance finite bound. Of course for checking whether any one n is in
R, finitely many signals will suffice; hence only if the architecture of the
experiment allows for potentially unboundedly many signals, then (and only
then) can Ay predicates be decided, still without breaking Assumption 1.

1.2.1.3. Hogarth’s Arithmetically Deciding Spacetime Regions

Hogarth names a “unit” or “region” of spacetime that is capable of deciding
a II; question as above a “SAD; spacetime or region”, and as a shorthand
denotes it by the right hand diagram above at Fig 1.1. Hogarth in [Hogarth
(1994)], (and in the later [Hogarth (2004)]) stacks up such regions to finite
depths in order to answer II,, queries.

If a spacetime contains a sequence 0= (0,7 > 0) of non-intersecting

Discrete transfinite computation models 9

open regions such that (1) for all 5 > 0 O; C I~ (O;41) and (2) there is a
point p € M such that Vj > 0 O; C I~ (p) then O is said to form a past
temporal string or just string. To decide membership in a Ily-definable
set of integers P(n) = Va3bQ(a,b,n) he then stacks up a string of regions
taking each O; as a SAD; region, each looking like the component of the
right of Figure 1.1, with Oy being used to decide IbQ(0,b, n). If this fails
a signal is sent out to O,; but if this is successful, a signal is sent to O; to
start to decide 3bQ(1,b,n) etc. Ultimately, putting this all together, again
Oy, receives a signal if ~P(n), or else knows after a finite interval that P(n).
It should be noted that

Assumption 2 The open regions O; are disjoint
and still that no observer or part of the machinery of the system has to send
or receive infinitely many signals (thus the “no swamping” assumption is
kept). This whole region is then dubbed a “SADy” spacetime.

A “SAD, 1" spacetime is defined accordingly as composed from an
infinite string of (again disjoint) SAD,, regions O,,, again all in the past of
some point p. (Earman and Norton [Earman and Norton (1996)] show that
a SAD; spacetime cannot decide Il statements, and Hogarth [Hogarth
(2004)] follows this up with the generalisation that SAD; cannot decide
IT; 4+ statements.) In the Figure 2.2 below, on the right is the underlying
tree structure of a SADj3 region for computing queries of the form ?n € A?
for some X3 set A: each large circle represents a SAD5 region (which in turn
contains a string of infinitely many of the small circles - pictured by the
terminal nodes of the tree - representing the SAD; regions) which can be
used for computing the answers to 5 queries. Correspondingly, in Figure
1.2, if each O, is a SAD; region then the diagram on the left is that of an
SAD;4 region.

10 P.D. Welch

Fig. 1.2. A SADg3 region as a past temporal string of SAD2 regions; and its tree
representation (right).

In Fig.1.2, each region O,, contains itself an w sequence of SAD; regions
which are shown in (the enlarged) circles of the tree.

We thus have that II,,;; questions can be decided by allowing nested
stacks of suitable SAD regions to depth n (if we define the depth of the
simplest region in Fig. 1.1 as being 0). He then puts these altogether:

Definition 1.3. A spacetime (M, g.p) is an arithmetic deciding (AD)
spacetime just when it admits a past temporal string of disjoint open regions
O = (0;j > 0) with each O; a SAD;, region.

Of course there are many unresolved difficulties with this. There is a
recognition problem: how, for example, could one ever recognise an AD
spacetime region if such existed? Let alone one equipped with appropriate
ranks of Turing machines coordinated and ready to go?

We now see how to go beyond Hogarth and observe that there is really
no reason for us to stop at arithmetic. Hogarth has defined regions SAD,, 11
containing stacked SAD,, subregions to a fixed finite depth n. He thus has
used a subset of the class of finite path trees to label his regions. In the next
definition N<N denotes the set of all finite sequences of natural numbers.
NN denotes the set of all such infinite sequences from N to N.

Definition 1.4. A finite path tree is any subtree (T,<r) of
T = (T, <) = (N<N D)where all branches under <r are of finite length.

We assign ordinal ranks to the nodes of a finite path tree (which are
necessarily wellfounded) by recursion: the rank of T is then the rank
of the empty sequence, (), the topmost node. A tree is in general in-
finitely splitting (a given node sequence node u in N<N may have in-

Discrete transfinite computation models 11

finitely many immediate one step extensions), even though all branches
are of finite length; hence ranks of nodes can in general be infinite, but
of countable ordinal height (for an account of this and the following con-
text, see e.g. [Rogers (1967)] Sect.15.2). Finite path trees in general can
be used to describe the construction of the Borel Sets on spaces such as
Nk x (NN)! for any k,I < w. A space, taken for simplicity as, N x NN
has a topology constructed from basic open sets typically of the form
Uis,py =ar {(s,2) e N x NN | s € NAIk € N(z | k=p)} where p e N<N,

Definition 1.5. (The Borel Hierarchy). (i) X € N x N¥ is in ¥ and in
Il if it is a basic open set in the above topology; (ii) X € Il¢ iff ¢X € X¢;
(ili) X € 3¢ iff X =J,, An where each A,, € Il for some &, < &; aset X
is Borel if for some countable ordinal § X € 3.

It is well known that this hierarchy is built up progressively through
w1 many stages (where w; is the first uncountable cardinal), and then no
further sets are added (that is ¥, = II,, = 3., +1). Of particular interest
is the hyperarithmetical hierarchy which is in one sense the constructive
part of the Borel hierarchy. Here the construction of the Borel set is given
by a recursive finite path tree (meaning the tree T and its extension rela-
tion <r are given by computable functions) with a recursive assignment of
recursively open sets to the bottommost rank 0 nodes, that is to the leaves
of the tree. Membership then in an hyperarithmetic set of integers (that
is taking I = 0 in the above) is given by testing a recursive protocol of
queries. Already one construal of Hogarth’s AD spacetime region is that
it is capable in the above notation of answering questions concerning some
unions of arithmetic sets, S € ¥,. Why ‘some’? Because the description
of the union (J,, A, must be given to us in an effective, i.e. recursive way.
The upshot is that for any hyperarithmetic set H C N there could be con-
structed a spacetime region SADy for which queries ?n € H? could be
answered. Such a region satisfies Assumptions 1 and 2 and consists of SAD
regions of smaller rank stacked according to the recursive finite path tree
description for the construction of H.

A discussion and the details of the above can be found in [Welch (2008)].
Can a “hyperarithmetically deciding spacetime” by analogy with Hogarth’s
AD deciding spacetime be constructed? It can, if we can enumerate those
turing programs that describe hyperarithmetic set building protocols.

Proposition 1.1. ([Welch (2008)]) If {(e; | i € N) enumerates those indices
of Turing programs that construct in the above sense hyperarithmetic sets

12 P.D. Welch

Se,, Via recursive trees, we may define a single MH ‘hyperarithmetically
deciding”, HYPD, spacetime region in which any query of the form Tn €
Se,? can be answered in finite time.

Here we piece together regions that are “S.,-deciding” just as the AD-
deciding region is built. Given input (i,n) to an initial control machine,
it activates S., and asks if 7n € S,,?7 Of course this query will result in
subqueries activating regions of lower rank down the tree coded by e; which
are themselves S, -deciding etc.

At this point the reader will well, I think, object that the recognition
problem has now got well out of hand: the collection of indices (e; | i € N)
enumerating hyperarithmetic set constructions is itself well beyond recur-
sive or arithmetic, forming as it does a IT3-complete set of integers. However
it is worth emphasising that no machine in this tree array is itself perform-
ing “supertasks” (i.e. performing infinitely many actions in its own proper
time), but if it issues a signal to another process, it does so only once af-
ter a finite amount of its own proper time. It is simply that the overall
tree no longer has a recursive description, and its ordinal rank is no longer
a recursively given ordinal. We have not violated our two core assump-
tions. However the point should be that anthropomorphic considerations
are being put aside and we are calculating what is feasible given the kind
of techniques Hogarth contemplates. We have here what might be called a
hyperarithmetic computer.

1.2.1.4. A wuniversal constant upper bound for any computation

Nevertheless if we take this discussion to its logical conclusion, one might
ask how far could one possibly go building regions of higher and higher
complexity without violating the core idea?

There is in any case a bound on the depth of any finite path tree to
which we can assign MH regions without violating Assumption 2.

Definition 1.6. Let M = (M, gap) be a spacetime. We define w(M) to
be the least ordinal 5 so that M contains no SAD region whose underlying
tree structure has ordinal rank 7.

Note that 0 < w(M) < w;. Here a zero value w(M) implies that M
contains no SAD regions whatsoever, that is, is not MH; the upper bound
is for the trivial reason that every finite path tree is a countable object and
so cannot have uncountable ordinal rank.

Discrete transfinite computation models 13

Proposition 1.2. For any spacetime M, w(M) < w;.

Proof: Assumption 2 says that for different n the different SAD, com-
ponent must occupy disjoint open regions O, of the manifold. However
the manifold is separable (which follows from paracompactness and being
Hausdorff). Let X C M be a countable dense subset of M. Then each
open region O, of M contains members of X. As disjoint regions contain
differing members of X there can only be countably many such regions
0, C M, and therefore a countable bound. QED

This is just the usual argument that separability of the real continuum
R implies that any family of disjoint intervals of R must be countable.
Consequently if M ctual is our spacetime, (modelled using these basic as-
sumptions) then w(Metual) iS a constant giving an upper bound to the
complexity of MH regions, and so putative computations performable in
Mctual- Dropping either of the Hausdorff or paracompactness properties
from our list of properties of manifolds would seemingly result in unrecog-
nizable (in current terms) ‘spacetimes’. In short, although MH-spacetimes
allow, at the most generous, for a reorganisation of any countable length
computation (in some formalism, such as Turing machines) into one compu-
tation using trees of countable depth, this would be impossible for uncount-
ably long (or many) computations whose stages occupy discrete spacetime
regions. The same restriction would of course be true for any other system,
or arrangement, of computations and is nothing to do with Hogarth style
formalizations: this holds for any separable manifold and any generalised
computation that requires a disjoint region of spacetime for each step or
unit of computation. Somewhat more formally:

Proposition 1.3. Let M = (M, ga,) be a spacetime. Let F be some formal
mechanism of computation, such that each computation step of the mech-
anism occupies a disjoint open neighbourhood of the manifold. Then there
is a countable upper bound w(M,F) to the lengths of the F-computations
in M.

The Proposition is not a completely precise mathematical statement,
since we have not defined ‘formal mechanism’, but the point we hope should
be clear. We have not specified ‘step’ or ‘unit’ but again this can mean a
Turing machine instruction step, or a cell unit. Anything that occupies
a discrete interval in space-time, whether it be an MH-spacetime, (so as
to avoid supertask like phenomena), or in other spacetimes more generally

14 P.D. Welch

with supertasks envisaged: one cannot in advance arrange the formalism
to occupy uncountably many distinct open neighbourhoods. Hence the
bound. If we are allowed to play God and are handed a separable manifold
and (a set of integers coding) a countable ordinal «, in advance, then indeed
we could cook up an MH manifold to accommodate computations of that
length (of proper time), using stacked Turing machines, or any other form
of computational model 7. What we cannot have is one manifold M that
will work for our chosen F for all countable «.

1.2.2. Allowing supertasks

By means of using spacetime regions of a particular type the Etesi-Németi
and Hogarth models avoid considering any supertasks, where any observer
has performed infinitely many tasks in his or her chronological past. If
we relax this constraint we may ask of our computing machines what they
are capable of when given some well-defined behaviour in the transfinite.
Amusingly even simple machines can perform a lot.

1.2.2.1. Punch hole machines

We first consider a simple kind of turing machine. We envisage such a
machine as having a tape, infinite in one direction, thus with a leftmost
starting cell, and a read /write head traversing the tape in the usual fashion.
The alphabet of the machine is simple: it consists of a blank and a ‘0’. The
latter we can think of as a hole that the machine punches. Thus the machine
can only write once, or punch a hole, in a cell; otherwise it ‘reads’ and moves
a cell left or right in the usual fashion. The program or transition table for
such a machine is simply that of an ordinary machine of this architecture.

We have to specify what happens at stage w and subsequent stages.
There are several possibilities: but let us say that we simply allow the
machine to run for w many stages, then consider what is on the tape (a
potentially infinite sequence of holes and blanks) as input to be fed back
into the machine at its starting state again for the next w many stages. We
thus reset the R/W head to first leftmost cell, and let it run the program
afresh.

So, ignoring difficulties with “hanging chads”, such cells are usable once
only. One easily sees that in w steps again A,, or trial-and-error predicates
are decidable. One may simply arrange that any new calculation extends
beyond the scratch area of tape already used up. If one has a Ay predicate
P(vp) it is not hard to arrange this so that a machine will punch holes

Discrete transfinite computation models 15

(using additional blank gaps) on an output ‘sub-tape’ so that the correct
final 0/1 value is recorded. Now we have allowed the possibility to reset the
head to its starting position, and let the machine continue running. We let
ourselves do and re-do this process, at every limit stage in time, pulling the
head back to the start position and letting it work on the accumulated tape-
full of punch holes. Could we calculate more? For which predicates P(n) of
natural numbers n is there a machine of this kind that halts for a given n
with the correct P(n)\—P(n) answer? These machines were first considered
by Hamkins and Kidder but they discarded them as too weak, in favour
of the Infinite Time Turing Machine to follow. Surprisingly perhaps, they
can still calculate quite a lot: we have the following observation (due to
S-D.Friedman and the author). Calling the above arrangement an “infinite
punch tape machine”, it is not hard to demonstrate:

Proposition 1.4. (i) Precisely the arithmetical predicates are decidable by
infinite punch tape machines; (ii) any computation either halts by, or is in

an infinite loop, by time w?.

1.2.2.2. Infinite Time Register Machines (ITRM)

Koepke and Miller [Koepke and Miller (2008)] consider the following regis-
ter machine model. My is a Shepherdson-Sturgis register machine (see
[Shepherdson and Sturgis|, or as described in, e.g. Cutland [Cutland
(1980)]). My has N registers R;(i < N) each of which may contain a natu-
ral number. Suppose that the program under consideration has instruction
set [=1Io,.. .,I4. Let us say that at time ¢ R; contains R;(t) € N, and
that instruction I(¢) is about to be performed. We adopt a slightly more
subtle behaviour than that for the punch-hole machines. We consider the
state list go, q1, . . ., ¢p of the machine and at time A\ where A is any limit or-
dinal, we say that the machine will next perform the instruction numbered
I(\) =g4¢ liminf,) I(«) where I(a) is the instruction number about to
be performed at time «. This formulation has the rather pleasant effect
of placing the machine at time A, at the start of the outermost nested loop
that it entered (if any) unboundedly often before time A.

We have to assign register values, and here of course a register may have
changed value infinitely often.

For i < N we set:

Ri()\) =gt liminf, .\ R;(a) and if this is finite we set R;(\)= R;(\). If
infinite we set R;(\) = 0.

It is this ‘resetting’ of a register that gives the model its strength. We

16 P.D. Welch

may additionally consider such a machine to be able to consult an oracle:
thus there is an instruction, so that if Z C N, a register can be reset to 0
if R;(a) € Z. Computations relative to an oracle Z can be regarded in this
manner as using the set Z as an input; the infinite time available allows
all of Z to be consulted. We discuss the strength of this model below, but
again surprisingly complicated predicates can be calculated.

1.2.2.3. Infinite Time Turing Machines (ITTM)

This model, due to Hamkins and Kidder, awakened recent interest in trans-
finite computational models. It was designed in the 90’s but an account of
them only appeared in [Hamkins and Lewis (2000)] much later. We give
a computationally equivalent version to that of their original model - and
discuss the differences afterwards.

We go back to the punch-hole machine described above, but we now
consider what to do if the machine is allowed to reuse cells. Clearly a cell
may then be reused infinitely often and we must define a behaviour for it.
We consider Turing machines with an alphabet of just three letters: 0,1, and
B (for blank). We suppose that its standard program has states qo, - . . , k-
The read/write head moves according to the description given by the usual
transition table, but that also uses the liminf of cell positions that it has
been reading at limit stages of time to calculate its position at a limit stage,
(if this liminf of the r/w head positions is infinite at a limit stage, then the
head is set back by fiat to the starting cell Cp). Further we set the state
g(A) at limit times to be the liminf of previous states. (This has the same
effect of course of positioning the r/w head at outermost loops as it did
for ITRM’s.) If the cells of the machine are enumerated (C; | ¢ € IN) with
values at time v denoted by (C;(v) | ¢ € N) then we set at limit time A:

Ci(\) =k <= 3Ja < AVB < AMa < — Ci(B) =k)for k € {0,1,B};
Otherwise C; is set to a ‘B’.

Thus if the machine has changed its mind unboundedly often below
A about the cell value then, this is set to a blank - for ambiguity if you
will. Programs, are simply standard turing machine ones, and may be
enumerated as (P. | e € N). If a particular program P. halts, then we can
consider the contents of the tape the output of that machine. We may also
prime the tape with an infinite string z from the alphabet, and consider
P.(z) to be the computation of the e’th program on input z.

Discrete transfinite computation models 17

Such machines can decide IT}-predicates. We illustrate by means of the
complete ITi-predicate on integers: those e € N so that the e’th (stan-
dard) recursive function, {e} = f, computes the characteristic function of a
wellorder of N. Given input e the machine simulates the e’th standard tur-
ing program and writes the output characteristic function on, say the cells
of the tape C; where i = 0(mod 3). The other cells are blank for scratch
work. This takes w many stages. When this is complete, the machine then
checks the II,-condition of this characteristic function f coding a discrete
linear ordering. (This is of the form YnImR(n,m, f) and R is recursive.
This can be verified in w steps, by starting with n = 0, recording ‘0’ on
the scratch tape cells C; where ¢ = 1(mod 3) , searching for an m, using
the scratch tape cells C; where ¢ = 2(mod 3), for auxiliary calculation,
then proceeding to n = 1 if successful, etc.) If this test is passed, we have
an order <.; we then need to test for wellorderedness. We wipe clean the
scratch tape area, and search for the <.’'th least element of the ordering.
We may do this by simply guessing a least element on a scratch tape, and
then continually revising our guess <.-downwards each time we find a lesser
one. If after w many steps we did not find such then we did not have a
wellorder, and we can output a 0; if after w many steps we only changed
our minds finitely often, then we indeed located the <,.-least element, say
it was 23, and we have it written concretely on the scratch tape. We now
proceed through the code function f and erase all mention of the element
23. This leaves us with a new code f’ of a discrete linear order written
on the cells (Cs; | ¢ € N), and we simply now repeat this process. There
are only two outcomes: either at some point we arrived at the situation
where the ‘current’ linear order is illfounded, and we discover this fact, by
descending through it infinitely often looking for its least element, or else
we end up emptying out the Cs; cells for i € IN completely: after looking
through this slice of the tape, and seeing it is empty (which takes a final w
many steps) we verify that it was truly wellfounded. If the order type of the
ordering was « then this has been achieved in, rather roughly, w + w.a +w
many steps.

Once the reader has convinced themselves of this, it is not hard to
imagine programs that write out successfully on some slice of the scratch
tape (which we might as well call ‘output tape’) those e; with {e;} € WO.
Moreover, one can also imagine a machine coding the ordinal sum of all
the recursive ordinals o < w§* and outputting a code for that, i.e. wS¥, on
the output tape. However as Hamkins and Lewis showed, and we shall see
later, this is only scratching the surface.

18 P.D. Welch

Suppose we denote by P.(n) the e’th computation on integer input of
n, represented by an infinite string of n 1’s followed by an infinite string of
0’s. Several natural questions arise.

Q1 What is 0V = {e|P.(0) |} ? (The halting problem on integers).

Q2 What are the halting times that arise? That is, if P.(0) | halts in
« steps how large is a7

Q3 What are the decidable predicates? Where we say R(n) is semi-
decidable if there is some e so that R(n) < P.(n) | 1,and is decidable if
both it and its complement are strongly semi-decidable.

[Hamkins and Lewis (2000)] first developed the theory of such machines,
using the analogy of the standard turing machine as a source of the notion of
recursion: they note that there are versions of the Recursion Theorems, and
the Snm-Theorem for this notion of computation and there is a universal
machine with a universal program. Much of the standard development
proceeds very smoothly but of course there are considerable differences: for
Turing machines the whole run of a halting computation, the snapshots of
the states and of tape’s contents etc. can be encoded by an single integer;
it is thus of the same type as the objects on which it operates. However for
ITTM’s, computations P.(n) on integer input, are in general a transfinite
sequence S = (S3 | 8 < a) of snapshots of the cell values (C;(8) | i < w)
at each stage < a. A computation is then an infinite object and must be
coded in this context by a set of integers or a ‘real’ number. (One uses reals
that code wellorderings of length « + 1 and attaches by pairing functions
the snapshots to the nodes of the wellorder, together with any auxiliary
information such as machine state etc. along the way). Computations are
thus of different types from the integer inputs. A central representation
of standard turing machines comes via Kleene’s T-predicate, yielding a
canonical Normal Form Theorem. This theorem allows one to proceed
effectively from e, and uniformly in n, from a halting computation of the
form P.(n) | to a program e’ so that P.(n) | will halt, and moreover
produce an integer output which codes the whole course-of-computation
that demonstrates P.(n) |. For such a notion to work in this new area we
should need the program P, to be capable of producing the reals needed to
code the potentially transfinitely many steps in calculations such as that of
P.(n) |. But are they capable of this? In short, Is every ordinal length of a
halting computation on an integer input capable of being itself ‘written’ or
being the output of some other computation? This must be true if we are
to have a hope to produce a Normal Form theorem. Hamkins and Lewis
called the halting time ordinals the clockable ordinals, and the question

Discrete transfinite computation models 19

they asked is: Is every clockable ordinal writable?

The answer turns out, thankfully, to be affirmative, (it follows from
the A, ¢, 3-Theorem below, [Welch (2000)]). We refer the reader not to
the original papers, but to [Welch (2009)] for a later but somewhat tidier
account of this theorem and the answers to the above three questions.

From this one gets the desired representation theorem (where P,.(n)
refers to ITTM computation).

Theorem 1.2. (Normal Form Theorem I [Welch (2004)],[Welch
(2009)]) Vede'Vn € N

P.(n) |— (Po(n) | y where y € 2N codes a wellordered course-of-
computation sequence for P.(x) |).

Moreover the map e — €’ is effective (in the usual Turing sense).

There is a higher type version obtained by relativising all the results
(now for *,(* etc.) above to real number inputs. Part (b) below is simply
a variant form stated to be reminiscent of the Kleene T-predicate. We let
e be the (partial) function computed by P..

Corollary 1.1. (Normal Form Theorem II) (a) For any ITTM com-
putable function . we can effectively find another ITTM computable func-
tion o so that on any input x from 2N, if p.(x) | then @o (x) | y € 2N,
where y codes a wellordered computation sequence for p.(x). (b) There is
a universal predicate ¥, which satisfies VeVzx:

P(z) |z « 3Jye2N[Z,(e,z,y)A Last(y) = 2|.

The effectivity is again established in the same way, noting that the
input (whether n € N or 2 € 2N) does not affect the above description of
an algorithm in any dynamic way.

However the proof that all clockable ordinals are writable proceeds via
an analysis of how each single cell C; behaves during the course of a compu-
tation P.(n). In general cells may stabilize on some fixed value, or forever
change value. The same is true for infinite sub-segments of the ITTM tape.
Suppose we reserve cells C; (i = 2mod 3) for “output” then we say that
a real y € 2N is ‘eventually computable’ if there is an ITTM computation
P,.(n) - which is not required to halt - but which has y as the characteristic
function of the output tape from some point in time onwards. The notion
is then that a computation need not formally halt in order to ‘produce’ an
output: it is sufficient that the output tape segment be stable from some
point onwards. Hamkins and Lewis called an ordinal o eventually writable,

20 P.D. Welch

if there was an eventually computable y, € 2N coding a. Clearly we can
consider any halting computation a special case of an eventually stable one,
and thus if A is the supremum of all writable ordinals, and ¢ the supremum
of the eventually writable ordinals then A < (. Evaluating A, { turned out
to be tied up with calculating stabilisation points of cells C; in the universal
machine calculations, and the following characterisation is possible.

Theorem 1.3. (The A, {, X-Theorem) (cf.[Welch (2009)]) (i) Any ITTM
computation P.(n) on integers which halts, does so by time X, the latter
defined as the supremum of the writable ordinals;

(i) any computation P.(n) with eventually stable output tape, will stabilize
by time (the supremum of the eventually writable ordinals;

(#ii) moreover is the least ordinal so that there exists ¥ > (with the
property that

L¢ <x, Ly;
(iv) then X is the least ordinal satisfying:
Ly <3, Lc.

We thus have a clear picture of the action of ITTM computations on
integers. The machines run using very constructive rules, even for the limit
stages, so their action is of course absolute to Gédel’s constructible universe
L. As [Hamkins and Lewis (2000)] had noted, if an ITTM machine has its
hands on a real y coding an ordinal « then there is a standard turing ma-
chine program for using that code to run a construction of the L-hierarchy
‘along’ that ordering y, thereby producing a real code for the a’th level L.
Hence the tie up with L is natural. A further observation on the A, (, ¥-
Theorem is in order. The machine limit rules of liminf can be expressed in
a Yo way. If one has two levels of the L hierarchy satisfying L¢ <x, Ly
then running the universal machine inside L it is pretty much immediate
that the machine’s snapshots at time ¢’ and ¥’ will be identical: this is
what the elementarity entails. The machine will then either have halted,
or, as one can show, has entered an eternally repeating loop (although the
elementarity assumed is suggestive of this, in fact the latter still has to be
shown). It turns out the the pair (¢,X) is the lexicographically least pair
of ordinals where the universal machine has identical snapshots, and first
enters an infinite loop.

What further seems to emerge from the proofs above, is that the pri-
mary notion here is not that of a ‘halted computation’ but of a ‘stable

Discrete transfinite computation models 21

computation’: there are computations of the form P.(n) which do not for-
mally halt, but eventually have a settled output tape, and thereafter just
footle around for ever on their scratch tape areas. Halting is just a special
case of stabilizing, and this is borne out by the fact that we cannot fully
analyse halting computations without analyzing stabilizing ones. Halting
can be expressed by a ¥; statement in set theory (“There exists a real
y that successfully codes the course of computation of P.(n) with a last
halting state”); this is at the basis of the ¥; characterisation of A in the
A, ¢, X theorem as Ly <x, L¢, once we have discovered (. We may further
establish theorems corresponding to those for halting computations.

The reader may have noticed that we seem to be avoiding discussion
of the obvious fact that ITTM’s can work on infinite input as well have
infinite output: such computation is thus on one type up, on that of sets of
integers, or reals themselves, rather than merely on integers. Before we turn
to this we emphasise that Hamkins and Kidder’s original formulation of an
ITTM immediately visualised such capabilities: their machine was devised
as coming equipped with three infinite tapes, for input, scratch and output.
A single read/write head surveyed a single cell from each of the three tapes
simultaneously and according to its state and program, would write from an
alphabet set of {0,1}. At limit stages a cell C;’s value was determined by
taking the limsup of the previous cell values (there was no Blank character);
the R/W head at limit stages would be brought back to the very first triplet
of cells on the tapes, and the machine would enter a special ‘limit state’ qr,.
The differences between this arrangement and that sketched above play
no role in determining the classes of functions or sets computed (either
on integers or on reals which we are coming to): they are the same for
either model. There are minor differences in calculating halting times, and
in precisely which classes of ordinals are clockable - often by an obvious
factor of w or so, but apart from these finer details there are functionally
no differences between the models proposed. (This discussion does conceal
one remark, that in fact, a one tape machine with two symbols cannot
produce the same class of computable functions f : R — R. However
for functions of type f : R — N or f : N — IN a one tape 2-alphabet
machine turns out to be sufficient. For the wider class curiously a third
character - which we have introduced here by the way of the Blank above -
turns out to be necessary. See [Hamkins and Seabold (2001)] for a discussion
of this somewhat technical point and proofs of these results mentioned.)

22 P.D. Welch

1.3. Computation on Reals

Kleene developed an equational calculus for developing the notion of recur-
sion on a higher type object (see [Kleene (1978)], [Kleene (1959)], [Kleene
(1963)]). The relevant type here is Type 2, the objects under consideration
are functionals Z : N¥ — N. This generalised his earlier equational cal-
culus for (standard) recursive functions that used (characteristic functions
for Type 1) oracles, I : N — IN. The intuitive notion of a functional F
being computable relative to Z is that we have some kind of machine that
can take inputs in the form of (finite sequences) of integers and reals, 7, &,
and which is connected to some oracle/memory device that has access to
the graph of 7 - itself a set of size the continuum. As the domain of 7 is
NN the machine must compute a real « to present to the oracle, which will
return Z(x). Thus an infinite amount of computation must be performed
in some scratch/storage area before this oracle query can be launched. A
computation will thus in general be of infinite length, but is perhaps better
thought of as given by an infinite tree where, for example, there may be
infinite branching nodes: below the call for Z(z) will be the prior individual
computations for z(0),x(1),... . An illffounded tree, that is one with an
infinite descending path, represents an undefined computation. There is
some discussion of this in Rogers ([Rogers (1967)], p. 406, where there is
no oracle Z discussed) but where the allusion is to an “Np-mind’ capable
of forming such generalised machine computations. A crucial point is that
a generalised computation step only be allowed to take previously, induc-
tively, defined generalised steps. The resulting notion is ‘hyperarithmetic
computability’. (See also here [Kleene (1962b)],[Kleene (1962a)].)

With the addition of the oracle Z it can thus be loosely characterised
([Hrbacek and Simpson (1980)]) as a model of computation in which the
computational device has a

(i) countably infinite memory, and

(ii) an ability to manipulate (search through, write to) that memory in
finite time; and optionally

(iii) an ability to quiz an oracle T about that memory contents (in a
single step).

If the above is all done within the e’th program we call the above com-
putation {e}(7i, Z,Z) which again, may or may not halt. The following
functional is essential for developing much of the regular theory of relative
recursiveness.

Discrete transfinite computation models 23

0 if Inxz(n) =0

E(@) = {

1 otherwise

The immediate import of this is that computation relative to the object
£ is closed under existential number quantification (for any Z the class of re-
lations semi-recursive in 7 is closed under universal number quantification).
A second effect is that:

o If A is an arithmetical set of reals then A is recursive in &.

More important consequences follow: if 7 is any functional such that
£ is recursive in Z, then we have the full Ordinal Comparison Theorem
for stages of computation (see [Moschovakis (1974)]) which is crucial for
developing the theory of relations semi-recursive in a type-2 functional. By
‘relation’ in the next theorem, we mean any predicate R(7i, &) C N*x (INN)!
for k,1 € N.

Theorem 1.4. (Kleene) The hyperarithmetic relations are precisely those
recursive in E.
The 11} relations are precisely those semi-recursive in &.

If we are considering relative recursion of a set of reals A C R in a set of
reals B (which we may identify with its characteristic function oracle Zg)
we may denote such:

z€A~{e}(z,BE) |1
and say that ‘A is recursive in B’ if {e} gives a function total on inputs z,
and then one has appropriate versions of the above theorem relativised to
B. There is an appropriate notion of Kleene Degree:

Definition 1.7. Kleene degrees: Let A, B C IR; we say that
A <k B iff there is an index e and a real y so that
for any 2 € R (vgA < {e}(z,y,B,€) | B
A is Kleene-semi-recursive in B iff there is an index e and a real y so
that
forany r € R (z € A — {e}(z,y,B,€) | 1)).

The presence of the fixed real y ensures that the degree class of B con-
tains continuum many sets of reals A; moreover the degree of B, being thus
closed under continuous pre-images, forms a so-called Wadge degree. In
general a computation evolves its own tree structure as it grows, according
to its instruction set. But one can think of y as also contributing to some
part of the computational tree structure. In this case, as y is allowed to

24 P.D. Welch

vary, we see that Ox contains @, R, and in fact consists of the Borel sets.
0 (the K-degree of a complete Kleene semi-recursive set of reals) contains
WO, the set of reals coding wellorders, and so a complete II} set of reals.
In fact it consists of all the co-analytic, so precisely the H%, sets.

It is possible to give a set theoretical description of Kleene recursion
in a relation B and £. In what follows, wf 2" denotes the least ordinal
which does not have a real code recursive in (B,z,y); it turns out that
the wellfounded computation tree of a converging Kleene recusion will have
rank less than wf /. This is the basis of the following characterisation: we
only need to look inside a model with enough ordinals - namely wf T - to
see whether the computation tree is wellfounded. Moreover, in admissibility
theory wellfoundedness of any relation inside a transitive admissible set is
actually a Xq-notion. Here £€7 is the language of set theory augmented

by a predicate symbol X - to be interpreted by B.

Lemma 1.1. A <g B iff there are Xi-formulae in Ee,X wl(X,vo,vl),
QOQ(X,’U(),Ul), and there is y € R, so that for any r € R

reA= L puys [B,y,z] = ¢1[B,y, x]<= LwlB,y,w[B7y,fL'] E 2| B, y, 7).

Thus to determine whether z € A/x ¢ A we perform X;-searches
through the least admissible set LwlB,y,z[B,y7x] relative to B containing
y,z. As intimated equivalence with the former definition comes about
through the original (relativised) theorem of Kleene 1.4 and the theory
of admissible sets (c¢f. [Barwise (1975)]).

The generalised theory of recursion in higher types was much investi-
gated and developed in the late 60’s and 70’s, with a history too rich to
go into here, with names such as Gandy, Moschovakis, Sacks, Grilliot, Fen-
stad, Normann, Moldestad, Harrington prominent. The recursion relative
to the single operator £ is in one respect merely illustrative, being the his-
torical example from the earlier days and papers ([Kleene (1959)], [Kleene
(1963)], [Kleene (1978)]) of the Kleene Equational Calculus. The reader
may consult Hinman’s [Hinman (1978)] for an overall development of the
theory, Fenstad [Fenstad (1980)] for an attempt to present an axiomatic
approach to general computation theories, and the latter Part D of Sacks
[Sacks (1990)] for the further development in relation to set recursion.

Mention must now be made of the connections to the theory of inductive
definitions and here more particularly to the theory of Spector classes. The
latter is a general unifying theory of definability developed by Moschovakis
in [Moschovakis (1974)]. We consider here just pointclasses I' € N* x (NN)!

Discrete transfinite computation models 25

(for any k,I < w) and use the notation that I' = {=R : R € T'}. 3N, N
represent natural number quantifiers as opposed to 3N, VN over elements
of NN,

Definition 1.8. A Spector class of pointsets I' € N* x (N™)! for any
k,l, is a collection that is (i) closed under N,U, number quantification:
N, ¥N: closed under (standard) recursive substitutions, has a universal
set U indexing by IN all members of I', and lastly has the Prewellordering
property:

PW: For any P € T there is ¢ : P —)\ for some ordinal A\ with the
property that there are relations: z <§eI', z <J y € I so that:

Ply) = (Va[P(z) No(z) So(y)] <= 2 <F y += = <7 y).

It would be impossible to give a full exposition of the import of Spector
pointclasses here, but suffice it to say that the definition above encapsulates
a fundamental unifying approach to the theory of inductive definability.
Familiar Spector pointclasses are I} and 1 but there are many others.
For X1 or IT} the existence of the prewellordering property depends on the
surrounding set theory in which one works. We shall only be discussing
Spector pointclasses within Al = I13 N1 3. The Kleene recursion theory
then throws up a canonical example of a Spector pointclass: the Kleene
semi-recursive (in £) sets are precisely the I1} sets.

The type of formalism on the right hand side equivalences of Lemma 1.1
in fact is also one way of defining Spector classes within the Al pointclass.

1.3.1. ITTM computations on reals

If we now return to the I'TTM model we shall see that it fits very nicely into
this overall general theory. We have a choice to make here. At Q3 above
we called the decidable predicates, those where a characteristic function of
the predicate could always be computed by a halting computation. It is
natural particularly given the machine nature of the origins of the notion
to think of halting as somehow fundamental, and therefore it is this that
should be used to characterise ‘decidability’. However here we are adopting
the position that the fundamental feature of the ITTM’s is the Y5 nature of
the limit rule for the cell values, and the concomitant phenomenon of their
having stabilized output without halting; it was indeed from this stabilizing
and looping times, from ¢ and X, that we could characterize the halting
times. The halting computations are for this purpose to be regarded as the

26 P.D. Welch

special sub-class of ‘fully stabilized’ computations: halting is just a special
kind of stabilization (sic). This position is further strengthened when we
consider below its relation to previous notions of higher type recursion.

We stated the Normal Form Theorems in the stronger, halting, version,
as these would be more familiar to the reader, but there are equally well
Normal Form Theorems which are verbatim as above but with | replaced
by T throughout. The viewpoint here is that the strongly stabilizing, i.e.
halting, computations should probably be thought to give rise to a notion
of strong decidability (and strong semi-decidability) whilst the stabilizing
computations correspond to the notion of decidability and semi-decidability.
However most papers distinguish the ‘stabilizing’ form, with the adverb
‘eventually’, used in the form: ‘eventually (semi)-decidable predicates’ or
adjectively as in ‘eventual I'TTM degrees’ etc. This is established enough
that it would egregious to go against it here.

However for notions from higher type recursion theory, one says in gen-
eral that a class of ‘semi-decidable sets are those semi-recursive in a F’
where the latter F is some higher type functional. Then, for the appro-
priate F for ITTM’s, actually ‘semi-recursive in F’ would correspond to
the stabilizing behaviour rather than the halting one. This would also ac-
cord with the usage inherited from Kleene Recursion. We shall call here
then “ITTM-semi-recursive” those predicates where membership facts can
be represented as the stable output of some program, and thus correspond-
ing to ‘eventually semi-decidable’ in the literature. (For different classes
of machines such as the ¥,,-machines mentioned below, the notion of ‘out-
put’ becomes somewhat more rarified, but these too one we would like
to think of as providing mathematical classes of sets that are generalised
(semi-)recursive in some way.)

It is a conceptually simple adjustment to have within an ITTM program
an oracle call that requests of some oracle B C R (here 2) whether the
current contents of the scratch tape, y € 2N, is an element of B, and
receive a 0/1 reply. Thus computation relative to an oracle for sets of reals
is unproblematic. We again adopt the same notation that PP (x) | y if the
e’th machine with oracle B, on input z € 2N halts with output y € 2N.
Changing the arrow to P2 (x) T y indicates that eventually y is written to
the output tape, and remains there unchanging from some point on. (We
have to have some other notation such as “PP(x) |” for the computation
diverges or is undefined.)

We first give the integer version.

Discrete transfinite computation models 27

Definition 1.9. A set of integers x is ITTM-semi-recursive in a set y if
and only if:

JeVn € z[PY(n) 11— necz |
(ii) A set of integers x is ITTM-recursive in a set y if and only if:
JeVnexz[PY(n)T1ene zAP/(n)10-nd¢ x].
We may write x <> y for the reducibility ordering.

Equivalently: z is ITTM-recursive in y if both x and -z are ITTM-
semi-recursive in y (since if the latter holds it is easy to amalgamate the
two programs into a single program P, with the effect of the Definition.
The relation <*° is in the class Al. There is a natural prewellordering
that arises on computations P, establishing membership in some set z: put
n < m if the computation P,(n) T 1 stabilizes to an output of 1 before
that of P,(m) 1 1 does. The relation < is itself ITTM-semi-recursive (think
of the universal machine that observes the simulated copies of computa-
tion sequences of P, for various n - eventually it itself will stabilize into
seeing that P.(n) stabilizes before P.(m)) and thus we can establish the
prewellordering property very easily.

There is a natural notion of complete ITTM-semi-recursive set of inte-
gers:

Definition 1.10. & =4¢ {e | P.(0) T} - the complete set of stable indices.

The following tells us what this set is by way of a set theoretic charac-
terisation. We regard x — T as an analogy to the hyperjump operation.

Theorem 1.5. ([Welch (2000)]) & is (Turing-)recursively isomorphic to the
So-theory of (L¢=[z], €,2). In particular 0 is recursively isomorphic to the
Yo-theory of (L¢, €).

This should be compared with Kleene’s result that his notation system
set O - a complete II] set of integers coding indices of wellfounded finite
path trees - is in fact (Turing-) recursively isomorphic to the ¥;-truth set
of (L e, €). Indeed A. Klev has defined in [Klev (2007)] an extension of
Kleene’s O to an O, that mirrors exactly Kleene’s original definition as
a tree (indeed the tree is literally an extension of Kleene’s). By the above,
it is thus to the complete ¥3(L¢) set what O is to X1 (L)

The following is the natural version for real computation.

28 P.D. Welch

Definition 1.11. A set of reals A is ITTM-semi-recursive in a set of reals
B if and only if:

Jevz € 2N [PP(z) 11— a € A |
(ii) A set of reals A is ITTM-recursive in a set of reals B if and only if:
Jevz € 2N [PP(2) 112 € AANPP(z) 10— 2 ¢ A |

Definition 1.12. A <* B iff for some e € w, for some y € R : A is
ITTM-recursive in (y, B).

Notice in the above that we have included a parameter real y to ensure
the closure under continuous preimages as before. This will ensure we have
Wadge pointclasses and that the ensuing notion of <*°- degree with the
degree ordering induced, will be wellfounded. The structure of this degree
ordering is dependent on the ambient set theory - we shall not go into this
now, but under the assumption of “sufficient Determinacy” (that of two
person perfect information games of sufficient complexity in their payoff
sets) we shall have that the degrees are wellordered; under the assumption
of V = L the ordering of <*° degrees is very different, and below the com-
plete <°°-semi-recursive set of reals there are plenty of <°°-incomparable
sets (and hence Post’s problem has a rich positive solution); whilst under
“sufficient determinacy” assumptions, there are no intermediate degrees at
all. This was to be expected, and serves only to confirm the position of
the pointclass of ITTM semi-recursive sets as one within the totality of the
Wadge ordering of all reasonable pointclasses of sets of reals. See [Welch
(2004)] for a further discussion and results.

By analogy with Kleene recursion we have:

Lemma 1.2. A <* B iff there are ¥z-formulae in L y ©1(X,vg,v1),
LpQ(X,UO,vl), and y € R, so that for all x € R

T €A Lepy:[B,y, x| |E 01[B,y,z] <= L¢p.we By, z] = —p2(B,y, x].

The Lemma then identifies structures in which we can look to ascertain
the outcomes of our ITTM computations relative to a set of reals B say.
By way of analogy with ¢, the ordinal ¢(?% is the least that is not ITTM-
(B,z,y)-recursive. It is thus also least such that L¢sy.«[B,y,z] has a
proper Ys-elementary end-extension.

Just as one has a Uniformisation Theorem for Kleene-semi-recursive sets
(namely the Novikoff-Kondo-Addison IT}-Uniformisation Theorem) that

Discrete transfinite computation models 29

such sets in the plane can be uniformised by Kleene semi-recursive func-
tions, so we have:

Lemma 1.3. (Uniformisation Theorem) Suppose A C RxR is ITTM-
semi-recursive. Then there is a (partial) function F : R — R with ITTM-
semi-recursive graph with the property that:

Ve e R[Fy € R((z,y) € A) = (x € dom(F) A {(x, F(z)) € A)].

1.4. Computation on ordinals, and ordinal length machines

In the 70’s the theory of a-recursion coming out of the meta-recursion of
the 60’s reached its highest stage of development. The observation that an
enumeration of a II}-complete set of integers was very naturally effected,
not in w, but in w$¥ (the least non-recursive ordinal) steps led to a discus-
sion on the role of hyperarithmetic vis a vis finite. In meta-recursion the
motivation was to have a generalization of recursion theory where infinitely
long computations converged. Initially the emphasis had been on using an
analogy between finite/recursive/recursively enumerable to yield a notion
of meta-finite/metarecursive/meta-r.e. In the latter the integers would be
replaced by recursive ordinals, and a meta-r.e. set was a set of recursive
ordinals whose indices formed a I} set. Meta-recursive sets would be those
that were both meta-r.e. and co-meta-r.e. The notion that replaced finite-
ness, was that of meta-finiteness which was to be identified with a set of
ordinals together with a hyperarithmetic index set. In particular the do-
main of computation had now changed: instead of w it would become wk.
(See, e.g., the discussion in [Sacks (1990)] Part V for an account of this
development.) This was not the first generalisation of recursion theory to
ordinals: Takeuti [Takeuti (1960)] had replaced ‘recursive enumerability’
by a scheme equivalent to Y;-definability and was the first to generalise
recursion theory from natural numbers to ordinals. There were a number
of developments from Kleene’s equational calculus to include ordinal valued
functions in equations: Machover [Machover (1961)], Levy [Levy (1963)],
Tugué [Tugué (1964)], Kripke [Kripke (1964)], Platek [Platek (1966)] all
had such calculi. The latter two involved what emerged as a primary no-
tion, that of an admissible ordinal with the concomitant axiomatisation of
admissible set theory as a fragment of full ZFC set theory. Platek had the
notion of an admissible set. From one perspective, it seems pointless to
split the distinction between an ‘equational calculus’ and an abstract ‘ma-
chine’ (if there is one to split). Platek though seems to have had in mind,

30 P.D. Welch

or at least the picture of, an ordinal register machine of some sorts, which
we shall turn to these later.

1.4.1. Ordinal length tapes

Since the Hamkins-Kidder machines can construct levels of the Godel L-
hierarchy up to a certain stage (below the level ¥ alluded to above) it is a
natural generalisation to think up behaviours for machines with tape not
an w sequence of cells, but longer. Indeed why not consider a sequence
of cells C, for a any ordinal? Both Koepke and Dawson independently,
and at roughly around the same time, came up with the idea of ordinal
length tape machines, equipped with liminf rules to locate read/write
heads and instruction numbers within a program list. One allows the head
to move left, but again must specify if the the head is over a limit cell C)
what default action to do if the machine is asked to move left one cell.
As sets can be coded by sets of ordinals (assuming the Axiom of Choice)
we have some means of dealing with, or representing sets on tapes. If
a machine runs and produces a sequence of 0’s and 1’s on a tape, then
again, if of the right form, we can say that the machine is producing (codes
for) sets. Dawson [Dawson (2009)] formulated an Aziom of Computability
that states that every set is computable, in that there is a program that
produces (not necessarily halting) at some point a code for that set. He
then proves that the computable sets form a transitive class satisfying the
ZF axioms together with AC. A condensation lemma on the elements
appearing in a table of a long computation then produces the Generalised
Continuum Hypothesis. As the construction of the machine and its action
is completely absolute in character, we can imagine the machine running
inside the constructible universe L, performing the same actions with the
same outcomes. Since L is the minimal transitive class model of ZF, then
of course the machine is producing precisely the construcible sets.

Koepke gave a detailed description in [Koepke (2005)], [Koepke and
Koerwien (2006)] of the organisation of such results, and whereas Dawson
was considering codes for sets running on an everlasting machine, Koepke
considers halting computations starting from an input tape with marks for
finitely many ordinals. Koepke then shows in detail that a Bounded Truth
function for L is computable. He then has:

Theorem 1.6. (Koepke [Koepke (2005)]) A set x is computable from a
finite set of ordinal parameters if and only if it is a member of the con-
structible hierarchy.

Discrete transfinite computation models 31

He then proceeds to derive GCH again using this analysis. During the
1970’s Silver produced a description of the constructible hierarchy using,
what came to be called ‘Silver Machines’. Silver’s motivation was to avoid
R. Jensen’s ‘fine-structural’ description of L, which Jensen had used to great
effect in establishing fundamental properties both of L, and of the universe
of all sets. An account of Silver’s method is in [Devlin (1984)], Part IX. The
‘machine’ nature of the description is essentially that of an extremely slowed
production of constructible sets, and owes more to a desire to have as simple
as possible method of set construction, rather than a perspective with a
mechanical flavour. Silver convincingly made use of his theory by producing
a fine-structure free proof of an important combinatorial principle of L
called [J, due to Jensen. The ordinal length tape Turing machine model
held out hope that another different proof of [might be possible using the
machine’s description. That hope has not been realised, and it seems that
despite the smoothness of set construction at successor steps, the infinitary
nature of the limit rule mitigates against certain construction principles
that seem common to most proofs of [J to date, so maybe this appoach
would seem difficult.

Nevertheless, the description of the constructible sets, now adds a fur-
ther method of describing L besides the two originally due to Gdédel, and
to those of Jensen and Silver.

1.4.1.1. «a-length tapes

Rather than take ON length tapes, it would be possible to consider compu-
tation using the above machines but with the length of tape, and perhaps
time, restricted to say suitable ordinals «, such as initial ordinals or cardinal
numbers. There would indeed be nothing against this: one could produce,
say just the hereditarily countable members of L by allowing only computa-
tions that took countable lengths of time. For restricting to computations
not of cardinal length, some closure considerations come into effect. In or-
der to have effective methods of combining even very elementary processes
on sets, one should require that ordinals be sufficiently closed to enable this,
and something such as closure under the primitive recursive set functions
(¢f. [Devlin (1984)], p.100) would be suitable.

The notion of admissible ordinal stands out, not least because of the
development of a-recursion theory in the 1960’s and 70’s. We have briefly
mentioned the origins of this theory at the beginning of this section. The
motivation for its development was indeed a theoretical one: to lift from

32 P.D. Welch

NN the theory of recursion to other domains. The closure of an admissible
ordinal was soon seen to result in a powerful theory of sets that when
axiomatised gives essentially a reduced form of ZF, with the scheme of
Replacement restricted to X1 instances, and that of Comprehension to A;.
An admissible set was then a model of this theory, and (wak, €) is the least
transitive model of this theory (if one includes the axiom of infinity). An
account of this development is contained in [Sacks (1990)].

One could therefore simply restrict an ordinal length tape machine to
an admissible ordinal length «, and consider calculations of length at most
« in time.

Does one get back precisely the theory of a-recursion theory? Does
“computably enumerable” correspond to a-r.e., and if so does the machine
approach give any new slant on the old results from the 70’s such as the
Sacks-Simpson theorem [Sacks and Simpson (1972)] that there are incom-
parable a-r.e. sets neither (weakly) a-recursive in the other; or the Shore
Splitting and Density theorems [Shore (1975)], [Shore (1976)]? These are
matters still under investigation. Dawson ([Dawson (2009)]) has established
for a notion of what he calls uniform a-computation that indeed one has
the Sacks-Simpson and Shore Density results.

1.4.2. Ordinal Register Machines

We now turn to full blooded finite register machines with the capability
of ordinal entries. Again such machines are allowed to run transfinitely
using an ordinary register arrangement, and finite instruction set, with a
suitable liminf rules for register values and instruction numbers at limit
ordinal A lengths of time. We have mentioned that one (unpublished by
Platek) approach yielded an equational calculus for ordinal recursion up
to wsk, Siders and Koepke [Koepke and Siders (2006)], consider register
machines with a stack, and remarkably even a machine with finitely many
registers allows one to calculate a bounded truth predicate for L. One thus
can represent L both using Ordinal Register Machines (ORM) and Ordinal
Time Turing Machines (OTM).

As for the ITTM’s one has notions of clockable ordinal (one for which
an ORM or OTM halts on say 0 input) and writable ordinal (one for which
a code can be written: this is easier to formulate for an OTM: a code can
be written literally on the tape; for an ORM one simply has the machine
halt with the ordinal in, say the first register). For both these notions it is
easier than for ITTM’s to conclude that + the supremum of the clockable

Discrete transfinite computation models 33

ordinals is that of the writable ordinals. In [Hamkins and Miller (2009)] it
is explicitly shown how to convert calculations from an ORM to an OTM
and vice versa.

Using ordinal register machines with values up to the admissible ordinal
~ Hamkins and Miller have used priority arguments to produce a Friedberg-
Muchnik like solution to Post’s problem [Hamkins and Miller (2009)] for
ORM’s: they produce ORM-enumerable but incomparable sets A, B C =y
that are below the appropriate notion of jump.

Definition 1.13. Let P, be the e’th ORM program, the (weak) jump is
the set

0 ={e e N|P.(0) |}.

Although neither [Hamkins and Miller (2009)] nor [Koepke and Siders
(2006)] make the following characterisation, it appears reasonable to argue
that the ordinal 7y in fact is recognisable by set theorists as the first X-stable
ordinal o. This is defined to be the least ordinal o so that (L., €) <x, (V, €
), that is, L, is an elementary substructure of the universe of all sets, but
only for ¥, sentences expressible using parameters from L,. (See [Hinman
(1978)] p. 412 for an equivalent definition in terms of co-partial recursive
functions.) Consequently if any ORM (or OTM) halts on integer input (or
indeed any input less than «y) then the length of that computation must be
also less than o, as this halting assertion is itself a simple Y;-statement in
the language of set theory. (Moreover anything output by such a machine
must also clearly be an ordinal less than ¢ by the same reasoning.) Hence
v < 0. To see that ¢ < - observe that in the L hierarchy, new 3; sentences
become true in Ls for arbitrarily large ordinals § < . Now given a true ¥
sentence in the language of set theory, run an ORM (or OTM) program to
search for that ordinal &, and then halt. This task must take more than ¢
(but also less than o) steps. Hence ¢ = . One then obtains:

Proposition 1.5. 09 is recursively isomorphic to the ¥ -truth set of (L, €

).

One can compare this with the statement that the standard Turing
halting set is recursively isomorphic to the ¥;-truth set of (L,,, €) where
L, = HF the class of hereditarily finite sets. A similar result holds (with
the appropriate formulations) for OTM’s for the same reasons.

34 P.D. Welch

1.5. Theoretical machine strength

We consider finally the theoretical strengths of the various types of mech-
anisms considered here. We have answered in one fashion at least, the
capabilities of the machines in the Malament-Hogarth spacetimes, and the
Etesi-Németi model in particular. It is also clear that the ON-length tape
machines are full ZFC-machines that are capable of producing Godel’s con-
structible universe.

For the intermediate machine models we have mentioned, one could
simply be satisfied by seeing at which level of complexity the machines can
answer queries concerning predicates. One can however somewhat more
formally, formulate a theory in which the behaviour of the machine can be
represented, and one may then calibrate this theory, not necessarily proof
theoretically, but at least as a theory within other theories, for example as a
subsystem of second order analysis, much as is done in the Reverse Mathe-
matics Program (see [Simpson (1999)]). The discussion becomes somewhat
technical, but for the logician, interesting.

Towards analysing the I'TTM’s we first look at connections to certain
kinds of quasi-inductive definition that were defined earlier, at least in one
form, by Burgess in [Burgess (1986)].

Let T' : P(w) — P(w) be any arithmetic operator (that is “n € I'(X)”
is arithmetic; we emphasise that I" need be neither monotone nor progres-
sive). We define the following iterates of T' : T'o(X) = X;To11(X) =
F(FQ(X)); F)\(X) = liminf,_,) FQ(X) = Ua<xr Mra>g>a Fﬁ(X) Following
[Burgess (1986)], we say that Y C w is arithmetically quasi-inductive if for
some such I' Y is (1-1) reducible toI'o,(&). Any such definition has a least
countable £ = {(I') with I'¢ (@) = I'on(@). If we let ¢ denote the supremum
of all such &(I"), then we have that the ¢ defined here is none other than the
¢ defined above relating to ITTM’s. In fact the ITTM’s give an example
of a recursive quasi-inductive operator that is complete for all arithmetic
quasi-inductive operators. (Think: a universal ITTM can be programmed
to mimick any arithmetic quasi-inductive operator.) Hence the same class
of sets arises, it turns out, if one restricts to simply recursive T.

For any such arithmetic quasi-inductive operator I' let us now define
the repeat pair of I' on a starting set X, as the lexicographically least pair
(I, X),%(T, X)) with T'¢(X) =T's(X).

Definition 1.14. AQI is the sentence: “For every arithmetic operator
T, for every X C N, there is a wellordering W with a repeat pair

Discrete transfinite computation models 35

(T, X),3(T, X)) in Field(W)”. If an arithmetic operator I' acting on
X has a repeat pair, we say that ' converges (with input X).

Then AQI can be formulated in second order number theory, and essen-
tially is asserting that there are sufficient wellorderings for every operator
on every input set X to converge. One may ask

Q: What is the strength of ACAy + AQI?

(The choice of ACAg, arithmetical comprehension, as a base theory is
somewhat arbitrary. We refer the reader to [Simpson (1999)] in what follows
for all notions concerning these axiom systems, and determinacy hypothe-
ses etc.) We could have equivalently reformulated a version of AQI which
mentioned instead looping points of ITTM’s, but this would turn out to
be equivalent, as we have intimated. l‘l%CA0 is sufficient to prove there are
(B-models of ACAq + AQIL.

Theorem 1.7. ([Welch (2005)])

(i) M3CA,, ACAo + AQI and NM3CA, are in descending order of strength
in that each theory proves the the existence of 3-models of the next.

More precisely, and in the same sense:

(it) AJCA,+X3-Determinacy, ACAo + AQI, and AJCA, are similarly in
strictly descending order of strength.

Determinacy makes an appearance here, since this theorem is the out-
come of an attempt to generalise the theorem of Solovay (see [Kechris
(1978)]) that strategies for X9-games appear at the level of of the L hier-
archy, the closure ordinal for ¥}-monotone inductive definitions. (In turn,
as is well known, stategies for X{-games appear at wj ¢ the closure ordinal
for TI}-monotone inductive definitions. We are thus trying to link AQI’s,
or ITTM’s to strategies for certain infinite games.) Thus AQI’s are close
to, but not equivalent to, YX3-Determinacy. That they are stronger than
¥9-Determinacy, is because o < (. Moreover, letting “Bool(39)” denote
Boolean combinations of X9 sets, the constructible rank of the height of the
least 3-model of II3CA (as shown by Méllerfeld and Heinatsch [Heinatsch
and Méllerfeld (2007)]) where strategies for Bool(39) games are to be found,
is less than ¢, and in fact is again a “writable” ordinal less than A, in the
sense of ITTM’s. This shows that the assertion that any ITTM halts or
loops, is stronger than Bool(39)-Determinacy.

That AJCA, + AQI is stronger than AJCA, in the above sense should
be plausible in that the universal ITTM on input @ will go into a loop at
the “repeat pair” ordinals ¢ and X where L <x, Ly. However it is easy to

36 P.D. Welch

see from this Yg-extendability property that any such L¢ is a ¥p-admissible
set (where we now require the admissible set to additionally be a model of
Ys-Replacement) and is also a union of such. The reals of such a model
then form a -model of AJCA,.

Connections to ordinal analysis

The notion of “Ys-extendibility” of a model, that is of having a proper
Yo-elementary end extension, would seem prima facie, to be connected to
any attempt to prove a generalisation of Rathjen’s ordinal analysis ([Rath-
jen (2005)]) of II3CAq that could be lifted to M3CA,. In the former proof,
chains of arbitrary but finite length of ¥1-end entensions in the constructible
hierarchy of the form L¢, <5, L¢, <5, --- <5, L, are analysed. (Note
that the least 3-model of II}CA(consists of P(N) N L¢, where &, is the
least ordinal with L¢_ a union of an infinite tower of of ¥; substructures.)
To analyse FI%CAO in a similar way would require lifting the ‘1’ above to
‘2’ and looking at arbitrarily long chains of ¥s-extensions. It would seem
then that any ordinal analysis of M3CA,, would first have to go through an
analysis of AQI, the latter being but the very first step in this linkage.

Y -machines.

The notion of liminf is essentially a two quantifier alternation: “there
exists a time such that for all later times....”.
whether there are other types of limit rule that bring out about different

It is possible to enquire

notions of computation, or different classes of computable function. One
attempt to consider this question is a result of [Welch (2000)] which shows
that, amongst all possible Yo-rules the liminf (or equivalently the limsup)
rule is complete, or the most general. This is entirely unsurprising: if the
universal ITTM machine can produce the constructible hierarchy up to
Ly, there is little else for it to do. Further any other ¥s-rule would itself
produce looping behaviour between L¢ and L.

One may thus broaden the enquiry and look for more complex rules.
It is possible to develop a Y3-machine which incorporates a Y3-limit rule
cf.[Friedman and Welch (2009)]; the essential idea is that instead of taking
a liminf along all ordinals one takes a liminf using only those ordinals that
already bound the reapparances of earlier (shifted) snapshots. One thus
has in some sense a dynamic limit rule in that the behaviour at a limit
rule depends more formally on the tapes’ prior contents. One then has the
analogous result that a universal machine program would then have identi-
cal snapshots at the least pair (¢(3),%(3)) where L¢3y <s, Lx3)to mirror
the earlier A\-(-X theorem at ¥g. After ¥(3) it then returns to the previous
snapshot at ((3) and thereafter repeats for ever. It is possible to gener-

Discrete transfinite computation models 37

alise this to higher quantificational levels ¥, with the snapshot/looping
behaviour at the appropriate pair ({(n), X(n)) lexicographically least with
L¢ny <x, Ls(n). However showing these facts is more technical, and is
reliant more on the underlying set theory; it thus perhaps has decreasingly
less of an appeal to intuitions concerning machine computation. This is
explained in [Friedman and Welch (2009)].

ITRM’s on integers

The ITRM’s of Miller and Koepke (2.2.2) with entries restricted to
natural numbers turn out to be pleasantly strong. It is possible show that
such machines are IT3-complete, in that for any I1} set A there is a program
on an I'TRM, that correctly accepts or rejects n depending on whether n is
or is not in A. It can thus for example decide for which indices e the e’th
(standard) Turing function {e} is the characteristic function of a wellorder
or not. Moreover it can be shown that the strength of the machine strictly
increases with the number N of registers. It is possible with 2V registers
to simulate an N register machine, whilst giving as output integer codes of
those programs on N registers that halt. A corollary is that there can be no
such universal machine. Here we let P, n denote the e’th ITRM program
for an N register machine.

Definition 1.15. Let ITRM be the axiom scheme that states for each N €
N that halting sets for N-register machines exists:
“For any N € N, Ky =q¢ {e|P€’N(6) 1} exists”.

One then obtains (with RCAg as the recursive comprehension scheme):
Theorem 1.8. RCAq - ITRM «— TMiCA,.

Reverse Mathematics has shown that a wealth of theorems can be proven
in the system I'I%CAO. As a sample we have the following, in which we
assume the ITRM is equipped with an oracle set Z C N (and a register
operation to query it):

Theorem 1.9. Let T C {0 | 0 €<N N} be a set of sequences which we
consider as forming a tree. Then if Z C N codes T (via some recursive
coding), the perfect kernel of T is ITRM-computable in the oracle Z.

(By the perfect kernal we mean the maximal subtree whose branches
form a perfect set, that is without isolated points.) Thus, as with much of
this kind of study, a seemingly simple model in fact turns out to be rather
powerful.

38 P.D. Welch

References

Barwise, K. (1975). Admassible Sets and Structures, Perspectives in Mathematical
Logic (Springer Verlag).

Beggs, E., Costa, J., Loff, B. and Tucker, J. (2008). Oracles and advice as mea-
surement, in C. C. et al. (ed.), Unconventional Computing, Lecture Notes
in Computer Science, Vol. 5204 (Springer), pp. 33-50.

Beggs, E. and Tucker, J. (2007). Can newtonian systems, bounded in space, time,
mass and energy compute all functions? Theoretical Computer Science 371,
pp. 4-19.

Blum, L., Shub, M. and Smale, S. (1989). On a theory of computation and com-
plexity over the real numbers, Notices of the American Mathematics Society
(N.S.) 21, 1, pp. 1-46.

Burgess, J. (1986). The truth is never simple, Journal of Symbolic Logic 51, 3,
pp- 663-681.

Cutland, N. (1980). Computability: an Introduction to Recursive Function Theory
(CUP).

Davies, E. (2001). Building infinite machines, British J. for Philosophy of Science
52, 4, pp. 671-682.

Dawson, B. (2009). Ordinal time Turing computation, Ph.D. thesis, Bristol.

Devlin, K. (1984). Constructibility, Perspectives in Mathematical Logic (Springer
Verlag, Berlin, Heidelberg).

Earman, J. and Norton, J. (1993). Forever is a day: Supertasks in Pitowsky and
Malament-Hogarth spacetimes, Philosophy of Science 60, pp. 22-42.
Earman, J. and Norton, J. (1996). Infinite pains: the trouble with supertasks, in
A. Morton and S. Stich (eds.), Benacerraf and his critics, Philosophers and

their critics, Vol. xi (Blackwell, Oxford), p. 271.

Etesi, G. and Németi, I. (2002). Non-Turing computations via Malament-Hogarth
space-times, International Journal of Theoretical Physics 41, 2, pp. 341—
370.

Fenstad, J. (1980). General recursion Theory: an aziomatic approach, Perspec-
tives in Mathematical Logic (Springer, Berlin, Heidelberg, New York).

Friedman, S. D. and Welch, P. D. (2009). Hypermachines, submitted to the Journal
of Symbolic Logic .

Hamkins, J. and Lewis, A. (2000). Infinite time Turing machines, Journal of
Symbolic Logic 65, 2, pp. 567—-604.

Hamkins, J. and Miller, R. (2009). Post’s problem for ordinal register machines:
an explicit approach, Annals of Pure and Applied Logic 160, 3, pp. 302-309.

Hamkins, J. and Seabold, D. (2001). Infinite time Turing machines with only one
tape, Mathematical Logic Quarterly 47, 2, pp. 271-287.

Hawking, S. and Ellis, G. (1973). The large scale structure of space-time (Cam-
bridge University Press).

Heinatsch, C. and Mollerfeld, M. (2007). Determinacy in second order arithmetic,
in S. Bold, B.Lowe, T. Rasch and J. van Bentham (eds.), Foundations of
the Formal Sciences V, Studies in Logic (College Publications, London),
pp. 143-155.

Discrete transfinite computation models 39

Hinman, P. (1978). Recursion-Theoretic Hierarchies, Q0 Series in Mathematical
Logic (Springer, Berlin).

Hogarth, M. (1992). Does general relativity allow an observer to view an eternity
in a finite time? Foundations of Physics Letters 5, 2, pp. 173-181.

Hogarth, M. (1994). Non-Turing computers and non-Turing computability, PSA:
Proceedings of the Biennial Meeting of the Philosophy of Science Associa-
tion Vol. 1 1994, pp. 126-138.

Hogarth, M. (2004). Deciding arithmetic using SAD computers, British Journal
for the Philosophy of Science 55, pp. 681-691.

Hrbacek, K. and Simpson, S. (1980). On Kleene degrees of analytic sets, in
H. J.Barwise and K.Kunen (eds.), Proceedings of the Kleene Symposium,
Studies in Logic (North-Holland), pp. 347-352.

Kechris, A. S. (1978). On Spector classes, in A. S. Kechris and Y. N. Moschovakis
(eds.), Cabal Seminar 76-77, Lecture Notes in Mathematics Series, Vol. 689
(Springer), pp. 245-278.

Kleene, S. (1978). Recursive functionals and quantifiers of finite types revisited,
in Generalized Recursion Theory II, Proceedings 2nd Scandinavian Logic
Symposium, Oslo, 1977, Studies in Logic and Foundations of Mathematics,
Vol. 94 (North-Holland, Amsterdam, New York), pp. 185-222.

Kleene, S. C. (1959). Recursive quantifiers and functionals of finite type I, Trans-
actions of the American Mathematical Society 91, pp. 1-52.

Kleene, S. C. (1962a). Turing-machine computable functionals of finite type I,
in Proceedings 1960 Conference on Logic, Methodology and Philosopy of
Science (Stanford University Press), pp. 38-45.

Kleene, S. C. (1962b). Turing-machine computable functionals of finite type II,
Proceedings of the London Mathematical Society 12, pp. 245—258.

Kleene, S. C. (1963). Recursive quantifiers and functionals of finite type II, Trans-
actions of the American Mathematical Society 108, pp. 106—-142.

Klev, A. (2007). Magister thesis (ILLC Amsterdam).

Koepke, P. (2005). Turing computation on ordinals, Bulletin of Symbolic Logic
11, pp. 377-397.

Koepke, P. and Koerwien, M. (2006). Ordinal computations, Mathematical Struc-
tures in Computer Science 16.5, pp. 867-884.

Koepke, P. and Miller, R. (2008). An enhanced theory of infinite time register
machines, in A. B. et al. (ed.), Logic and the Theory of Algorithms, Springer
Lecture Notes Computer Science, Vol. 5028, Swansea (Springer), pp. 306—
315.

Koepke, P. and Siders, R. (2006). Computing the recursive truth predicate on
ordinal register machines, in A. B. et al. (ed.), Logical Approaches to Com-
putational Barriers, Computer Science Report Series (Swansea), p. 21.

Kripke, S. (1964). Transfinite recursion on admissible ordinals LII, Journal of
Symbolic Logic 29, pp. 161-162.

Levy, A. (1963). Transfinite computability (abstract), Notices of the American
Mathematical Society 10, p. 286.

Machover, M. (1961). The theory of transfinite recursion, Bulletin of the American
Mathematical Society 67, pp. 575—-578.

40 P.D. Welch

Moschovakis, Y. N. (1974). Elementary Induction on Abstract structures, Studies
in Logic series, Vol. 77 (North-Holland, Amsterdam).

Pitowsky, I. (1990). The physical Church-Turing thesis and physical computa-
tional complexity, Iyyun 39, pp. 81-99.

Platek, R. (1966). Foundations of Recursion Theory, Ph.D. thesis, Stanford.

Putnam, H. (1965). Trial and error predicates and the solution to a problem of
Mostowski, Journal of Symbolic Logic 30, pp. 49-57.

Rathjen, M. (2005). An ordinal analysis of parameter-free IT3 comprehension,
Archive for Mathematical Logic 44, 3, pp. 263-362.

Rogers, H. (1967). Recursive Function Theory, Higher Mathematics (McGraw).

Sacks, G. (1990). Higher Recursion Theory, Perspectives in Mathematical Logic
(Springer Verlag).

Sacks, G. E. and Simpson, S. G. (1972). The a-finite injury method, Annals of
Mathematical Logic 4, pp. 343-367.

Shepherdson, J. and Sturgis, H. (?7?77?). Computability of recursive functionals, .

Shore, R. A. (1975). Splitting an « recursively enumerable set, Transactions of
the American Mathematical Society 204, pp. 65—78.

Shore, R. A. (1976). The recursively enumerable a-degrees are dense, Annals of
Mathematical Logic 9, pp. 123-155.

Simpson, S. (1999). Subsystems of second order arithmetic, Perspectives in Math-
ematical Logic (Springer).

Takeuti, G. (1960). On the recursive functions of ordinal numbers, Journal of the
Mathematical Society of Japan 12, pp. 119-128.

Thomson, J. (1954-55). Tasks and supertasks, Analysis 15, 1, pp. 1-13.

Tugué, T. (1964). On the partial recursive functions of ordinal numbers, Journal
of the Mathematical Society of Japan 16, pp. 1-31.

Welch, P. D. (2000). Eventually infinite time Turing degrees: infinite time decid-
able reals, Journal for Symbolic Logic 65, 3, pp. 1193-1203.

Welch, P. D. (2004). Post’s and other problems in higher type supertasks, in
B. Lowe, B. Piwinger and T. Résch (eds.), Classical and New Paradigms
of Computation and their Complezity hierarchies, Papers of the Conference
Foundations of the Formal Sciences III, Trends in logic, Vol. 23 (Kluwer),
pp. 223-237.

Welch, P. D. (2005). Weak systems of determinacy and arithmetical quasi-
inductive definitions, arXiv: 0905.4412, to appear in the Journal of Sym-
bolic Logic 20107 .

Welch, P. D. (2008). Turing Unbound: The extent of computations in Malament-
Hogarth spacetimes, British J. for the Philosophy of Science 15, 4, pp.
659-674.

Welch, P. D. (2009). Characteristics of discrete transfinite Turing machine models:
halting times, stabilization times, and normal form theorems, Theoretical
Computer Science 410, pp. 426-442.

