Generalised transfinite Turing machines and strategies for games.

P.D. Welch, University of Bristol.

Chicheley Hall 2012
• Theme: Connections between inductive operators, discrete transfinite machine models of computation, and determinacy.
• Theme: Connections between inductive operators, discrete transfinite machine models of computation, and determinacy.

• Part I: ITTM description.
• Part II: Fixed points of operators yielding some strategies.
• Part III: Generalising Operators and Machines
Part I: ITTM description

- Allow a standard Turing machine to run transfinitely using one of the usual programs $\langle P_e \mid e \in \mathbb{N} \rangle$.
- Alphabet: $\{0, 1\}$;
- Enumerate the cells of the tape $\langle C_k \mid k \in \mathbb{N} \rangle$.

Let the current instruction about to be performed at time τ be $I_{i(\tau)}$;
Let the current cell being inspected be $C_{p(\tau)}$.

\[[HL] \text{Hamkins & Lewis “Infinite Time Turing Machines”, JSL, vol. 65, 2000.} \]
Part I: ITTM description\(^1\)

- Allow a standard Turing machine to run transfinitely using one of the usual programs \(\langle P_e \mid e \in \mathbb{N} \rangle\).
- Alphabet: \(\{0, 1\}\);
- Enumerate the cells of the tape \(\langle C_k \mid k \in \mathbb{N} \rangle\).

 Let the current instruction about to be performed at time \(\tau\) be \(I_{i(\tau)}\);
 Let the current cell being inspected be \(C_{p(\tau)}\).
- Behaviour at successor stages \(\alpha \to \alpha + 1\): as normal.

At limit times \(\lambda\):

(a) we specify cell values by:

\[
C_k(\lambda) = \operatorname{Liminf}_{\beta \to \lambda} C_k(\alpha)
\]

(where the value in \(C_k\) at time \(\tau\) is \(C_k(\tau)\)).

Part I: ITTM description

- Allow a standard Turing machine to run transfinitely using one of the usual programs $\langle P_e | e \in \mathbb{N} \rangle$.
- Alphabet: $\{0, 1\}$;
- Enumerate the cells of the tape $\langle C_k | k \in \mathbb{N} \rangle$.
 Let the current instruction about to be performed at time τ be $I_{i(\tau)}$;
 Let the current cell being inspected be $C_{p(\tau)}$.
- Behaviour at successor stages $\alpha \rightarrow \alpha + 1$: as normal.

At limit times λ: (a) we specify cell values by:

$$C_k(\lambda) = \operatorname{Liminf}_{\beta \rightarrow \lambda} C_k(\alpha)$$

(where the value in C_k at time τ is $C_k(\tau)$).

(b) we also (i) put the R/W to cell $C_{p(\lambda)}$ where

$$p(\lambda) = \operatorname{Liminf}_{\alpha \rightarrow \lambda}^{\ast} \{p(\beta) | \alpha < \beta < \lambda\};$$

(ii) set

$$i(\lambda) = \operatorname{Liminf}_{\alpha \rightarrow \lambda} \{i(\beta) | \alpha < \beta < \lambda\}.$$
Hamkins & Lewis proved there is a universal machine, an S^m_n-Theorem, and a Recursion Theorem for ITTM’s, and a wealth of results on the resulting ITTM-degree theory.

We may define halting sets:

$$H = \{(e, x) \mid e \in \mathbb{N}, x \in 2^\mathbb{N} \land P_e(x) \downarrow\}$$

$$H_0 = \{(e, 0) \mid e \in \mathbb{N} \land P_e(0) \downarrow\}$$
• Hamkins & Lewis proved there is a universal machine, an S_m^n-Theorem, and a Recursion Theorem for ITTM’s, and a wealth of results on the resulting ITTM-degree theory.

• We may define halting sets:

$$H = \{(e, x) \mid e \in \mathbb{N}, x \in 2^\mathbb{N} \land P_e(x) \downarrow\}$$

$$H_0 = \{(e, 0) \mid e \in \mathbb{N} \land P_e(0) \downarrow\}$$

Q. What is H or H_0?

Q. How long do we have to wait to discover if $e \in H_0$ or not?

Q. What are the ITTM (semi)-decidable sets of integers? Or reals?
We’d like some type of a “ITTM Normal Form Theorem”:

Theorem

There is a universal predicate \mathcal{T} which satisfies $\forall e \forall x$:

$$P_e(x) \downarrow z \iff \exists y \in 2^{\mathbb{N}} [\mathcal{T}(e, x, y) \land \text{Last}(y) = z].$$
A Kleene Normal Form Theorem?

We’d like some type of a “ITTM Normal Form Theorem”:

Theorem

There is a universal predicate \exists which satisfies $\forall e \forall x:$

$$P_e(x) \downarrow z \iff \exists y \in 2^\mathbb{N} [\exists(e, x, y) \land \text{Last}(y) = z].$$

However for this to occur we need to know whether the ordinal length of any computation is capable of being output or written by another computation.
The λ, ζ, Σ-Theorem\(^2\)

Theorem

Let ζ be the least ordinal so that there exists $\Sigma > \zeta$ with the property that

$$L_\zeta \prec_{\Sigma_2} L_\Sigma; \quad (\zeta \text{ is } \text{“Σ_2-extendible”}.)$$

(i) Then the universal ITTM on integer input first enters a loop at time ζ.

Theorem

Let ζ be the least ordinal so that there exists $\Sigma > \zeta$ with the property that

$$L_\zeta \prec_{\Sigma_2} L_\Sigma; \quad (\zeta \text{ is } "\Sigma_2\text{-extendible}.")$$

(i) Then the universal ITTM on integer input first enters a loop at time ζ. Let λ be the least ordinal satisfying:

$$L_\lambda \prec_{\Sigma_1} L_\zeta.$$

(ii) Then $\lambda = \sup\{\alpha \mid \exists e \ P_e(0) \downarrow \text{in } \alpha \text{ steps}\}$

$$= \sup\{\alpha \mid \exists e \ P_e(0) \downarrow y \in \text{WO} \wedge ||y|| = \alpha\}.$$

\footnote{Welch The length of ITTM computations, Bull. London Math. Soc. 2000}
Theorem
Let ζ be the least ordinal so that there exists $\Sigma > \zeta$ with the property that

$$L_\zeta \prec_{\Sigma_2} L_\Sigma; \quad (\zeta \text{ is } "\Sigma_2\text{-extendible"}.)$$

(i) Then the universal ITTM on integer input first enters a loop at time ζ.
Let λ be the least ordinal satisfying:

$$L_\lambda \prec_{\Sigma_1} L_\zeta.$$

(ii) Then $\lambda = \sup\{\alpha \mid \exists e\ P_e(0) \downarrow \text{in } \alpha \text{ steps}\}$

$$= \sup\{\alpha \mid \exists e\ P_e(0) \downarrow y \in \text{WO} \land ||y|| = \alpha\}.$$

• As a corollary one derives the Normal Form Theorem and:

Corollary

$$H_0 \equiv \Sigma_1\text{-Th}(L_\lambda).$$

Part II: Over \mathbb{N} \(\Pi^1_1\text{-IND} = \emptyset \Sigma^0_1 \)

- The *game* quantifier \emptyset:

Definition
A set $A \subseteq \mathbb{N}$ is $\emptyset \Gamma$ if there is $B \in \mathbb{N} \times \mathbb{R}$ so that:

$$n \in A \iff \text{Player I has a winning strategy in } G_{B_n}$$

where $B_n = \{ x \in \mathbb{R} \mid B(n, x) \}$.

Part II: Over \mathbb{N} Π^1_1-IND = $\exists \Sigma^0_1$

- The *game* quantifier \exists:

Definition
A set $A \subseteq \mathbb{N}$ is $\exists \Gamma$ if there is $B \in \mathbb{N} \times \mathbb{R}$ so that:

$$n \in A \iff \text{Player I has a winning strategy in } G_{B_n}$$

where $B_n = \{x \in \mathbb{R} \mid B(n, x)\}$.

Theorem (Folklore)
A set $A \subseteq \mathbb{N}$ is (mon.-Π^1_1)-IND iff it is $\exists \Sigma^0_1$ iff it is $\Sigma_1(L_{\omega_1^{ck}})$.
Part II: Over \mathbb{N} \(\Pi^1_1\text{-IND} = \emptyset \Sigma^0_1 \)

- The *game* quantifier \emptyset:

Definition
A set $A \subseteq \mathbb{N}$ is $\emptyset \Gamma$ if there is $B \in \mathbb{N} \times \mathbb{R}$ so that:

$$ n \in A \iff \text{Player I has a winning strategy in } G_{B_n} $$

where $B_n = \{ x \in \mathbb{R} \mid B(n, x) \}$.

Theorem (Folklore)
A set $A \subseteq \mathbb{N}$ is (mon.-Π^1_1)-IND iff it is $\emptyset \Sigma^0_1$ iff it is $\Sigma^0_1(L_{\omega^1_{ck}})$.

Theorem (Svenonius)
Any Σ^0_1 game, if it is a win for Player I then she has a (mon.-Π^1_1)-IND winning strategy. Hence this is also $\Sigma^1_1(L_{\omega^1_{ck}})$.
Theorem (Solovay)

A set $A \subseteq \mathbb{N}$ is Σ^1_1-IND iff it is $\varnothing \Sigma_2^0$ iff it is $\Sigma_1(\mathcal{L}_{\sigma^1_1})$.

(where σ^1_1 is the closure ordinal of Σ^1_1-inductive definitions).
Part II: Over \mathbb{N} \(\Sigma^1_1\text{-IND} = \Theta \Sigma^0_2 \)

Theorem (Solovay)

A set $A \subseteq \mathbb{N}$ is $\Sigma^1_1\text{-IND}$ iff it is $\Theta \Sigma^0_2$ iff it is $\Sigma_1(L_{\sigma^1_1})$.

(where σ^1_1 is the closure ordinal of Σ^1_1-inductive definitions).

Theorem (Solovay)

Any Σ^0_2 game, if it is a win for Player I then she has a $\Sigma^1_1\text{-IND}$ winning strategy. Hence this is also $\Sigma_1(L_{\sigma^1_1})$.
Part II: Over \mathbb{N} \[\Sigma^1_1\text{-IND} = \emptyset \Sigma^0_2 \]

Theorem (Solovay)

A set $A \subseteq \mathbb{N}$ is $\Sigma^1_1\text{-IND}$ iff it is $\emptyset \Sigma^0_2$ iff it is $\Sigma_1(L_{\sigma_1})$.

(where σ^1_1 is the closure ordinal of Σ^1_1-inductive definitions).

Theorem (Solovay)

Any Σ^0_2 game, if it is a win for Player I then she has a $\Sigma^1_1\text{-IND}$ winning strategy. Hence this is also $\Sigma_1(L_{\sigma_1})$.

Q. What about Σ^0_3?
Part II: Over \mathbb{N} \[\Sigma^1_1-\text{IND} = \emptyset \Sigma^0_2 \]

Theorem (Solovay)

A set $A \subseteq \mathbb{N}$ is Σ^1_1-IND iff it is $\emptyset \Sigma^0_2$ iff it is $\Sigma_1(L_{\sigma^1_1})$.

(where σ^1_1 is the closure ordinal of Σ^1_1-inductive definitions).

Theorem (Solovay)

Any Σ^0_2 game, if it is a win for Player I then she has a Σ^1_1-IND winning strategy. Hence this is also $\Sigma_1(L_{\sigma^1_1})$.

Q. What about Σ^0_3?

Theorem (Friedman)

$Z_2 \not\vdash \Sigma^0_4$-Det.
Theorem (Solovay)
A set $A \subseteq \mathbb{N}$ is Σ^1_1-IND iff it is $\emptyset \Sigma^0_2$ iff it is $\Sigma_1(L_{\sigma^1_1})$.
(where σ^1_1 is the closure ordinal of Σ^1_1-inductive definitions).

Theorem (Solovay)
Any Σ^0_2 game, if it is a win for Player I then she has a Σ^1_1-IND winning strategy. Hence this is also $\Sigma_1(L_{\sigma^1_1})$.

Q. What about Σ^0_3?

Theorem (Friedman)
$Z_2 \not\models \Sigma^0_4$-Det.

Q Are strategies for Σ^0_3 sets ITTM-semi-decidable? Thus: are they $\Sigma_1(L_{\Sigma})$?
Definition
Let “ITTM” abbreviate: “$\forall X (H^X_0 \text{ exists})$”
(“the complete ITTM-semi-decidable-in-X set exists”).

3Welch “Weak Systems of Determinacy and Arithmetical Quasi-Inductive Definitions”, JSL, June 2011
Definition
Let “ITTM” abbreviate: “∀X(H_0^X exists)”
(“the complete ITTM-semi-decidable-in-X set exists”).

Theorem
The theories:
\[\Pi_3^1-\text{CA}_0, \Delta_3^1-\text{CA}_0 + \Sigma_3^0-\text{Det}, \Delta_3^1-\text{CA}_0 + \text{ITTM}, \Delta_3^1-\text{CA}_0 \]
are in strictly descending order of strength\(^3\).

\(^3\)Welch “Weak Systems of Determinacy and Arithmetical Quasi-Inductive Definitions”, JSL, June 2011
Definition
Let “ITTM” abbreviate: “∀X(H^X_0 exists)”
(“the complete ITTM-semi-decidable-in-X set exists”).

Theorem
The theories:
\[\Pi^1_3\text{-CA}_0, \Delta^1_3\text{-CA}_0 + \Sigma^0_3\text{-Det}, \Delta^1_3\text{-CA}_0 + \text{ITTM}, \Delta^1_3\text{-CA}_0 \]
are in strictly descending order of strength\(^3\).

\(^3\)Welch “Weak Systems of Determinacy and Arithmetical Quasi-Inductive Definitions”, JSL, June 2011
Open Questions

Q1 Give another description of the least β over which strategies for Σ^0_3 sets are definable.
Open Questions

Q1 Give another description of the least β over which strategies for Σ^0_3 sets are definable.

Conjecture 1: Lubarsky’s ‘Feedback-ITTM’s’ are related to this.
Lubarsky’s Feedback ITTM’s

Lubarsky has suggested a variant of the HL-machine which is allowed to make calls to sub-routines to obtain the answer to the question:

“Does the ITTM-computation P_e with the current real x of the scratch tape halt or loop?”.

- In other words one considers ITTM-computations recursive in H.
- Clearly such an FITTM may make an infinite chain of such calls in which case Lubarsky calls the computation “freezing”.

4R. Lubarsky Well founded iterations of Infinite Time Turing Machines, 2010.
Lubarsky’s Feedback ITTM’s

Lubarsky has suggested a variant of the HL-machine which is allowed to make calls to sub-routines to obtain the answer to the question:

“Does the ITTM-computation P_e with the current real x of the scratch tape halt or loop?”.

• In other words one considers ITTM-computations recursive in H.

• Clearly such an FITTM may make an infinite chain of such calls in which case Lubarsky calls the computation “freezing”.

• The natural Conjecture 1 emerges that any winning strategy for a Σ^0_3 game which wins for player I can be written by an FITTM.

4R. Lubarsky Well founded iterations of Infinite Time Turing Machines, 2010.
Or, Conjecture 2:

- Does $\beta = \text{the closure ordinal of monotone-}\mathcal{E}\Pi_3^0\text{-Inductive Operators}$?
Or, Conjecture 2:

- Does β = the closure ordinal of monotone-$\mathcal{E}\Pi^0_3$-Inductive Operators?

Theorem

(i) If $\gamma < \beta$ is least with $L_\gamma \prec_{\Sigma_1} L_\beta$ then γ is the closure ordinal of monotone-$\mathcal{E}\Sigma^0_3$-Inductive Operators.
Or, Conjecture 2:

- Does $\beta = $ the closure ordinal of monotone-$\mathcal{O}\Pi_3^0$-Inductive Operators?

Theorem

(i) If $\gamma < \beta$ is least with $L_\gamma \prec_{\Sigma_1} L_\beta$ then γ is the closure ordinal of monotone-$\mathcal{O}\Sigma_3^0$-Inductive Operators.

(ii) Σ_1-$Th(L_\gamma)$ is a complete $\mathcal{O}\Sigma_3^0$ set.
Part III: Hypermachines5

- Can we find ‘machines’ that will lift the Σ_2 “Liminf” of [HL] to a Σ_n-rule at limit stages?

5Friedman-Welch “Hypermachines”, JSL, June 2011
Part III: Hypermachines5

- Can we find ‘machines’ that will lift the Σ_2 “Liminf” of [HL] to a Σ_n-rule at limit stages?

Theorem (S.Friedman-W)

*For any $n \geq 2$ there is such a Σ_n limit rule, so that for a machine running under such a rule, the universal Σ_n-machine on integer input first enters a loop at the least $\zeta(n)$ s.t. $\exists \Sigma(n) > \zeta(n)$ with

$$L_{\zeta(n)} \prec_{\Sigma_n} L_{\Sigma(n)}.$$*
Part III: Hypermachines5

- Can we find ‘machines’ that will lift the Σ_2 “Liminf” of [HL] to a Σ_n-rule at limit stages?

Theorem (S.Friedman-W)

*For any $n \geq 2$ there is such a Σ_n limit rule, so that for a machine running under such a rule, the universal Σ_n-machine on integer input first enters a loop at the least $\zeta(n)$ s.t. $\exists \Sigma(n) > \zeta(n)$ with

$$L_{\zeta(n)} \prec \Sigma_n L_{\Sigma(n)}.$$

- Such machines then compute, taken as a whole, all the reals of the least β-model of analysis $2^\omega \cap L_{\beta_0}$.

5Friedman-Welch “Hypermachines”, JSL, June 2011
Part III: Hypermachines

• Can we find ‘machines’ that will lift the Σ_2 “Liminf” of [HL] to a Σ_n-rule at limit stages?

Theorem (S. Friedman-W)

For any $n \geq 2$ there is such a Σ_n limit rule, so that for a machine running under such a rule, the universal Σ_n-machine on integer input first enters a loop at the least $\zeta(n)$ s.t. $\exists \Sigma(n) > \zeta(n)$ with

$$L_{\zeta(n)} \prec^\Sigma_n L\Sigma(n).$$

• Such machines then compute, taken as a whole, all the reals of the least β-model of analysis $2^\omega \cap L_{\beta_0}$.

• Then, *e.g.* using Montalban-Shore, strategies for $n-\Sigma^0_3$ games are computable by the Σ_{n+2}-machines.
Open Questions continued

Q2 Develop an ordinal theoretic analysis of the theory ITTM.
Open Questions continued

Q2 Develop an ordinal theoretic analysis of the theory ITTM.

Q3 Find the β_n where strategies for $n-$\(\Sigma^0_3\) games can be located.
Q2 Develop an ordinal theoretic analysis of the theory ITTM.

Q3 Find the β_n where strategies for n-Σ_3^0 games can be located.

Define semi-decidable sets of reals using the ITTM’s (and Σ_n-hypermachines) in a standard way; this yields pointclasses Γ_n strictly within Δ_2^1.
Q2 Develop an ordinal theoretic analysis of the theory ITTM.

Q3 Find the β_n where strategies for n-Σ^0_3 games can be located.

Define semi-decidable sets of reals using the ITTM’s (and Σ_n -hypermachines) in a standard way; this yields pointclasses Γ_n strictly within Δ^1_2.

Q4 Quantify $\text{Det}(\Gamma_n)$.
A sample theorem of what is known:

Theorem

\[ZFC + Det(\Gamma_2) \Rightarrow \text{There is an inner model with a proper class of strong cardinals}^{6}. \]