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Part I Construction of some semantical models:

(i) Kripkean fixed point models: Strong Kleene

(ii) Revision Theory: Herzberger sequences, Gupta–Belnap Revision
Theory

(iii) Field’s model(s).

Part II Analysis - Ramifications and connections

• Some mathematical analysis

• The ‘interior’ of a semantical model.

• connections: generalized recursion theory, proof theory, constructible
sets, infinite computational models, (quasi) inductive definitions.



The Kripkean Strong Kleene model

Given an appropriate first order model M with a suitable language L , we
expand the latter to LT by adding a unary predicate letter T(v0). The
interpretation of T will be partial, and will be interpreted in
M+ = (M , (E,A)). We assume that the (denotations of the names of)
sentences of LT are elements of |M |. and E ∩A =∅.

• Truth or Falsity of LT -sentences in M+ is determined by the following
positive inductive rules:

If σ is an atomic in L , then σ is true (false) in M+ iff it is so in M .
If σ is T(τ) then it is true (false) in M+ iff τM ∈ E (τM ∈ A

)
;

¬ϕ is true in M+ iff ϕ is false ; ¬ϕ is false in M+ iff ϕ is true;

ϕ∨ψ is true in M+ if one of ϕ, ψ is so true;

ϕ∨ψ is false in M+ iff both ϕ,ψ are so false.

∃v0(v0) is true in M+ iff, for some a ∈M ,ϕ
(
a
)

is true.

∃v0(v0) is false in M+ iff, for all a ∈M ,ϕ
(
a
)

is false.



The minimal fixed point

• We thus have an inductive operator Γ= Γsk : Γ((E,A)) = (E′,A′) which is
monotone (meaning that if (E,A)⊆(F ,B) then Γ((E,A))⊆Γ((F ,B)) ).

• We then may iterate: E0 = A0 =∅ and
Γ((Eα,Aα)) = (Eα+1,Aα+1) ; (Eλ,Aλ) =⋃

α<λ(Eα,Aα) (for λ a limit ordinal).

Then for some α0 we reach Γ((Eα0 ,Aα0 )) = (Eα0 ,Aα0 ). We thus may define
the minimal partial fixed point. We thus have for any τ denoting a
sentence of LT , that(
M+, (Eα0 ,Aα0 )) |= τM if and only if

(
M+, (Eα0 ,Aα0 )) |= T

(
τM ).

• If the structure M admits a coding scheme or in some way allows for
diagonalisation, the usual Tarskian argument shows that the model(
M+, (Eα0 ,Aα0 )) cannot be classical, that is Aα0 = SentM \Eα0 .

(This is Kripke’s insight: we may nevertheless have partial fixed points.)



Pros and Cons

Given diagonalisation:
Ï Pros: a) The naturalness of the scheme.

b) A liar sentence λ≡¬T (pλq) is not in Eα0 ∪Aα0 (or any other fixed
point). This illustrates the true paradoxicality of the Liar.
(A truth-teller τ≡ T (pτq) is also not in the minimal fixed point (but
possibly in other f.p.’s).)
Why? There are never grounds in the inductive scheme to add them to any
Eβ∪Aβ.
Ï Cons: a) The fixed point is not closed under FO logical consequence:
there are many σ with σ∨¬σ failing to gain a truth value. b) In particular:

¬T (pλq)∨T (pλq) or again ¬(T (pλq)∨T (p¬λq))
are also semantically defective. In the object language LT the latter fails to
gain a truth value, but metalinguistically where we are using 2-valued
classical logic we recognise its truth. Similarly defective is:

∀v0 (T(v0)−→T(v0))

• Note c) that we cannot express this semantic defectiveness within the
object language.



An axiomatisation of the minimal fixed point

However:

• We may effect an axiomatisation of E∞ = Eα0 by saying that it is the set
of consequences of the true atomic and negation of atomic sentences of
L inM , and closed under the following rules of inference: ∨-Introd,
¬∨-Introd, ∧-Introd, ¬∧-Introd, ¬¬-Introd, T-Introd, and ¬T-Introd, and

ϕ(v0/cm) ¬ϕ(v0/cm) {A(x/cu) | u ∈M } {¬A(x/cu) | u ∈M }
∃v0ϕ ¬∀v0ϕ ∀xA ¬∃xA

• Note that if σ ∈ E∞ then so is σ↔T (pσq). That is the T-biconditionals
hold for any σ in the fixed point, but not for all σ. Also for σ ∈ E∞ we have
the Intersubstitutivity Principle that σ can be substituted for any sub
formula T (pσq) or vice versa.

• Thought of as a rule of inference we see that E∞ (indeed any f.p.) is
closed under this scheme.



‘Defects’ of the Kripkean construction

To summarise:

• The f.p.’s of the Kripkean scheme validate the Intersubstitutivity
Principle, but not the T-biconditional scheme.

• Indeed there is no useful conditional: since we do not have the law of
excluded middle for the f.p.’s we do not have σ→σ say.

• There is no way to express within LT that the liar sentence (or other
similar sentences) are semantically defective, i.e. , they do not acquire a
truth value in f.p.’s.



The Revision Theoretic construction

• Herzberger, Gupta, Belnap. For simplicity we now take
M = (N,+,×,0, . . .), then M+ = (N,+,×,0, . . . ,H) with TM+ = H .

• We take a fully interpreted T-predicate with some (usually empty)
assignment H0⊆ SentLT which we then revise according to the standard
Tarskian truth clauses:

Hn+1 = Γ(Hn) = {pσq | (M+,Hn) |=σ}.

• (
M+,Hn

) |=σ⇒ (
M+,Hn+1

) |= T(σ) (to restate the last).
• Limit Rule (Herzberger):

Hµ = Liminfα→µHα = ⋃
β<µ

⋂
β<α<µ

Hα

Or:

σ ∈ Hµ⇔∃β<µ∀α(β<α<µ→σ ∈ Hα)

• All arithmetic truths (so expressed in L ) are in H1.
• Nothing monotonic here: λ ∈ Hn−→λ(≡¬T(λ)) ∉ Hn+1 −→λ ∈ Hn+2.



AQI

H-Stability sets

The stable truth set (based on H0) is: H∞ = Liminfα→On Hα.

• Commonly one takes H0 =∅.
• (Herzberger) There is some least pair ρ,π<ω1 so that Hρ = H∞, and
Hρ+π.ι = Hρ all ι< On.

Arithmetic quasi-inductive definitions

(Gupta-Belnap, Burgess) Given any predicate G(v0) defined by some
arithmetic formulaΦG(v0,G) we may define

G0 =∅ ; Γ(Gα) = Gα+1 =df {n | 〈N,Gα〉 |=Φ[n,Gα/T ]}

Lim(µ) : Gµ = Liminfα→µGα; G∞ = Liminfα→On Gα

(AQI - Burgess)

Call a set Y⊆N AQI , if Y is (1-1) reducible to some such G∞ given by an
arithmeticΦG.



Generalized Revision Theories of Truth

Gupta, Belnap, defined much wider variants of revision sequences: they

• quantified over all possible starting arrangements G0,B0⊆M ;
• Belnap advocated complete freedom of choice of limit rule.

The ‘true’ sentences are those that survive, and become stably true, in all
such varied revision sequences. This implicit quantification over the
whole real continuum, entails that the stable truths for them form
Π1

2-complete sets of integers.

• Gupta further defined a strengthened notion of truth ‘categorical truth’,
and this notion turned out to beΠ1

3 complete overN.



What’s in or out of a Herzberger Revision sequence.

• As for Strong Kleene/Kripke, most self-referential sentences do not
have stable semantic values. For stable σ, T(σ)↔σ is in H∞, but the full
T-biconditional scheme is not.

• The Intersubstitutivity Principle holds in full (note σ,T(σ) always have
the same semantic value at stage ∞= On).



Field’s construction: objectives

Construct a theory of truth with a 2-place conditional operator æ in
which

• We have the Principle of Intersubstitutivity (it is harmless as regards
truth value to substitute T (pσq) for σ anywhere and v.v.).

• We have the full T-biconditionals T (pσq) åæ σ for all sentences σ.

• We may express the defectiveness of the liar, or strengthened liars, or
other sentences, thus hoping to create a revenge immune system.



Field’s construction

• Takes place over a model (any countable acceptable model, orN, or
could be Vκ), but take M = (N,+,×, . . . ,T) in a language LT ,æ.
• It seeks to assign semantic values from

{
0, 1

2 ,1
}

to sentences σ of LT ,æ
in a recursive fashion defining models 〈Mα |α ∈ On〉. The domain of
these models is constant asN.
• We describe Mα, assuming, for δ<α that we have an assignment | · |δ of
semantic values to any sentence, and in particular to any conditional
σæ τ (we’ll write |σ|δ or |σæ τ|δ = j for some j ∈ {

0, 1
2 ,1

}
). Firstly:

(i) |A æ B|α = 1 if ∃β<α∀γ ∈ [β,α)(|A|γ ≤ |B|γ)
= 0 if ∃β<α∀γ ∈ [β,α)(|A|γ > |B|γ)
= 1

2 otherwise.

(ii) Reset all truth values to 1/2: T (pσq) = 1/2;
(iii) Construct the least Kripkean Strong Kleene fixed point, with resulting
semantic values |σ|α.



Field’s construction contd.

• σ∧ (>æσ) expresses in Field’s model “σ is true at this stage and was so
before”.
• Compare with Herzberger sequence “σ∧T(σ)”.

For our purposes here, we may define:

Fβ =df
{〈pA æ Bq,1〉 : |A æ B|β = 1

}∪{〈pA æ Bq,0〉 : |A æ B|β = 0
}

.

At limit stages Field uses the Liminf ruling to give semantic values to
conditionals. Hence Fµ = Liminf α→µFα too.



Determinateness

Field uses this to express ‘determinateness’ : D(σ) ≡σ∧ (>æσ).

• Applied to the Liar this becomes D(λ) ≡λ∧ (>æλ) . But this always has
semantic value 0. So the Liar is determinately false even if it itself is given
sem. value 1/2. Field would say then that this expresses within LT ,æ the
indeterminateness of the Liar.

• But this is insufficient to give revenge immunity: λ1 ≡¬D(T(λ1)):

||D(λ1)|| = 1/2 but ||¬DD(T(λ1))|| = 1.

• We thus have a hierarchy of determinateness operators and parallel liars:

Dα+1(σ) := D(Dα(σ)) and λβ ≡¬Dβ(T(λβ) for α,β<???



Questions

• Q1 Can we describe or characterise either the Herzbergerian stable truth
set H∞ or the Fieldian model’s ultimate truth set F∞?

• Q2 Is there some axiomatisation of either H∞ or F∞ - thus something
corresponding to KF for the Kripkean Strong Kleene minimal fixed point
(or Cantini’s VF for the Kripkean super valuation version)?

• Q3 Can we give some definite meaning to Field’s “path independent
hierarchies”? Can we calculate the length of possible determinate
hierarchies? Can we find strengthened liar sentences of the model that
diagonalise past them?
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Analysis

Intricately tied up with the Gödel hierarchy of constructible sets:

L0 =∅;Lα+1 = FODef(〈Lα,∈〉); Lλ =⋃
α<λLα; L =⋃

α∈On Lα.

(Kripke-Platek set theory KP)

A subset of ZF which restricts Separation to ∆1-expressions, and
Replacement to Σ1. A model of KP is called admissible.
α is called admissible if Lα is an admissible set.

Fact:
The least α>ω with Lα admissible, is ωck

1 - the least non-recursive
ordinal.

Admissible ordinals τα
Let τα enumerate the admissible ordinals in increasing order.



HYP - the hyperarithmetic sets of integers.

• It is possible to give a characterisation of the sets, H , of integers in Lωck
1

:

such a set H may be construed as constructed from computable sets by a
computable process of taking unions and complements; this can be
ordered schematically by a finite path tree T = T(H) of rank some recursive
ordinal β<ωck

1 .

• We may thus construe a typical HYP set as one for which we have a
computable protocol for its construction, and for testing whether ?n ∈ H?

• This analysis is due to Kleene, and was formerly carried out using a
system O⊆N of numbers standing as notations for the recursive ordinals:
this yields 〈Ha | a ∈O〉 and any HYP set H is (1-1) reducible to some Ha.

• O essentially is a tree of numbers under a suitable partial ordering <O .
There are many maximal paths through O that result inΠ1

1-sets, and
indeed O is itself a completeΠ1

1-set.



More on the least Kripkean Strong Kleene fixed point

Facts:

• AnyΠ1
1 set of integers is Σ1(Lωck

1
,∈).

• It is possible to express the Gödel codes of the extension of the least
Kripkean fixed point as aΠ1

1 set of integers. Indeed both it, and:

T = T 1
ωck

1
, the Σ1-theory of (Lωck

1
,∈)

are completeΠ1
1 sets of this form and are recursively isomorphic, that is

there is a paper and pencil algorithm for converting members of one set
into members of the other in a bijective fashion:

E∞ ≡1 T 1
ωck

1



Determinateness hierarchies

Q1 How long can a determinateness hierarchy be?
Q2 Can we use such considerations to avoid “revenge problems”, or is it
the case that we may define ‘super-liars’ whose self-referentiality cannot
be captured by some determinateness operator such as some Dα?
Field distinguishes internally and externally definable paths through his
model. What would constitute an internal path? A (copy of) ω is such a

path, and then we can define 〈D‘n’(v0) | ‘n ∈ω’〉 as an iteration of D along
this path. Such a path is far from maximal, and we could define easily a
liar λω that diagonalises past all such Dn, and comes back to haunt us as a
sentence whose indeterminateness is not expressible by any sentence

involving (finitely many) of these D‘n’, or any other D‘n′’.
So what paths can be defined, and which are ‘internal’ to the model M∞
for which we may define such iterations and such liars?



First step: the lengths of the hierarchies & stability set results

• The Herzberger and Fieldian hierarchies are of the same length

Let (ζ,Σ) be the lex. least pair of ordinals with Lζ ≺Σ2 LΣ.

Theorem

Let T 2
ζ

be the Σ2-Th(Lζ,∈).
Let H∞ be the stable truth set of Herzberger.
Let F∞ be Field’s ‘ultimate truth’ set. Then:

T 2
ζ ≡1 H∞ ≡1 F∞

(ii) Indeed ∞ can be replaced with ζ: F∞ = Fζ = FΣ and likewise for H∞.
(Burgess: H∞ ≤1 T 2

ζ
)



Second step: analysis of the 〈Hα〉 and 〈Fα〉 hierarchies

• Both the Lα and Hα hierarchies are iterated Tarskian definability. They
should be related.

Uniform Definability Theorem -H

(i) There is a single uniform method of arithmetically defining the whole
sequence 〈Hγ | γ<β〉from Hβ for any β<Σ. This method is uniform in the
sense that it is independent of β.
(ii) The same as (i) with the Fieldian sets Fγ replacing Hγ.

Theorem

For all α<Σ : Tα is uniformly r.e. in Hα+1.



Doing this for 〈Fα|α<Σ〉

• Fα’s jump through not successive levels of the Lα but through successive
admissible levels Lτα .
Nevertheless:

Uniform Definability Theorem - F

Just the same as the theorem for the H’s: just replace ‘H’ by ‘F ’ everywhere.

Theorem

For all α<Σ : Tτα is uniformly r.e. in Fα+1.



Path Hierarchies revisited

• Field is seeking to find ‘path-dependent hierarchies’ that are based on
bivalently definable paths by some binary predicate A(x,y) so that one can
define iterates of D along the path: Dx(v0), . . .Dy(v0) etc. These are
internally defined.

• What do we mean by internal?
By example, of the Kripkean Strong Kleene minimal fixed point E∞, and in
LT , it can be shown:
For any wellorder R ∈ HYP, there is a PR(v0,v1) defying R (meaning that
nRm←→PR(n̄,m̄) ∈ E∞) and so that

m ∈ Field(R)−→∀q ∈N(
PR(q̄,m̄) ∈ E∞∨PR(q̄,m̄) ∈ A∞

)
.

Such R we may dub as being “internal to the model”. Consequently we
could define using DH (σ) ≡σ∧T(σ) iterations along PR.

• But actually he, and we, shall want ‘path-independent hierarchies’ - not
ones that are constricted to ‘ordinals’ bivalently definable within the
model.



For Field’s model

• What is internal? These will be wellorderings R for which there is a
PR(v0,v1) so that nRm←→||PR(n̄,m̄)|| = 1 and as before that

m ∈ Field(R)−→∀q ∈N(||PR(q̄,m̄)|| ∈ {0,1}
)

.

• Idea: we use sentences as notations for ordinals. If ||A|| = 1, then let

ρ(A) be the least µ such that ∀ν>µ |A|ν is constantly 1 (or constantly 0).

A will be a notation for ρ(A).

Lemma

There is a predicate P≺ so that:
‖P≺(pAq,pBq)‖ = 1 iff ρ(A) ↓,ρ(B) ↓ ∧ρ(A) ≤ ρ(B)

= 0 iff ρ(A) ↓,ρ(B) ↓ ∧ρ(A) > ρ(B)
= 1

2 otherwise.

Lemma

o.t.(≺) = sup
{

o.t.(R) : R is internally definable
}
= ζ.



Spector Classes and PreWellOrders.

Spector Classes

A class Γ⊆P (N) is called a Spector class if it satisfies [roughly]:
(i) [Some basic closure conditions], closure under ∀N,∃N...
(ii) Has an enumerating set
(iii) Satisfies the prewellordering property PWO(Γ) : for any A ∈ Γ, there is
R ∈ Γ∩P (N)×P (N) with R a PWO of A.

This is what we are using:
(i) thatΠ1

1 sets form a Spector class: we may find aΠ1
1 PWO of length ωck

1
ordering the places where sentences are put into E∞.
(ii) that the class ΓF of sets of integers definable using stabilization of
predicates in Field’s model also form such a Spector class: The Field(¹)
defined above is a complete and so universal set of sentence-codes, and ¹
is itself a PWO of this field defined in the same way; that is PWO(ΓF ) holds.



Ineffable Liars - the dénouement

We may define for any sentence C:

DC (A) ≡∀B
(
P≺(B,C) → (∀y(y = pDB(A)q→ T(y)))

)
.

Theorem on Ineffable Liars

There are sentences C ∈L + so that for any determinateness predicate DB

with B ∈ Field(¹) ‖DB(λC )‖ = 1
2 .

Thus the defectiveness of λC :≡¬DC (T(λC )) is not measured by any such
determinateness predicate definable within the L + language. It is an
“ineffable liar”.



Other notations for α< ζ

• Kleene’s O is more usually cited as a notation system for ordinals below
ωck

1 . This set and the associated ordering <O on it, can be enumerated as
follows:

Kleene’s O

(i) 0 receives notation 1;
Assume all ordinals < γ have received a notation.

(ii) If γ=β+1 and x is a notation for β then 2x is a notation for γ ; put
x <O 2x

(iii) IF Lim(γ) and y is such that ∀nϕy(n)↓ AND ∀i < j
(
ϕy(i) <O ϕ(j)

)
are

already enumerated AND {ϕy(n)} are notations for an increasing sequence
of ordinals with supremum γ THEN y is a notation for γ.

• But can we extend this notation system to ζ? Yes!



Other notations for α< ζ

O+

(i) 0 receives notation 1;
Assume all ordinals < γ have received a notation.

(ii) If γ=β+1 and x is a notation for β then 2x is a notation for γ ; put
x <O+ 2x

(iii) IF Lim(γ) and y is such that ∀nϕy(n)↓ AND ∀i < j
(
ϕy(i) <O+ ϕ(j)

)
are

already enumerated AND {ϕy(n)} are notations for an increasing sequence
of ordinals with supremum γ THEN y is a notation for γ.

• What has changed is that we consider running our y’th Turing Machine
transfinitely as an Infinite Time Turing Machine (ITTM) of Hamkins &
Kidder. This makes perfect sense and defines a tree O+ ⊃O with maximal
branches of height ζ.



A “halting” set

K̃

K̃ =df

{
e : the e’th ITTM function ϕe(e)↓ eventually to a settled output

}
.

Theorem

F∞ ≡1 H∞ ≡1 T 2
ζ ≡1 K̃ .



Is H∞ an inductive set?

Proposition

There is a generalised quantifier Q so that H∞ is positive Q-elementary
inductive.

• Thus instead of thinking of the stable truths in this quasi-inductive
fashion it is possible to view this as a monotone inductive set of sentences
- albeit with an operation not defined in standard FO logic.



How much of second order number theory?

To sayΦ is a ‘Π1
1 definable operator’ is to say ‘n ∈Φ(X)’ is aΠ1

1-relation of
n and X . (The Fieldian successor step is such.)

Π1
1QI

LetΠ1
1QI denote the assertion that for evey X⊆N, for everyΠ1

1 definable
operatorΦ : P (N)−→P (N), the stability setΦ∞(X) exists.

Theorem (W)

Π1
3-CA0 >> ∆1

3-CA0+Σ0
3-Det >> ∆1

3-CA0+Π1
1QI >> ∆1

3-CA0

are in strictly descending order of strength, in that each proves the
existence of (many) β-models of the next.



And for proof theory?

Our pair (ζ,Σ) is lexicographically least so that Lζ ≺Σ2 LΣ. LΣ is thus the
least β-model of (lightface)Π1

3-CA0.

• Thus it might be that to give an ordinal analysis forΠ1
3-CA0, one may

first need to analyse, e.g. ,Π1
1QI-definitions as a stepping stone.



Conclusions for semantic truth constructions

• That revision theoretic processes are complex from a definability point
of view. In terms of complexity it matters not whether the operator is
recursive (ITTM), arithmetic (Herzberger) orΠ1

1 (Field). The complexity
arises in exactly the same way: from the liminf limit rule.

• The examples we’ve seen of very different successor stage rules under
the liminf rule yield recursively isomorphic stability sets (whether as
‘halting’ sets for ITTM’s, ultimate truths for Field or Stable truths for
Herzberger.) The liminf operation is far from neutral, and is acting as a
kind of a generalised infinitary ω-rule.

• The complexity that arises is well into second order number theory and
well beyond a) the subsystems needed for any purely mathematical
theorems known (other than determinacy) and b) current proof-theoretic
ordinal analysis. This should give pause for thought if we are simply trying
to find a predicate of sentences for expressing first order truth about
(N,+,×, . . .) say, or to define a new conditional.


