
Bounding lemmata for non-deterministic

halting times of transfinite Turing machines

P.D. Welch

School of Mathematics, University of Bristol, BS8 1TW, England

Abstract

We use the methods of descriptive set theory and generalized recursion theory to
prove various Bounding Lemmata that contribute to a body of results on halting
times of non-deterministic infinite time Turing machine computations. In particular
we observe that there is a Uniform Bounding Lemma which states that if any total
algorithm halts before the first ordinal admissible in the input x, then there is a
recursive ordinal γ by which the algorithm halts on all inputs.

Key words: models of computation, complexity classes, descriptive set theory
1991 MSC: 68Q05, 68Q15, 03D60, 03D65, 03E15

We consider some queries arising from the paper [2]. These concerned various
complexity pointclasses defined using halting times of computations on the
Infinite Time Turing machines of Hamkins and Kidder [3], with or without
existential ‘non-determinacy’ witnesses. The main theorems of this note are
the Bounding and Uniform Bounding Lemmata below. In particular it is the
latter that answers a query from [2] and which explains various phenomena of
their paper. Briefly put the Uniform Bounding Lemma states that if any total
algorithm halts before the first ordinal admissible in the input x, then there
is a recursive ordinal γ by which the algorithm halts irrespective of x.

We shall first recall the main definitions here of the machine architecture.
Later we shall use some results and notions from admissibility theory (for
which the reader may consult [1]) and from generalised recursion theory (see
[7]) and descriptive set theory(see [4]).

? The author acknowledges support of an EPSRC Springboard Fellowship whilst
preparing this paper, and would like to thank the referee for their careful scrutiny
and suggestions.

Email address: p.welch@bris.ac.uk (P.D. Welch).

Preprint submitted to Elsevier 15 December 2006



An infinite time Turing machine is essentially a standard Turing machine
that is allowed to run for transfinite lengths of time. It comes with a standard
finite program with an additional limit state, qL, which by fiat it enters at limit
stages of time λ; a read/write head returns to the leftmost cell(s) of an infinite
tape or tapes also at such times. If we enumerate the cells of the tape(s) as
Ci for i ∈ N, and if Ci has content Ci(γ) ∈ {0, 1} at time γ, then, again by
fiat, for any limit time λ, for any i < ω Ci(λ) = lim supγ−→λ〈Ci(γ)|γ < λ〉.
We have written cell(s) or tape(s) because although the model of [3] had
three infinite tapes, for input, scratch work, and output respectively, and an
alphabet consisting of just 0’s and 1’s, other, single tape, models are possible
see [10]. We shall maintain however throughout this paper the formalism of
[3]. In that case the read/write head is considered as reading simultaneously
one cell from each of the three tapes. The state of the machine and its program
then determine its next action depending on which triple of 0’s and 1’s it is
reading. At successor stages of time it acts simply like an ordinary Turing
machine.

As programs are finite we can consider them as enumerated 〈Pe|e ∈ ω〉 with
Pe regarded as computing the e’th ITTM function ϕe : R −→ R where we
identify R with 2N. Pe thus acts on input strings x ∈ 2N; integer input is
obtained by identifying n with the string consisting of n 1’s followed by all
0’s. Like any Turing machine either Pe(x) halts, or runs for ever - we write
Pe(x) ↓ or Pe(x) ↑. We shall be concerned here mostly, but not entirely with
halting times of such computations.

Definition 1 Pe(x) ↓α will denote that program Pe(x) ↓ in exactly α steps.
Pe(x)↓≤α, Pe(x)↓<αare defined analogously.

To clarify the above: Pe(x)↓α means that at ordinal time α the read/write
head is in particular state qs and is reading a triple of cells (one from each of
the three tapes) so that it’s program determines that it go into a halting state
qh. Thus a machine may halt exactly at some limit stage of time α where then
qs = qL.

Suppose x is simple: perhaps it is an integer (i.e. it is a binary code for n ∈ N
followed by an infinite string of 0’s), perhaps it is 0 (in the above sense) itself.
What possible halting times as e varies are there for Pe(x)? [3] calls an ordinal
clockable if it is the halting time of a computation with input 0.

Further, let us define:

Definition 2 “Pe(x) ↓ y” will denote that Pe(x) ↓ and that y ∈ 2N is the
contents of the output tape on halting. (Again Pe(x) ↓α y etc. are defined
analogously).

Then we say that y is writable if it is the output of some program: Pe(0)↓ y. An

2



ordinal β is writable if some y ∈WO is writable, and y codes a wellordering of
rank β. What possible ordinals are writable? It is easy to readjust a program
that demonstrates that β is writable to one that shows that any β′ < β is
writable. Thus the writable ordinals are an initial segment, λ, of all ordinals.
Hamkins and Lewis [3] showed that there are gaps in the clockable ordinals
and the following:

Theorem 1 Hamkins and Lewis [3] If β is admissible then it is not clockable.

Welch [9] shows that λ, the suprema of the writable ordinals, is also the
supremum of the clockable ordinals.

One may generalise these questions to those involving arbitrary input x. The
following is Definition 5.18 of Deolalikar, Hamkins & Schindler:

Definition 3 An ordinal α is nondeterministically clockable if there is an
algorithm Pe which halts in time at most α for all input and in time exactly
α for some input. More generally, α is nondeterministically clockable before
β if there is an algorithm that halts before β on all input and in time exactly
α for some input.

Symbolically: α is nondeterministically clockable iff

∃e ∈ N[∀x ∈ 2NPe(x)↓≤α ∧∃x ∈ 2NPe(x)↓α].

This notion arises in the paper [2], which was concerned with various com-
plexity pointclasses defined using halting times of computations on these ma-
chines, with or without existential ‘non-determinacy’ witnesses. The nomen-
clature comes from Schindler’s paper [8]. The attempt there was made to
generalise the concepts of the deterministic polynomial time class P and the
non-deterministic class NP from ordinary recursion theory to the infinite time
context. As ‘non-determinism’ in the ordinary recursion theoretic setting can
be construed as an algorithm acting on a ‘guess’ one can use the same idea
and define classes via machines that use ‘accept/reject’ programs to ascertain
whether a number or real x is in a class A; non-determinism then here allows
some extra side information from a guess to be used.

Definition 4 (see [2]) (i) A ∈ Pα if there is β < α and there is an infinite
time Turing machine deciding each x ∈ A in fewer than β many steps.

(ii) A ∈ NPα if there is β < α and there is an infinite time Turing machine
T such that x ∈ A if and only if there is y ∈ R such that T accepts (x, y), and
T halts on any input (w, z) in fewer than β steps.

Here “deciding x ∈ A in fewer than β many steps” can be taken to mean

3



that the machine rejects or accepts in less than β many steps. If β is a limit
ordinal, then we may equivalently ask that in less than β many steps it halts
with a 1 or 0 on the output tape depending on whether x is, or is not, in A.
P is defined as P ωω

and NP as NP ωω
with the notation to be suggestive of

‘polynomial’ (although we are of the opinion that this is at most suggestive,
and we remain unconvinced that there is any analogy of substance with the
classical P/NP notions). We then have:

Theorem 2 ([2] Thm 3.2) The classes NPα for ω+2 ≤ α ≤ ω1 ck are all iden-
tical to the class Σ1

1 of lightface analytic sets. In particular, NP = NPω+2, and
so membership in any NP set can be verified in only ω many steps. Similarly,
the corresponding classes co-NPαare all identical to the Π1

1 sets. Consequently,
NP∩co-NP is exactly the class ∆1

1 of hyperarithmetic sets.

Here ω1 ck is the supremum of all recursive ordinals, and ωx
1 ck will be used to

denote the supremum of all ordinals recursive in x (in both cases this means
recursive in the usual, ordinary sense). We see then in the last theorem how
the implicit existential quantifier over reals as guesses in the definition of NP
surfaces in its classification. Clearly P ⊆ NP ∩co NP , and so the last theorem
(due to Schindler) then shows however that “P 6= NP”.

Theorem 3 ([2] Thms 3.1, 5.4) P 6= NP ∩ co NP . In fact Pα 6= NPα ∩
co NPα for ω + 2 ≤ α < ω1 ck. However Pα = NPα ∩ co NPα for α = ω1 ck.

The difference in the two parts of the result above reflects the difference in
α < ω1 ck being clockable, and ω1 ck not being so: indeed it starts a gap of
clockable ordinals of length ω: no ordinal β ∈ [ω1 ck, ω1 ck + ω) is clockable; the
next clockable is ω1 ck + ω.

We may widen the definition to allow not just constant bounds on the lengths
of computations. In the following, we say that f : R −→ On is a Turing
invariant function if x, y have the same (ordinary) Turing degree, then f(x) =
f(y).

Definition 5 Let f : R −→ On be a Turing invariant function. (i) A ∈ P f

if there is an infinite time Turing machine deciding each x ∈ A in fewer than
f(x) many steps.

(ii) A ∈ NP f when there is an infinite time Turing machine T such that
x ∈ A if and only if there is y ∈ R such that T accepts (x, y), and T halts on
any input (x, y) in fewer than f(x) many steps.

Of particular interest is the function f0(x) = ωx
1 ck + 1. They show:

Theorem 4 P f0 = P ω1 ck.

4



They remark at the beginning of this section that P f0 appears at first more
generous than the earlier classes, because computations on inputs are now
allowed up to ωx

1ck steps.

“The equality [P f0 ] = P ω1 ck should be surprising, because it means that
although the computations deciding x ∈ A for A ∈ P f0 are allowed to
compute up to ωx

1 ck, in fact there is an algorithm needing uniformly fewer
than ω1 ck many steps. An affirmative answer to the following question would
explain this phenomenon completely.

“Question 4.3 Suppose an algorithm halts on each input x in fewer than
ωx

1 ck steps. Then does it halt uniformly before ω1 ck? ”

They also note that P ω1 ck+1 = P ω1 ck : this is prima facie also surprising since
stating that A ∈ P ω1 ck+1 requires only that an algorithm determining mem-
bership in A must halt before ω1 ck, whereas for the latter class an algorithm
with uniform bound β < ω1 ck is required. The Uniform Bounding Lemma be-
low answers Question 4.3 in the affirmative, and the Bounding Lemma (also
below) explains the second phenomenon, as well as having as a direct corollary
the following theorem:

Theorem 5 If β is admissible then it is not nondeterministically clockable.

Besides the mentioned questions, we can make some further comments and
improvements on one or two of their other theorems.

We drop the subscript ck and write ωx
1 for the first ordinal not recursive in

x etc. In the sequel we let WF (WO) denote the set of real numbers coding
wellfounded (respectively wellordered) relations. For y0 ∈ WO we let ‖y0‖ ∈
On denote its ordinal rank.

Theorem 6 (Uniform Bounding Lemma) Let F : R −→ R be ITTM - com-
putable and total as witnessed by ϕe. If ∀xϕe(x)↓<ωx

1 then ∃γ < ω1ck∀xϕe(x)↓<γ.

Proof Let y be a code of a computation sequence ϕe(x)↓ witnessing that it
halts. We think of such a code y as coding a sequence of “snapshots” of the
tapes’ contents etc, along an ordering coded into y; we let Field(y) be this
ordering. Then such a yx which is moreover wellfounded, exists in L[x]. So
let yx be the L[x]-least code for such a wellordered sequence. Let Φ(y, e, x)
abbreviate:

“y is the L[x]-least code for a wellordered halting computation sequence wit-
nessing ϕe(x)↓”

Claim Φ(y, e, x)⇐⇒ Lωx
1
[x] |= Φ(y, e, x).

5



Proof: Note that as ϕe is total, our assumption that ϕe(x)↓<ωx
1 implies, by

running the algorithm Pe inside Lωx
1
[x], that the latter has the L[x]-least wit-

ness yx to Φ(y, e, x). Also notice that we cannot have for some y′ <L[x] yx that
Lωx

1
[x] |= Φ(y′, e, x). This could only possibly occur if y′ coded some illfounded

computation that was merely wellfounded in Lωx
1
[x], and whose wellfounded

part was of ordinal length ωx
1 . However as yx ∈ Lωx

1
[x],and ‖yx‖ < ωx

1 the
computation coded by y′ would have to halt at stage ‖yx‖ too. This is absurd.

QED Claim

Φ(y, e, x) can be expressed as a Σ1 statement over Lωx
1
[x]. Moreover, again

using the totality of ϕe:

¬Φ(y, e, x)⇐⇒ Lωx
1
[x] |= ∃z(Φ(z, e, x) ∧ z 6= y).

Hence Φ(y, e, x) is ∆1
1. Hence

B = {y0|∃x∃y(Φ(y, e, x) ∧ y0 = Field(y))} ∈ Σ1
1 ∩WO .

By (lightface)Σ1
1-boundedness, (see, e.g., [5] 4A.6) {‖y0‖ : y0 ∈ B} is bounded

in ω1 ck. QED

At the close of Section 4 of a previous version of their paper there was some

speculation that one might have in general that NP f = Γ̆f , the dual class of
Γf . (Note that this is indeed true for the case of f(x) = ω1ck: here NP f =

Σ1
1 = Γ̆f .) We gave a counterexample to this which is the Lemma that follows,

wherein P f equals ∆(Γf ). The point here is to ask the question “where does
the existential witness y to x being in some NP f set live?”

Call f : R→ On suitable if x ≤T y → ω + 1 ≤ f(x) ≤ f(y). Let f be suitable
such that Lf(x)[x] |= KPI (KPI is the theory asserting that the universe is an
admissible set which is a union of such.) Let:

Γf = {A ⊆ R : ∃Σ1ϕ∀x[x ∈ A←→ Lf(x)[x] |= ϕ[x] ]}.

Lemma 7 (i) NP f ⊆ Γf (and hence P f ⊆ NP f ∩ co NP f ⊆ Γf ∩ co Γf .)

Hence in general for such f , NP f 6= Γ̆f .
(ii) If additionally f satisfies ∀x f(x) ≤ Σx then P f = NP f ∩ co NP f =
Γf ∩ co Γf .

Proof Assume that NP f ⊆ Γf is proven. That P f ⊆ NP f∩ co-NP f ⊆
Γf ∩co Γf is straightforward. If f is chosen so that Γf is not self-dual, the final

6



sentence then trivially follows. (Examples of such f are easily found: let f(x)
be the least µ so that M = Lµ[x] is an admissible limit of admissibles; then
ρ1

M = ω and thus M ’s Σ1 truth set is not in M , and so provides an example

of a set in Γf\Γ̆f .)

For the proof that NP f ⊆ Γf , let ϕe be such that ∀x, yϕe(x, y)↓<f(x) and
A = {x : ∃y ϕe(x, y)↓ 1}. So where can we find such a witnessing y if x is in
A?

Suppose x ∈ A and y witnesses this. Suppose ϕe(x, y)↓γ 1 with γ < f(x). Let
uγ ∈Mx =df Lf(x)[x], uγ ∈WO, with ‖uγ‖ = γ. Let

B = {y : ∃z(z codes a wellfounded computation sequence
witnessing ϕe(x, y)↓‖uγ‖ 1)}

B 6= ∅, and B ∈ Σ1
1(x, uγ). The Kleene Basis Theorem (relativised to x, uγ)

then states that ∃y0 ∈ B y0 ≤T Ox,uγ (see, e.g., [7] Theorem III.1.3, O here is
Kleene’sO notation.) However then there is such a y0 ∈Mx, asOx,uγ ∈Mx by
our KPI assumption (recall that Ox,uγ is Σ1-definable over the least admissible
set containing x, uγ). So now

∀x[x ∈ A⇐⇒Mx |= “ ∃y0ϕe(x, y0)↓ 1”]

and this yields a defining Σ1 formula for A, putting A into Γf . This concludes
the proof of (i). Now assume f is as in (ii). Suppose A ∈ Γf ∩ co Γf . We show
that A ∈ P f . As A ∈ Γf there is a Σ1 ϕ so that ∀x[x ∈ A←→ Lf(x)[x] |= ϕ[x] ].

Let Pe be the program that searches for a code of some Lα[x] that witnesses
that ϕ[x] holds, and halts with output 1, if it finds such. Since f(x) ≤ Σx it can
look for codes of such Lα[x] for any α < Σx. Then ∀x[x ∈ A ←→ Pe(x) ↓ 1].
However we also have that A ∈ co-Γf . So there is another program Pe′ that
similarly searches for witnesses that to the fact that x /∈ A: thus we have
∀x[x /∈ A ←→ Pe′(x) ↓ 1]. So let e′′ be the index of a program simulating
these two programs together, looking for the first to halt, etc. This will halt
before f(x). Hence A ∈ P f .

QED

We can get another Bounding Lemma:

Theorem 8 (Bounding Lemma) Suppose β be admissible. Let F be ITTM-
computable, and total so that ∀xϕe(x)↓≤β where ϕe computes F . Then ∃γ < β
∀xϕe(x)↓<γ .

Proof Suppose the theorem false as witnessed by the total function ϕ = ϕe.

7



Then β is obviously countable. By a theorem of H. Friedman and Jensen any
countable admissible β is ωr

1 for some r ⊆ ω (cf.[6]). Let T be the follow-
ing theory consisting of the following sets of sentences in the language L∈,ṙ

augmented by a new constant c:

(i) KP +ṙ ⊆ ω; (ii) the ∈-diagram of 〈Lβ[r],∈〉 ;

(iii) “∀x[x ∈ ẏ −→ ∨∨
z∈y x = ż]” for all y ∈ Lβ[r].

(iv) “γ ∈ c∧c is an ordinal” for all γ < β.

(v) “∀a ≤ cLa[ṙ] 6 |= KP”

(vi) “∃x∃f [f maps c order preserving into Field(y) where y codes a halted
course of computation of the form ϕ(x)↓.”

Claim If T0 ⊆ T, T0 ∈ Lβ[r], then T0 has a model.

Proof Let δ < β be the least ordinal not “mentioned” in T0. Find a (well-
founded) KP model N , with r ∈ N , and with an x ∈ N , with OnN > δ, and
so that N |= ¬ϕ(x)↓≤δ . Then ∃f ∈ N with f : δ −→ Field(y) where y ∈ N
codes the course of computation. Let δ interpret c. QED

By the Barwise Compactness Theorem T has a modelM. By (i)-(iii) this is a
KP model whose L[r]-part end-extends Lβ[r], and moreover WFP(M)∩On =
β (by virtue of (v).) Let x0 ∈ M witness (vi). Then we shall have that for
every δ < β,M |=“ ¬ϕ(x0)↓<δ ”. However in V we have then that ϕ(x0)↓β .
Moreover note that β is x0-admissible (otherwise we could Σ1-define insideM,
β from x0 and ordinal parameters less than β). However we have just argued
that β is x0-clockable! This contradicts Theorem 1 above. QED

Hence in the terminology of [2] “Pβ = Pβ+1” and “NPβ = NPβ+1” so this
shows that the requirement on β not being a limit of non-clockables, can be
lifted from their [2] Theorem 5.10.

In section 6 of [2] they consider the P f/NP f classes restricted to sets of
integers. The above arguments show that for many of them P f = NP f !. We
shall use our following unpublished result which is cited in their paper as
Lemma 5.8.

Lemma 9 ([11] Lemma 2.5) If α is a clockable ordinal, then every ordinal
less than the next admissible ordinal beyond α is writable in time α + ω.

Lemma 10 Let β ≤ λ be such that β is an admissible limit of admissibles but
is not interior to any gap in the clockables (i.e., it is a limit of clockables).

8



Then

P β ∩ P(N) = NP β ∩ P(N).

Proof: Let A ∈ NP β ∩ P(N). Let ϕe witness this: ∀n, y ϕe(n, y) ↓<β and
∀n[n ∈ A ⇐⇒ ∃yϕe(n, y)↓ 1]. The Bounding Lemma shows that there is a
smaller bound γ0 < β for the lengths of all these computations. Hence if
n ∈ A then there is a y witnessing this, with ϕe(n, y)↓ 1 and converging in
≤ γ0. steps. Let u ∈ Lβ ∩WO have rank γ0. Set:

Bn = {z : ∃y(z codes a wellfounded computation witnessing ϕe(n, y)↓‖u‖ 1)}

Again ∅ 6= Bn ∈ Σ1
1(u). As above, appealing to the Kleene Basis theorem

again, there are witnessing z, y0 ∈ Lγ+
0 +1 if n ∈ A (where γ+

0 is next admis-

sible above γ0.) In other words to test for membership in A all we have to
do is search through potential NP -witnesses y in Lγ+

0 +1 ∈ Lβ. But this puts

A ∈ ∆
Lβ

1 ({γ0}). By our assumption on β, by Lemma 10, γ0 is itself writable

by some program ϕf in time < γ+
0 . Putting this together A ∈ ∆

Lβ

1 , so A ∈ Pβ.
QED

It would be interesting to have similar results for P(R) rather than just for
P(N) here.

References

[1] K.J. Barwise. Admissible Sets and Structures. Perspectives in Mathematical
Logic. Springer Verlag, 1975.

[2] V. Deolalikar, J.D. Hamkins, and R-D. Schindler. P 6= NP ∩ co−NP for the
infinite time Turing machines. Journal of Logic and Computation, 15:577–592,
October 2005.

[3] J. D. Hamkins and A. Lewis. Infinite time Turing machines. Journal of Symbolic
Logic, 65(2):567–604, 2000.

[4] Y. Moschovakis. Elementary Induction on Abstract structures, volume 77 of
Studies in Logic series. North-Holland, Amsterdam, 1974.

[5] Y. Moschovakis. Descriptive Set theory. Studies in Logic series. North-Holland,
Amsterdam, 1980.

[6] G. E. Sacks. Countable admissible ordinals and hyperdegrees. Advances in
Mathematics, 19:213–262, 1976.

9



[7] G.E. Sacks. Higher Recursion Theory. Perspectives in Mathematical Logic.
Springer Verlag, 1990.

[8] R-D. Schindler. P 6= NP for infinite time Turing machines. Monatsheft für
Mathematik, 139(4):335–340, 2003.

[9] P. D. Welch. The length of infinite time Turing machine computations. Bulletin
of the London Mathematical Society, 32:129–136, 2000.

[10] P. D. Welch. Post’s and other problems in higher type supertasks. In B. Löwe
B. Piwinger T. Räsch, editor, Classical and New Paradigms of Computation
and their Complexity hierarchies, Papers of the Conference Foundations of the
Formal Sciences III, volume 23 of Trends in logic, pages 223–237. Kluwer, Oct
2004.

[11] P.D. Welch. Arithmetical quasi-inductive definitions and the transfinite action
of one tape Turing machines. typescript, 2004.

10


