Games for Supervaluation and Dependency

Philip Welch

University of Bristol

26.iii.2006
• It is possible to use 2 person perfect information games to give an epistemic variation on the Kripkean semantic approach to introducing a partially defined truth predicate to a formal language.
• We shall review the notion of such games, emphasising particularly open games.
• We then see how a Kripkean fixed point using Strong Kleene truth tables can be characterised using open games (due to Martin\(^1\)).
• We then consider such games for supervaluation fixed points.
• Then we sketch H. Leitgeb’s notion of dependency and see likewise how we can characterise grounded sentences in terms of strategies for particular games.

\(^1\)D.A. Martin *Revision and its rivals* Phil. Issues, 8, 1997
Typically a game between two players is played on integers, or 0’s and 1’s. Let A be a set of infinite sequences of natural numbers $k \in \mathbb{N}$.

The game G_A is defined as follows:

I plays k_0, k_2, k_4, \ldots

II plays k_1, k_3, k_5, \ldots

We say I wins if $x = (k_0, k_1, \ldots) \in A$.

We say G_A, or just A, is determined if either player has a winning strategy in this game.

Thus a strategy for player I is a rule or function that takes the even length sequence k_0, \ldots, k_{2n-1} played so far, and tells him/her what to play for k_{2n}. Analogously for II.
Typically a game between two players is played on integers, or 0’s and 1’s. Let A be a set of infinite sequences of natural numbers $k \in \mathbb{N}$.

The game G_A is defined as follows:

We say I wins if $x = (k_0, k_1, \ldots) \in A$.

We say G_A, or just A, is determined if either player has a winning strategy in this game.
Typically a game between two players is played on integers, or 0’s and 1’s. Let A be a set of infinite sequences of natural numbers $k \in \mathbb{N}$.

The game G_A is defined as follows:

I plays $k_0, k_1, k_2, \ldots, k_{2n-1}$

II plays $k_1, k_3, k_5, \ldots, k_{2n}$

We say I wins if $x = (k_0, k_1, \ldots) \in A$.

We say G_A, or just A, is determined if either player has a winning strategy in this game.

Thus a strategy for player I is a rule or function that takes the even length sequence k_0, \ldots, k_{2n-1} played so far, and tells him/her what to play for k_{2n}. Analogously for II.
Typically a game between two players is played on integers, or 0’s and 1’s. Let A be a set of infinite sequences of natural numbers $k \in \mathbb{N}$.

The game G_A is defined as follows:

- \(I \) plays k_0
- \(II \) plays

Therefore, a strategy for player \(I \) is a rule or function that takes the even length sequence k_0, \ldots, k_{n-1} played so far, and tells him/her what to play for k_n. Analogously for \(II \).
• Typically a game between two players is played on integers, or 0’s and 1’s. Let A be a set of infinite sequences of natural numbers $k \in \mathbb{N}$.

• The game G_A is defined as follows:

 I plays k_0
 II plays k_1
Typically a game between two players is played on integers, or 0’s and 1’s. Let A be a set of infinite sequences of natural numbers $k \in \mathbb{N}$.

The game G_A is defined as follows:

- Player I plays k_0, k_2
- Player II plays k_1

We say I wins if $x = (k_0, k_1, \ldots) \in A$.

We say G_A, or just A, is determined if either player has a winning strategy in this game.

Thus a strategy for player I is a rule or function that takes the even length sequence k_0, \ldots, k_{2n-1} played so far, and tells him/her what to play for k_{2n}. Analogously for II.
Typically a game between two players is played on integers, or 0’s and 1’s. Let \(A \) be a set of infinite sequences of natural numbers \(k \in \mathbb{N} \).

The game \(G_A \) is defined as follows:

1. \(I \) plays \(k_0 \ k_2 \)
2. \(II \) plays \(k_1 \ k_3 \)

We say \(I \) wins if \(x = (k_0, k_1, \ldots) \in A \).

We say \(G_A \), or just \(A \), is determined if either player has a winning strategy in this game.

Thus a strategy for player \(I \) is a rule or function that takes the even length sequence \(k_0, \ldots, k_{2n-1} \) played so far, and tells him/her what to play for \(k_{2n} \). Analogously for \(II \).
Infinite two person games

- Typically a game between two players is played on integers, or 0’s and 1’s. Let A be a set of infinite sequences of natural numbers $k \in \mathbb{N}$.
- The game G_A is defined as follows:

 I plays $k_0 \ k_2 \ \ldots \ k_{2n} \ldots$
 II plays $k_1 \ k_3$

- We say I wins if $x = (k_0, k_1, \ldots) \in A$.
- We say G_A, or just A, is determined if either player has a winning strategy in this game.
- Thus a strategy for player I is a rule or function that takes the even length sequence k_0, \ldots, k_{2n-1} played so far, and tells him/her what to play for k_{2n}. Analogously for II.
Typically a game between two players is played on integers, or 0’s and 1’s. Let A be a set of infinite sequences of natural numbers $k \in \mathbb{N}$.

The game G_A is defined as follows:

- I plays $k_0, k_2, \ldots, k_{2n}, \ldots$
- II plays $k_1, k_3, \ldots, k_{2n+1}, \ldots$

We say I wins if $x = (k_0, k_1, \ldots) \in A$.

We say G_A, or just A, is determined if either player has a winning strategy in this game.

Thus a strategy for player I is a rule or function that takes the even length sequence $k_0, \ldots, k_{2n}-1$ played so far, and tells him/her what to play for k_{2n}. Analogously for II.
Typically a game between two players is played on integers, or 0’s and 1’s. Let A be a set of infinite sequences of natural numbers $k \in \mathbb{N}$.

The game G_A is defined as follows:

- Player I plays $k_0 \ k_2 \ \ldots \ k_{2n} \ldots$
- Player II plays $k_1 \ k_3 \ \ldots \ k_{2n+1} \ldots$

We say I wins if $x = (k_0, k_1, \ldots) \in A$.

We say G_A, or just A, is determined if either player has a winning strategy in this game.

Thus a strategy for player I is a rule or function that takes the even length sequence k_0, \ldots, k_{2n-1} played so far, and tells him/her what to play for k_{2n}. Analogously for II.
Typically a game between two players is played on integers, or 0’s and 1’s. Let A be a set of infinite sequences of natural numbers $k \in \mathbb{N}$.

The game G_A is defined as follows:

- I plays $k_0 \; k_2 \; \ldots \; k_{2n} \ldots$
- II plays $k_1 \; k_3 \; \ldots \; k_{2n+1} \ldots$

We say I wins if $x = (k_0, k_1, \ldots) \in A$.

We say G_A, or just A, is determined if either player has a winning strategy in this game.
• Typically a game between two players is played on integers, or 0’s and 1’s. Let A be a set of infinite sequences of natural numbers $k \in \mathbb{N}$.

• The game G_A is defined as follows:

\[
\begin{align*}
I & \text{ plays } k_0 \ k_2 \ \ldots \ k_{2n} \ldots \\
II & \text{ plays } \ k_1 \ k_3 \ \ldots \ k_{2n+1} \ldots
\end{align*}
\]

• We say I wins if $x = (k_0, k_1, \ldots) \in A$.

• We say G_A, or just A, is determined if either player has a winning strategy in this game.

• Thus a strategy for player I is a rule or function that takes the even length sequence k_0, \ldots, k_{2n-1} played so far, and tells him/her what to play for k_{2n}. Analogously for II.

Philip Welch
Games for Supervaluation and Dependency
Open Sets are determined

Definition (i) Let \(s = (s_0, \ldots, s_m) \); then

\[N_s = \{ \vec{k} \in \mathbb{N}^N | k_i = s_i (i \leq m) \} \] is a **basic open set**.

(ii) Let \(A \) be a union of basic open sets. Then \(A \) is called **open**.
Open Sets are determined

Definition

(i) Let \(s = (s_0, \ldots, s_m) \); then
\[
N_s = \{ \vec{k} \in \mathbb{N}^N | k_i = s_i (i \leq m) \}
\]
is a basic open set.

(ii) Let \(A \) be a union of basic open sets. Then \(A \) is called open.

Theorem

(Gale-Stewart) Open Determinacy holds.
Open Sets are determined

Definition
(i) Let \(s = (s_0, \ldots, s_m); \) then
\[
N_s = \{ \vec{k} \in \mathbb{N}^\mathbb{N} \mid k_i = s_i (i \leq m) \}
\]
is a basic open set.
(ii) Let \(A \) be a union of basic open sets. Then \(A \) is called open.

Theorem
(Gale-Stewart) Open Determinacy holds.

Proof: **Observation:** Suppose \(I \) has no winning strategy. Then whatever he plays as \(k_0 \) \(II \) has a reply \(k_1 \) so that \(I \) has no winning strategy \(\tau \) in the “sub-game” from this point onwards. (Otherwise he *does* have a strategy in \(G_A \): play such a \(k_0 \); when \(II \) has replied \(k_1 \) then he continues with \(\tau \).)
This means II will have a winning strategy (w.s.):
This means II will have a winning strategy (w.s.):
This means II will have a winning strategy (w.s.):

I plays
II plays
This means \(II \) will have a winning strategy (w.s.):

\[
\begin{align*}
& I \text{ plays } k_0 \\
& II \text{ plays }
\end{align*}
\]
This means \(II \) will have a winning strategy (w.s.):
She plays \(k_1 \) so that \(I \) has no w.s. \(\tau_{k_0,k_1} \) from this point on.

\[
\begin{align*}
I & \text{ plays } k_0 \\
II & \text{ plays } k_1
\end{align*}
\]
This means II will have a winning strategy (w.s.):
She plays k_1 so that I has no w.s. τ_{k_0,k_1} from this point on.
She then waits for k_2.

I plays k_0 k_2
II plays k_1
This means II will have a winning strategy (w.s.):
She plays k_1 so that I has no w.s. τ_{k_0,k_1} from this point on.
She then waits for k_2.
By repeating the Observation, she has a play k_3 so that I has no w.s. from this point on.

\[
\begin{align*}
\text{I plays } & k_0 \quad k_2 \\
\text{II plays } & k_1 \quad k_3
\end{align*}
\]
This means II will have a winning strategy (w.s.):
She plays k_1 so that I has no w.s. τ_{k_0,k_1} from this point on.
She then waits for k_2.
By repeating the Observation, she has a play k_3 so that I has no w.s. from this point on.

\begin{align*}
&I \text{ plays } k_0 \quad k_2 \quad \ldots \quad k_{2n} \ldots \\
&II \text{ plays } \quad k_1 \quad k_3
\end{align*}
This means II will have a winning strategy (w.s.):
She plays k_1 so that I has no w.s. τ_{k_0,k_1} from this point on.
She then waits for k_2.
By repeating the Observation, she has a play k_3 so that I has no w.s. from this point on.

$$
\begin{align*}
I \text{ plays } & k_0 \ k_2 \ \ldots \ k_{2n} \ \ldots \\
II \text{ plays } & k_1 \ k_3 \ \ldots \ k_{2n+1} \ \ldots
\end{align*}
$$
This means \(II \) will have a winning strategy (w.s.):
She plays \(k_1 \) so that \(I \) has no w.s. \(\tau_{k_0, k_1} \) from this point on.
She then waits for \(k_2 \).
By repeating the Observation, she has a play \(k_3 \) so that \(I \) has no w.s. from this point on.

\[
\begin{align*}
I \text{ plays } & k_0 \kern1.5em k_2 \kern1.5em \cdots \kern1.5em k_{2n} \cdots \\
II \text{ plays } & k_1 \kern1.5em k_3 \kern1.5em \cdots \kern1.5em k_{2n+1} \cdots
\end{align*}
\]

\(II \) can thus play to the end of the game, and at no finite point in the game has \(I \) won (Interpretation: at no finite position \(s = k_0, \ldots, k_n \) does \(A \) contain \(N_s \). This means \(\vec{k} \notin A \). QED
This means \(II \) will have a winning strategy (w.s.):
She plays \(k_1 \) so that \(I \) has no w.s. \(\tau_{k_0,k_1} \) from this point on.
She then waits for \(k_2 \).
By repeating the Observation, she has a play \(k_3 \) so that \(I \) has no w.s. from this point on.

\[
\begin{align*}
I & \text{ plays } k_0 \quad k_2 \quad \ldots \quad k_{2n} \ldots \\
II & \text{ plays } \quad k_1 \quad k_3 \quad \ldots \quad k_{2n+1} \ldots
\end{align*}
\]

\(II \) can thus play to the end of the game, and at no finite point in the game has \(I \) won (Interpretation: at no finite position \(s = k_0, \ldots, k_n \) does \(A \) contain \(N_s \). This means \(\vec{k} \notin A \). QED

- Note: Determinacy of \(A \) symmetrically implies the determinacy of its complement. Hence “Closed” Determinacy holds too.
We consider a first order language \mathcal{L} (in \lor, \neg, \exists and extending that of arithmetic), and add a new monadic predicate symbol \dot{T} to obtain $\mathcal{L}_{\dot{T}}$. (We assume a recursive gödelisation of the language so that, e.g. each sentence σ of $\mathcal{L}_{\dot{T}}$ obtains a code number $\lceil \sigma \rceil$, plus)

If we are given an $\mathcal{L}_{\dot{T}}$-structure \mathcal{M} and are in possession of a partial evaluation of \dot{T} in \mathcal{M} as $A = (A^+, A^-)$ as to what is in or out of T_M, the Strong Kleene rules allow us to extend that partial valuation to $\Gamma(A) =_{df} (\Gamma(A)^+, \Gamma(A)^-)$:
Rules for Strong Kleene

• If $\varphi \in \mathcal{L}$ is atomic then
 \[\Box \varphi \in \Gamma(A)^+ \quad (\Gamma(A)^-) \iff M \models \varphi \quad (M \models \neg \varphi). \]

• If $\varphi \in \mathcal{L}_\ddagger$ is $\ddagger T(\Box \sigma)$ then
 \[\Box \varphi \in \Gamma(A)^+ \quad (\Gamma(A)^-) \text{ iff } \Box \sigma \in A^+ \quad (\Box \sigma \in A^-). \]

• $\Box \varphi \in \Gamma(A)^+$ if φ is:
 (i) $\psi \lor \chi$ & either $\Box \psi$ or $\Box \chi \in \Gamma(A)^+$;
 (ii) $\neg \psi$ & $\Box \psi \in \Gamma(A)^-$;
 (iii) $\exists v \psi(v)$ & for some n $\Box \psi[n] \in \Gamma(A)^+$.

• $\Box \varphi \in \Gamma(A)^-$ if φ is:
 (i) _______ & both $\Box \psi$ and $\Box \chi \in \Gamma(A)^+$;
 (ii) _______ & $\Box \psi \in \Gamma(A)^+$;
 (iii) _______ & for all n $\Box \psi[n] \in \Gamma(A)^+$.
• We take a first order structure \mathcal{M} appropriate for a language $\mathcal{L}_{\mathcal{M}}$.
• We define a game G_φ where $\varphi \in \mathcal{L}_{\mathcal{M}}$ is a sentence.
Fix $\varphi \in \text{Sent} \cap \mathcal{L}_\ddot{T}$. G_φ is as follows: Player I tries to verify φ, Player II to falsify φ; they list sentences φ_m.

Play terminates if φ is atomic: if φ_m is $\dot{T}(n)$ and n does not code a sentence, then player i loses; otherwise player i wins iff $(\varphi_m)_M$.

Philip Welch

Games for Supervaluation and Dependency
Fix $\varphi \in \text{Sent} \cap \mathcal{L}_{\bar{T}}$. G_φ is as follows: Player I tries to verify φ, Player II to falsify φ; they list sentences φ_m.

I plays

$\varphi = \varphi_0 \varphi_1 \varphi_3 \ldots$

II plays $\varphi_2 \ldots \varphi_m$.

If φ_m is the last sentence played, and it was played by Player i:

- If φ_m is $\psi \lor \chi$ then Player i lists as $\varphi_m + 1$: either ψ or χ;
- $\neg \psi$ then the other player lists as $\varphi_m + 1$: ψ;
- $\exists v \psi(v)$ then Player i must list as $\varphi_m + 1$: $\varphi[n]$ for some n;
- $\bar{T}(\llbracket \sigma \rrbracket)$ then Player i lists as $\varphi_m + 1$: σ.

Play terminates if φ is atomic:

- if φ_m is $\bar{T}(n)$ and n does not code a sentence, then player i loses;
- otherwise player i wins iff $(\varphi_m)_M$.

Philip Welch

Games for Supervaluation and Dependency
Fix $\varphi \in \text{Sent} \cap \mathcal{L}_{\tilde{T}}$. G_φ is as follows: Player I tries to verify φ, Player II to falsify φ; they list sentences φ_m.

I plays $\varphi = \varphi_0$
Fix $\varphi \in \text{Sent} \cap \mathcal{L}_\mathcal{T}$. G_φ is as follows: Player I tries to verify φ, Player II to falsify φ; they list sentences φ_m.

I plays $\varphi = \varphi_0 \, \, \varphi_1$
Fix \(\varphi \in \text{Sent} \cap \mathcal{L}_{\bar{T}} \). \(G_\varphi \) is as follows: Player I tries to verify \(\varphi \), Player II to falsify \(\varphi \); they list sentences \(\varphi_m \).

I plays \(\varphi = \varphi_0 \ \varphi_1 \)

II plays \(\varphi_2 \)
Fix $\varphi \in Sent \cap L_\vec{T}$. G_φ is as follows: Player I tries to verify φ, Player II to falsify φ; they list sentences φ_m.

I plays $\varphi = \varphi_0 \varphi_1 \varphi_3$

II plays φ_2
Fix $\varphi \in \text{Sent} \cap \mathcal{L}_{\hat{T}}$. G_{φ} is as follows: Player I tries to verify φ, Player II to falsify φ; they list sentences φ_m.

I plays $\varphi = \varphi_0 \ \varphi_1 \ \varphi_3 \ \ldots$

II plays $\varphi_2 \ \ldots \ \varphi_m$

If φ_m is the last sentence played, and it was played by Player i:

If φ_m is

- $\psi \lor \chi$ then Player i lists as φ_{m+1}: either ψ or χ;
- $\neg \psi$ then the other player lists as φ_{m+1}: ψ;
- $\exists v \psi(v)$ then Player i must list as φ_{m+1}: $\varphi[n]$ for some n;
- $\hat{T}(\neg \sigma)$ then Player i lists as φ_{m+1}: σ.

Play terminates if φ is atomic:

if φ_m is $\hat{T}(n)$ and n does not code a sentence, then player i loses;
Fix $\varphi \in \text{Sent} \cap L_{\mathcal{T}}$. G_φ is as follows: Player I tries to verify φ, Player II to falsify φ; they list sentences φ_m.

- I plays $\varphi = \varphi_0 \varphi_1 \varphi_3 \ldots$
- II plays $\varphi_2 \ldots \varphi_m$

If φ_m is the last sentence played, and it was played by Player i:
If φ_m is
- $\psi \lor \chi$ then Player i lists as φ_{m+1}: either ψ or χ;
- $\neg \psi$ then the other player lists as φ_{m+1}: ψ;
- $\exists v \psi(v)$ then Player i must list as φ_{m+1}: $\varphi[n]$ for some n;
- $\mathcal{T}(\overline{\sigma})$ then Player i lists as φ_{m+1}: σ.

Play terminates if φ is atomic:
if φ_m is $\mathcal{T}(n)$ and n does not code a sentence, then player i loses;
otherwise player i wins iff $(\varphi_m)_\mathcal{M}$.
• If the game continues for infinitely many steps it is declared a draw.

• This does not conform to the strict format of an open game, because it allows for infinite plays to be so declared, but this is inessential.

• Note the compositionality of the Strong Kleene rules is reflected in the game’s rules.
Take $\mathcal{L}, \ldots \mathcal{M}$ with a partial evaluation $A = (A^+, A^-)$ as before, we define:

$$\Gamma(A) = \text{df} \ (\Gamma(A)^+, \Gamma(A)^-):$$

$$\Gamma \varphi^- \in \Gamma(A)^+ \quad (\Gamma(A)^- \text{ resp. }) \text{ iff }$$

$$\forall U \supseteq A^+[U \cap A^- = \emptyset, \implies (\mathcal{M}, U) \models \varphi \ (\neg \varphi \text{ resp.})].$$

- This is again monotonic:
 $$A^+/^- \subseteq B^+/^- \implies \Gamma(A)^+/^- \subseteq \Gamma(B)^+/^-, \text{ and starting from } (\emptyset, \emptyset) \text{ we can build up a least fixed point:}$$
 $$\Gamma^{+/-}_\infty = (\bigcup \alpha \Gamma^+_{\alpha}, \bigcup \alpha \Gamma^-_{\alpha}).$$
We define a game G_φ, for $\varphi \in \mathcal{L}_T$ for which Player 1 has a winning strategy iff $\varphi \in \Gamma_\infty^\bot$.

Rules for II: Idea: Agathe is trying to play a sequence Σ of sentences (m_0, m_1, \ldots) of the language \mathcal{L}_T such, if Ψ is the extension of \dot{T} so listed, (i.e. $\Psi = \{\left\langle \sigma \right\rangle \mid \exists i \, m_i = \left\langle \sigma \right\rangle \in \dot{T}\}$) then Σ is the complete theory of $\langle N, +, \times, 0, ', \ldots, \Psi \rangle$. Additionally she is trying to ensure $\varphi \not\in \Sigma$.

We may think of the game as a series of queries Is $\tau \in \Sigma$? by Ulrich (including the sentences as to whether $\left\langle \sigma \right\rangle \in \dot{T}$); Agathe is giving "yes" or "no" answers to these queries, sometimes together with some additional information. During the course of the game Ulrich may issue a challenge to Agathe's earlier replies. We (semi-)formally define this via a description of the possible moves.
We define a game G_φ, for $\varphi \in \mathcal{L}_\mathcal{T}$ for which Player I has a winning strategy iff $\varphi \in \Gamma^+_{\infty}$.

Ulrich I $i_0 \ i_1 \ \cdots$

Agathe II $m_0 \ m_1 \ \cdots$
We define a game G_φ, for $\varphi \in \mathcal{L}_{\dot{T}}$ for which Player I has a winning strategy iff $\varphi \in \Gamma_\infty^+$.

Ulrich I $i_0 \ i_1 \ \cdots$

Agathe II $m_0 \ m_1 \ \cdots$

Rules for II: Idea: Agathe is trying to play a sequence Σ of sentences (m_0, m_1, \ldots) of the language \mathcal{L}^+ such, if Ψ is the extension of \dot{T} so listed, (i.e. $\Psi = \{ \langle \sigma \rangle \mid \exists i \ m_i = \langle \sigma \rangle \in \dot{T} \}$) then Σ is the complete theory of $\langle \mathbb{N}, +, \times, 0, ', \ldots \Psi \rangle$. Additionally she is trying to ensure $\varphi \notin \Sigma$.
A game for supervaluation

We define a game G_φ, for $\varphi \in \mathcal{L}_\downarrow$ for which Player I has a winning strategy iff $\varphi \in \Gamma^+_{\infty}$.

Ulrich I i_0 i_1 ···

Agathe II m_0 m_1 ···

Rules for II: Idea: Agathe is trying to play a sequence Σ of sentences (m_0, m_1, \ldots) of the language \mathcal{L}^+ such, if Ψ is the extension of \dot{T} so listed, (i.e. $\Psi = \{ \lceil \sigma \rceil | \exists i \ m_i = "\lceil \sigma \rceil \in \dot{T}" \} \}$) then Σ is the complete theory of $\langle \mathbb{N}, +, \times, 0, ', \ldots \Psi \rangle$. Additionally she is trying to ensure $\varphi \not\in \Sigma$.

We may think of the game as a series of queries *Is $\tau \in \Sigma$?* by Ulrich (including the sentences as to whether “$\lceil \sigma \rceil \in \dot{T}$”); Agathe is giving “yes” or “no” answers to these queries, sometimes together with some additional information. During the course of the game Ulrich may issue a *challenge* to Agathe’s earlier replies. We (semi-)formally define this via a description of the possible moves.
Round k: Player I states “i_k”. This can either be

(i) a sentence σ, of \mathcal{L}^+, in which case Player II’s reply is either “σ” or “$\neg\sigma$” (meaning yes, “$\sigma \in \Sigma$” or, no, “$\neg\sigma \in \Sigma$”); additionally, if σ is of the form “$\exists v_0 \psi(v_0)$” and she wishes to answer “yes”, then she must also choose some $n \in \mathbb{N}$ and at the same time play “$\psi[\bar{n}]$” as well as σ (so in this case m_k codes this pair of sentences).

(ii) Player I may alternatively state a challenge to Player II. The challenges may come in one of two forms: (A) either he plays $i_k \neq 0$ that is a code of a proof of “$0 = 1$” from a (finite) list m_{i_1}, \ldots, m_{i_l} of sentences that II has already played in earlier rounds - thus demonstrating that II’s list is inconsistent. His other form, (B) is that he may challenge an earlier assertion by II of the form “$\neg \sigma \not\in \hat{T}$”, or “$\neg \sigma \in \hat{T}$”.

Additionally to these Rules, are requirements that Player II attempt to falsify φ: if queried by Player I on φ she must reply $\neg \varphi$ (or lose).
The last rule together with the description at Round k comprise the basic rules of the game G_φ. If anybody disobeys these rules, then the first to do so forfeits the game. If Player I issues a “consistency” challenge, then if he is correct, he wins outright and the game is over; however if he is incorrect Player II wins outright. If Player I issues a challenge of type (B) to some earlier assertion by II of the form “$\neg \sigma \not\in \dot{T}$”, or “$\sigma \not\in \dot{T}$”, then play in G_φ is halted, and play starts afresh in G_σ (or $G_{\neg \sigma}$ if “$\sigma \not\in \dot{T}$” was the challenge). We can thus think of G_σ as a “subgame” of G_φ, but in any case it is defined from σ (or $\neg \sigma$) just as G_φ was defined from φ.

Ulrich wins G_φ if and only if (i) II makes a mistake on the basic rules of the game (or any I-initiated subgame) at some stage, or (ii) he makes a successful challenge to the consistency of the sentences II is playing in G_φ or in the current subgame. Thus, for I to win, the overall game must be finite in length.
Note: II thus wins precisely when: (a) I makes a false accusation that her list is inconsistent; or (b) she manages to make infinitely many moves in G_φ or in any initiated subgame; or else (c) through the whole course of play I initiates infinitely many subgames.
Note: II thus wins precisely when: (a) I makes a false accusation that her list is inconsistent; or (b) she manages to make infinitely many moves in G_φ or in any initiated subgame; or else (c) through the whole course of play I initiates infinitely many subgames.

Lemma

I has a winning strategy in $G_\varphi \iff \varphi \in \Gamma^+_\infty$ where $\Gamma_\infty = \langle \Gamma^+_\infty, \Gamma^-\infty \rangle$ is the least Kripkean supervaluation fixed point.
Note: II thus wins precisely when: (a) I makes a false accusation that her list is inconsistent; or (b) she manages to make infinitely many moves in G_φ or in any initiated subgame; or else (c) through the whole course of play I initiates infinitely many subgames.

Lemma

I has a winning strategy in $G_\varphi \iff \varphi \in \Gamma^+_{\infty}$ where $\Gamma_{\infty} = \langle \Gamma^+_{\infty}, \Gamma^-_{\infty} \rangle$ is the least Kripkean supervaluation fixed point.

Proof: (\Leftarrow) Suppose $\varphi \in \Gamma^+_{\alpha_0+1} \setminus \Gamma^+_{\alpha_0}$ (we’ll say that “$\text{rk}(\varphi) = \alpha_0$”). II then plays out some Σ and Ψ as extension for \dot{T}. If she follows the basic rule of declaring “$\neg \varphi \in \Sigma$” when asked, then Ψ cannot be compatible with $(\Gamma^+_{\alpha_0}, \Gamma^-_{\alpha_0})$ as $\varphi \in \Gamma^+_{\alpha_0+1}$. Hence either:

(i) For some $\sigma_1 \in \Gamma^+_{\alpha_0}$, $\sigma_1 \notin \Psi$, or:

(ii) For some $\sigma_1 \in \Gamma^-_{\alpha_0}$, $\sigma_1 \in \Psi$

As part of his strategy, I makes sure that he asks every query of the form “$\tau \in \dot{T}$” during his course of play. (Indeed I can ensure the consistency and also the completeness of the pertinent Σ of any infinite run of any subgame, by querying every possible sentence.)
At some point then, suppose Case (i) (or Case (ii)) holds, and, when queried on \(T(\sigma_1) \), II states “\(\sigma_1 \notin T \)” (or “\(\sigma_1 \in T \)” respectively). Then I on his next move calls a challenge to this statement, and the subgame \(G_{\sigma_1} \) (or \(G_{\neg \sigma_1} \) respectively) is initiated. The point is that \(\sigma_1 \in \Gamma^+_{\alpha_0} \) (or \(\sigma_1 \in \Gamma^-_{\alpha_0} \)). In either case (with the obvious extension of notation) \(\alpha_1 = \text{rk}(\sigma_1) < \alpha_0 \), and the subgame now being initiated is being played on a formula of lower rank. The \(\Psi(\sigma_1) \) (or \(\Psi(\neg \sigma_1) \)) that II now will now try to play out is incompatible with \((\Gamma^+_{\alpha_1}, \Gamma^-_{\alpha_1}) \), (if she adheres to the basic rule of declaring that “\(\sigma_1 \notin \Psi(\sigma_1) \)” (or “\(\sigma_1 \in \Psi(\sigma_1) \)”), and thus at some stage in the new game I may issue a challenge on the assertion that some \(\sigma_2 \notin \Psi \), and we have for the resultant \(\alpha_2 = \text{rk}(\sigma_2) < \alpha_1 \). Proceeding in this way, as long as II does not lose through inconsistency, I eventually challenges with some \(\sigma_k \) with \(\text{rk}(\sigma_k) = 0 \). However if \(\sigma_k \in \Gamma^+_1 \) then every \(\Psi \) is compatible with \((\Gamma^+_0, \Gamma^-_0) = (\emptyset, \emptyset) \) and II in her play of \(G_{\sigma_k} \), simply cannot produce an extension \(\Psi \) and a consistent set of sentences \(\Sigma \) so that \(\langle \mathbb{N}, +, \times, 0', \ldots, \psi \rangle \models \Sigma \), whilst \(\langle \mathbb{N}, +, \times, 0', \ldots, \psi \rangle \models \neg \sigma_k \).
• She thus will lose \(G_{\sigma_k} \) by breaking a basic rule.
• She thus will lose G_{σ_k} by breaking a basic rule.

Question: Why did we require that she produce numeral evidence of the form $\psi[n]$ when she gave an affirmative response to the query: $\exists v_0 \psi(v_0)$?
She thus will lose G_{σ_k} by breaking a basic rule.

Question: Why did we require that she produce numeral evidence of the form $\psi[n]$ when she gave an affirmative response to the query: “$\exists v_0 \psi(v_0)$”?

Answer: Then the sets Σ being produced, if consistent, are true in the standard model $\langle \mathbb{N}, +, \times, 0', \ldots, \Psi \rangle$.
(⇒) Suppose \(\varphi \notin \Gamma^+_\infty \). We describe how Agathe can win. By hypothesis there is \(\Psi = \Psi(\varphi) \) with \(\Psi \supseteq \Gamma^+_\infty \), \(\Psi \cap \Gamma^-\infty = \emptyset \), with \(\langle \mathbb{N}, +, \times, 0, ', \ldots ; \Psi \rangle \models \neg \varphi \). Whenever she is queried Agathe consults the above model and gives the appropriate reply. She thus will not lose \(G_\varphi \) on consistency grounds, nor by breaking any other basic rule. If she is challenged on her assertion “\(\sigma_1 \notin T \)” then \(\sigma_1 \notin \Gamma^+_\infty \). The subgame initiated is \(G_{\sigma_1} \), but as \(\sigma_1 \notin \Gamma^+_\infty \) she is no worse off than before, and can play just as well here continuing with \(\Psi \) since \(\langle \mathbb{N}, +, \times, 0, ', \ldots ; \Psi \rangle \models \neg \sigma_1 \). If she is challenged on “\(\sigma_1 \in \dot{T} \)” then the subgame \(G_{\neg \sigma_1} \) is initiated; but \(\neg \sigma_1 \notin \Gamma^+_\infty \), (as \(\sigma_1 \notin \Gamma^-\infty \)), and so she can still continue. Clearly she can keep this up no matter how many challenges that Ulrich issues, and she will ultimately win.

QED
Same \mathcal{L}_T etc as before.

Definition\(^2\) φ *depends on* Ψ if and only if:

$$\forall B, H \subseteq \mathcal{L}_T, \varphi(M,H) \iff \varphi(M,B) \quad \text{iff} \quad \varphi(M,\Psi \cap H) \iff \varphi(M,\Psi \cap B)$$

• Equivalently: $\forall H \subseteq \mathcal{L}_T, \varphi(M,\Psi) \iff \varphi(M,\Psi \cap H)$.

\(^2\)H. Leitgeb “What Truth Depends on”, JPL, 34, 2005
Same \mathcal{L}_T etc as before.

Definition\(^2\) φ depends on Ψ if and only if:

$$\forall B, H \subseteq \mathcal{L}_T, \varphi(M, H) \iff \varphi(M, B) \iff \varphi(M, \Psi \cap H) \iff \varphi(M, \Psi \cap B)$$

- Equivalently: $\forall H \subseteq \mathcal{L}_T, \varphi(M, \Psi) \iff \varphi(M, \Psi \cap H)$.

Definition $D(\Psi) = \{ \text{⌜\varphi\⌝} | \varphi \text{ depends on } \Psi \}$.

- D is monotonic, and Π^1_1; we set $\Phi_0 = \emptyset$; $\Phi_\infty = \bigcup_\alpha \Phi_\alpha$, where $\Phi_{\alpha+1} = D(\Phi_\alpha)$ etc.

\(^2\)H. Leitgeb “What Truth Depends on”, JPL, 34, 2005
Dependency

Same \mathcal{L}_T etc as before.

Definition $^2\varphi$ depends on Ψ if and only if:

$$\forall B, H \subseteq \mathcal{L}_T, \varphi(M,H) \iff \varphi(M,B) \iff \varphi(M,\Psi \cap H) \iff \varphi(M,\Psi \cap B)$$

- Equivalently: $\forall H \subseteq \mathcal{L}_T, \varphi(M,\Psi) \iff \varphi(M,\Psi \cap H)$.

Definition $D(\Psi) = \{ \upharpoonright \varphi \downharpoonleft | \varphi \text{ depends on } \Psi \}$.

- D is monotonic, and Π^1_1; we set $\Phi_0 = \emptyset$; $\Phi_\infty = \bigcup_\alpha \Phi_\alpha$, where $\Phi_{\alpha+1} = D(\Phi_\alpha)$ etc.

- Leitgeb calls the sentences in Φ_∞, the least fixed point, *grounded*. Of the *ungrounded*, we call those λ who depend on themselves, (i.e. $\{\lambda\}$), *self-referential*.

2H.Leitgeb “What Truth Depends on”, JPL, 34, 2005
A general result on positive monotone inductive fixed points

Theorem

(Moschovakis, Aczel) Suppose A is positive monotone inductive over a countable structure $(\mathbb{N}, +, \times, \ldots, \vec{R}, \vec{F})$. Then there is an open set B in $\mathbb{N} \times \mathbb{N}^\mathbb{N}$ so that $n \in A$ iff I has a winning strategy in the open game G_{B_n} where $B_n = \{\vec{k} \mid (n, \vec{k}) \in B\}$.
We now describe the variant of the game which characterises the complete Π^1_1 set of (dependency) grounded sentences $\Phi_\infty = \bigcup \Phi_\alpha$.

G^*_φ is played in a similar fashion, but now II must produce two extensions B_0, B_1 and sets of sentences Σ_0, Σ_1 (say she attends to queries about B_0, Σ_0 in even numbered rounds, and to B_1, Σ_1 on odd numbered ones). She is trying to ensure that $(\varphi)_{(\mathbb{N}, B_0)} \iff (\neg \varphi)_{(\mathbb{N}, B_1)}$ and so when queried about φ must answer accordingly. The basic rules are the same *mutatis mutandis* and I may still challenge on grounds of consistency, with the same outcomes. If however II has earlier asserted “$\sigma \in B_0$” and “$\sigma \notin B_1$” (or *vice versa*) then I may issue a challenge, and the subgame G^*_σ is initiated (again the subgame is the same as the game: she tries to produce two extensions $B_0(\sigma), B_1(\sigma)$ etc., etc.)

Again, if neither player messes up their basic rules, then if the overall game lasts for infinitely many stages II wins.
Lemma

\[I \text{ has a winning strategy in } G^*_\varphi \iff \varphi \in \Phi_\infty. \]

Proof: (\(\iff\)) Suppose now \(\varphi \in \Phi_{\alpha+1} \setminus \Phi_\alpha\); we set \(\text{rk}^D(\varphi) = \alpha\). By the definition of dependency, if \((\varphi)(N,B_0) \iff (\neg \varphi)(N,B_1)\), then \(B_0 \cap \Phi_\alpha \neq B_1 \cap \Phi_\alpha\). Hence if II is trying to produce such \(B_0, B_1\) for some \(\sigma_1 \in \Phi_\alpha\) she must answer “\(\sigma_1 \notin B_0\)” and “\(\sigma_1 \in B_1\)” (or vice versa) when queried by Ulrich, and the latter may now issue a challenge and the game proceeds to \(G^*_{\sigma_1}\). Now of course \(\alpha_1 =_{\text{df}} \text{rk}^*(\sigma_1) < \alpha_0\), and if no one messes up their basic rules, we arrive as before at the situation of playing in \(G^*_{\sigma_k}\) where \(\text{rk}^D(\sigma_k) = 0\). But here, as \(\Phi_0 = \emptyset\), for every \(B, B'\),
\[(\sigma_k)(N,B) \iff (\sigma_k)(N,B').\]
(⇒) Suppose $\varphi \not\in \Phi_\infty$. Then there exists B_0 with
$(\varphi)_{(\mathbb{N}, B_0)} \iff (\neg \varphi)_{(\mathbb{N}, B_0 \cap \Phi_\infty)}$
She may then play out the complete theories of the two models $\langle \mathbb{N}, \ldots, B_0 \rangle, \langle \mathbb{N}, \ldots, B_0 \cap \Phi_\infty \rangle$. If she is challenged at some point on her assertions amounting to
$\sigma \in B_0 \setminus B_0 \cap \Phi_\infty)$, then even when the subgame G_{σ}^* is initiated we have $\sigma \not\in \Phi_\infty$ and she is no worse off than before, and can continue in the same fashion using some B_2 with
$(\sigma)_{(\mathbb{N}, B_2)} \iff (\neg \sigma)_{(\mathbb{N}, B_2 \cap \Phi_\infty)}$.
QED
Question Can any of this be done for other theories of truth?
Other theories of truth

Question Can any of this be done for other theories of truth?

Theorem

(i) For Field’s theory of truth\(^a\) over \(\mathcal{M} = \mathbb{N}\), the set of ‘ultimate truths’, \(U\), cannot be the set of sentences for which a player has a winning strategy in any open game. Moreover no game with even \(\Sigma^0_2\)-payoff set of infinite sequences can be used here.

(ii) The same is true for the set of stable truths under a Herzbergerian limit rule of a single revision sequence starting with some (recursive) distribution of truth values.
Other theories of truth

Question Can any of this be done for other theories of truth?

Theorem

(i) For Field's theory of truth\(^a\) over \(\mathcal{M} = \mathbb{N}\), the set of ‘ultimate truths’, \(U\), cannot be the set of sentences for which a player has a winning strategy in any open game. Moreover no game with even \(\Sigma^0_2\)-payoff set of infinite sequences can be used here.

(ii) The same is true for the set of stable truths under a Herzbergerian limit rule of a single revision sequence starting with some (recursive) distribution of truth values.

Theorem There is a \(\Sigma^0_3\) set, \(B \subseteq \mathbb{N} \times \mathbb{N}^\mathbb{N}\), so that \(\sigma \in U\) iff \(I\) has a w.s. in \(G_{B_\sigma}\) where \(B_\sigma = \{ \vec{k} \in \mathbb{N}^\mathbb{N} | (\sigma, \vec{k}) \in B \}\).

\(^a\)H. Field *A Revenge Immune solution of the semantic paradoxes*, JPL, 2003
• The set S of revision-theoretic stable truths3 (under any limit rule) forms a complete Π^1_2 set of integers.

• Again on general grounds, this set cannot be represented as the set of games for which I has a winning strategy. But it’s complement can:

Theorem

There is a set Π^1_1 set, $B^S \subseteq \mathbb{N} \times \mathbb{N}^\mathbb{N}$, so that $\sigma \notin S$ iff I has a w.s. in G_{B^S} where $B^S_\sigma = \{ \vec{k} \in \mathbb{N}^\mathbb{N} | (\vec{\sigma}, \vec{k}) \in B^S \}$.

• However to prove this theorem requires going beyond Zermelo-Fraenkel set theory, and assuming the existence of large cardinals. We need *Determinacy*(Π^1_1).

3A.Gupta& N.Belnap *The Revision Theory of Truth*, MIT Press 1993