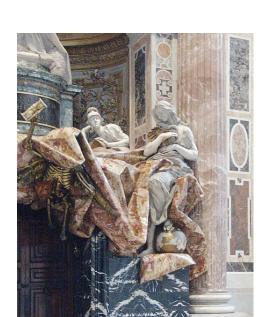
On Field's "Saving Truth from Paradox"

P.D.Welch



- (I) In current semantic theories
- (a) there is a lack of a viable conditional ⊃

(b) there may be occurrences of failure of the *T*-scheme: (that for some sentence(s) A we do not have ' $T(\lceil A \rceil) \leftrightarrow A$ ')

(c) there may be failure of the intersubstitutivity of $T(\lceil A \rceil)$ for A where the latter is a subformulae of some B.

So Field:

• (II) introduces a binary operator \longrightarrow to function as a form of generalised conditional:

• (III) provides for set models (one or more) semantics that remedies (a)-(c) in a non-classical logic;

• (IV) provides an analysis of the 'defectiveness' of e.g. the liar sentence

through a hierarchy of determinateness relations.

\mathcal{M}^+ Expansions: *G-solutions*

- \mathcal{M} an $\mathcal{L} = \mathcal{L}_{\mathcal{M}}$ -structure : expanded to \mathcal{M}^+ in $\mathcal{L}^+ = \mathcal{L}_M^+$ (containing additionally T, \longrightarrow)
- \mathcal{L}^+ evaluated in a 3-valued $\{0, \frac{1}{2}, 1\}$ logic, (or in a De Morgan function algebra V_c).

- He takes issue with the idea that we can *define* 'real truth' by using notions of designated semantic values obtained by a variety of methods (Kripkean minimal fixed points, strong Kleene, supervaluational ... or *via* revision theory. In particular Tarski like constructions using *set-sized* models for which we can give mathematical or inductive definitions of 'designated truth value' cannot deliver for us a theory of 'real truth.'
- But in order to give some description of the theory he is aiming for, he has given a number of G-solutions or G-models, in particular a 'principal' one deriving the consistency of the naive theory of truth (The T-scheme), the Intersubstitutivity Principle, and with \longrightarrow .
- We thus have G-models \mathcal{M}^+ over e.g. ground models \mathcal{M} :

$$\langle \mathbb{N}, +, \times, 0, S \rangle, \quad \langle V_{\alpha}, \in \rangle, \dots$$

Real Validity

"it might be better to adopt the view that what is validated by a given version of the formal semantics [i.e. a G-model] outruns "real validity": that the genuine logical validities are some effectively generable subset of those inferences that preserve value 1"

(emphasis now mine). He continues:

"... there would doubtless be some arbitrariness in which effectively generable subset to choose, but that is perfectly acceptable unless one wants to put high (and I think unreasonable) demands on the significance of the distinction between those inferences that are valid and those that are not."

The complexity of the principal model: a concern

- The principal model over \mathbb{N} is supposed to deliver a *first order* theory of truth with \longrightarrow ;
- \bullet however it requires (as a piece of applied mathematics) a stronger subsystem of second order number theory ($\Pi_3^1\text{-CA}$) than any other piece of 'ordinary' mathematics
- Well beyond the reach of any current proof-theoretical ordinal analysis
- Can there be a simpler 'consistency proof'? A simpler 'principal model'?

Internal Structure of the Principal Model

- Recall that we have a determinateness operator $D(A) \equiv A \land \neg (A \rightarrow \neg A)$
- $D^{n+1}(A) \equiv D(D^n A)$; $D^{\omega}(A) \equiv \forall n \forall y (y = \lceil D^n (A) \rceil \to T(y)).$
- ullet Comes with 'determinate liars': $Q^{\alpha} \leftrightarrow \neg D^{\alpha}(\ulcorner Q^{\alpha} \urcorner)$.
- How far can these hierarchies go?

Taking \mathcal{M} as \mathbb{N}

• To go beyond recursive ordinals let *sentences of* \mathcal{L}^+ *themselves* stand in for ordinal notations:

Definition

 $\rho(A) \simeq \text{least } \rho \text{ such that semantic value of } \rho \text{ is constant from } \rho \text{ onwards.}$

We abbreviate $A \prec B$ for $P_{\prec}(\lceil A \rceil, \lceil B \rceil) = 1$ etc.

- If ||A|| = 1 (or 0) say, then $\{B : B \prec A\} = \{B : ||P_{\prec}(\lceil A \rceil, \lceil B \rceil)|| = 1\}$ is a prewellordering of order type some ordinal $\xi < \Delta_0$.
- ullet We let Field(\prec) denote the set of sentences stabilizing on 0 or 1. Moreover:

Lemma

There is a formula $P_{\prec}(v_0, v_1)$ in \mathcal{L}^+ so that for any sentences $A, B \in \mathcal{L}^+$, we have $\|P_{\prec}(\lceil A \rceil, \lceil B \rceil)\| = 1$ iff $\rho(A) \downarrow, \rho(B) \downarrow$ and $\rho(A) < \rho(B)$;

= 0 iff
$$\rho(A) \downarrow$$
, $\rho(B) \downarrow$ and $\rho(A) \geq \rho(B)$;
= $\frac{1}{2}$ otherwise.

Lemma

For any $\xi < \Delta_0$ there is a sentence $A = A_{\xi}$ in Field(\prec) with the order type of $\{B|B \prec A\}$ equalling ξ .

• We may define for *any* sentence *C*

$$D^{C}(A) \equiv \forall B \prec C \forall y (y = \lceil D^{B}(A) \rceil \rightarrow T(y)).$$

- For $C \in \text{Field}(\prec)$ this defines a bivalent determinateness hierarchy of length $\rho(C)$.
- However it is not a bivalent matter as to whether a general C is or is not in $Field(\prec)$. (In other words $Field(\prec)$ is not a crisp subclass of \mathbb{N} .) However if $C \in Field(\prec)$ then it can be shown that it is a bivalent matter whether a general B is \prec -below C or not.
- Consequently the expression

"
$$\langle D^B(v_0)|B \prec C \quad forms \ a \ determinateness \ hierarchy \rangle$$
"

is not in the classical part of the language \mathcal{L}^+ to which the Law of Excluded Middle holds.

• Thus the internally defined determinateness hierarchy over \mathbb{N} breaks down, not fuzzily, but precisely, at Δ_0 . There is no internally definable maximal hierarchy.

Axiomatising
$$F =_{df} \{A : ||A|| = 1\}$$

- (Martin) We have an *open game representation* in \mathcal{L} of the least Strong Kleene fixed point over \mathbb{N} as an *open game*.
- A game for *F* can be formulated but is an $\exists \forall \exists$ game.
- One can have an open game representation of F over $\mathbb N$ in a language with a generalised quantifier $\mathcal L^+(Q)$. where
- ' $Qx\varphi x$ ' iff for 'path-many' $x \varphi(x)$; that is

$$Qx\varphi x \Leftrightarrow \exists A \in \text{Field}(\prec)(\{n \in \mathbb{N} | \varphi(n)\} \supseteq \{B \mid B \leq A\}).$$

• Speculatively this suggests a possible axiomatisation of a theory of truth (with a \longrightarrow) *together with* determinateness satisfying the laws or properties Field has already given for T and D.