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Determinacy: The Martin-Harrington Theorem

Definition (Games)
For A ⊆ ωω (or more generally Xω) the infinite perfect information game GA

is defined between two players I, II playing elements ni,mi ∈ X:
I n0 n1 n2 · · · nk

II m0 m1 · · · mk

together constructing x = (n0,m0, . . . , nk,mk, . . .).

•We say that I wins iff x ∈ A; otherwise II wins. Notions of strategy and
winning strategy are defined in the obvious fashion. Notice that for A ⊆ ωω
a strategy σ for, e.g. Player I is a map from

⋃
k

2kω −→ ω. Since there is a
recursive bijection <ωω ↔ ω, we can think of σ as essentially a subset of ω
or as a real number.

•We speak of a topology of open and closed sets of a space Xω by letting a
typical basic open set to be a neighbourhood Ns where s ∈ SeqX is a finite
sequence of elements of X:

Ns = {x ∈ Xω : s ⊂ x}.
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Open Determinacy: The Gale-Stewart Theorem

Theorem (Gale-Stewart)
Let A ⊆ Xω be an open set. Then GA is determined, that is one of the players
has a winning strategy.

Proof: Note that if I wins it is because he has manoeuvred the play so that
there is a finite stage (n0,m0, . . . , nk) so that N(n0,m0, . . . , nk) ⊆ A. Essentially
he has won by this stage as it matters not what nl he plays, for l > k. II
however, playing into the closed set which is Xω\A must be vigilant to the
end. Suppose then I has no winning strategy. Then for every n0 II has a reply
m0 so that I has no winning strategy in the game GA/(n0,m0) where
A/(n0,m0) =df {x ∈ A | x(0) = n0, x(1) = m0}. For, if there was an n0 so
that I did always have a winning strategy , σ say, in this latter game for
whichever m0 II played, then this would amount to a w.s. for him in GA: first
play n0, wait for m0 and then use σ. Thus given n0 II should play m0 so that
I has no such strategy. But if she continues in this way, this is a winning
strategy for II: always respond so that I has no w.s. from that point on. The
resulting play x cannot be in A. Q.E.D.



• The motto here is that we can always in ZFC, prove Det(Open) for any
space Xω and so by taking complements Det(Closed) too. (AC is needed
only to wellorder X if need be.) Many proofs of determinacy of complicated
sets in Xω , involve reducing the game to an open game in some larger space
Yω . The latter are determined by Gale-Stewart. The difficulty arises in
showing that the player with the winning strategy for the open set on the
space Yω also has one for the related complicated set in Xω .

• The truth is that we may consider closed sets in Xω as paths through trees
using SeqX , but are going to have to look further at tree representations of
sets if we are to have some idea about how determinacy of more complicated
sets is proven and why it is inevitably tied up with large cardinals.
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Trees

Definition
(i) A tree T on ω × X (for X 6= ∅) is a set of sequences in

⋃
k

kω × kX
where if (σ, u). and k ≤ |σ| = |u| then (σ � k, u � k) ∈ T . Similarly defines
trees on nω × X.
(ii) For such a tree T we set Tσ =df {u | (σ, u) ∈ T} and
T⊆σ =df {u | (σ � k, u) ∈ T, k ≤ |σ|}.

Definition
For T a tree:
(i) [T] =df {(x, f ) | ∀k(x � k, f � k) ∈ T} - is the set of branches through T .
(ii) p[T] =df {x ∈ ωω(or k(ωω)) | ∃f (x, f ) ∈ [T]} - the projection of T .
(iii) A set A ⊆ k( ωω) is κ-Suslin (for κ ≥ ω, κ ∈ Card) if A = p[T] for
some tree on ω × κ.
• Clearly a tree is wellfounded if [T] = ∅.
• Fact: For a C ⊆ ωX a closed set, there is a tree T on X with C = [T]. In
particular for X = ω, if C has a recursively open complement, then we may
take T as recursive set of sequences from Seqω .
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• Fact: If A ⊆ ωω is Σ1
1 then A = p[T] for a tree on ω × ω - thus such sets

are projections of closed sets, and conforms to the idea that

x ∈ A↔ ∃y ∈ ωω(x, y) ∈ [T].

This classical result (due to Suslin) is sometimes stated that analytic ( = Σ1
1)

sets are “ω-Suslin”. Many of the classical properties of analytic sets as
studied by analysts can be attributed to this (and similar) representations.



Let then A ∈ Π1
1 be a (lightface) co-analytic set. Then by the above there is

a recursive tree T on ω × ω with:

∀x(x ∈ A↔ Tx is wellfounded) .

We may ‘linearise’ the tree in the above so that there is a linear ordering <x

for any x ∈ ωω with the property x ∈ A↔<x∈ WO. We consider partial
maps of the linear orderings <x arising into On:
x ∈ A↔ ∃g : 〈ω,<x〉 → 〈ω1, <〉.

x ∈ A↔ ∃g ∈ ωω1((x, g) ∈ [T∗])

↔ x ∈ p[T̂].
Consequently: x ∈ A↔ ∃g(g : T(x) −→ ω1 in an order preserving way)
That is we may define a tree T̂ on ω × ω1 as follows:

T̂ = {(τk, u) | ∀i, j < |τk| : τi ⊃ τj ∧ (τk � |σi|, u) ∈ T −→ u(i) < u(j)}.

Then one can see that x ∈ A↔ ∃g ∈ω ω1((x, g) ∈ [T̂])

• The above shows: that any Π1
1 set A is ω1-Suslin.

• (i) T∗ ∈ L and by the absoluteness of well founded relations on ω to
ZF−-models containing all countable ordinals [T∗] 6= ∅↔ ([T] 6= ∅)L.
(ii) If the underlying set is a Π1

1(a) set for some real parameter a then
T̂ ∈ L[a].
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Now the argument can be stepped up to Σ1
2 sets: suppose

x ∈ B↔ ∃y(x, y) ∈ A with A ∈ Π1
1

and hence there is a tree T∗A on (ω × ω)× ω1 with

(x, y) ∈ A↔ ∃g ∈ ωω1((x, y), g) ∈ [T∗A ].

However there are ∆ZF
0 definable bijections

(ω × ω)× ω1 ↔ ω × (ω × ω1)↔ ω × ω1,
thus re-defining the tree T∗A as T but on different sequences, so that

x ∈ B↔ ∃y((x, y) ∈ A)↔ x ∈ pT,

we have:

Theorem (Shoenfield)
Any Σ1

2 set is ω1-Suslin, as a projection of a tree T ∈ L.

Corollary
Let B be any Σ1

2 relation. The ∃xB(x)↔ (∃xB(x))L. In particular Σ1
2

sentences are absolute between L and the universe V. Moreover if A ⊆ N is
Σ1

2 then A ∈ L.
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Cleaning up

In fact there is a useful wellordering, the Kleene-Brouwer ordering of SeqOn

so that in the previous analysis for a Π1
1 set A, there was a tree T on ω × ω

with:
∀x(x ∈ A↔ Tx is wellfounded) .

We can extend this equivalence to say that:

∀x(x ∈ A↔ Tx is ordered under <KB)



(a)→ (c)

Theorem (Martin)
∃j : L −→e L implies Det(Π1

1).

Proof: Idea: Let A ∈ Π1
1. The usual game GA involves integer moves but has

a complicated payoff set. We replace the space ωω with a larger one Xω for
some X to be defined, and relate A to some closed A∗ ⊆ Xω . By
Gale-Stewart, this is determined. We have to show that winning strategies in
GA∗ can be translated to winning strategies for the same player in GA.

Definition
GA∗ is defined between two players I, II playing as follows:
I (n0, ξ0) (n1, ξ1) (n2, ξ2) · · · (nk, ξk)
II m0 m1 · · · mk

together constructing
x = ( (n0, ξ0), m0, (n1, ξ1), m1, (n2, ξ2), m2, · · · (nk, ξk), , . . .).
The Rules are that ni,mi ∈ ω, ξi ∈ ω1. We think of the ξi as laying out a
function g : ω −→ ω1 with g(i) = ξi, and the integers yielding
x = (n0,m0, n1, . . . )



Winning Conditions: I wins iff (x, g) ∈ T∗A . g then witnesses that Tx is
wellfounded, by giving an order preserving map from <x into ω1. Note that
the game is closed: if I loses he does so at some finite stage. Note that T∗ is
defined L, and so by the G-S theorem, is determined in L.

Claim: If σ∗ is a winning strategy for I (resp. II) in GA∗ in L, then there is a
w.s. for I (resp. II) in GA.

Proof of Claim. If σ∗ ∈ L is a w.s. for I he can use it to play in GA by
suppressing the ordinal moves, and clearly wins (both in L and V). So
suppose then σ∗ ∈ L is, in L, a w.s. for II.
This is where we use the indiscernibles for L.
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continuing

Idea: II simulates a run of GA∗ by using indiscernibles from C0 =df C ∩ ω1
as ‘typical’ ordinal moves for I. She defines a strategy σ :

⋃
n

2n+1ω −→ ω

as follows; fix n < ω and consider the formula ϕ(ω1,T∗A , σ
∗, τ, ~ξ,m) which

defines a term t(ω1,T∗A , σ
∗, τ, ~ξ) = m:

~ξ ∈ n+1ω1 ∧ σ∗(τ � n + 1, ~ξ) ∈ T∗ ∧ σ∗(τ, ~ξ) = m.
As σ∗,T∗ ∈ L the term t will have a fixed value m for any ~ξ ∈n+1 C0 she
chooses since the latter are indiscernibles for the formula ϕ. So she sets (in
V):

σ(τ) = m = t(ω1,T∗, σ∗, τ, ~ξ) for any ~ξ ∈ n+1C0.
Now argue that were x ∈ A even though II followed this strategy, then we’d
have that there is an order preserving embedding g : (ω,<x) −→ (C0, <) (as
C0 is uncountable). But that corresponds to a run of the game GA∗ where II
has used σ∗, which was supposed to be winning for her! Contradiction!

Q.E.D.



Stepping Up

Definition (Homogeneous Trees and Sets)
Let T be a tree on ω × X and κ > ω be a cardinal.
(A) Then T is a κ-homogeneously Suslin tree iff ∃〈Uτ | τ ∈ Seq〉 where
(i) Each Uτ is a κ-complete measure on Tτ ;
(ii) For any τ ⊃ σ Uτ projects to Uσ: i.e.

u ∈ Uσ ↔ {v ∈ Tτ : v � |σ| ∈ u} ∈ Uτ .

(iii) The Uτ form a countably complete tower: if σi ∈ Seq, Zi ∈ Uσi are such
that i < j −→ σi ⊂ σj then there is a g ∈ ωX so that: ∀i(g � i ∈ Zi).

(B) We say A ⊆ ωω is κ-homogeneously Suslin if A = p[T] for a
κ-homogeneously Suslin tree T.

• Notice that one way to phrase (iii) is to say that if x ∈ p[T] then
〈Ux�i : i < ω〉 form a countably complete tower.
• (Martin) If there exist a measurable cardinal κ then any co-analytic set is
p[T] for a κ-homog. Suslin tree on ω × κ.



Theorem
Suppose A is κ-hom.Suslin for some κ. Then GA is determined.

Proof: Suppose A = p[T] with T κ-hom. Suslin on ω × λ (some λ ≥ κ).

Definition (GA∗)
I (n0, ξ0) (n1, ξ1) (n2, ξ2) · · · (nk, ξk)
II m0 m1 · · · mk

together constructing x = ((n0, ξ0), m0, (n1, ξ1), m1, (n2, ξ2), m2, · · · ).
Rules: ni,mi ∈ ω, ξi ∈ λ. Winning Conditions: as before I wins iff
(x, g) ∈ [T] where g(i) = ξi.
Again this is a closed game, and so there is a w.s. for one of the players, now
in L[T]. To show that if II has a w.s. in GA if she has a w.s. σ∗in GA∗ , we use
the ω1-completeness of the measures rather than indiscernibility.
She defines a strategy σ as follows; for n < ω and then for
τ ∈ 2n+1ω, u ∈ n+1λ, define
σ(τ, u) = σ∗(τ(0), u(0), · · · , τ(2n), u(2n)) ∈ ω.
Define Zτ,k =df {u ∈ T(τ � n + 1) : σ(τ, u) = k}. Since Uτ�n+1 is a measure
on Tτ�n+1, by its ω1-completeness, for precisely one value of k is
Zτ,k ∈ Uτ�n+1. So let that value of k0 be the response given by the strategy:

σ(τ) = k0 where k0 is the unique value of k0 with Zτ,k0 ∈ Uτ�n+1.
Finish as before. Q.E.D.



Hence determinacy for a class of sets would follow if we could establish
homogeneity properties for trees projecting to those sets.

Definition
A ⊆ ωω is weakly homogeneously Suslin if A = pB where B ⊆ (ωω)2 is
hom. Suslin.
• In fact this is not the real def. of w.h. S. which defines “weakly
homogenous trees” and is in terms of towers of measures.
•W.hom.Suslin sets (defined as the projections of w.homog. trees) are of
interest in their own right: we have seen that if there is a measurable
cardinal, then Σ1

2 sets are w.h.Suslin.

Theorem
If a set A is w.hom.Suslin, then it has the regularity properties (LM, BP, PSP).



Unfortunately A w.hom Sus. 6−→ A hom. Sus.
They also have complements defined as projections of trees T̃ with the latter
definable from their w. homog. tree T:

Lemma
Let A be p[T] with T w. homog.. Then there is a tree T̃ with ωω\A = p[T̃].
But on its own this is no help. The breakthrough was:

Theorem (Martin-Steel)
Suppose that λ is a Woodin cardinal and T is λ+ w. hom. tree. then for
γ < λ, the T̃ above is γ-hom.Suslin.



Theorem
(Martin-Steel). Suppose λ0 is a Woodin cardinal, and κ > λ0 is measurable.
Then Det(Π1

2).

Further if λn−1 < λn−2 < · · · < λ0 are n− 1 further Woodin cardinals, then
Det(Π1

n+1).
Thus:
ZFC +“there exist infinitely many Woodin cardinals”` PD.

Proof: Let A ⊆ ωω be Π1
2. Then A is the complement of a Σ1

2 set on ωω

which is itself the projection of a Π1
1 set B ⊆ (ωω)2. B is κ-hom.Suslin for

some hom. tree T , as κ is measurable, and a fortiori is also λ+
0 -hom. Suslin.

By the Martin-Steel Theorem we have a γ-homog. tree T̃ projecting to A
with γ-complete measures. By a previous theorem we have GA is
determined. The last two sentences follow by repetition of the argument.

Q.E.D.
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Woodin’s Equiconsistency

• The exact consistency strength of the assumption above is slightly
stronger, with the (⇐=) being very involved:

Theorem (Woodin)
Con(ZFC + ∃∞(Woodin Cardinals)⇐⇒ Con(ZFC + ADL(R)).

Woodin cardinals fix the analytical truths:

Theorem
(Woodin) Suppose there is a proper class of Woodin cardinals; then
Th(L(R)) is absolute with respect to set forcing. Thus if V[G] is a set
generic extension:

(L(R))V ≡ (L(R))V[G].
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