BCCS 2008/09: GM\&CSS

Lecture 6:

Bayes(ian) Net(work)s and Probabilistic Expert Systems

A. Motivating examples

- Forensic genetics
- Expert systems in medical and engineering diagnosis
- Bayesian hierarchical models
- Simple applications of Bayes' theorem
- Markov chains and random walks

The 'Asia' (chest-clinic) example
Shortness-of-breath (dyspnoea) may be due to tuberculosis, lung cancer, bronchitis, more than one of these diseases or none of them.

A recent visit to Asia increases the risk of tuberculosis, while smoking is known to be a risk factor for both lung cancer and bronchitis.

The results of a single chest X -ray do not discriminate between lung cancer and tuberculosis, as neither does the presence or absence of dyspnoea.

Visual representation of the Asia example - a graphical model

The 'Asia' (chest-clinic) example

An example from forensic genetics

DNA profiling based on STR's (single tandem repeats) are finding many uses in forensics, for identifying suspects, deciding paternity, etc. Can we use Mendelian genetics and Bayes' theorem to make probabilistic inference in such cases?
Now ... a patient presents with shortness-ofbreath (dyspnoea) How can the physician about the patient's history (smoking, visits to Asia) to help to diagnose which, if any, of tuberculosis, lung cancer, or bronchitis is the patient probably suffering from?

Graphical model for a paternity enquiry - allowing mutation

Surgical rankings

- 12 hospitals carry out different numbers of a certain type of operation:
$47,148,119,810,211,196,148,215,207$, $97,256,360$ respectively.
- They are differently successful, and there are: $0,18,8,46,8,13,9,31,14,8,29,24$
fatalities, respectively.

Surgical rankings, continued

B. Key ideas in exact probability calculation in complex systems

- What inference can we draw about the relative qualities of the hospitals based on these data?
- Does knowing the mortality at one hospital tell us anything at all about the other hospitals
- Graphical model (usually a directed acyclic graph)
- Conditional independence graph
- Decomposability
- Probability propagation: ‘message-- that is, can we 'pool' information? passing'

Conditional independence graphs

A Conditional independence graph (CIG) has variables as nodes and (undirected) edges

Directed acyclic graph (DAG)
 between pairs of nodes - absence of an edge between A and C means $\mathrm{A} \perp \mathrm{Cl}$ (rest), e.g.

.. indicating that model is specified by $p(C)$, $p(B \mid C)$ and $p(A \mid B): p(A, B, C)=p(A \mid B) p(B \mid C) p(C)$

A corresponding Conditional independence graph (CIG) is

... encoding various conditional independence assumptions, e.g. $p(A, C \mid B)=p(A \mid B) p(C \mid B)$

Decomposability

An important concept in processing information through undirected graphs
is decomposability
(= graph triangulated
= no chordless
≥ 4-cycles)

Cliques

A clique is a maximal complete subgraph:
here the cliques are
$\{1,2\},\{2,6,7\},\{2,3,6\}$, and $\{3,4,5,6\}$

A graph is decomposable if and only if it can be represented by a junction tree (which is not unique)
arsdidpuazatbique

The running intersection property:
For any 2 cliques C and $\mathrm{D}, \mathrm{C} \cap \mathrm{D}$
is a subset of every node between

them in the junction tree

C. Exact probability calculation in

1. Finding an (undirected) conditional independence graph for a given DAG

- Step 1: moralise (parents must marry)

1. Finding an (undirected) conditional independence graph for a given DAG

- Step 2: drop directions

2. Ensuring decomposability

3. Ensuring decomposability triangulate

4. Probability propagation

If the distribution $p(X)$ has a decomposable CIG, then it can be written in the following potential representation form:

$$
p(X)=\frac{\prod_{\text {clquesc }} \psi\left(X_{c}\right)}{\text { sepparaorss }}\left\langle\left(X_{s}\right)\right.
$$

the individual terms are called potentials; the representation is not unique
DAG

We now have a valid potential representation

$$
\begin{gathered}
p(X)=\frac{\prod_{\text {cliquesc }} \psi\left(X_{C}\right)}{\prod_{\text {separatorss }} \psi\left(X_{s}\right)} \\
p(A, B, C)=\frac{\psi(A, B) \psi(B, C)}{\psi(B)}
\end{gathered}
$$

but individual potentials are not yet marginal distributions

We now have a valid potential representation where individual potentials are marginals:

$$
\begin{array}{r}
p(X)=\frac{\prod_{\text {cliquesc }} p\left(X_{c}\right)}{\prod_{\text {separatorss }} p\left(X_{s}\right)} \\
p(A, B, C)=\frac{p(A, B) p(B, C)}{p(B)}
\end{array}
$$

We now have a valid potential representation

$$
\begin{gathered}
p(X)=\frac{\prod_{\text {cliquesc }} \psi\left(X_{c}\right)}{\prod_{\text {separatorss }} \psi\left(X_{s}\right)} \\
p(A, B, C)=\frac{\psi(A, B) \psi(B, C)}{\psi(B)}
\end{gathered}
$$

where

$$
\psi\left(X_{E}\right)=p\left(X_{E} \cap\{A=0\}\right)
$$

for any clique or separator E

(

Scheduling messages

There are many valid schedules for passing messages, to ensure convergence to stability in a prescribed finite number of moves.

The easiest to describe uses an arbitrary root-clique, and first collects information from peripheral branches towards the root, and then distributes messages out again to the periphery

Propagating evidence (3)

Scheduling messages

Scheduling messages

Scheduling messages

When 'evidence' is introduced - the value set for a particular node, all that is needed to propagate this information through the graph is to pass messages out from that node.

D. Applications

An example from forensic genetics

DNA profiling based on STR's (single tandem repeats) are finding many uses in forensics, for identifying suspects, deciding paternity, etc. Can we use Mendelian genetics and Bayes' theorem to make probabilistic inference in such cases?

Graphical model for a paternity enquiry - neglecting mutation

Having observed the genotype of the child, mother and putative father, is the putative father the true father?

Graphical model for a paternity enquiry - neglecting mutation

Having observed the genotype of the child, mother and putative father, is the putative father the true father?

Suppose we are looking at a gene with only 3 alleles 10,12 and ' x ', with population frequencies $28.4 \%, 25.9 \%, 45.6 \%$ the child is $10-12$, the mother 10-10, the putative father 12-12

Graphical model for a paternity enquiry - neglecting mutation

Surgical rankings, continued

- What inference can we draw about the relative qualities of the hospitals based on these data?
- A natural model is to say the number of deaths y_{i} in hospital i has a Binomial distribution $y_{i} \sim \operatorname{Bin}\left(n_{i}, p_{j}\right)$ where the n_{i} are the numbers of operations, and it is the p_{i} that we want to make inference about.

Surgical rankings, continued

- Specifically, we could take

$$
\log \frac{p_{i}}{1-p_{i}} \sim \operatorname{Beta}(\alpha, \beta)
$$

- If α and β are fixed numbers, then inference about p_{i} only depends on $y_{i}\left(\right.$ and n_{i}, α and $\left.\beta\right)$.

Surgical rankings

- 12 hospitals carry out different numbers of a certain type of operation:
47, 148, 119, 810, 211, 196, 148, 215, 207, $97,256,360$ respectively.
- They are differently successful, and there are:
$0,18,8,46,8,13,9,31,14,8,29,24$
fatalities, respectively.

Surgical rankings, continued

- How to model the p_{i} ?
- We do not want to assume they are all the same.
- But they are not necessarily `completely different'.
- In a Bayesian approach, we can say that the p_{i} are random variables, drawn from a common distribution.

Graph for surgical rankings

Surgical rankings, continued

- But don't you think that knowing that $p_{1}=0.08$, say, would tell you something about p_{2} ?
- Putting prior distributions on α and β allows 'borrowing strength' between data from different hospitals

The 'Asia' (chest-clinic) example
Shortness-of-breath (dyspnoea) may be due to tuberculosis, lung cancer, bronchitis, more than one of these diseases or none of them. A recent visit to Asia increases the risk of tuberculosis, while smoking is known to be a risk factor for both lung cancer and bronchitis. The results of a single chest X-ray do not discriminate between lung cancer and tuberculosis, as neither does the presence or absence of dyspnoea.

Visual representation of the Asia example - a graphical model

The 'Asia' (chest-clinic) example

The 'Asia' (chest-clinic) example
Software

query('smoke')
tab(c('tb','asia'),, c(.05,.95,.01,.99), c('yes','no'))
tab(c('cancer','smoke'),,c(.1,.9,.01,.99),c('yes','no'))
$\operatorname{tab}($ c('bronc','smoke'),,c(.6,. $4, .3, .7), \mathrm{c}($ 'yes','no'))
or('tbcanc','tb','cancer')
tab(c('xray','tbcanc'),,c(.98,.02,.05,.95),c('yes','no'))
tab(c('dysp','tbcanc','bronc'),,c(.9,.1,.8,.2,.7,.3,.1,.9),c('yes','no'))
id('dysp','yes')
prop.evid('xray','no')
pnmarg('cancer')
cancer=yes cancer=no
0.0025504190 .9974496

- The HUGIN system: freeware version (Hugin Lite 5.7):
http://www.stats.bris.ac.uk/~peter/Hugin57.zip
- Grappa (suite of R functions)
http://www.stats.bris.ac.uk/~peter/Grappa

