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BCCS 2008/09: GM&CSS

Lecture 6:

Bayes(ian) Net(work)s and 
Probabilistic Expert Systems

A. Motivating examples

• Forensic genetics

• Expert systems in medical and 
engineering diagnosis

• Bayesian hierarchical models

• Simple applications of Bayes’ theorem

• Markov chains and random walks

The ‘Asia’ (chest-clinic) example

The results of a single chest X-ray do not 
discriminate between lung cancer and 
tuberculosis, as neither does the presence or 
absence of dyspnoea. 

A recent visit to Asia increases the risk of 
tuberculosis, while smoking is known to be a risk 
factor for both lung cancer and bronchitis.

Shortness-of-breath (dyspnoea) may be due 
to tuberculosis, lung cancer, bronchitis, more 
than one of these diseases or none of them. 

+2

Visual representation of the Asia 
example - a graphical model

The ‘Asia’ (chest-clinic) example

Now … a patient presents with shortness-of-
breath (dyspnoea) …. How can the physician 
use available tests (X-ray) and enquiries 
about the patient’s history (smoking, visits to 
Asia) to help to diagnose which, if any, of  
tuberculosis, lung cancer, or bronchitis is the 
patient probably suffering from?

An example from forensic 
genetics
DNA profiling based on STR’s (single tandem 

repeats) are finding many uses in forensics, 
for identifying suspects, deciding paternity, 
etc. Can we use Mendelian genetics and 
Bayes’ theorem to make probabilistic 
inference in such cases?
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Graphical model for a paternity 
enquiry - allowing mutation

Having observed the genotype 
of the child, mother and 
putative father, is the putative 
father the true father?

Surgical rankings

• 12 hospitals carry out different numbers of a 
certain type of operation:

47, 148, 119, 810, 211, 196, 148, 215, 207, 
97, 256, 360 respectively. 

• They are differently successful, and there are:

0, 18, 8, 46, 8, 13, 9, 31, 14, 8, 29, 24
fatalities, respectively.

Surgical rankings, continued

• What inference can we draw about the 
relative qualities of the hospitals based on 
these data?

• Does knowing the mortality at one hospital 
tell us anything at all about the other hospitals 
- that is, can we ‘pool’ information?

B. Key ideas in exact probability 
calculation in complex systems

• Graphical model (usually a directed 
acyclic graph)

• Conditional independence graph

• Decomposability

• Probability propagation: ‘message-
passing’

A B C

A Conditional independence graph (CIG) has 
variables as nodes and (undirected) edges 
between pairs of nodes – absence of an edge 
between A and C means A  C| (rest), e.g.

Conditional independence graphs

A B C

D E

A B C

A B C

Directed acyclic graph (DAG)

… indicating that model is specified by p(C), 
p(B|C) and p(A|B): p(A,B,C) = p(A|B)p(B|C)p(C)

A corresponding Conditional independence 
graph (CIG) is

… encoding various conditional independence 
assumptions, e.g. p(A,C|B) = p(A|B)p(C|B)
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definition of p(C|B)true for any A, B, C
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An important concept in processing 
information through undirected graphs 
is  decomposability

(= graph triangulated

= no chordless

-cycles)

Decomposability

7 6 5

2 3 41

4
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Cliques

A clique is a maximal complete subgraph: 
here the cliques are                   
{1,2},{2,6,7}, {2,3,6}, and {3,4,5,6}

7 6 5

2 3 41

7 6 5

2 3 41

12

267 236 345626 36

2

a separator

The running intersection property:
For any 2 cliques C and D, CD 
is a subset of every node between 
them in the junction tree

A graph is decomposable
if and only if it can be 
represented by a
junction tree (which is
not unique) 
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another cliquea clique

Non-uniqueness
of junction tree

7 6 5

2 3 41

12

267 236 345626 36

2

7 6 5

2 3 41

12

267 236 345626 36

2

12

2

Non-uniqueness
of junction tree

C. Exact probability calculation in 
complex systems

0. Start with a directed acyclic graph

1. Find corresponding Conditional 
Independence Graph

2. Ensure decomposability

3. Probability propagation: ‘message-
passing’

1. Finding an (undirected) conditional 
independence graph for a given DAG

• Step 1: moralise (parents must marry)

D E

CA B

F

D E

CA B

F
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1. Finding an (undirected) conditional 
independence graph for a given DAG

• Step 2: drop directions

D E

CA B

F

D E

CA B

F

D E

CA

B

F

2. Ensuring decomposability

5 6 7

10 11

16

2

5 6 7

10 11

16

2

2. Ensuring decomposability
…. triangulate

5 6 7

10 11

16

2

5 6 7

10 11

16

2

5 6 7

10 11

16

2

3. Probability propagation

5 6 7

10 11

16

2

2 5 6 7

5 6 7 11

5 6 10 11

10 11 16

5 6 7

5 6 11

10 11form 
junction 
tree
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If the distribution p(X) has a decomposable 
CIG, then it can be written in the following 
potential representation form:

the individual terms are called potentials; 
the representation is not unique

A B CDAG

2/31/3C=1

4/73/7C=0

B=1B=0

1/32/3B=1

1/43/4B=0

A=1A=0

.3C=1

.7C=0B|CA|B

p(A,B,C) = p(A|B)p(B|C)p(C)

Problem setup

Wish to find p(B|A=0) , p(C|A=0)
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AB BCB

A B C

A B C

DAG

CIG

JT

Transformation of graph

AB BCB

A B C

2/31/3C=1

4/73/7C=0

B=1B=0

1/32/3B=1

1/43/4B=0

A=1A=0

.3C=1

.7C=0B|CA|B

1/32/3B=1

1/43/4B=0

A=1A=0

.2.4B=1

.1.3B=0

C=1C=0

Initialisation of potential representation

1B=1

1B=0
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We now have a valid potential representation
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but individual potentials are not yet 
marginal distributions

marginalise

.2.4B=1

.1.3B=0

C=1C=0

1/32/3B=1

1/43/4B=0

A=1A=0

AB BCB

A B C

Passing message from BC to AB (1)

1B=1

1B=0

.6B=1

.4B=0

1/3 .6/12/3 .6/1B=1

1/4 .4/13/4.4/1B=0

A=1A=0

multiply

.2.4B=1

.1.3B=0

C=1C=0

.2.4B=1

.1.3B=0

A=1A=0

AB BCB

A B C

Passing message from BC to AB (2)

.6B=1

.4B=0

.6B=1

.4B=0

1/3 .6/12/3 .6/1B=1

1/4 .4/13/4.4/1B=0

A=1A=0

assign

AB BCB

.2.4B=1

.1.3B=0

C=1C=0

.2.4B=1

.1.3B=0

A=1A=0

.6B=1

.4B=0

A B C

After equilibration - marginal tables
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We now have a valid potential representation 
where individual potentials are marginals:

)(
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AB BCB

.2.4B=1

.1.3B=0

C=1C=0

0.4B=1

0.3B=0

A=1A=0

.6B=1

.4B=0

A B C

.4B=1

.3B=0

.2 .4/.6.4 .4/.6B=1

.1 .3/.4.3.3/.4B=0

C=1C=0

Propagating evidence (1)

Propagating evidence (2)

AB BCB

.133.267B=1

.075.225B=0

C=1C=0

0.4B=1

0.3B=0

A=1A=0

.4B=1

.3B=0

A B C

.4B=1

.3B=0

.2 .4/.6.4 .4/.6B=1

.1 .3/.4.3.3/.4B=0

C=1C=0






Sseparators
S

cliquesC
C

X

X

)(

)(




)(Xp

We now have a valid potential representation
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where

for any clique or separator E

AB BCB

.133.267B=1

.075.225B=0

C=1C=0

0.4B=1

0.3B=0

A=1A=0

.4B=1

.3B=0

A B C

.298.702

.7.208.492

totalC=1C=0

.571.429

.7.4.3

totalB=1B=0

Propagating evidence (3)

Scheduling messages

There are many valid schedules for 
passing messages, to ensure 
convergence to stability in a prescribed 
finite number of moves.

The easiest to describe uses an arbitrary 
root-clique, and first collects information 
from peripheral branches towards the root, 
and then distributes messages out again 
to the periphery
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Scheduling messages

rootroot

Scheduling messages

rootroot

Scheduling messages

When ‘evidence’ is introduced - the value 
set for a particular node, all that is needed 
to propagate this information through the 
graph is to pass messages out from that 
node.

D. Applications 

An example from forensic 
genetics

DNA profiling based on STR’s (single tandem 
repeats) are finding many uses in forensics, 
for identifying suspects, deciding paternity, 
etc. Can we use Mendelian genetics and 
Bayes’ theorem to make probabilistic 
inference in such cases?

Graphical model for a paternity 
enquiry - neglecting mutation

Having observed the genotype 
of the child, mother and 
putative father, is the putative 
father the true father?

Graphical model for a paternity 
enquiry - neglecting mutation
Having observed the genotype of the child, mother 
and putative father, is the putative father the true 
father?

Suppose we are looking at 
a gene with only 3 alleles -
10, 12 and ‘x’, with 
population frequencies 
28.4%, 25.9%, 45.6% -
the child is 10-12, the 
mother 10-10, the putative 
father 12-12
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Graphical model for a paternity 
enquiry - neglecting mutation

 we’re 79.4% sure the putative father is the true father

Surgical rankings

• 12 hospitals carry out different numbers of a 
certain type of operation:

47, 148, 119, 810, 211, 196, 148, 215, 207, 
97, 256, 360 respectively. 

• They are differently successful, and there are:

0, 18, 8, 46, 8, 13, 9, 31, 14, 8, 29, 24
fatalities, respectively.

Surgical rankings, continued

• What inference can we draw about the 
relative qualities of the hospitals based on 
these data?

• A natural model is to say the number of 
deaths yi in hospital i has a Binomial 
distribution yi ~ Bin(ni,pi) where the ni are the 
numbers of operations, and it is the pi that we 
want to make inference about.

Surgical rankings, continued

• How to model the pi?

• We do not want to assume they are all the 
same.

• But they are not necessarily `completely 
different'.

• In a Bayesian approach, we can say that the 
pi are random variables, drawn from a 
common distribution.

Surgical rankings, continued

• Specifically, we could take

• If  and  are fixed numbers, then inference 
about pi only depends on yi (and ni,  and ).

),(~
1

log Beta
p

p

i

i



Graph for surgical rankings
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in ip
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Surgical rankings, continued

• But don't you think that knowing that p1=0.08,
say, would tell you something about p2?

• Putting prior distributions on  and  allows 
`borrowing strength' between data from 
different hospitals

Surgical rankings - simplified

3 hospitals, p discrete, only one hyperparameter

Surgical rankings - simplified

prior for  prior for pi given 

Surgical 
rankings

Surgical 
rankings

Surgical 
rankings
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Surgical 
rankings

The ‘Asia’ (chest-clinic) example

Shortness-of-breath (dyspnoea) may be due to 
tuberculosis, lung cancer, bronchitis, more 
than one of these diseases or none of them. 
A recent visit to Asia increases the risk of 
tuberculosis, while smoking is known to be a 
risk factor for both lung cancer and bronchitis. 
The results of a single chest X-ray do not 
discriminate between lung cancer and 
tuberculosis, as neither does the presence or 
absence of dyspnoea. 

Visual representation of the Asia 
example - a graphical model The ‘Asia’ (chest-clinic) example

The ‘Asia’ (chest-clinic) example
query('asia',c(0.01,0.99))
query('smoke')
tab(c('tb','asia'),,c(.05,.95,.01,.99),c('yes','no'))
tab(c('cancer','smoke'),,c(.1,.9,.01,.99),c('yes','no'))
tab(c('bronc','smoke'),,c(.6,.4,.3,.7),c('yes','no'))
or('tbcanc','tb','cancer')
tab(c('xray','tbcanc'),,c(.98,.02,.05,.95),c('yes','no'))
tab(c('dysp','tbcanc','bronc'),,c(.9,.1,.8,.2,.7,.3,.1,.9),c('yes','no'))

prop.evid('asia','yes')
prop.evid('dysp','yes')
prop.evid('xray','no')
pnmarg('cancer')

cancer=yes cancer=no
0.002550419 0.9974496

Software

• The HUGIN system: freeware version 

(Hugin Lite 5.7):

http://www.stats.bris.ac.uk/~peter/Hugin57.zip

• Grappa (suite of R functions)

http://www.stats.bris.ac.uk/~peter/Grappa

7 6 5

2 3 41


