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• Continuous space

• Discrete space
– lattice
– irregular - general graphs
– areally aggregated

• Point processes
– other object processes

Spatial indexing
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Space vs. time

• apparently slight difference
• profound implications for 

mathematical formulation and 
computational tractability
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Requirements of particular 
application domains
• agriculture  (design)

• ecology  (sparse point pattern, poor data?)

• environmetrics (space/time)

• climatology  (huge physical models)

• epidemiology  (multiple indexing)

• image analysis  (huge size)
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Key themes

• conditional independence
– graphical/hierarchical modelling

• aggregation
– analysing dependence between differently 

indexed data
– opportunities and obstacles

• literal credibility of models
• Bayes/non-Bayes distinction blurred
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Why build spatial 
dependence into a model?
• No more reason to suppose independence 

in spatially-indexed data than in a time-
series

• However, substantive basis for form of 
spatial dependent sometimes slight - very 
often space is a surrogate for missing 
covariates that are correlated with 
location



2

7

Discretely indexed data
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Modelling spatial dependence 
in discretely-indexed fields

• Direct
• Indirect

– Hidden Markov models
– Hierarchical models
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Hierarchical models, using DAGs

Variables at several 
levels - allows 
modelling of 
complex systems, 
borrowing 
strength, etc.
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Modelling with undirected 
graphs
Directed acyclic graphs are a natural 

representation of the way we usually 
specify a statistical model - directionally:

• disease  symptom
• past  future
• parameters  data ……
whether or not causality is understood.
But sometimes (e.g. spatial models) there is 

no natural direction

11

Conditional independence

In model specification, spatial context 
often rules out directional 
dependence (that would have been 
acceptable in time series context)

X0 X1 X2 X3 X4
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Conditional independence

In model specification, spatial context 
often rules out directional 
dependence

X20 X21 X22 X23 X24

X00 X01 X02 X03 X04

X10 X11 X12 X13 X14
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Conditional independence

In model specification, spatial context 
often rules out directional 
dependence

X20 X21 X22 X23 X24

X00 X01 X02 X03 X04

X10 X11 X12 X13 X14
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Directed 
acyclic graph
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in general:

for example:

a b

c

d
p(a,b,c,d)=p(a)p(b)p(c|a,b)p(d|c)
In the RHS, any distributions are legal, 
and uniquely define joint distribution
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Undirected (CI) graph

X20 X21 X22

X00 X01 X02

X10 X11 X12
Absence of edge 
denotes conditional 
independence given 
all other variables

But now there are 
non-trivial constraints 
on conditional 
distributions

Regular lattice, irregular 
graph, areal data...
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Undirected (CI) graph

X20 X21 X22

X00 X01 X02

X10 X11 X12
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then

and so

The Hammersley-Clifford theorem says essentially 
that the converse is also true - the only sure way to 
get a valid joint distribution is to use ()

()

clique

Suppose we assume
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Hammersley-Clifford

X20 X21 X22

X00 X01 X02

X10 X11 X12
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A positive distribution p(X)
is a Markov random field

if and only if it is a Gibbs 
distribution

- Sum over cliques C
(complete subgraphs)
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Partition function
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Almost always, the constant 
of proportionality in

is not available in tractable 
form: an obstacle to 
likelihood or Bayesian 
inference about parameters 
in the potential functions

Physicists call 

the partition function
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Markov properties for 
undirected graphs
• The situation is a bit more complicated 

than it is for DAGs. There are 4 kinds of 
Markovness:

• P – pairwise
– Non-adjacent pairs of variables are 

conditionally independent given the rest

• L – local
– Conditional only on adjacent variables 

(neighbours), each variable is independent of 
all others
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• G – global
– Any two subsets of variables separated by a 

third are conditionally independent given the 
values of the third subset.

• F – factorisation
– the joint distribution factorises as a product 

of functions of cliques
• In general these are different, but FGLP 

always. For a positive distribution, they are all 
the same.
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Gaussian Markov random 
fields: spatial autoregression
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is a multivariate Gaussian distribution, and

If VC(XC) is -ij(xi-xj)2/2 for C={i,j} and 0 otherwise, then

is the univariate Gaussian distribution
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Inverse of (co)variance matrix:

dependent case
3210
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Gaussian random fields
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Non-Gaussian Markov 
random fields
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Pairwise interaction random fields with 
less smooth realisations obtained by 
replacing squared differences by a term 
with smaller tails, e.g.
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Discrete-valued Markov 
random fields
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Besag (1974) introduced various cases of 

for discrete variables, e.g. auto-logistic 
(binary variables), auto-Poisson (local 
conditionals are Poisson), auto-binomial, 
etc.
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Auto-logistic model









 
C

CC XVXp )(exp)(









 
ji

jiij
i

ii xxx
~

exp 

)|()|( iiii XXpXXp   is Bernoulli(pi) with 





ij

jijiii xpp )())1/(log( 

- a very useful model for dependent binary 
variables (NB various parameterisations)

(Xi = 0 or 1)
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Statistical mechanics 
models
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The classic Ising model (for ferromagnetism) is the 
symmetric autologistic model on a square lattice in 
2-D or 3-D. The Potts model is the generalisation to 
more than 2 ‘colours’
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and of course you can usefully un-symmetrise this.
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Auto-Poisson model
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For integrability, ij must be 0, so this only
models negative dependence: very limited use.
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Hierarchical models 
and 
hidden Markov processes
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Chain graphs

• If both directed and 
undirected edges, but 
no directed loops:

• can rearrange to form 
global DAG with 
undirected edges 
within blocks
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Chain graphs

• If both directed and 
undirected edges, but 
no directed loops:

• can rearrange to form 
global DAG with 
undirected edges 
within blocks

• Hammersley-Clifford 
within blocks
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Hidden Markov random 
fields
• We have a lot of freedom modelling 

spatially-dependent continuously-
distributed random fields on regular or 
irregular graphs 

• But very little freedom with discretely 
distributed variables

•  use hidden random fields, continuous 
or discrete

• compatible with introducing covariates, 
etc.
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Hidden Markov models

z0 z1 z2 z3 z4

y1 y2 y3 y4

e.g. Hidden Markov chain

observed

hidden
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Hidden Markov random 
fields

Unobserved 
dependent field

Observed 
conditionally-
independent 
discrete field

(a chain graph)
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Spatial epidemiology 
applications

independently, for each region i. Options:
• CAR, CAR+white noise (BYM, 1989)
• Direct modelling of                    ,e.g. SAR
• Mixture/allocation/partition models:

• Covariates, e.g.:
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Spatial epidemiology 
applications

Spatial contiguity is usually 
somewhat idealised
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relative
risk

parameters

Richardson & Green (JASA, 2002) used a 
hidden Markov random field model for 
disease mapping
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MRF

Spatial epidemiology 
applications
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Chain graph for disease 
mapping
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Larynx cancer in 
females in France

SMRs
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