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Abstract

We review the across-model simulation approach to computation for Bayesian model de-
termination, based on the reversible jump Markov chain Monte Carlo method. Advantages,
difficulties and variations of the methods are discussed. We also discuss some limitations of the
ideal Bayesian view of the model determination problem, for which no computational methods
can provide a cure.
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1 Introduction

Problems where ‘the number of things you don’t know is one of the things you don’t know’ seem
to be ubiquitous in statistical modelling, both in traditional modelling situations, such as variable
selection in regression, and in more novel methodologies, such as object recognition, signal process-
ing, and Bayesian nonparametrics. A feature of all such problems is that they can be addressed
using the basic formulation of model determination or choice.

This article serves as an introduction to the Bayesian approach for model determination prob-
lems, emphasising the computation of posterior model probabilities, specifically using reversible
jump Markov chain Monte Carlo (MCMC) methods.

1.1 Ideal Bayes model determination

What we choose to call the ‘ideal Bayes’ approach to model determination treats uncertainty about
a statistical model and uncertainty about its parameters in a unified way: all unknowns are modelled
by random variables, and inference is based on conditional (posterior) distributions induced by an
assumed joint probability model for unknowns and observed data.

Given a countable set of models, the Bayesian model choice problem generically involves joint
inference about a model indicator k and a parameter vector θk, where the model indicator deter-
mines the dimension nk of the parameter and this dimension may vary from model to model. In a
frequentist setting, inference about the two kinds of unknown, k and θk, is almost invariably based
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on different logical principles. In contrast, the ideal Bayesian treats (k, θk) as a joint unknown and
to make inference only the joint posterior p(k, θk|Y ) is needed.

Joint inference for the generic Bayesian model choice problem can be set naturally in the form
of a simple Bayesian hierarchical model. We suppose that a prior p(k) is specified over models k in
a countable set K, and for each k we are given a prior distribution p(θk|k), along with a likelihood
p(Y |k, θk) for the data Y . In some settings, p(k) and p(θk|k) are not separately available, even up
to multiplicative constants; this applies for example in many point process models. However it will
be clear that what follows requires specification only of the product p(k, θk) = p(k) × p(θk|k) of
these factors, up to a multiplicative constant.
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Figure 1: The basic hierarchical model for Bayesian model choice, as a directed acyclic graph.

Throughout this article all probability distributions are proper. Furthermore, for simplicity
of exposition (rather than as a necessity of the method), we suppose that p(θk|k) is a probability
density with respect to the nk-dimensional Lesbegue measure. Where there are parameters common
to all models, perhaps in additional layers of hierarchy, these are subsumed into each θk ∈ Xk ⊂
Rnk . In many models there are discrete unknowns as well as continuously distributed ones. Such
unknowns, whether fixed or variable in number, cause no additional difficulties; only discrete-state
Markov chain notions are needed to handle them, and formally speaking, the variable k can be
augmented to include these variables; such problems then fit into the above framework.

The joint posterior

p(k, θk|Y ) =
p(k, θk)p(Y |k, θk)∑

k′∈K
∫
p(k′, θ′k′)p(Y |k′, θ′k′)dθ′k′

can always be factorised as
p(k, θk|Y ) = p(k|Y )p(θk|k, Y ),

that is, as the product of posterior model probabilities and model-specific parameter posteriors.
This identity is very often the basis for reporting the inference and in particular, for model deter-
mination, the (marginal) posterior model probabilities p(k|Y ) are commonly of interest.

Before proceeding, it is important to appreciate the generality of the above model determination
formulation. In particular, note that it embraces not only genuine model choice situations, where
the variable k indexes the collection of discrete models under consideration, but also settings where
there is really a single model, but one with a variable-dimension parameter, for example a functional
representation such as a series whose number of terms is not fixed. In the latter case, arising
sometimes in Bayesian nonparametrics, for example, k is unlikely to be of direct inferential interest.
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These problems really form a continuous spectrum rather than a sharp dichotomy: a point made
well by considering curve-fitting to noisy data using families of smoothing splines or polynomials
of different complexity. We might naturally think that choosing the degree of a polynomial is a
choice of model while choosing the tuning constant multiplying a roughness functional is estimating
a hyperparameter; but in reality it is hard to argue that these are really distinct kinds of problem.
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Figure 2: Three curves fitted to the same artificial data, using (left panel) cubic smoothing splines
and (right panel) polynomials. In each case the three curves use 3, 6 and 11 degrees of freedom
respectively.

1.2 Simulation-based computation for model determination

In practice, the posterior probabilities required to conduct Bayesian model determination are almost
invariably not available analytically. Thus to make inference we must rely on numerical methods,
with the consequence that the resulting computations can be quite intensive. The only generic
methods available currently that produce results that are ‘exact’ (that is, up to simulation error
only) are Monte Carlo methods of various kinds.

A favoured Monte Carlo method is Markov chain Monte Carlo (MCMC). The basis for this
approach is to construct a Markov chain which has as its invariant distribution the (posterior)
distribution of interest. There are two main approaches using MCMC for model determination
problems: across-model simulation, in which there is a single MCMC simulation with states of the
form (k, θk) ∼ p(k, θk|Y ); and within-model simulation, in which there are separate simulations of
θk ∼ p(θk|k, Y ) for each k. The former is the primary subject of this article. We omit further
details of the latter as they are covered in brief in section 4 of Green (2003) and in more detail by
Friel (this volume).

Reversible jump Markov chain Monte Carlo (Green 1995) is a method for across-model sim-
ulation of posterior distributions of the form introduced in the previous section. More generally,
reversible jump is a technique for simulating from a Markov chain whose state is a vector whose di-
mension is not fixed. The majority of the remainder of this article is focussed on how to implement
this method for the model determination problem and the associated challenges that arise.

We note that other simulation methods that are not MCMC include particle filters, using
sequential Monte Carlo in place of MCMC (Jasra et al. 2008) and ABC – ‘likelihood-free’ methods

3



where Y |k, θk can be simulated but p(Y |k, θk) cannot be evaluated (Didelot et al. 2011). These
methods are outside the scope of this article.

1.3 Structure of the paper

For the remainder of this article some understanding of standard MCMC methods is assumed, and
the unfamiliar reader is referred to Gamerman (1997) or Brooks (1998) for an introductory tutorial.

In section 2, reversible jump MCMC is presented and discussed, and an illustrative example is
given in section 3, along with a brief look at past literature citing the method. Section 4 discusses
some methodological extensions aimed particularly at construction of efficient proposals. We then
consider the idea of a fully-automated reversible jump sampler in Section 5. In Section 6 we present
some recent methodologies exploiting reversible jump and briefly review other model-jumping ap-
proaches. Leaving reversible jump MCMC behind, in Section 7 we return to the more general
question of Bayesian model determination and consider some of the outstanding philiosophical
difficulties, before offering some brief words of conclusion.

This paper updates Green (2003) but omits, in particular, coverage of within-model sampling
approaches to trans-dimensional sampling problems, while including extra material on more recent
developments, and on statistical methodologies built on reversible jump and related across-model
sampling methods.

2 Metropolis–Hastings in a more general light

In the direct approach to computation of the joint posterior p(k, θk|Y ) via MCMC we construct
a single Markov chain simulation, with states of the form (k, θk) = (k, θk,1, θk,2, . . . , θk,nk

); we
might call this an across-model simulation. The state space for such an across-model simulation is
X =

⋃
k∈K({k} × Xk), where for each k, Xk ⊂ Rnk . The point of defining X in this way is that

even in cases where the dimensions {nk} are all different, we often wish to have direct inferential
access to the ‘model indicator’ k; in cases where the {nk} are not all different, this becomes essential.
Mathematically, X is not a particularly awkward object, and our construction involves no especially
challenging novelties. However, such a state space is at least a little non-standard!

Formally, our task is to construct a Markov chain on this general state space with a speci-
fied limiting distribution. Reversible jump MCMC is one means of achieving this goal, using the
Metropolis–Hastings paradigm to build a suitable reversible chain, as is usual in Bayesian MCMC
for complex models.

We begin by presenting an introduction to reversible jump, considering how transitions be-
tween different states in X might practically be achieved by a computer program. We build first
upon a fixed-dimensional case and then demonstrate how this is immediately extended to the
trans-dimensional case. The aim of this perspective is to show that the generalisation of the
Metropolis–Hastings algorithm is straightforward and dispel the myth that reversible jump is tech-
nically challenging.

2.1 A constructive representation in terms of random numbers

Our aim is to construct a Markov chain on a general state space X with invariant distribution
p. (Note that neither X nor p need refer to the Bayesian model-choice problem formulated in the
previous section). As is common in MCMC we will consider only reversible chains, so that, put
simply, we require the equilibrium probability that the state of the chain is in a general set A and
moves to a general set B to be the same with A and B reversed. This is known as the detailed
balance condition.
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Suppose initially that we have a simpler state space, X ⊂ Rn. As usual with the Metropolis–
Hastings algorithm, we can satisfy the detailed balance condition by applying a protocol that pro-
poses a new state for the chain and then accepts this proposed state with an appropriately derived
probability. This probability is obtained by considering a transition and its reverse simultaneously.
Let the density of the invariant distribution p also be denoted by p. At the current state x, we
generate, say, r random numbers u from a known joint density g. The proposed new state of the
chain x′ is then constructed by some suitable deterministic function h such that (x′, u′) = h(x, u).
Here, u′ are the r-dimensional random numbers, generated from a known joint density g′ that
would be required for the reverse move from x′ to x, using the inverse function h′ of h. If the move
from x to x′ is accepted with probability α(x, x′) and likewise, the reverse move is accepted with
probability α(x′, x), the detailed balance requirement can be written as∫

(x,x′)∈A×B
p(x)g(u)α(x, x′)dx du =

∫
(x,x′)∈A×B

p(x′)g′(u′)α(x′, x)dx′ du′. (1)

If the transformation h from (x, u) to (x′, u′) and its inverse h′ are differentiable, then we can
apply the standard change-of-variable formula to the right hand side of equation (1). We then see
that the (n+ r)-dimensional integral equality (1) holds if

p(x)g(u)α(x, x′) = p(x′)g′(u′)α(x′, x)

∣∣∣∣∂(x′, u′)

∂(x, u)

∣∣∣∣ ,
where the last factor is the Jacobian of the transformation from (x, u) to (x′, u′). Thus, a valid
choice for α is

α(x, x′) = min

{
1,
p(x′)g′(u′)

p(x)g(u)

∣∣∣∣∂(x′, u′)

∂(x, u)

∣∣∣∣} , (2)

involving only ordinary joint densities.
While this formalism is perhaps a little indirect for the fixed-dimensional case, it proves a flexible

framework for constructing quite complex moves using only elementary calculus. In particular, the
possibility that r < n covers the case, typical in practice, that given x ∈ X , only a lower-dimensional
subset of X is reachable in one step. (The Gibbs sampler is the best-known example of this, since
in that case only some of the components of the state vector are changed at a time, although the
formulation here is more general as it allows the subset not to be parallel to the coordinate axes.)
Separating the generation of the random innovation u and the calculation of the proposal value
through the deterministic function h is deliberate; it allows the proposal distribution

q(x,B) =

∫
{u:h(x,u)∈B×Rr}

g(u)du

to be expressed in many different ways, for the convenience of the user.

2.2 The trans-dimensional case

The main benefit of this formalism is that expression (2) applies, without change, in a variable-
dimension context. Consider now allowing X to be a more complex space, such that x has different
dimension in different parts of X . (We use the same symbol p(x) for the target density whatever
the dimension of x.) Provided that the transformation from (x, u) to (x′, u′) remains a diffeomor-
phism, the individual dimensions of x and x′ can be different. The dimension-jumping has become
essentially ‘invisible’.

In this setting, suppose the dimensions of x, x′, u and u′ are n, n′, r and r′ respectively, then we
have functions h : Rn ×Rr → Rn′ ×Rr′ and
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h′ : Rn′ × Rr′ → Rn × Rr, used respectively in (x′, u′) = h(x, u) and (x, u) = h′(x′, u′). For
the transformation from (x, u) to (x′, u′) to be a diffeomorphism requires that n + r = n′ + r′,
so-called ‘dimension-matching’; if this equality failed, the mapping and its inverse could not both
be differentiable. We note, however, that one or both of r, r′ might be 0.

2.3 Multiple move types and the model-choice problem

Returning to our generic model-choice problem, we wish to use these reversible jump moves to
sample the space X =

⋃
k∈K({k} × Xk) with invariant distribution p, which here is p(k, θk|Y ).

Just as in ordinary MCMC, although each move is a transition kernel reversible with respect to
p, we typically need multiple types of moves to traverse the whole space X . Again, as in ordinary
MCMC, we can scan through the available moves according to various deterministic or random
schedules. Here we consider the case of move types chosen independently for each sweep of the
MCMC run, and extend conventional Metropolis–Hastings by allowing the probabilities of each
move type to depend on the current state.

Indexing the move types by m in a countable setM, a particular move type m consists of both
the forwards move from x = (k, θk) to x′ = (k′, θ′k′) and the reverse, taking x′ to x, for a specific pair
(k, k′). For the forwards move, rm random numbers u are generated from known joint distribution
gm, and the new state θ′k′ ∈ Rnk′ is constructed as (θ′k′ , u

′) = hm(θk, u). Here u′ are the r′m random
numbers from joint distribution g′m needed for the reverse move, to move from θ′k′ to θk, using the
inverse function h′m of hm.

Letting jm(x) denote the probability that move m is attempted at state x, the move-type specific
equivalent to equation (1) is∫

(x,x′)∈A×B
p(x)jm(x)gm(u)αm(x, x′)dx du

=

∫
(x,x′)∈A×B

p(x′)jm(x′)g′m(u′)αm(x′, x)dx′ du′. (3)

Since the complete transition kernel is obtained by summing over m ∈ M , ensuring that the
detailed balance equation (3) holds for for each move type m is sufficient to ensure that the detailed
balance condition holds. Thus, a sufficient choice for the acceptance probability αm associated with
move type m is given by αm(x, x′) = min{1, Am(x, x′)} where

Am(x, x′) =
p(x′)

p(x)

jm(x′)

jm(x)

g′m(u′)

gm(u)

∣∣∣∣∂(θ′k′ , u
′)

∂(θk, u)

∣∣∣∣ . (4)

Here the Jacobian factor is from the transformation from (θk, u) to (θ′k′ , u
′), and is obviously

dependent upon the move type m. In order for this transformation to be a diffeomorphism we
again require the dimension matching to hold, so that nk + rm = nk′ + r′m.

Finally we note, when at x = (k, θk), only a limited number of moves m will typically be
available, namely those for which jm(x) > 0. With probability 1 − ∑m∈M jm(x) no move is
attempted.

2.4 Some remarks and ramifications

To summarise, ‘reversible jump’ MCMC is just Metropolis–Hastings, formulated to allow for sam-
pling from a distribution on a union of spaces of differing dimension, and permitting state-dependent
choice of move type. In understanding the framework, it may be helpful to stress the key role played
by the joint state–proposal equilibrium distributions. In fact, detailed balance is explicitly charac-
terised as the invariance of these distributions to time-reversal. The fact that the degrees of freedom
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in these joint distributions are unchanged when x and x′ are interchanged allows the possibility of
reversible jumps across dimensions, and these distributions directly determine the move acceptance
probabilities. Contrary to some accounts that connect it with the jump in dimension, the Jacobian
comes into the acceptance probability simply through the fact that the proposal destination x′ is
specified indirectly through h(x, u).

Note that the framework gives insights into Metropolis–Hastings that apply quite generally.
State-dependent mixing over a family of transition kernels in general infringes detailed balance,
but is permissible if, as here, the move probabilities jm(x) enter properly into the acceptance
probability calculation. Note also the contrast between this randomised proposal mechanism, and
the related idea of mixture proposals, where the acceptance probability does not depend on the
move actually chosen; see the discussion in Appendix 1 of Besag et al. (1995).

To properly ascertain the theoretical validity of the general state space Metropolis–Hastings
algorithm, we require a measure-theoretic approach, defining dominating measures and Radon–
Nikodym derivatives. In practice however, as is demonstrated by the presentation above, the
measure theory becomes essentially invisible and can be safely ignored. To avoid getting distracted
by details that are peripheral to this article, we exclude further discussion of these aspects. For a
detailed consideration, the interested reader is referred to the original presentation in Green (1995)
or the alternative, and we trust improved, discussion in Green (2003).

For most purposes, theoretical study of such Markov chains simply replicates the corresponding
study of ordinary Metropolis–Hastings. There are exceptions: for example, verification of Harris
recurrence for a chain seems to demand analysis of the structure of the space X and details of the
transitions. See Roberts and Rosenthal (2006).

Finally, note that in a large class of problems involving nested models, the only dimension
change necessary is the addition or deletion of a component of the parameter vector (think of poly-
nomial regression, or autoregression of variable order). In such cases, omission of a component is
often equivalent to setting a parameter to zero. These problems can be handled in a seemingly
more elementary way, through allowing proposal distributions with an atom at zero: the usual
Metropolis–Hastings formula for the acceptance probability holds for densities with respect to arbi-
trary dominating measures, so the reversible jump formalism is not explicitly needed. Nevertheless,
it leads to exactly the same algorithm.

2.5 Alternative presentations and related methods

Reversible jump has been presented in several different ways by other authors. Of note is the
tutorial by Waagepetersen and Sorensen (2001) which follows the lines of Green (1995) but in more
detail and minimising the measure theoretic notation.

Sisson (2005) provides an excellent review of trans-dimensional MCMC in the decade since Green
(1995), with good coverage of the literature. Emphasis is placed on model choice applications, the
efficient construction of samplers, and convergence diagnostics, but the review also covers other
relevant work. Particularly helpful is the collation of freely available software for implementing
various reversible jump algorithms.

Related to reversible jump, several authors have introduced different perspectives on trans-
dimensional sampling. Keith et al. (2004) have proposed a novel broad framework for many sam-
plers, including RJMCMC, in the guise of their ‘generalised Markov sampler’. The idea is to
augment the state space X by a discrete set, whose role is to provide an index to the type of the
next transition, that is, to the move m in the language of section 2.3 above. This formalism provides
an alternative view of state-dependent mixing over moves that the authors have found useful in
applications, notably in phylogenetic inference. In contrast, Besag (1997) and Besag (2000) give a
novel formulation in which variable-dimension notation is circumvented by embedding all θk within
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one compound vector. We consider the related product-space formulations in section 6, along with
other approaches.

There are also a number of alternative sampling methods to reversible jump. One example is
presented by Petris and Tardella (2003), who propose a formalism, directed primarily at situations
where all models are nested within each other but possibly capable of generalisation, in which the
variable-dimension character of a model choice problem is finessed. All models are embedded into
the largest subspace, and the probability atoms induced by smaller models are smeared out across
a neighbourhood. The original models can be recovered by transformation.

3 A simple example and existing literature

We highlight the ideas of section 2 with an illustrative example, chosen for its simplicity, allowing
us to avoid the complexities that exist in many problems. However, we note that for such a simple
example, the use of within-model approaches (Green 2003) may be more appropriate than reversible
jump MCMC.

3.1 Poisson versus negative binomial

When modelling count data a question that is often of interest is whether the data is over-dispersed
relative to a Poisson distribution. In such cases, data may be better modelled by a negative binomial
distribution.

For data Y of length N , the likelihood under an independent identically distributed Poisson
model with parameter λ > 0 is

p(Y |λ) =

N∏
i=1

λYi

Yi!
exp(−λ),

whereas under an independent identically distributed negative binomial model with parameters
λ > 0 and κ > 0 it is

p(Y |λ, κ) =

N∏
i=1

λYi

Yi!

Γ(1/κ+ Yi)

Γ(1/κ)(1/κ+ λ)Yi
(1 + κλ)−1/κ.

For both distributions the mean is given by λ. For the negative binomial distribution the
parameter κ characterises the over-dispersion relative to a Poisson distribution, such that the
variance is given by λ(1 + κλ).

Newton and Hastie (2006) consider a question along these lines in the context of tumour counts
in genetically-engineered mice. To avoid the complexities intrinsic in their problem, we consider an
example applied to total goals data from 1, 040 English Premiership soccer matches for the seasons
2005/06 to 2007/08, treated simplistically as if this was a simple random sample.

Adopting the framework above our problem is a very simple model choice problem. When k = 1,
we suppose Yi ∼ Poisson(λ), for i = 1, 2, . . . , N . Using the notation introduced above, θ1 = λ. For
k = 2, the data is allowed to follow a negative binomial distribution so that Yi ∼ NegBin(λ, κ),
meaning θ2 = (λ, κ). Over-dispersion in model 2 may be indicative of other effects, such as team
effects, that are not captured by a global mean parameter λ.

For our Bayesian approach, our priors on each model are such that p(k = 1) = p(k = 2) = 0.5.
For θ1 and θ2,1 (corresponding to λ in models 1 and 2 respectively) we use a Gamma(αλ, βλ) prior.
For θ2,2 we adopt a Gamma(ακ, βκ) prior. This results in a posterior distribution of

p(k, θk|Y ) ∝
{

1
2p(θ1|k = 1)p(Y |θ1) for k = 1
1
2p(θ2,1, θ2,2|k = 2)p(Y |θ2,1, θ2,2) for k = 2.
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where

p(θ1|k = 1) = γ(θ1, αλ, βλ), p(θ2,1, θ2,2|k = 2) = γ(θ2,1, αλ, βλ)× γ(θ2,2, ακ, βκ).

and γ(·, α, β) is the density of the Gamma(α, β) distribution.
We choose αλ = 25 and βλ = 10, giving a mean value of 2.5, which is typical for total goals in

a football match. In addition, we choose ακ = 1 and βκ = 10. These priors result in an average of
around 25% extra variance for the negative binomial distribution.

Despite being an integral part of our MCMC sampler, we do not illustrate within-model moves
as these are straightforward fixed-dimensional Metropolis–Hastings moves. However, the sampler
also needs to be able to jump between models 1 and 2, and noting that these are of different
dimensions, reversible jump methodology must be applied.

Consider the move from model 1 to model 2. Let x = (1, θ) be the current state of the chain.
Since there is no equivalent to the parameter κ in model 1, we proceed using an independence
approach. Specifically, we generate u from a N(0, σ) distribution, where σ is fixed, so that g is the
density of this distribution. We then set x′ = (2, θ′), where θ′ = (θ′1, θ

′
2) = h(θ, u) = (θ, µ exp(u)),

for some fixed µ. In words, the parameter λ is maintained between models, but the new parameter
κ is a log-normal random variable, multiplicatively centred around µ.

It is trivial to calculate the Jacobian factor, giving

|J | =

∣∣∣∣∣∣
∂θ′1
∂θ1

∂θ′1
∂u

∂θ′2
∂θ1

∂θ′2
∂u

∣∣∣∣∣∣ = µ exp(u).

The reverse move, from model 2 to 1, requires no random variable u′ (i.e. r′ = 0), instead just
setting (θ, u) = h′(θ′) = (θ′1, log(θ′2/µ)). This means the acceptance probability for the move from
model 1 to 2 is min{1, A1,2}, where

A1,2 =
p(2, θ′|Y )

p(1, θ|Y )

{
1√
2pσ2

exp

[−u2
2σ2

]}−1
µ exp(u)

and from model 2 to 1 is min{1, A2,1}, where

A2,1 =
p(1, θ|Y )

p(2, θ′|Y )

1√
2pσ2

exp

[−(log(θ′2/µ))2

2σ2

]
1

θ′2
.

Note that, as must be the case, these are reciprocals after change of notation.
Importantly, our specification of g and h was not restricted; any choice of g and h is valid,

but different choices will lead to algorithms that perform differently. As an example, we might
alternatively have chosen u ∼ Exp(β), for some fixed β, and h(θ, u) = (θ, u).

For our proposal, the parameters µ and σ are crucial to the success of the algorithm; poorly
chosen values may lead to slow convergence and ultimately even non-convergence during a run
of the sampler. In this example, µ can be chosen naturally: by considering Var(Y )/E(Y ) and
approximating E(Y ) by ȳ and Var(Y ) by the sample variance, we set µ = 0.015. Note that for
a poorer choice of µ = 1.0, no trans-dimensional moves were accepted in our runs, so that the
sampler remained in the model it had been initialised in. The choice of σ is less sensitive, although
we discuss this a little further below.

We ran our sampler for 50 000 sweeps, with an additional burn-in of 5 000 sweeps. At each sweep
a trans-dimensional move was attempted, along with within-model moves for each parameter. The
posterior probability of the models were p(k = 1|Y ) = 0.708 and p(k = 2|Y ) = 0.292. Figure 3.1
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Figure 1: MCMC output for example problem: (a) Trace of log posterior for last
5 000 sweeps of sampler; (b) density estimate for θ1 when k = 1; (c) density estimate
for θ2,1 when k = 2; and (d) density estimate for θ2,2 when k = 2. Solid lines are
problem specific sampler of section 3.1, dashed lines are AutoMix sampler of section
5.
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shows the trace plot of the log posterior for the last 5 000 sweeps, along with density estimates for
θ1, θ2,1 and θ2,2 (solid lines).

Although there appears to be some support for model 2, the Poisson distribution of model 1
has higher posterior probability. Because the data exhibits only slight over-dispersion relative to
the Poisson distribution, our prior specification for κ impacts on the posterior support for model 2.

We did not attempt to optimise the choice of σ but note that for this example, setting σ = 1.5
gave an acceptance rate of 58%, compared to 8% when σ = 0.05. This lower acceptance rate leads
to higher autocorrelation in the k chain, although both samplers converged within the burn-in
period. For harder problems, sub-optimal choice of proposal scaling parameter cause convergence
difficulties.

We return briefly to this example in section 5.1. We refer the reader to Chapter 3 of Hastie
(2005), and Newton and Hastie (2006) for a related more complex example.

3.2 The literature on reversible jump

In order to get an idea of the relevance of reversible jump MCMC, we might consider the citations
of the original reversible jump paper in other publications. In fact, according to the ISI Web of
Knowledge, at the time of writing, there are over 1 400 citations in over 500 journals, although
many of these may be simply mentions in passing. Some of the non-trivial citations are in reviews
or tutorials, or prove mathematical properties, others propose alternative approaches. However,
the majority are implementations of reversible jump, typically presenting statistical methodologies
using the method, recipes of generic methodological significance, or applications to specific analyses
of data. Even a superficial review of this work would take up far more space than is available here,
but the reader is urged to consult this literature, using search engines, etc., before starting on a
purportedly novel application.

Some idea of the balance between methodology and different broad application domains can
be obtained by noting that around 45% of the articles citing Green (1995) are in statistics and
probability, about 28% in biology, genetics and medicine (Sisson (2005) notes that “one in every
five citations . . . can be broadly classified as genetics-based research”), about 20% in computer
science and engineering, and about 15% in other disciplines ranging from archaeometry through
management science to water resources research.

Later sections in this article highlight some of the more important methodological extensions
to reversible jump.

4 Challenges of implementation

Although applications of reversible jump have been diverse, much of the reported work has been
carried out by MCMC “experts”. With wider adoption, the method might yield promising analysis
of many more problems.

Part of the apparent reluctance to adopt reversible jump methods, is a belief that such samplers
are difficult to employ. This perception may in part be fueled by the often complex and formal
language used to present the method. In truth, reversible jump at the practical level is quite
simple and it is not necessary to fully understand the underlying technicalities in order to apply
the method. Nonetheless, while the method itself may not be complicated, for many applications
the complexity of the space X may present challenging issues.

Specifically, the construction of across-model proposals between the state spaces Xk may appear
difficult, as natural ideas of proximity and neighbourhood that help guide the design of within-
model proposals may no longer be intuitive. Heikkinnen (2003) demonstrates that in some extreme
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instances, this may lead to difficulty in designing valid proposals. More commonly, designing valid
proposals is not the challenge, but difficulty lies in ensuring that the chosen proposals are efficient.

Inefficient proposal mechanisms result in Markov chains that are slow to explore the state
space, and hence demonstrate slow convergence to the stationary distribution p; this leads to the
Markov chain having high autocorrelation, which increases the asymptotic variance of Monte Carlo
estimators.

In fixed-dimensional MCMC, proposed new states will be accepted with high probability if they
are very close to the current state. Inefficiency can be caused by not proposing large moves away
from the current state of the chain or by proposing bolder moves that have associated acceptance
probabilities that are prohibitively small. For the random-walk Metropolis and Langevin algorithms
and simple target distributions this comes down to a well studied question of optimal scaling of a
proposal variance parameter (Roberts et al. 1997; Roberts and Rosenthal 1998).

For reversible jump, within-model proposals are no different than fixed-dimensional MCMC so
identical principles apply. For across-model proposals the lack of a concept of closeness means
that frequently it is the problem of low acceptance probabilities that makes efficient proposals hard
to design; it is usual for across-model moves to display much lower acceptance probabilities than
within-model moves.

Generally, the intuitive principle behind efficient across-model proposal design is to ensure that
our proposed new state (k′, θ′k′) will have similar posterior support to our existing state (k, θk). This
ensures that the move and its reverse will both have a good chance of being accepted. While this
may be easier said than done, for common move types which appear in a number of applications,
such as the split–merge move type introduced by Richardson and Green (1997), general ideas such
as moment matching can help achieve this aim. See Richardson and Green (1997) and Green and
Richardson (2001) for details.

In order to achieve an efficient reversible jump algorithm for a specific problem of interest,
many aspects of the proposal mechanism need to be carefully specified and then tuned using pilot
runs. Examples for tuning include scaling, blocking and re-parameterisation. This process is often
arduous and has motivated researchers to concentrate efforts on providing more general techniques
for efficient proposal design, to help unlock the full potential of reversible jump MCMC. We dedicate
the remainder of this section to a review of a selection of the advances that have been made in this
area.

4.1 Efficient proposal choice for reversible jump MCMC

Perhaps the most substantial recent methodological contribution to the general construction of
proposal distributions is work by Brooks et al. (2003b). The authors propose several new methods,
falling into two main classes. Their methods are implemented and compared on examples including
choice of autoregressive models, graphical gaussian models, and mixture models.

Order methods, which are the first class of methods, focus mainly on the quantitative question
of efficiently parameterising a proposal density (g(u) in section 2.1), having already fixed the trans-
formation ((θ′, u′) = h(θ, u)) into the new space. This is achieved by imposing various constraints
on the acceptance ratio (4), for jumps between the existing state θk in model k and an appropri-
ately chosen “centring point” ck,k′(θk) in k′. The centring point is chosen with the aim of being
the equivalent state in model k′ of θk in model k (in a sense defined within the paper).

The detail of the order methods is in the specific constraints that are used. The constraint
imposed by the zeroth-order method is that

A((k, θk), (k
′, ck,k′(θk))) = 1,

where A is the acceptance ratio for a particular move-type, as in equation (4). By scaling the
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proposal so that the acceptance ratio is 1 for a jump to the chosen centring point, frequent across-
model moves are encouraged. The authors present a simple motivating example, wherein the
method results in transition probabilities that are optimal (in a sense explained within the paper).

Constraints imposed for the first-order (and higher-order) methods set the first (and higher)
order derivatives of the acceptance ratio (with respect to the random numbers u) equal to 0, so for
example,

∇A((k, θk), (k
′, ck,k′(θk))) = 0.

First- and higher-order methods are inspired by the Langevin algorithm (Roberts and Rosenthal
(1998)), with the attractive property that the acceptance probability remains high in a region
around the centring point. The number of order methods that can be used depends upon the
number of parameters to be determined in the proposal distribution g, but numerical support for
first and higher order methods is strong, leading to significant performance increases.

The second class of methods, named the saturated space approach work in a product-space
formulation somewhat like that in section 6.2.

Essentially, the idea is to augment the state space X with auxiliary variables, to ensure that
all models share the same dimension nmax as that of the “largest” model. MCMC is then used
to create a chain with stationary distribution equal to an augmented target distribution, which
combines the target distribution p and the distributions of the auxiliary variables.

Inclusion of auxiliary variables aids across-model moves, essentially rendering them fixed-dimensional.
In the updating mechanism introduced by Brooks et al. (2003b), conditional upon the selection of
one of a finite number of transforms, the proposal to a state in a different model is deterministic.
Randomness is achieved by within-model updates, applied to both model parameters and the aux-
iliary variables, allowing temporal memory and possible dependency in the auxiliary variables. In
essence, this allows the chain to have some memory of states visited in other models, resulting in
more efficient proposals.

Ehlers and Brooks (2008) extend this work for time series models, looking at more flexible re-
versible jump moves. Godsill (2003) suggests further developments, possibly using only a randomly
selected subset of the auxiliary variables when proposing the new state.

4.2 Adaptive MCMC

Another area of recent research offering efficiency gains is adaptive sampling. The underlying
idea is that under suitable conditions the proposal mechanisms may be allowed to depend on past
realisations of the chain, not just the current state, without invalidating the ergodicity of the
resulting process. In other words, the resulting chain may still be used to make inference about the
target distribution. This observation means that questions such as optimal location and scaling
of proposals can be determined online during the run of the algorithm, eliminating the need for
tuning and pilot runs.

Research into adaptive sampling has taken two distinct directions known as diminishing adap-
tation and adaptation through regeneration, which differ in how the adaptation of proposal distri-
butions occur.

Diminishing adaptation is the most popular of these and allows adaptation to continue indef-
initely, but at a rate that is decreasing as the chain progresses. Rosenthal (2011) provides an
introduction to this approach, including the assumptions required for the validity of the approach.
Comprehensive references for further reading are also provided.

Erland (2003) provides a review of adaptation through regeneration, which requires the existence
of parts of the state space where the Markov chain regenerates (i.e. the sub-chains separated by
visits to these regeneration areas are independent of each other with some probability ψ). It is then
valid to adapt the proposal distribution upon visits to these regeneration states.
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Little work has yet been done to extend adaptive MCMC to the more general moves of reversible
jump. For within-model moves, adaptive proposals could be applied, however for across-model
moves the situation is more difficult. Hastie (2005) discusses adapting the probabilities jm(x), in
the particular case where the probabilities of proposing a jump from one model to another do not
depend on either k or θk. (Note that the new state θ′k′ in model k′ is still allowed to depend on
x = (k, θ)). Two methods are suggested for adaptation, the most promising being a diminishing
adaptation algorithm. Although not all of assumptions that guarantee convergence are confirmed,
numerical results are encouraging and we hope that subsequent research will extend the methods
to more general across-model moves.

4.3 Other ways of improving proposals

An interesting modification to Metropolis–Hastings is the splitting rejection idea of Tierney and
Mira (1999), extended to the reversible jump setting by Green and Mira (2001), who call it delayed
rejection.

Using this algorithm, if a proposal to x′ is rejected (with the usual probability 1 − α(x, x′)),
instead of immediately taking the new state of the chain to be the existing state x, a secondary
proposal to x′′ is attempted. This is accepted with a probability that takes into account the
rejected first proposal, in a way that the authors show maintains detailed balance for the compound
transition.

Numerical results demonstrate efficiency improvements, but the benefits of more accepted
across-model moves needs to be weighed against the increased computational cost of the two stage
proposal. Combining a “bold” first proposal with a conservative second proposal upon rejection,
might lead to a sampler that better explores the state space but the question of sensible proposal
design for general reversible jump problems remains difficult.

Other authors have also tried to adapt the reversible jump algorithm to improve across-model
acceptance rates. Al-Awadhi et al. (2004) propose across-model moves that make clever use of an
intermediate within-model chain, which maintains detailed balance with respect to an alternative
distribution p∗. By making the p∗ a flatter version of p, the aim is to encourage moves in situations
where the conditional distributions p(θk|k) are multi-modal; such cases often have near zero accep-
tance rates for across-model moves. While the algorithm increases the rates, they remain small,
at a non-negligible increase in computational cost. A similarly motivated idea by Tjelmeland and
Hegstad (2001), modifies the acceptance probability by considering pairs of proposal distributions,
each one optimised at each iteration to locally approximate a mode of the posterior distribution.
Again, acceptance rate gains are realised but the optimisation would be prohibitively expensive in
many problems, especially those with high dimensional spaces.

While the research above highlights the progress being made, important questions such as the
choice of g and h remain largely unaddressed. Furthermore, with the possible exception of adaptive
MCMC, there remains the need for tuning runs. In section 5 we present a sampler designed to
address these issues.

4.4 Diagnostics for reversible jump MCMC

Monitoring of MCMC convergence on the basis of empirical statistics of the sample path is im-
portant, while not of course a substitute for a good theoretical understanding of the chain. There
has been some concern that across-model chains are intrinsically more difficult to monitor, perhaps
almost amounting to this being a reason to avoid their use.

In truth, the degree of confidence that convergence has been achieved provided by ‘passing’ a
diagnostic convergence test declines very rapidly as the dimension of the state space increases. In
more than, say, a dozen dimensions, it is difficult to believe that a few, even well-chosen, scalar
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statistics give an adequate picture of convergence of the multivariate distribution. It is high, rather
than variable, dimensions that are the problem.

In most trans-dimensional problems in Bayesian MCMC it is easy to find scalar statistics that
retain their definition and interpretation across models, typically those based on fitted and pre-
dicted values of observations, and these are natural candidates for diagnostics, requiring no special
attention to the variable dimension.

However, recognising that there is often empirical evidence that a trans-dimensional simulation
stabilises more quickly within models than it does across models, there has been recent work on
diagnostic methods that address the trans-dimensional problem more specifically. The promising
approach by Brooks and Giudici (2000), following Brooks and Gelman (1998), is based on analysis
of sums of squared variation in sample paths from multiple runs of a sampler. This is decomposed
into terms attributable to between- and within-run, and between- and within-model variation.

More recently, Sisson and Fan (2007) have extended this idea to propose a specific distance-
based diagnostic for trans-dimensional chains, applicable whenever the unknown x can be given
a point process interpretation, essentially, that is, whenever the variable-dimension aspect of the
parameter vector consists of exchangeable sub-vectors. Examples include change-point problems
and mixture models.

5 Automatic RJMCMC

One idea aimed at eliminating the intricacies of sampler design is that of an automatic reversible
jump MCMC sampler that can be applied to any given target distribution. The first steps in this
direction were taken by Green (2003), motivated by the fixed-dimensional random-walk Metropolis
sampler.

The assumption is made that an across-model move from model k to model k′ is proposed with
some probability q(k, k′) that does not depend on θk. Under this set up, the central idea is that in
order to maximise the acceptance probability for the move, θ′k′ would ideally be sampled from the
conditional distribution p(θ′k′ |k′). Although typically these conditional distributions are not known,
Green (2003) suggests using Normal distributions that crudely approximate these conditionals as
proposal distributions. Hastie (2005) introduces the AutoMix sampler, extending this approach by
exploring the possibility that for each k, a mixture approximation to p(θk|k) could be used instead.

Hastie (2005) supposes that for model k there are Lk components in the mixture, indexed by
l, each with weight λlk, fixed nk-dimensional mean-vector µlk, and fixed nk × nk-matrix Bl

k such
that Bl

k[B
l
k]
T is the covariance matrix. By allocating the existing state θk to a component lk in

model k with probability pk,θk(lk), and choosing a component l′k′ in model k′ with probability λ
l′
k′
k′

the proposed new state θ′k′ depends on dimensions nk and nk′ as follows:

θ′k′ =


µ
l′
k′
k′ +B

l′
k′
k′ [(Blk

k )−1(θk − µlkk )]
nk′
1 nk′ < nk

µ
l′
k′
k′ +B

l′
k′
k′ (Blk

k )−1(θk − µlkk ) nk′ = nk

µ
l′
k′
k′ +B

l′
k′
k′

(
(Blk

k )−1(θk − µlkk )

u

)
nk′ > nk

. (5)

Here, [·]m1 denotes the first m elements of a vector and u is an (nk′ −nk)-vector of random numbers
drawn from density g′, which are taken to be that of independent standard Normal distributions
or independent Student t distributions.

Following simple arguments, Hastie (2005) shows that detailed balance is preserved if the move
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is accepted with probability α(x, x′) = min{1, A(x, x′)} where

A(x, x
′) =

p(k′, θ′k′)

p(k, θk)

pk′,θ′
k′

(l′k′)

pk,θk(lk)

q(k′, k)

q(k, k′)

λlkk

λ
l′
k′
k′

|Bl′
k′
k′ |
|Blk

k |
Gk,k′(u)

and

Gk,k′(u) =


g′(u) nk′ < nk
1 nk′ = nk
[g′(u)]−1 nk′ > nk

.

Having allocated a state to a component lk in the existing model, the state is standardised by
using µlkk and Blk

k . If the proposal is to a model with a higher dimension, new standard random
variables are appended to this standardised vector; if a model with a lower dimension is proposed,
the appropriate number of elements are discarded. The new standardised vector is then transformed

to θ′k′ using the mean, µ
l′
k′
k′ , and (matrix square root of the) covariance matrix, B

l′
k′
k′ , corresponding

to a randomly selected mixture component l′k′ . Notice also that if q(k, k) > 0, then the above
mechanism might also be used for within-model moves, potentially allowing moves to states well
separated from the current state, by jumping between different components of the mixture.

Central to the AutoMix sampler is the specification of the mixture distributions for each model.
Hastie (2005) suggests looping over the models, performing preliminary adaptive random-walk
Metropolis (RWM) pilot runs to obtain a sample from each posterior conditional and then fitting
the mixtures using the EM-like algorithm of Figueiredo and Jain (2002). The increased cost of
fitting mixtures compared to computing a mean vector and covariance matrix (as required by
the automatic sampler introduced by Green (2003)) should not be overlooked; if the conditional
posteriors appear to be largely unimodal then the more simple sampler may be preferable, although
adaptive sampling at the initial RWM stage appears prudent.

As Hastie (2005) observes, the inclusion of within-model pilot runs and mixture fitting increases
run-time considerably when compared to a reversible jump sampler designed for a particular prob-
lem. However, one should not discount the fact that an automatic sampler may be implemented
with minimal user input, saving on the sampler design time. In addition, computational savings
could in theory be made by replacing within-model pilot-runs with adaptive fitting of mixtures
throughout the reversible jump stage.

5.1 A simple example revisited

Primarily automatic samplers are designed to be easy to apply and relatively broad in their appli-
cability. As such, it is easy to apply such an approach to the problem we considered in section 3.1.
By downloading the C program that implements the AutoMix software1, we need only to specify
a function which computes log p(k, θk|y), along with simple other functions setting the maximum
number of models, the dimension of each model and initial values for the chain.

Applying the AutoMix sampler for 50 000 reversible jump sweeps gives posterior model probabil-
ities of 0.707 for model 1 and 0.293 for model 2. Density estimates for θ1, θ2,1 and θ2,2 are included
(dashed lines) in figure 3.1, demonstrating good agreement with the problem specific sampler.

Hastie (2005) applies the sampler to a number of non-trivial problems including the tumour
count problem studied by Newton and Hastie (2006), and change-point processes applied to coal-
mining disaster data as studied by Green (1995). Following a similar approach, Spirling (2007) uses
the sampler to consider civilian casualty rates in the Iraq conflict. Furthermore, using the sampler

1Package including code, instructions and example files are freely available from
http://www.davidhastie.me.uk/AutoMix

16



for a model choice problem for 2 mixed effects model, applied to data from an AIDS clinical trial,
Hastie (2005) avoids issues of implementation, tuning and marginalisation as encountered by Han
and Carlin (2001) who studied the problem in a comparison of reversible jump with other trans-
dimensional approaches.

6 Subsequent and alternative methodologies

In section 3 we cited a handful of applications that have benefited from reversible jump. We have
no doubt that the future will provide many other interesting problems for which reversible jump
may yield important conclusions. Furthermore, we anticipate that future methodologies may be
built using reversible jump methods as foundations. In the following sub-section we briefly note a
selection of methods that fall into this category.

6.1 Methodologies exploiting RJMCMC

Based on sequential Monte Carlo (SMC) (see Doucet et al. (2001) for a review), Jasra et al. (2008)
introduce a method they call Interacting sequential Monte Carlo samplers (ISMC). The key to
ISMC is that several SMC samplers are run in parallel, initially on separate subspaces. For each
sampler, at time t < T , particles are updated using MCMC moves (including reversible jump moves
for trans-dimensional problems) so that they are samples from pt, which is typically a version of p
that facilitates mixing, for example by tempering. Importantly, pT = p. When some predetermined
time t∗ < T is reached, the separate samplers are combined and a single sampler is implemented,
moving across all models. Jasra et al. (2008) take advantage of this formulation by using the separate
samplers to provide samples for each model k, which are then used to fit a mixture distribution
to approximate p(θk|k). The single SMC sampler then uses reversible jump moves very similar to
those in the AutoMix sampler (see equation (5)), extended to include an identifiability constraint
that is necessary for their application.

The authors present their work for an example in population genetics, demonstrating a marked
improvement of between-model mixing over regular SMC methods, albeit at a cost of increased
computational time.

We note the similarities between the ISMC method and the population reversible jump MCMC
method introduced by Jasra et al. (2007). Extending population MCMC (Cappé et al. 2004) to the
trans-dimensional case, and drawing on the ideas of evolutionary Monte Carlo (Liang and Wong
2000), this algorithm also employs tempered distributions (again to encourage mixing) but this
time in parallel. Markov chains are constructed using reversible jump methods to sample from
each distribution, but the parallel chains also interact by including moves that allow the states to
be swapped or combined. The authors prove the ergodicity of the resulting algorithm, and show
for a particular hard genetic example, mixing between models is improved.

Tempering based ideas have also been used by other authors. Gramacy et al. (2008) detail a
further related method which combines simulated tempering using RJMCMC and importance sam-
pling, allowing samples from p to be recovered when using the tempered distributions. Simulated
tempering and reversible jump are also combined by Brooks et al. (2006), who use the ideas to
create a perfect simulation algorithm to provide exact samples from the target distribution p.

A common use for reversible jump is to process the output from the chain to assess support
for the various models by calculating the Bayes factor, Bk,k′ = pk(Y )/pk′(Y ), where pk(Y ) =∫
p(Y |θk, k)p(θk|k)dθk is the marginal likelihood of model k. Alternatively this can be written as

the ratio of posterior and prior odds of models k and k′. Assuming equal prior probabilities on
models k and k′, this motivates the simple estimate of Bk,k′ as Jk/Jk′ , where Jk is the number of
visits (out of a chain of length J) to model k.
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Applying the concept of Rao–Blackwellisation, Bartolucci et al. (2006) propose an improved
estimate (in terms of reduced variance) by using the bridge sampling identity (Meng and Wong
1996), given by

Bk,k′ =
Ek′ [φ(θk)p(Y |θk, k)p(θk|k)]

Ek[φ(θ′k′)p(Y |θ′k′ , k′)p(θ′k′ |k′)]
(6)

for a general function φ, where Ek is the expectation with respect to p(θk|Y ) ∝ p(Y |θk, k)p(θk|k).
Bartolucci et al. (2006) extend equation (6) to the trans-dimensional case and suggest a choice

of the function φ that requires no extra computational cost. For models k, k′, where a jump is
proposed between these models at each sweep, the resulting estimate is:

Bk,k′ =

∑Jk′
i=1 αk′,k((θ

′
k′)

i, θik)/Jk′∑Jk
i=1 αk,k′(θ

i
k, (θ

′
k′)

i)/Jk
,

where θik is the value of θk at the ith visit to model k and αk,k′(θk, θ
′
k′) is the reversible jump accep-

tance probability of moving from (k, θk) to (k′, θ′k′). For the examples considered, the improvements
are marked.

Probabilistic inference is not the only use of MCMC methodology. A specific example, is
the simulated annealing (Geman and Geman 1984) algorithm for function optimisation, recently
extended for trans-dimensional problems where an optimal model may need to be determined,
see Brooks et al. (2003a) and Andrieu et al. (2000). For a particular function f(k, θk), then it
is possible to construct the Boltzmann distribution with parameter T , with density bT (k, θk) ∝
exp(−f(k, θk)/T ). The function f is the quantity that we wish to minimise, perhaps with some
penalisation term, for example to mimic the AIC or BIC (Andrieu et al. (2000)). Trans-dimensional
simulated annealing proceeds by using reversible jump moves, to construct a Markov chain where
the invariant distribution for phase i is the Boltzmann distribution with parameter Ti. Once
equilibrium has been reached, the temperature Ti is decreased, and a new phase is started from the
state the chain ended in. By decreasing Ti in this manner, we are left with a distribution with all
its weight in the global minima, resulting in an effective optimisation algorithm.

6.2 Alternatives to reversible jump MCMC

It is important to observe that there are several alternative formalisms for across-model simulations.
While full coverage of these methods falls outside the scope of this paper, considering reversible
jump as one of a wider class of methods can be instructive for developing a better understanding
and guiding future research into RJMCMC methods. We now reference a few of the most relevant
alternatives.

Predating reversible jump, Grenander and Miller (1994) proposed a sampling method they
termed jump diffusion, involving between-model jumps and within-model diffusion according to a
Langevin stochastic differential equation. Had the sampler been corrected for time discretisation by
using a Metropolis–Hastings accept/reject decision, this would have been an example of reversible
jump.

Various trans-dimensional statistical models can be viewed as abstract marked point processes
(Stephens 2000). In these problems, the items of which there are a variable number are regarded as
marked points. For example in a normal mixture model the points represent the (mean, variance)
pairs of the components, marked with the component weights. Stephens (2000) borrows the birth-
and-death simulation idea of Preston (1977) and Ripley (1977) to develop a methodology for finite
mixture analysis. The key feature that allows the approach to work for a particular application is
the practicability of integrating out latent variables so that the likelihood is fully available.

Extending the point process idea, Cappé et al. (2003) have recently given a rather complete
analysis of the relationship between reversible jump and continuous time birth-and-death samplers.
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Unlike reversible jump, the birth-death process accepts all across-model moves, but maintains
detailed balance through the length of time spent in each model. The authors conclude that
little benefit is gained from formulating a problem one way or another, as low acceptance rates in
reversible jump are just replaced by significant phases where the point process approach does not
move between models. Nonetheless, as mentioned in section 4, this alternative formulation can be
useful in other respects, such as the convergence diagnostic proposed by Sisson and Fan (2007).

Another class of alternative methods is termed the product space approach and was first used to
consider trans-dimensional problems by Carlin and Chib (1995). Since then, work has been done to
extend the method (Green and O’Hagan 1998; Dellaportas et al. 2002), leading to the more general
composite model space framework of Godsill (2001). Sisson (2005) provides a review.

As in the saturated state space of Brooks et al. (2003b) (see section 4), the idea is to work on
a more general state space, where the simulation keeps track of all θk rather than only the current
one. Thus the state vector is of fixed dimension, circumventing the trans-dimensional nature of the
problem.

Letting θ−k denote the composite vector consisting of all θl, l 6= k concatenated together, the
joint distribution of (k, (θl : l ∈ K), Y ) can be expressed as

p(k)p(θk|k)p(θ−k|k, θk)p(Y |k, θk). (7)

The third factor p(θ−k|k, θk) has no effect on the joint posterior p(k, θk|Y ); the choice of these
conditional distributions, which Carlin and Chib (1995) call ‘pseudo-priors’, is entirely a matter of
convenience. However, the efficiency of the resulting sampler depends entirely on these quantities,
effective meaning that the choice of efficient proposal distribution for reversible jump is replaced
by the specification of appropriate pseudo-priors.

Godsill (2001)’s formulation extends equation (7) to allow the parameter vectors θk to overlap
arbitrarily, and embraces both product space and reversible jump methods, facilitating comparisons
between them. The framework also provides useful insight into some of the important factors
governing the performance of reversible jump. Godsill (2003) discusses these issues in some detail,
including using retained information from past visits to other models, to help design effective
across-model moves.

Whether or not jumping between parameter subspaces benefits sampler performance has been
a question of some debate. Han and Carlin (2001) suggest that MCMC samplers that avoid a
model space search may result in estimates with improved precision whereas Richardson and Green
(1997) present an example that suggests the contrary. In fact, there is no one answer, and in some
instances trans-dimensional moves will help samplers, whereas in others they will be unnecessary.
Green (2003) considers this question in more detail, using a simple example to provide insight.

Little research has comprehensively compared the performance of reversible jump and product
space methods. Dellaportas et al. (2002) study the methods in the context of model choice, along
with some less generally applicable approaches. There is little to differentiate the results from al-
ternative approaches, and both approaches perform adequately. However, neither reversible jump
proposal design or product space pseudo-prior specification appear particularly hard for the exam-
ples they consider. More research would be welcome in this area, but we believe that for difficult
problems, implementation of both approaches will involve complex practical issues; which method
yields the better results may come down to which method the researcher has most experience with.

7 Practical Bayesian model determination

Having considered how we might make inference for ‘ideal Bayesian’ model determination, we set
aside our review of methodology and return to some of the more fundamental issues that face the
practitioner wishing to perform model choice for a real Bayesian problem.

19



In many instances it may be that that the analyst does not wish to report the marginal model
posterior probabilities p(k|Y ). Of course, using these probabilities we could alternatively report
Bayes Factors

Bkl =
p(Y |k)

p(Y |l) =
p(k|Y )

p(l|Y )
÷ p(k)

p(l)

for pairwise comparison of models. For some, the marginal likelihood, p(Y |k), itself has an intrinsic
meaning and interpretation. In either case, the same methods for posterior computation will yield
results.

A more philosophical question is that of model choice versus model averaging. With model
choice we may be interested in determining a best model k? (understanding the uncertainty of
this choice), and restricting our inference about the model parameters θk? (and functions of these
parameters) conditional upon this model. The benefit of this approach is that reported parameters
summaries retain natural interpretations.

On the other hand, to properly account for model uncertainty, we should average over models.
Again, the same posterior computation allows model averaging

E(F |Y ) =
∑
k

∫
F (k, θk)p(k, θk|Y )dθk

for any function F with the same interpretation in each model. One example is prediction where

p(Y +|Y ) =
∑
k

p(Y +|k, Y )p(k|Y )

is a posterior-weighted mixture of the within-model-k predictions

p(Y +|k, Y ) =

∫
p(Y +|k, θk)p(θk|k, Y )dθk.

When probabilities are computed using reversible jump MCMC methods, the expectation can be
estimated simply by averaging F along the entire run, essentially ignoring the model indicator k.

Some would argue that it is only responsible to adopt a Bayesian hierarchical model of the kind
introduced above when there is compatibility between models, that is, when the parameter priors
p(θk|k) are such that inference about functions of parameters that are meaningful in several models
should be approximately invariant to k. Such compatibility could in principle be exploited in the
construction of MCMC methods, although we are not aware of general methods for doing so.

Even taking these considerations into account, we have remained focused on the ‘ideal Bayes’
approach. In reality there are a number of reasons why this simple idealised view fails to reflect
practical applications.

7.1 Prior model probabilities may be fictional

The ideal Bayesian has real prior probabilities (perhaps imparted by colleagues) reflecting scientific
judgement or belief across the model space. In practice, however, such priors may not be commonly
available. For example, we know a lot more about how to elicit scientific judgements about model
parameters than we do about the models themselves. Arbitrariness in prior model probabilities
may not affect Bayes factors (since prior probabilities cancel) but it sabotages Bayesian model
averaging.
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7.2 No chance of passing the test of a sensitivity analysis

In ordinary parametric problems we commonly find that inferences are rather insensitive to mod-
erately large variations in prior assumptions, except when there are very few data. In fact, the
opposite case, of high sensitivity, poses a greater challenge to the non-Bayesian as perhaps the
data carry less information than hoped. However, it is clear that a test of sensitivity to model
probabilities

p?(k|Y )

p?(l|Y )
=
p(k|Y )

p(l|Y )
×
(
p?(k)

p?(l)
÷ p(k)

p(l)

)
will always fail, due to the fact that K is discrete and thus the second factor on the left hand side
can be arbitrarily changed depending on the prior distributions assumed. This dependence on prior
model probabilities is of course exactly the situation that use of Bayes factors avoids.

7.3 Improper parameter priors problems

In ordinary parametric problems it is commonly true that it is safe to use improper priors, specifi-
cally when posterior distributions are well-defined as limits of a sequence of approximating proper
priors (without sensitivity to what that sequence is). However, when comparing models, improper
parameter priors make Bayes factors indeterminate (since improper priors can only be defined up to
arbitrary normalising constants, which persist into marginal likelihoods). Using proper but vague
(or diffuse) priors alleviates this problem, but only partially, as the Bayes factors will then depend
on the arbitrary degree of vagueness used.

In certain circumstances, ideas such as Intrinsic or Fractional Bayes factors, or Expected Pos-
terior priors, can be applied, essentially based on tying together improper priors across different
models. These ideas lose much of the appeal of ideal Bayes arguments, have arbitrary aspects, and
are not widely accepted.

8 Conclusion

In conclusion, model uncertainty is a fact of life. As statistical scientists, we are still learning
about when it can be quantified, eliminated or accommodated. The computational challenges
posed by model determination can now often be met, for example using the methods in this article
although there are still many directions in which future research might be directed. Amongst these,
the guidance for efficient proposal design and the search for generic samplers remain elusive and
challenging questions. Equally crucial is the area of reversible jump diagnostics: if we wish to
encourage the wider adoption of the technique, then it is vital that we equip the user with tools
for ascertaining that the conclusions that they reach are valid.

In many ways, the broad applicability of reversible jump, clearly a strength of the method, is
also an obstacle. A panacea for the above questions is unlikely to be found, as no one method
will be suitable for all problems. Rather, it is probable that RJMCMC will continue to evolve
slowly, with researchers adding to the collection of existing methods and extensions, building upon
contributions from many different perspectives

Beyond the methodological challenges, more philosophical problems remain about model de-
termination. It is much easier to recognise uncertainty about models than it is to do objectively-
justified quantification of that uncertainty. Choosing a single model is fraught with difficulties.
Furthermore, there is probably no single best model, since the criteria by which we choose may be
directed by different reasons. The real objective of inference may be prediction, for example, or it
may be scientific understanding. We may be forced to choose a model for external reasons, such
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as presentation to a lay audience, or a policy maker, and led to conceal doubt about models for
‘defensive’ reasons.

In this article, we have not considered the alternatives to basing model determination simply
on posterior distributions. There are many other criteria and developed methodologies of Bayesian
hypothesis testing including complexity criteria such as AIC, BIC, DIC, DIC+, MDL, and Cp,
decision theory, Bayesian p-values and posterior predictive checks. This diversity of approach
reflects the different flavours of model determination question that statisticians face.

In fact, the very term ‘model’ may be too much of a catch-all. The ease with which many
different tasks (such as choice between different scientific mechanisms, selection of predictors in
regression, the number of components in a mixture, the order of an AR model, or the complexity
of polynomial or spline) can be cast as problems of model determination, obscures the differences
in character between these tasks. While there is certainly an obvious advantage in developing
generic methods that are appropriate for all flavours of the problem, it may be that this task is too
challenging. Greater progress may be made by focussing on application specific developments and
subsequently adapting these for different problems where appropriate.
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