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Abstract

We investigate the behaviour of the remainder term R(E) in the Weyl formula

#{n|En ≤ E} =
Vol(M)

(4π)d/2 Γ(d/2 + 1)
Ed/2 + R(E)

for the eigenvalues En of a Schrödinger operator on a d-dimensional compact Rie-
mannian manifold all of whose geodesics are closed. We show that R(E) is of the
form E(d−1)/2 Θ(

√
E), where Θ(x) is an almost periodic function of Besicovitch class

B2 which has a limit distribution whose density is a box-shaped function. This is in
agreement with a recent conjecture of Steiner [19, 1]. Furthermore we derive a trace
formula and study higher order terms in the asymptotics of the coefficients related
to the periodic orbits. The periodicity of the geodesic flow leads to a very simple
structure of the trace formula which is the reason why the limit distribution can be
computed explicitly.



1 Introduction

In the theory of quantum chaos [15] there has been intensive investigations of the statistical
properties of the energy levels of quantum mechanical systems. Special emphasis has been
on the relation to the classical limit ~ → 0. It has been found out that the statistical
properties of the energy levels strongly depend on the ergodic properties of the associated
classical system. Short range correlations in the spectrum are in case of classically inte-
grable systems well described by a Poissonian distribution, whereas for classically chaotic
system the distributions obtained from random matrix theory fit quite well. But these
models fail to describe long range correlations, and also for short range correlation excep-
tions are known. The so called arithmetic systems, which are classically chaotic, possess
some statistical features very similar to integrable systems [10]. A statistical measure which
gives a clear distinction between classically chaotic and classically integrable systems was
missing until now.

Inspired by number theoretical results [16] there has been recently a number of inves-
tigations of a global statistical measure in case of integrable systems [9, 5, 7, 6, 18, 8].
It is conjectured in [19], and numerically tested for some chaotic systems in [1], that this
measure provide a classification of quantum mechanical systems according to their classical
limit.

To describe it we introduce some notation. Let (M, g) be a compact, d-dimensional
Riemannian manifold, with metric g, and ∆g its Laplace-Beltrami operator, defined by
∆gf = divg(gradgf). Denote by E0 ≤ E1 ≤ E2 . . . the eigenvalues of −∆g, counted
with multiplicities, and by N(E) = #{j|Ej ≤ E} the counting-function. The asymptotic
behaviour of N(E) for E →∞ is given by the famous Weyl law [17],

N(E) =
Vol(M)

(4π)d/2 Γ(d/2 + 1)
Ed/2 + O(E(d−1)/2) . (1)

The remainder term is in general a very wild function and difficult to study, but for certain
two-dimensional integrable systems the authors of the above cited articles were able to
show that N(E) can be decomposed as follows:

N(E) =
1

4π
Vol(M)E + E1/4Θ(

√
E) (2)

where Θ(x) is an almost periodic function of Besicovitch class B1 (i.e., the mean value of
|Θ(x)| exists, see below for more information on B1)), whose frequencies are the lengths of
the closed geodesics. The first term in (2) describes the mean behaviour of N(E), while
the second term generally oscillates around zero with an amplitude growing like E1/4. So
Θ(x) describes the normalized fluctuations of N(E) around the mean behaviour, and to get
a measure of this fluctuations one can ask for the limit distribution of Θ(x). The second
main result of the above cited papers is that the function Θ(x) has a limit distribution, i.e.,
there exists a non-negative function p(x), such that for every bounded continuous function
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g(x), and any density of a probability distribution ρ(x), concentrated on [0, 1],

lim
T→∞

1

T

∫ T

0

g(Θ(x))ρ(x)dx =

∫ ∞

−∞
g(x)p(x)dx . (3)

The density p(x) of the limit distribution is an entire function of x, possessing the following
asymptotic behaviour on the real line,

ln(p(x)) ∼ −C±x4 x → ±∞, C± > 0 . (4)

Several numerical studies have shown that p(x) can look quite different for different
integrable systems [6]. But for classically chaotic systems numerical tests suggest that
there is a universal behavior, p(x) was always found to be in excellent agreement with a
normalized Gaussian distribution, in contrast to (4). The conjecture has been formulated
[19, 1], that the limit distribution of the normalized remainder term of N(E) is always a
Gaussian distribution for chaotic systems, while for integrable systems it is non-universal
and not Gaussian, and so provides a distinction between classically integrable and clas-
sically chaotic systems. This conjecture is well supported by the so far known analytical
and numerical results [1, 2, 3, 10], including the results of this paper.

In this note we will study the limit distribution for a class of Hamilton operators on
compact manifolds, which are characterized by the property that the flow generated by
their principal symbol is periodic. To be more precise P should be a classical pseudo-
differential operator of order two, positive, elliptic and self-adjoint, with the property that
the Hamiltonian flow generated by its principal symbol is simply periodic.

To simplify the notation, we will state most of the results only for the case when (M, g)
is a compact Riemannian manifold and P = −∆g +V (x) is a positive Schrödinger operator
on M (in natural units ~ = 2m = 1), where ∆g is the Laplace Beltrami operator associated
with g and V (x) is a smooth (C∞), and therefore bounded, potential on M . The principal
symbol of P is just the Hamiltonian H(x, ξ) =

∑
gij(x)ξiξj which generates the geodesic

flow on M , and the periodicity of the flow means that all geodesics are closed. An example
for such a manifold is the sphere S2, and a potential system is for instance the spherical
pendulum. Further examples will be given in section 2.

Note that the principal symbol is generally not the Hamiltonian given by the classical
limit ~ → 0, but differs from it by the potential energy. This displays the fact that we will
use high energy asymptotics, rather than the limit ~ → 0, and, because of the bounded
potential, the high energy limit is ruled by the kinetic energy.

Our main result is:

Theorem 1.1 Let (M, g) be a compact d-dimensional Riemannian manifold with simply
periodic geodesic flow of period 2π. P = −∆g + V a positive Schrödinger operator on M ,
where ∆g is the Laplacian associated with g, and V is a smooth function on M .

Then N(E) has the following representation

N(E) =
Vol(M)

(4π)d/2 Γ(d/2 + 1)
Ed/2 + E(d−1)/2 Θ(

√
E). (5)
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Here Θ(x) is an almost periodic function of Besicovitch class B2 with the Fourier series

Θ(x) =
ib1

2π

∑
k 6= 0
k ∈ Z

ei π
2
kν

k
e−2πikx mod B2 , (6)

where b1 = dVol (M)

(4π)d/2Γ(d/2+1)
, and ν is the common Maslov index [20, 12] of the primitive

periodic orbits. Θ(x) has a limit distribution whose density is a box-shaped function:

p(x) =


0 − b1

2
≥ x

1
b1

− b1
2
≤ x ≤ b1

2

0 b1
2
≤ x .

(7)

Some remarks are in order:
Remark 1. The space Bp is defined as follows. Denote by ||.||Bp (p ≥ 1) the seminorm

||f ||Bp :=

(
lim

T→∞

1

T

∫ T

0

|f(x)|pdx

)1/p

.

A function f(x) belongs to a Besicovitch class Bp if it can be approximated, in the above
seminorm, by trigonometric polynomials. One can show that this is equivalent to the
existence of a formal Fourier series

∑
k∈Z ake

iλkx, with ak ∈ C, λk ∈ R, such that

lim
N→∞

||f(x)−
∑
|k|<N

ake
iλkx||Bp = 0 .

The coefficients ak and the frequencies λk are uniquely determined by f . The space Bp is
defined as the completion of the space of trigonometric polynomials with respect to ||.||Bp

modulo equivalence, where two functions are equivalent if the Bp norm of their difference
vanishes. Note that the equivalence classes are very large in terms of pointwise defined
functions, for instance if f(x) → 0, for x → ∞, then ||f ||Bp = 0. Bleher has shown the
existence of a limit distribution for every element of Bp [5], but an explicit expression is
not known. More on this subject can be found in [5, 18].

Remark 2. The Fourier series (6) is L2 convergent and gives

ib1

2π

∑
k 6= 0
k ∈ Z

ei π
2
kν

k
e−2πikx = b1f(x− ν

4
), (8)

with f(x) = 1
2
− x for 0 < x < 1, and periodically continued. So the statement above

means ||Θ(x)− b1f(x− ν
4
)||B2 = 0.

Remark 3. In two dimensions we get E1/2 in front of Θ rather than E1/4 as in (2). This
is due to the fact that the families of periodic orbits with the same period are submanifolds
of T ∗M of dimension three rather than two as in the generic integrable case.

In the next section we will collect some results about manifolds all whose geodesics are
closed, especially about their spectra. In the final section we use this information to derive
a trace formula for such manifolds and prove theorem 1.1 . Furthermore we investigate
higher order terms in the asymptotics of the trace formula.
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2 Some properties of manifolds all of whose geodesics

are closed

We call a Riemannian manifold all of whose geodesics are closed with common length l a
SCl manifold, and its metric a SCl metric (S for simple and C for closed). A thorough
account on manifolds all of whose geodesics are closed can be found in the book by Besse
[4]. In the following we will assume that l = 2π, this can always be achieved by a suitable
rescaling of the metric.

The basic examples are the compact rank one symmetric spaces (CROSSes), Sn, P nR,
P nC, P nH, P 2Ca, equipped with their canonical metrics. For these spaces the eigenvalues
of the Laplace-Beltrami operator are explicitly known (see table 1). On the spheres Sn

there exists a large class of SC2π metrics different from the canonical one (cf. [13]), the so
called Zoll-metrics, which are deformations of the canonical one. But the other CROSSes
are rigid in the sense that they admit no more SCl metrics beside the canonical ones. It is
known [4] that for two dimensions the above examples exhaust all SCl manifolds.

A subclass of the two dimensional Zoll metrics, the Zoll-surfaces of revolution, can be
described very explicit (cf. [4]). In polar coordinates (0 ≤ θ < π, 0 ≤ φ < 2π) their metrics
are of the form

g = [1 + h(cos θ)]2dθ2 + sin2θ dφ2 ,

where h : ]− 1, 1[ → ]− 1, 1[ is odd, and h(−1) = 0 .

No other restrictions on h are necessary (apart from the order of differentiability, which
determines the smoothness of g; we will assume C∞). An interesting feature of these
metrics is that the Hamiltonians defined by them are all symplectically equivalent [22],
i.e., they define the same classical system, and the different Laplace-Beltrami operators
can be seen as different quantizations of the same classical system. This leads to the
expectation that their quantum mechanical properties are similar. This is indeed true for
the eigenvalues as Duistermaat and Guillemin have shown;

Theorem 2.1 [12] Let P = −∆g + V , and g a SC2π metric, then there is a positive
constant K such that all eigenvalues of P lie in intervals Ik = [λ2

k −K, λ2
k + K], where

λk = k +
ν

4
, k = 0, 1, 2, . . .

and ν is the common Maslov-index of the primitive periodic orbits. Conversely, if there is
a K and an arithmetic sequence λk = k +ν/4, such that the eigenvalues lie in the intervals
Ik, then P has a principal symbol with 2π-periodic flow, and ν is the Maslov index of the
primitive orbits.

To illustrate the result we compare it with the nonperiodic case. Generally the following
Weyl law for the square roots of the eigenvalues pk =

√
Ek is valid ([17])

N(p) =
Vol(M)

(4π)d/2 Γ(d/2 + 1)
pd + O(pd−1).
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When the set of periodic orbits in phase space has measure zero, one can improve the
remainder term ([17, 12])

N(p) =
Vol(M)

(4π)d/2 Γ(d/2 + 1)
pd + o(pd−1),

and one gets for the number of pk in an interval [p− ε/2, p + ε/2]

N(p + ε/2)−N(p− ε/2) =
ε d Vol(M)

(4π)d/2 Γ(d/2 + 1)
pd−1 + o(pd−1).

So the property that the periodic orbits form a set of measure zero leads to a rather uniform
distribution of the pk’s, in sharp contrast to the case where all orbits are periodic, where
theorem 2.1 has the consequence that the pk’s lie in decreasing intervals of length O(1/k)
around the arithmetic sequence λk.

We call the eigenvalues which lie in the k’th interval Ik the k’th eigenvalue cluster, and
naturally the questions arise, how many eigenvalues lie in such a cluster, and how they
are distributed. The answers are given in the next two theorems by Colin de Verdiere and
Weinstein.

Theorem 2.2 [11] There exists a polynomial R(t) = b1t
d−1 + b3t

d−3 + · · · with

b1 =
d Vol (M)

(4π)d/2Γ(d/2 + 1)
,

and a natural number k0, such that for k > k0 the number of eigenvalues in Ik is mk =
R(k + ν

4
).

Denote by

µk(E) =
1

mk

∑
Ei∈Ik

δ(E − (Ei − λ2
k)) (9)

the normalized spectral-measure of the k’th eigenvalue-cluster. Weinstein has shown [23]
that for a Zoll Laplacian there is a unitary operator U such that

U∆gU
−1 = ∆0 + A ,

where ∆0 is the canonical Laplacian on the sphere, and A is a pseudo-differential operator
of order zero. Let aV (x, ξ) be the principal symbol of A + UV U−1 and denote by

aV (x, ξ) =
1

2π

∫ 2π

0

aV (Φt(x, ξ))dt

the average of aV (x, ξ) over the geodesic flow Φt, generated by the canonical metric of Sd.
In case of ∆g = ∆0, aV clearly reduces to aV = V , and this construction applies also to
any other CROSS. The asymptotic distribution of the eigenvalues in the cluster can be
described now.
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M dim M ν Ek λk b1

Sn n 2(n− 1) k(k + n− 1) k + n−1
2

2
(n−1)!

P nC 2n 2n k(k + n) k + n
2

2
n!(n−1)!

P nH 4n 4n + 2 k(k + 2n + 1) k + 2n+1
2

2
(2n−1)!(2n+1)!

P 2Ca 16 22 k(k + 11) k + 11
2

2 ∗ 39
15!

Table 1: The relevant data for some CROSSes, from [4, 11].
The Maslov indices, the eigenvalues, the corresponding arithmetic sequence, and the

coefficient of the leading order term in the polynomial which describes the multiplicities.

Theorem 2.3 [23, 11] There exists a sequence of distributions {βi}i∈N, supported in [−K, K],
such that for every ϕ ∈ C∞(R);

〈µk, ϕ〉 ∼ 〈β0, ϕ〉+ 〈β1, ϕ〉
1

k2
+ 〈β2, ϕ〉

1

k4
+ · · · k →∞ , (10)

and

〈β0, ϕ〉 =
1∫∫

H(x,ξ)<1
dx dξ

∫ ∫
H(x,ξ)<1

ϕ(aV (x, ξ))dx dξ . (11)

Here H(x, ξ) =
∑

gij(x)ξiξj is the Hamilton function which generates the canonical geodesic
flow, and by 〈β, ϕ〉 we denote the application of the distribution β to the function ϕ.

Remark. The above theorems are, with slight modifications, also valid in the more general
pseudo-differential operator setting (see [17], chapter 29.2). One can show that for every
pseudo-differential operator P , satisfying our assumptions, there is a pseudo-differential
operator Q of order zero, such that the square-roots of the eigenvalues of P + Q are an
arithmetic sequence λ. Then (11) is valid with aV replaced by the principal symbol q of
Q. b1 is given by d

(2π)d

∫ ∫
p<1

dxdξ, where p is the principal symbol of P , and dxdξ is the

canonical measure in phase space. In Theorem (2.3) additionally terms of odd order can
occur in the asymptotic expansion.

3 The trace formula

The trace formula is a relation between the quantum mechanical energy-spectrum and the
periodic orbits of the classical system. From [12, 20] follows that for SC2π manifolds the
trace formula reads:

∞∑
n=0

δ(p−
√

En) =
∑
k∈Z

αk(p)ei π
2
νke−2πikp.
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The left hand side is the spectral momentum density d(p). The sum on the right hand side
is a sum over all families of periodic orbits, ν is the Maslov index of the primitive orbits,
and for the functions αk(p) only the asymptotic behavior is known:

αk(p) =
Vol(M)

(4π)d/2 Γ(d/2 + 1)
pd−1 + O(pd−2), p → +∞,

and
αk(p) = O(p−∞), p → −∞ .

There is no dependence on the potential in the leading order, but this is not very surprising
because the potential is bounded and therefore the high energy limit is dominated by the
kinetic energy, i.e., by the metric. But what is more surprising is that, because the volume
is invariant under Zoll deformations [21], the leading order in the trace formula does not
distinguish between Zoll metrics on Sn.

We will choose a different approach to the trace formula, based on the information from
the last section, which will give us also the higher order aymptotics for αk(p), where the
differences between different Zoll metrics, and the influence of a potential will be visible.
Our starting point is an exact trace formula for the CROSSes.

Proposition 3.1 Let (M, g) be a CROSS and Pg = −∆g + c the Laplacian shifted by
a constant c such that the eigenvalues become λ2

n = (n + ν/4)2, n = 1, 2, 3, . . ., with
multiplicities R(λn). R(t) is the polynomial from theorem 2.2, and ν is the common Maslov
index of the primitive periodic orbits. Then there is the following periodic orbit sum, valid
in S ′(R), for the spectral momentum density:

∞∑
n=1

R(λn)δ(p− λn) = R+(p)
∑
k∈Z

ei π
2
νke−2πikp, (12)

where R+(p) denotes a smooth (C∞) function with R+(p) = R(p) for p ≥ ν/4 + 1 = λ1,
and R+(p) = 0 for p ≤ ν/4.

Proof. With the Poisson identity [17]∑
n∈Z

δ(p− n) =
∑
k∈Z

e−2πikp

we get

∞∑
n=1

R(λn)δ(p− λn) = R(p)
∞∑

n=1

δ(p− (n +
ν

4
))

= R+(p)
∑
n∈Z

δ(p− ν

4
− n) = R+(p)

∑
k∈Z

ei π
2
νke−2πikp .

�
Remark. In the following calculations it will be important that R+(p) is smooth and
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vanishes for negative p. To make such a choice for R+(p) possible is the reason that we let
n start with 1 instead of 0, so that the eigenvalues of Pg are strictly positive.

Using the trace formula for CROSSes, and the information from the preceding section
we will now derive a trace formula for general SC2π manifolds. The idea is to construct, for
a given SC2π manifold, an operator A which maps δ(p− λn) to 1

R(λn)

∑
Ei∈In

δ(p−
√

En),

and so the sum d0(p) =
∑

R(λn)δ(p − λn) to the spectral momentum density d(p) =∑
δ(p−

√
En). Applying this operator to (12) will lead to the trace formula.

Let χ(s) be a function with χ ∈ C∞
0 (R), supp χ ∈ [−1, 1], χ(0) = 1, and

∑∞
l=0 χ(s−l) =

1 for s > 0. We define a distribution µ(s) , depending on a parameter s, by

µ(s, E) :=
∞∑
l=0

χ(s− l)µl(E) , (13)

where µl is the normalized spectral measure of the l’th eigenvalue cluster (9). Then we
have µ(k,E) = µk(E), and from theorem 2.3 follows that for every ϕ ∈ C∞

〈µ(s), ϕ〉 ∼
∞∑
i=0

〈βi, ϕ〉
1

s2i
s →∞ . (14)

This allows us to write for the spectral density D(E) =
∑

R(λn)µn(E − λ2
n) of any SC2π

manifold

D(E) =

∫ ∞

−∞
D0(s)µ(

√
s− ν/4, E − s)ds ,

with D0(E) =
∑

R(λn)δ(E−λ2
n), as a short calculation shows. If we use d(p) = 2p+D(p2),

where p+ is defined similar to R+(p), we get an expression for d(p)

d(p) = 2p+

∫
d0(t)µ(t− ν/4, p2 − t2)dt .

So we have constructed the operator A with Schwartz kernel KA(p, t) = 2p+µ(t−ν/4, p2−
t2). Applying A to both sides of equation (12) leads to

d(p) = 2p+
∑
k∈Z

ei π
2
νk

∫
R+(t)µ(t− ν/4, p2 − t2)e−2πiktdt , (15)

and for αk(p) we get
αk(p) = e2πikpA(R+e−2πik(.)) ,

so we have arrived at the trace formula. Note that d0(p) must not come from a CROSS,
here we use (12) just as a summation formula for certain distributions.

Proposition 3.2 Let (M, g) be a SC2π manifold, and P = −∆g+V a positive Schrödinger
operator with spectral momentum measure d(p), then

d(p) =
∑
k∈Z

αk(p) ei π
2
νk e−2πikp , (16)
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as elements of S ′(R), with

αk(p) = p+

∫ p2

−∞

R+(
√

p2 − s)√
p2 − s

µ(
√

p2 − s− ν/4, s) e−2πik(
√

p2−s−p) ds . (17)

Proof. From (15) we get

αk(p) = 2p+

∫ ∞

0

R+(t) µ(t− ν/4, p2 − t2) e−2πik(t−p) dt (18)

and (17) follows by a change of variables. There only remains to justify the interchange of
summation and integration, i.e., we have to show that the right hand side is well defined
as a distribution. Let ϕ ∈ S(R), then∫

d(p)ϕ(p)dp =
∑
k∈Z

ei π
2
νk

∫
αk(p)ϕ(p)e−2πikpdp

but∫
αk(p)ϕ(p)e−2πikpdp =

∫ ∫
ϕ(p) 2p+µ(t− ν/4, p2 − t2) dp R+(t) e−2πikt dt

=

∫ {∫
ϕ(

√
q + t2 )

(
√

q + t2)+√
q + t2

µ(t− ν/4, q) R+(t) dq

}
e−2πikt dt

= O(k−∞)

because the inner integral is a Schwartz function of t (here it enters that R+ is smooth)
and so its Fourier transform is again a Schwartz function. So the sum exists.

�

We will now study αk(p) more closely, but first we look at an example which displays
already typical properties.
Example. Let M be a CROSS, and P = Pg + C where C is a constant, and Pg is the
shifted Laplacian defined in proposition 1. Then En = λ2

n + C and µk = δ(E − C), so
µ(s, E) = δ(E − C) and this leads to

αk(p) = p+R+(
√

p2 − C)√
p2 − C

e−2πik(
√

p2−C−p)

for p2 > C, and 0 else. If one fixes k and let p →∞ then αk(p) has a regular asymptotics

αk(p) = b1p
d−1 + O(pd−2) ,

if one takes the limit p, k →∞ with k/p → γ =const., then

αk(p) = (b1p
d−1 + O(pd−2)) eπiγc ,
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and for p fixed and k →∞ αk(p) is oscillating. But notice that

|αk(p)| = b1p
d−1 + O(pd−2) ,

independent of k.
We will now show that the asymptotic behavior of general αk(p) is similar.

Lemma 3.1 αk(p) has the following asymptotic properties:

i) Generally, for p →∞,

αk(p) = b1〈β0, e
−2πik(

√
p2−(.)−p〉 pd−1 + O(pd−2),

depending on how fast k growth compared to p.

ii) For p →∞ and k fixed

αk(p) = b1 pd−1 + iπkb1

∫
sβ0(s)ds pd−2

−
[
1

2
b1π

2k2

∫
β0s

2ds +
1

2
b1(d− 2)

∫
β0sds− b3

]
pd−3 + O(pd−4).

iii) For p, k →∞, with k/p → γ = const.

αk(p) = b1〈β0, e
iπγ(.)〉pd−1 + O(pd−3).

Here all terms in ii) and iii) have been written down which depend on β0 only, the next
order terms contain contributions from β1.

Proof. Inserting (13) in (17) gives

αk(p) =
∞∑
l=0

1

ml

∑
Ej∈Il

p+

∫
R+(

√
p2 − s)√

p2 − s
χ(

√
p2 − s− ν/4− l)δ(s− (Ej − λ2

l ))e
−2πik(

√
p2−s−p)ds

=
∞∑
l=0

1

ml

∑
Ej∈Il

p+R+(
√

p2 − (Ej − λ2
l ))√

p2 − (Ej − λ2
l )

χ(
√

p2 − (Ej − λ2
l )− ν/4− l)e−2πik(

√
p2−(Ej−λ2

l )−p)

but |Ej − λ2
l | ≤ K for Ej ∈ Il, so for p, l large

p+R+(
√

p2 − (Ej − λ2
l ))√

p2 − (Ej − λ2
l )

χ(
√

p2 − (Ej − λ2
l )− ν/4− l) ∼ b1p

d−1χ(p− ν/4− l) + O(pd−2)

and since, for l →∞,

1

ml

∑
Ej∈Il

e−2πik(
√

p2−(Ej−λ2
l )−p) = 〈µl, e

−2πik(
√

p2−(.)−p)〉 = 〈β0, e
−2πik(

√
p2−(.)−p)〉+ O(

1

l2
)
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we get

αk(p) = b1p
d−1〈β0, e

−2πik(
√

p2−(.)−p)〉+ O(pd−2).

This proves i). The behaviour of αk(p) depends now on how k grows with p, and inserting

the asymptotic expansion of e−2πik(
√

p2−s−p) leads to the leading order terms in ii) and iii).
For the higher order terms in ii) and iii) one inserts the asymptotic development of the
integrand in (17) (notice that it has compact support in s), and uses furthermore that∫

βidE = 0 for i > 0.
�

Remark 1. In the asymptotic expansion ii) of αk(p) there appear all moments of the
measures {βi}. So knowing these moments and the coefficients of the polynomials R(t),
one can recover the asymptotics of αk(p) and vice versa. This is a relation between the
spectrum and geometric properties of (M, g).

Remark 2. The asymptotics ii) have a similar structure, especially the dependence
on k, to the one derived by Guillemin in [14] for an αk(p) coming from a nondegenerate
elliptic orbit,

αk(p) = c1 + c2p
−1 + O(p−2)

with
c2 = 2πikc1(· · ·) .

Here k denotes the number of iterates of the primitive orbit, and the expression in brackets
depends on the symbol of the Hamilton operator in a neighborhood of the orbit.

Now we come to the proof of theorem 1.1. N(E) is given by

N(E) =

∫ √
E

0

d(p)dp =

∫ √
E

0

α0(p)dp +

∫ √
E

0

∑
k 6=0

αk(p)ei π
2
νke−2πikpdp.

The first integral gives ∫ √
E

0

α0(p)dp =
b1

d
Ed/2 + O(Ed/2−1) ,

so we get

N(E) =
b1

d
Ed/2 + E(d−1)/2Θ(

√
E),

with Θ(x) given by

Θ(x) =
1

xd−1

∑
k 6=0

ei π
2
νk

∫ x

0

αk(p)e−2πikpdp + O(1/x) .

The sum converges in the B2 norm to the function∑
k 6=0

ib1

2πk
ei π

2
νke−2πikx .
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To see this we compute ||ΘN(x)−
∑

k 6=0
ib1
2πk

ei π
2
νke−2πikx||B2 with

ΘN(x) =
∑
k 6= 0
|k| ≤ N

ei π
2
νke−2πikx

xd−1

∫ x

0

αk(p)e−2πik(p−x)dp + O(1/x) .

The triangle inequality gives

||ΘN(x)−
∑
k 6=0

ib1

2πk
ei π

2
νke−2πikx||B2 ≤ ||ΘN(x)−

∑
k 6= 0
|k| ≤ N

ib1

2πk
ei π

2
νke−2πikx||B2

+||
∑
|k|>N

ib1

2πk
ei π

2
νke−2πikx||B2 ,

but
1

xd−1

∫ x

0

αk(p)e−2πik(p−x)dp =
ib1

2πk
+ O(

1

x
)

by lemma 3.1, so the first term on the right hand side vanishes. The remaining term can
be estimated by ∑

|k|>N

b2
1

(2πk)2
∼ b2

1

(2π)2

1

N
,

so

lim
N→∞

||ΘN(x)−
∑
k 6=0

ib1

2πk
ei π

2
νke−2πikx||B2 = 0

and we have proven (5) and (6).
To prove (7) we notice that for a periodic function f(x), with period 1 and for every

continuous g,

lim
T→∞

1

T

∫ T

0

g(f(x))dx =

∫ 1

0

g(f(θ))dθ , (19)

because

1

T

∫ T

0

g(f(x))dx =
1

T

∫ [T ]

0

g(f(x))dx +
1

T

∫ T

[T ]

g(f(x))dx

=
[T ]

T

∫ 1

0

g(f(x))dx +
1

T

∫ T

[T ]

g(f(x))dx .

Inserting (8) in (19) leads to

lim
T→∞

1

T

∫ T

0

g(Θ(x))dx =

∫ 1

0

g(b1f(x− ν/4))dx =
1

b1

∫ b1
2

− b1
2

g(x)dx ,

so we have proven (7) for ρ in (3) a step function which is 1 on [0, 1] and 0 elsewhere. The
proof for general ρ works with an approximation of ρ by step functions and can be found
in [5, 18].
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