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Abstract: For general quantum systems the semiclassical behaviour of eigenfunctions
in relation to the ergodic properties of the underlying classical system is quite difficult to
understand. The Wignerfunctions of eigenstates converge weakly to invariant measures
of the classical system, the so-called quantum limits, and one would like to understand
which invariant measures can occur that way, thereby classifying the semiclassical beha-
viour of eigenfunctions.

We introduce a class of maps on the torus for whose quantisations we can understand
the set of quantum limits in great detail. In particular we can construct examples of
ergodic maps which have singular ergodic measures as quantum limits, and examples
of non-ergodic maps where arbitrary convex combinations of absolutely continuous
ergodic measures can occur as quantum limits.

The maps we quantise are obtained by cutting and stacking.

1. Introduction

The correspondence principle in quantum mechanics states that in the semiclassical
limit � → 0 classical mechanics emerges and governs quantum mechanical quantities
for small de Broglie wavelength. One manifestation of this principle is that the Wig-
nerfunctions of eigenfunctions converge weakly to invariant probability measures on
phase space, the so-called quantum limits. It is one of the big open problems in the
field to classify the set of quantum limits, and it is in general not known which inva-
riant measures can occur as quantum limits. In particular the case that the classical
system is ergodic has attracted a lot of attention. In this case the celebrated quantum
ergodicity theorem, [Šni74,Zel87,CdV85], states that almost all eigenfunctions have
the ergodic Liouville measure as quantum limit, and one would like to know if in fact
all eigenfunctions converge to the Liouville measure, i.e., if quantum unique ergodicity
holds or if there are exceptions. Possible candidates for exceptions would be quantum
limits concentrated on periodic orbits, a phenomenon called strong scarring. Another
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very interesting case is when the classical system is of mixed type, i.e., the phase space
has several invariant components of positive measure, or, if there exist several invariant
measures which are continuous relative to Liouville measure. Here the question is to
what extent the quantum mechanical system respects the splitting of the classical system
into invariant components, i.e., is a typical quantum limit ergodic, or can every convex
combination of invariant measures appear as a quantum limit.

There has been recently considerable progress in some of these questions. For the
quantized cat map it was shown that quantum unique ergodicity does not hold, in
[FNDB03] a sequence of eigenfunctions was constructed whose quantum limit is a
convex combination of the Liouville measure and an atomic measure supported on a
periodic orbit. It was furthermore shown that the orbit can carry at most 1/2 of the total
mass of the measure [BDB03,FN04]. The eigenvalues of the quantized cat map have
large multiplicities and this behaviour depends on the choice of the basis of eigenfuncti-
ons, in [KR00] it was shown that for a so called Hecke basis of eigenfunctions quantum
unique ergodicity actually holds. Cat maps on a higher dimensional torus were conside-
red in [Kel07,Kel08], quantum unique ergodicity for Hecke basis was shown in [Kel08],
and in [Kel07] the existence of quantum limits concentrated on certain submanifolds
was derived, this latter result is even valid for a certain class of perturbed cat maps.

Maps which are not hyperbolic provide as well very interesting examples. In [MR00]
a uniquely ergodic map was studied, which we will describe below in more detail, and in
[Ros06] quantizations of perturbed Kroneker maps which remain uniquely ergodic were
investigated and bounds on their rate of quantum ergodicity obtained. Quantum maps
provide as well model examples for non-ergodic maps, in [MO05] the localisation of
eigenfunctions or quasimodes on invariant subsets in phase space was studied for a class
of maps on the torus which were constructed from two twist maps. The more detailed
knowledge on the classical dynamics in the case of maps allows to derive stronger results
than in the case of quantized classical flows, [Sch01].

On compact Riemannian manifolds of negative curvature quantum unique ergodi-
city was conjectured in [RS94] and for arithmetic manifolds it was recently proved by
Lindenstrauss for Hecke bases of eigenfunctions, [Lin06]. The non-arithmetic case is
still open, but in [Ana06,AN06] the authors succeeded in proving lower bounds for the
entropy of quantum limits on manifolds of negative curvature. Quantum limits concen-
trated on submanifolds have been described in [Kel08a]: In the case that the universal
cover of a manifold is a product of hyperbolic planes the system has constants of motion,
but one has classical and quantum ergodicity on certain submanifolds in phase space.

In this paper we introduce a class of model systems for which the set of quantum
limits can be determined very precisely. This work was motivated by a paper of Marklof
and Rudnick where they gave an example of a quantum ergodic map which one can
prove to be quantum uniquely ergodic [MR00].They mention that there are no examples
known where a quantum ergodic map is not quantum uniquely ergodic. The purpose
of our work was to provide such examples, in fact examples which are quite close in
nature to those considered by Marklof and Rudnick. The map they considered was a
skew product map of the torus T2 = R2/Z2 of the form:

F :
(

p
q

)
�→

(
p + 2q
f (q)

)
mod 1,

where f (p) is an irrational rotation of the circle R/Z. In this article we consider skew
products of the same form for other functions f (p). We will prove results for any f (p)
which can be obtained by cutting and stacking. The cutting and stacking technique is an
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ergodic theoretic tool which gives a isomorphic representation of any aperiodic measure
preserving transformation as a piecewise isometry on the interval (with at most countable
number of pieces) with Lebesgue measure as an invariant measure.

For any such F we give a new proof of the quantum ergodicity theorem, i.e., Lebesgue
measure is a full density quantum limit. Furthermore we prove that certain nonatomic
singular ergodic measures appear as quantum limits, but these quantum limits must have
0 density. We also have results about non-ergodic measures.

Since a circle rotation is an interval exchange transformation on two intervals, the
main example we will consider is when f (p) is an interval exchange transformation on
more intervals. These occur for instance in Poincaré maps of polygonal billiards, see
[BS04] for the special properties of eigenfunctions in these systems and [GMO04] for a
related quantized map and its eigenvalue statistics. An interval exchange transformation
(IET for short) is an invertible map of the interval I := [0, 1) such that we can partition
I into a finite set of intervals Ii := [ai , bi ) such that the map f restricted to each piece
Ii is a translation. Lebesgue measure is always invariant for IETs but there are examples
known of IETs which are not uniquely ergodic. A consequence of our result is that if
f (p) is an aperiodic IET then each invariant measure of F which is the product of
Lebesgue measure with an invariant measure of f (p) is a quantum limit.

The plan of the paper is as follows. In Sect. 2 we give a quick review of quantisation of
maps on the torus, and introduce the maps we study and their quantisation. In particular
we prove Egorov’s theorem for these maps. In Sect. 3 we turn our attention to quantum
limits; we first give a general proof of quantum ergodicity for maps with singularities,
and then show that for our particular class of maps the quantum limits can be understood
purely in terms of the orbits of discretisations of the classical map. Then, in Sect. 4, we
finally come to our main result. We first review the cutting and stacking construction to
obtain maps and then show how it can be combined with discretisations to get a detailed
understanding of quantum limits. In Theorem 4 we summarise our main findings. Finally
in the last two sections we discuss two examples and give some conclusions.

2. Quantisation

We give a short summary of the quantisation of maps on the torus, for more details and
background we refer to [DEG03,DB01].
The Hilbert space. For (p, q) ∈ R2 we introduce the phase space translation operator

T(p, q) := e− i
�
(q p̂−pq̂),

where p̂ψ(x) := �

i ψ
′(x) and q̂ψ(x) := xψ(x) for ψ ∈ S(R), are the momentum and

position operators, respectively. These operators are unitary on L2(R) and satisfy for
(p, q), (p′, q ′) ∈ R2,

T(p + p′, q + q ′) = e− i
2�
(qp′−pq ′)T(p, q)T(p′, q ′),

and they provide therefore a unitary irreducible representation of the Heisenberg group
on L2(R).

The state space of the classical map is obtained from R2 by identifying integer
translates which gives the two torus

T2 = R2/Z2.
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By mimicking this procedure the quantum mechanical state space is defined to be the
space of distributions on R which satisfy

T(1, 0)ψ = ψ, T (0, 1)ψ = ψ.

One finds that these two conditions can only be fulfilled (for ψ �= const.) if Planck’s
constant meets the condition

1

2π�
= N ,

where N is a positive integer. The allowed states then turn out to be distributions of the
form

ψ(x) = 1√
N

∑
Q∈Z

�(Q)δ

(
x − Q

N

)

with �(Q) a complex number satisfying

�(Q + N ) = �(Q).

So the�(Q) are functions on ZN = Z/NZ and the space of these functions will be deno-
ted by HN , it is N -dimensional and through the coefficients�(Q), Q = 0, 1, . . . , N −1
it can be identified with CN . There is a map SN : S(R) → HN defined by

SNψ :=
∑

n,m∈Z

(−1)NnmT(n,m)ψ

which is onto. If we equip HN furthermore with the inner product

〈ψ, φ〉N := 1

N

∑
Q∈ZN

�∗(Q)�(Q)

then HN is a Hilbert space and SN is an isometry.
Observables. In classical mechanics observables on the torus are given by functions on
T2; these can be expanded into Fourier series

a =
∑
n∈Z2

âne(−ω(z, n)),

where z = (q, p) ∈ T2, ω(z, n) = qn2 − pn1 and ân := ∫
T2 a(z)e(ω(z, n)) dz denotes

the nth Fourier coefficient. We use here and in the following the notation e(x) = e2π ix

and eN (x) := e
2π i
N x . These observables can be quantised by replacing e(−ω(z, n)) by

the translation operator

TN (n) := T
(n1

N
,

n2

N

)

which acts on HN . This is called Weyl quantisation, to a classical observable
a ∈ C∞(T2) a corresponding quantum observable is defined by

OpN [a] :=
∑
n∈Z2

ânTN (n), (1)
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which is an operator on HN . For example, if a depends only on q then the corresponding
operator is just multiplication with a,

OpN [a]ψ(q) = a(q)ψ(q), (2)

and in terms of the coefficients �(Q) the action of OpN [a] is given by �(Q) �→
a (Q/N )�(Q).

Let us recall a few well known properties of the operators defined by (1), see [DEG03,
DB01]. They form an algebra and for a, b ∈ C∞(T2) one has

OpN [a] OpN [b] = OpN [ab] + O(1/N ). (3)

If a and b have disjoint support, then ab = 0 and one can obtain the stronger result

OpN [a] OpN [b] = O(N−∞), (4)

furthermore, if χ = 1 on a neighbourhood of the support of a then OpN [χ ] OpN [a] =
OpN [a] + O(N−∞), we will use these two relations below.

Since the TN (n) are unitary the norm of OpN [a] can be estimated from (1) by

|| OpN [a]|| ≤
∑
n∈Z2

|â(n)| ≤ C
∑
|α|≤3

|∂αa|, (5)

and the trace of a Weyl operator can as well be expressed in terms of the symbol

lim
N→∞

1

N
Tr OpN [a] =

∫
T2

a dµT2 , (6)

where µT2 is the normalized Lebesgue measure on T2.
Quantisation of a map. Let

F : T2 → T2

be a volume preserving map. One calls a sequence of unitary operators UN : HN → HN ,
N ∈ N, a quantisation of the map F if the correspondence principle holds, i.e., if for
sufficiently nice functions a one has

U∗
N OpN [a]UN ∼ OpN [a ◦ F], (7)

for N → ∞. If this relation holds, it is often called Egorov’s theorem and it means
that in the semiclassical limit, i.e., for N → ∞, quantum evolution of the observable
approaches the classical time evolution.

Let us now turn to the specific class of maps we want to quantise. They are given by

F :
(

p
q

)
�→

(
p + 2q
f (q)

)
mod 1, (8)

where f : [0, 1] → [0, 1] is a piecewise affine map given by a cutting and stacking
construction which we will describe in detail in Sect. 4. For the construction of the
quantisation we only need the property that the singularity set S ⊂ [0, 1] is nowhere
dense. In order to quantise this map we proceed similar to the construction in [MR00],
i.e., use a sequence of approximations to f . Consider the discretized interval

DN := {Q/N ; Q ∈ {0, 1, 2, . . . , N − 1}},
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i.e., the support of the Hilbert space elements (2). For each N ∈ N we will call a map
fN : DN → DN an approximation of f if it is close to f in a certain sense which we will
now explain. Since f is not assumed to be continuous we do not approximate it uniformly
in the supremum norm. Let f (S) := {q : ∃q0 ∈ S such that q = limq ′→q0 f (q ′)}. We
measure the difference between f and an approximation fN only away from the set
f (S). Let us call the relevant set

Iε := {q ∈ [0, 1]; dist(q, f (S)) ≥ ε}.
In the construction of fN in Sect. 4 we will choose a sequence εN with limN→∞ εN = 0.
For any fixed εN the relevant measure for the quality of the approximation will be

δN := δN (εN ) := sup
Q/N∈IεN

| fN (Q/N )− f (Q/N )|. (9)

Any approximation fN then defines via (8) an approximation FN of F .
The quantisation of F is now defined to be the sequence of unitary operators

UN�(Q) = eN

(
−( f̂ −1

N (Q))2
)
�( f̂ −1

N (Q)), (10)

where f̂N (Q) := N fN (Q/N ) denotes the map induced by fN on ZN = Z/NZ. This is
indeed a unitary operator on HN , with its adjoint given by

U∗
N�(Q) = eN (Q

2)�( f̂N (Q)). (11)

That this sequence of operators UN is really a quantisation of the map F is the content
of the Egorov theorem (7) which we will now prove. In our case we have to be careful at
the singularities of the map. The singularities of f and F can be naturally identified, thus
without confusion we can denote by S the set of singularities of F as well. By C∞

S
(T2)

we denote the space of functions in C∞(T2) which vanish in a neighbourhood of F(S)
(here F(S) is the set of all limit points of F(z) as z aproaches S). We then find

Theorem 1. For any a ∈ C∞
S
(T2) we have

U∗
N OpN [a]UN = OpN [a ◦ FN ] + Oa(N

−∞),

and there are constants C(a), ε0(a) > 0 such that for εN < ε0(a),

||U∗
N OpN [a]UN − OpN [a ◦ F]|| ≤ C(a) δN .

Proof. The map F and its quantisation UN can be decomposed into a product of two
simpler maps and operators. Namely, with

F (1)(p, q) = (p + 2q, q), and F (2)(p, q) = (p, f (q))

we have

F = F (2) ◦ F (1).

These maps can be quantised separately as

U (1)
N �(Q) := eN (−Q2)�(Q), and U (2)

N �(Q) := �( f̂ −1
N (Q)),
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where fN denotes a discretisation of f on the Heisenberg lattice. We then have

UN = U (2)
N U (1)

N ,

and therefore it is sufficient to study the conjugation of an Weyl operator for the two
operators separately. In the case of U (1)

N it is well known that Egorov’s theorem is exactly
fulfilled

U (1)
N

∗
OpN [a]U (1)

N = OpN [a ◦ F (1)],
see [MR00].

For the study of the second operator U (2)
N we will use a partition of unity associated

with the symbol a. Since a vanishes near the images of the singularities of f the support
of a consists of a finite number of connected components, let us call this number Ja
and let I j ⊂ [0, 1], j = 1, . . . , Ja , be the projections of these connected components to
the q variable. For each j we choose a smooth function χ j (q) which is supported in a
neighbourhood of I j which contains no singularities of f and satisfies f = 1 on a smaller

neighbourhood of I j . If we define χ0 := 1 − ∑Ja
j=1 χ j then we have 1 = ∑Ja

j=0 χ j .
We observe now that for the Q ∈ {0, . . . , N } such that Q/N ∈ I j there is a tN , j ∈ Z

such that f̂N (Q) = Q + tN , j mod N ; let us denote the extension of this map to all

Q ∈ Z/NZ by f̂N , j . Denote the corresponding unitary operator by U (2)
N , j , it is defined

by U (2)
N �(Q) := �( f̂ −1

N , j (Q)) and it was shown in [MR00] that it satisfies

U (2)
N , j

∗
OpN [a]U (2)

N , j = OpN [a ◦ F (2)N , j ], (12)

where F (2)N , j (p, q) = (p, f̂N (Q)/N ) for q = Q/N .
We now have(

χ jU
(2)
N

)
�(Q)=χ j (Q/N )�( f̂ −1

N (Q))=χ j (Q/N )�( f̂ −1
N , j (Q))=

(
χ jU

(2)
N , j

)
�(Q)

and so

U (2)
N =

Ja∑
j=1

χ jU
(2)
N , j + χ0U (2)

N ,

which gives

U (2)
N

∗
OpN [a]U (2)

N =
Ja∑

j=1

U (2)
N , j

∗
χ j OpN [a]χ jU

(2)
N , j

+ U (2)
N

∗
⎛
⎝ ∑

i, j≥0,i �= j

χi OpN [a]χ j + χ0 OpN [a]χ0

⎞
⎠ U (2)

N .

Since χi and χ j have disjoint support for i �= j and i, j ≥ 1, and χ0 and a have
disjoint support, too, we find using (4), and the remark afterwards, that the second term
is Oa(N−∞). For the first term we observe that χ j OpN [a]χ j = OpN [χ2

j a]+ Oa(N−∞)
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since χ j is 1 in a neighbourhood of one connected component of the support of a and 0
on all other components, again by (4); this gives us with (12)

Ja∑
j=1

U (2)
N , j

∗
χ j OpN [a]χ jU

(2)
N , j =

Ja∑
j=1

U (2)
N , j

∗
OpN [χ2

j a]U (2)
N , j + Oa(N

−∞)

=
Ja∑

j=1

OpN [(χ2
j a) ◦ F (2)N , j ] + Oa(N

−∞).

But
∑Ja

j=1(χ
2
j a) ◦ F (2)N , j = a ◦ F (2)N , and so

U (2)
N

∗
OpN [a]U (2)

N = OpN [a ◦ F (2)N ] + Oa(N
−∞).

This proves the first part of the theorem.
For the second part we have to estimate

|| OpN [a ◦ F] − OpN [a ◦ FN ]|| = || OpN [bN ]||,

where bN := a ◦ F − a ◦ FN , and, since a is supported away from the images of the
singularities of F , bN is a smooth function. By (5) || OpN [bN ]|| ≤ C

∑
|α|≤3 |∂αbN | for

some C which does not depend on bN , and on the support of a both F and FN have the
same differential and their difference is δN for N large enough, so we obtain

|| OpN [bN ]|| ≤ C
∑
|α|≤k

|∂αa|δN .

��
So if we can choose our approximations fN in a way that εN → 0 and δN → 0 for

N → ∞, then the sequence of unitary operators UN reproduces the classical map F in
the semiclassical limit N → ∞, and so the correspondence principle holds.

Definition 1. A sequence of operators UN for which δN (εN ) and εN tend to 0 for
N → ∞ will be called a proper quantisation of F.

The restriction on the support of the classical observables is necessary in order that
a ◦ FN and a ◦ F are smooth for N large enough. For a general a the composition
a ◦ F is discontinuous which causes problems with the Weyl quantisation. Theorem 1
is not valid without the assumption on the singularities. This is shown by the following
counter-example.

Proposition 1. Let s ∈ S, a(q) ∈ C∞(T2) depend only on q with a(s) �= 0 and let
gs(q) := √

Ne−(q−s)2/N be a Gaussian centred at s and ψs := SN gs be its projection
to HN . Then there exists a constant C such that

lim inf
N→∞ || (U∗

N OpN [a]UN − OpN [a ◦ F])ψs || ≥ C |a(s)|||ψs ||.
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Proof. We first observe that since a depends only on q, OpN [a] is just multiplication
with a and it follows then from the definition of UN , (10) and (11), that U∗

N OpN [a]UN
is given by multiplication with a ◦ fN . And since by (8) a ◦ F = a ◦ f if a depends only
on q, we find that the operator U∗

N OpN [a]UN − OpN [a ◦ F] is given by multiplication
with a ◦ fN − a ◦ f , and so

|| (U∗
N OpN [a]UN −OpN [a ◦ F])ψs ||2 = 1

N

N∑
n=1

|(a ◦ fN −a ◦ f )(n/N )|2 |�s(n/N )|2,

where �s(q) = ∑
m∈Z gs(q − m).

Because f is discontinuous at s there exists an ε > 0, a C > 0 and a N0 such that

|(a ◦ fN − a ◦ f )(q)| ≥ C |a(s)|, for q ∈ [s − ε, s + ε] and N ≥ N0.

So if we split

1

N

N∑
n=1

|(a ◦ fN − a ◦ f )(n/N )|2 |�s(n/N )|2

= 1

N

∑
|n/N−s|≤ε

|(a ◦ fN − a ◦ f )(n/N )|2 |�s(n/N )|2

+
1

N

∑
|n/N−s|>ε

|(a ◦ fN − a ◦ f )(n/N )|2 |�s(n/N )|2,

the first term can be estimated from below as

1

N

∑
|n/N−s|≤ε

|(a ◦ fN −a ◦ f )(n/N )|2 |�s(n/N )|2 ≥C2|a(s)|2 1

N

∑
|n/N−s|≤ε

|�s(n/N )|2.

Now �s(q) is strongly localised near s; in particular we have |�s(n/N )|2 ≤ Ce−ε2/N

for |n/N − s| ≥ ε, and this implies

1

N

∑
|n/N−s|≤ε

|�s(n/N )|2 = 1

N

N∑
n=1

|�s(n/N )|2 + O(e−c/N ) = ||ψs ||2 + O(e−c/N )

and

1

N

∑
|n/N−s|>ε

|(a ◦ fN − a ◦ f )(n/N )|2 |�s(n/N )|2 = O(e−c/N )

for any c < ε2. Putting these estimates together yields then finally

1

N

N∑
n=1

|(a ◦ fN − a ◦ f )(n/N )|2 |�s(n/N )|2 ≥ C2|a(s)|2||ψs ||2 + O(e−c/N ).

��



404 C.-H. Chang, T. Krüger, R. Schubert, S. Troubetzkoy

We want to close this section with some comments about the underlying motivation
for the specific quantisation assumptions on the neighbourhood of the singularities.
Classically the singularities act like points with infinite local expansion rate respectively
Lyapunov exponent. Therefore any perturbation in a small neighbourhood of the singu-
larity set gives rise to an error which becomes unbounded if the perturbation approaches
the singularity set. Since the quantised maps are a specific kind of perturbation it is
natural to leave the allowed error big for points close to the singularity set.

3. Quantum Limits and Orbits

We will now discuss the implications of Theorem 1 for the eigenfunctions of the quantised
map. We will denote a orthonormal basis of eigenfunctions of UN byψN

k , k = 1, . . . , N ,

UNψ
N
k = eN (θ

N
k )ψ

N
k ,

where we use the notation eN (x) = e
2π i
N x and θN

k are the eigenphases. Each eigenfunction
defines a linear map on the algebra of observables

OpN [a] �→ 〈ψN
k ,OpN [a]ψN

k 〉
and the leading term for N → ∞ depends only on the principal symbol σ(a). The limit
points of the sequence of all these maps defined by the eigenfunctions define measures
on the set of classical observables and are called quantum limits (see, e.g., [MR00]). To
put it more explicitly, a measure ν on T2 is called a quantum limit of the system defined

by the UN if there exist a sequence of eigenfunctions {ψN j
k j

} j∈N such that∫
T2

a(z) dν = lim
j→∞〈ψN j

k j
,OpN [a]ψN j

k j
〉.

One of the major goals in quantum chaos, and more generally in semiclassical ana-
lysis, is to determine all quantum limits that can occur and the relative density of the
corresponding subsequences of eigenfunctions. For a subsequence of eigenfunctions

F = {ψN j
k j

} j∈N we denote by

F j := {ψNi
ki

; ψNi
ki

∈ HN j }
the subset of eigenfunctions lying in HN j . (Notice that since j labels both the Hilbert
spaces via N j and particular elements in them, via k j , we will often have N j = Ni for j

and i different.) We say now that a subsequence of eigenfunctions F = {ψN j
k j

} j∈N has
density α(F) ∈ [0, 1] if

lim
j→∞

|F j |
N j

= α(F), (13)

provided that the limit exists.
Egorov’s theorem usually implies that all quantum limits are invariant measures for

the classical map. In our case the same is true, but we have to be careful at the singularities.
If the set of singularities S is nowhere dense then the space C∞

S
(T2) in Theorem 1 is

large enough so that as an immediate consequence we have:

Corollary 1. Let us denote by Minv(F) the convex set of F-invariant probability mea-
sures on T2, and by Mqlim(UN ) the set of quantum limits µ of UN with µ(S) = 0,
then
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Mqlim(UN ) ⊂ Minv(F)

So we only have to look at invariant measures as candidates for quantum limits. In
the simplest case that there is only one invariant probability measure, i.e., that the system
is uniquely ergodic, all eigenfunctions must converge to this measure, and we have the
so called unique quantum ergodicity. This was the situation in the example of Marklof
and Rudnick, [MR00].

We will study now the relationship between properties of quantum limits and the
density of subsequences of eigenfunctions converging to them more closely. Our first
result gives an upper bound on the density.

Theorem 2. Let UN be a proper quantisation of F and let µ be a quantum limit of UN
with support � ⊂ T2. Then any sequence of eigenfunctions which converge to µ has at
most density µT2(�), where µT2 is the Lebesgue measure on T2.

Proof. Let aε ∈ C∞(T2), ε ∈ (0, 1], be a sequence satisfying aε|� = 1 and limε→0
aε(z) = 0 for all z ∈ T2\�, i.e., a sequence approximating the characteristic function

of �. If F = {ψN j
k j

} j∈N is a sequence of eigenfunctions with µ as quantum limit then

lim
j→∞〈ψN j

k j
,OpN [aε]∗ OpN [aε]ψN j

k j
〉 = 1,

and therefore
∑
ψ∈F j

〈ψ,OpN [aε]∗ OpN [aε]ψ〉 will approach |F j | for large j , so by
(13)

lim
j→∞

1

N j

∑
ψ∈F j

〈ψ,OpN [aε]∗ OpN [aε]ψ〉 = α(F).

But since 〈ψ,OpN [aε]∗ OpN [aε]ψ〉 ≥ 0 and F j is a subset of a basis of eigenfunctions
of UN j we have

∑
ψ∈F j

〈ψ,OpN [aε]∗ OpN [aε]ψ〉 ≤
N j∑

k=1

〈ψN j
k ,OpN [aε]∗ OpN [aε]ψN j

k 〉

and by (6) and (3)

lim
j→∞

1

N j

N j∑
k=1

〈ψN j
k ,OpN [aε]∗ OpN [aε]ψN j

k 〉 =
∫

T2
|aε|2 dµT2 ,

so α(F) ≤ ∫
T2 |aε|2 dµT2 . We now take the limit ε → 0 and use that

∫
T2 |aε|2 dµT2 →

µT2(�), then α(F) ≤ µT2(�). ��
Since µT2(S) = 0 it follows in particular that a possible sequence of eigenfunctions

converging to a quantum limit concentrated on S must have density 0. This result is as
well interesting for non-ergodic maps, because it gives an upper bound on the number
of eigenfunctions whose quantum limits are supported on an invariant subset � of T2

by the volume of �.
In case the system is ergodic, we can actually determine the quantum limit of most

eigenfunctions. Let us say that a subsequence F = {ψ(N j )

k j
} has full density one if

limN→∞
|{ψ(N j )

k j
∈HN }|

N = 1.
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Theorem 3. Let UN be a proper quantisation of F and assume thatµT2 is ergodic. Then
there exists a subsequence of eigenfunctions of full density one which converges to µT2 .

This is the usual quantum ergodicity result, but our proof differs from the standard
one (see e.g. [DEG03]) in that we rely on the convexity definition of ergodicity; this
is more convenient when dealing with maps with singularities as has been observed
in [GL93]. Recall that µT2 is ergodic if it is extremal in the convex set of invariant
probability measures, i.e., if µT2 = αµ1 + (1 − α)µ2 with µ2 �= µT2 then α = 1 and
µ1 = µT2 .

Proof. The existence of a subsequence F = {ψN j
k j

} j∈N of full density one of eigenfunc-
tions with quantum limit µT2 is equivalent to

lim
N→∞

1

N

N∑
k=1

|〈ψN
k ,OpN [a]ψN

k 〉 − a| = 0,

where a = ∫
adµT2 , see [DEG03].

We will first show that by ergodicity every subsequence F = {ψN j
k j

} j∈N of positive
density satisfies

lim
j→∞

1

|F j |
∑
ψ∈F j

〈ψ,OpN [a]ψ〉 = a. (14)

To see this we consider the sequence

a j := 1

|F j |
∑
ψ∈F j

〈ψ,OpN [a]ψ〉,

this is a bounded sequence since OpN [a] is bounded, and therefore there exists a con-
vergent subsequence {ai }i∈S , where i runs through a subset S of N. Now using (6) we
have with a convergent subsequence

a = lim
i∈S, i→∞

1

Ni

Ni∑
k=1

〈ψNi
k ,OpN [a]ψNi

k 〉

= lim
i∈S,i→∞

|Fi |
Ni

1

|Fi |
∑
ψ∈Fi

〈ψ,OpN [a]ψ〉

+ lim
i∈S,i→∞

Ni − |Fi |
Ni

1

Ni − |Fi |
∑

ψ
Ni
k ∈HNi \Fi

〈ψNi
k ,OpN [a]ψNi

k 〉

= α(F)
∫

a dµ1 + (1 − α(F))
∫

a dµ2

(15)

where µ1 and µ2 are invariant measures defined by

lim
i∈S,i→∞

1

|Fi |
∑
ψ∈Fi

〈ψ,OpN [a]ψ〉 = ∫
a dµ1 (16)

lim
i∈S,i→∞

1

Ni − |Fi |
∑

ψ
Ni
k ∈HNi \FNi

〈ψNi
k ,OpN [a]ψNi

k 〉 = ∫
a dµ2. (17)
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These two measures exist by the assumption that the subsequence {ai }i∈S was
convergent, and they are invariant by Theorem 1. But Eq. (15) can be rewritten as

µ = αµ1 + (1 − α)µ2

and if µ is ergodic and α �= 0 this is only possible if µ1 = µ, and this proves that

lim
j→∞ aN j = a.

Since this holds for every convergent subsequence of {a j } j∈N a is the only limit point
and (14) follows.

Now assume that

lim
N→∞

1

N

N∑
k=1

|〈ψN
k ,OpN [a]ψN

k 〉 − a| = C > 0,

then there must either exist a subsequence {k j } j∈N of positive density with

〈ψN j
k j
,OpN [a]ψN j

k j
〉 − a ≥ C/2

or one with

〈ψN j
k j
,OpN [a]ψN j

k j
〉 − a ≤ −C/2.

But the mean value of the sequence 〈ψN j
k j
,OpN [a]ψN j

k j
〉 − a must tend to 0 by (14) and

so we have a contradiction if C �= 0. ��
The previous results, Corollary 1, Theorem 2 and Theorem 3, are quite general, they

are valid for all quantised maps which satisfy Egorov’s theorem. We now turn to a more
concrete study of the eigenfunctions for the specific quantum maps (10). Our aim is to
show that the quantum limits are determined by the spatial distribution of the periodic
orbits of the discretisation of the classical map. The eigenvalue equation

UNψ = eN (θ)ψ

leads to the following recursion equation for ψ ;

�( f̂N (Q)) = eN (θ − Q2)�(Q). (18)

From this recursion relation we obtain

|�( f̂N (Q))|2 = |�(Q)|2,
and this implies that the probability densities in position space defined by the eigenfunc-
tions are invariant under the map fN . In order to determine these densities it is therefore
sufficient to determine the spatial distribution of the orbits of fN .

For further investigation we note that each periodic orbit of fN carries at least one
eigenfunction. And we can determine the eigenfunctions and eigenvalues more explicitly,
let O be a periodic orbit of period |O| = K , then the recursion relation (18) gives

�(Q) = eN

(
K θ −

K−1∑
k=0

[
f̂ k
N (Q)

]2
)
�(Q).
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So if ψ should be an eigenfunction with eigenvalue eN (θ) we get the condition

K θ −
K−1∑
k=0

[
f̂ k
N (Q)

]2 = Nm

with m ∈ {0, 1, . . . , K − 1}. This determines the eigenvalues, and then the correspon-
ding eigenfunctions follow from the recursion relation and the normalisation condition.
Summarising we get:

Proposition 2. LetO be an orbit of period K = |O|of fN , then there exists K orthogonal
eigenfunctions of UN with support O. The eigenphases are given by

θk = SO +
N

K
k

with k ∈ {0, 1, . . . , K − 1} and

SO := 1

K

K−1∑
k′=0

[
f̂ k′
N (Q)

]2
,

and a normalised eigenfunction corresponding to θk is given by

�k( f̂ k′
N (Q0)) = eN

⎛
⎝k′θk −

k′∑
m=0

[ f̂ m
N (Q0)]2

⎞
⎠ (

N

K

)1/2

,

where Q0 ∈ O is an arbitrary point on the orbit and k′ ∈ {0, 1, . . . , K − 1}.
The quantum lattice DN of N points is a disjoint union of all periodic orbits of fN ,

and on each of these orbits are as many eigenfunctions concentrated as the orbit is long.
But that means that the orbits determine the quantum limits and the relative density of
the corresponding sequence of eigenfunctions.

To each periodic orbit O we can associate a probability measure on [0, 1]

δO(q) := 1

|O|
∑
Q∈O

δ

(
q − Q

N

)
(19)

which is invariant under fN .

Corollary 2. Let O(N )
j , j = 1, . . . , JN be the periodic orbits of fN and let δ(N )j be the

corresponding probability measures (19). Assume that there is an invariant measure ν
of f and a sequence of periodic orbits {O(Nk)

jk
}k∈N such that

lim
k→∞ δ

(Nk )
jk

= ν,

then ν is a quantum limit of UN .
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In all our examples the sequence (Nk) contains all natural numbers. Thus there are
two possible definitions of the density of a sequence of periodic orbits, G = {O(Nk)

jk
}k∈N,

α(G) = lim
N→∞

|O(N )
jN

|
N

or β(G) = lim
N→∞

1

N

∑
k:Nk=N

|O(Nk)
jk

|,

whenever the limit exists, which we will call theα-density orβ-density of G, respectively.
This corollary suggests that the set of quantum limits coincides with the set of limits

points of the sequence of orbit measures δ(N )j and that moreover the relative densities of
the convergent subsequences coincide too. This is true if there are no multiplicities in the
eigenvalues. If there are eigenvalues of multiplicity larger than one, then the eigenspace
can mix the contribution of the different orbits. But even in this case there always exists
a choice of a basis of eigenfunctions corresponding to the orbit measures δ(N )j . Notice
that in this case the β-density of the sequence of orbits coincides with the density of the
corresponding sequence of eigenfunctions defined in (13).

4. Cutting and Stacking Constructions

Cutting and stacking is a popular method in ergodic theory to construct maps on the inter-
val which are isomorphic models of arbitrary measure preserving dynamical systems.
The construction gives a piecewise isometric mapping on the interval with Lebesgue
measure as an invariant measure. One can also think of this transformation as a counta-
ble interval exchange transformation.

The final mapping will be defined only Lebesgue almost everywhere. None the less
we can use this model to study certain other invariant measures which are well behaved
with respect to the cutting and stacking construction.

For a very readable introduction into cutting and stacking see the recent book by
Shields [Shi96] or survey article by Friedman [Fri92]. We will now give a short descrip-
tion of the basic construction scheme and the relevant definitions.

A stack (or column) S is a finite family of enumerated disjoint intervals {I j }h(S)
j=1 ,

where h(S) is called the height of S. The I j are subintervals of [0, 1] of equal length
which is called the width of S. There are two possible conventions: either one can take
all the intervals to be open, or all the intervals to be closed on the left and open on the
right. Which convention we choose is not important for this paper. The intervals I1 and
Ih(s) are called the bottom and top of S respectively. We define a transformation fS as
follows, if the point x ∈ I j is not on the top of S and not on the boundary of I j then it
gets mapped to the point directly above it (see Fig. 1(a)). Since I j+1 and I j have equal
width, fS is simply the canonical identification map between I j and I j+1. Interpreted
in [0, 1] this means that fS : I j → I j+1 such that x → x + ∂− I j+1 − ∂− I j , where ∂−
denotes the left boundary point of an interval. The construction clearly defines f −1 on
all I j except at the bottom.

A stack family S is a finite or countable set of stacks {Si } = {{I i
j }h(Si )

j=1 } such that

all I i
j are disjoint and ∪I i

j = [0, 1]. In this paper we will work only with finite stack
families. On S one defines a transformation fS by fS |Si = fSi except on the collection
of top intervals.
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I f I I I I I

I

k k k k k

k

2 3 1 2

3

1
k S

(c) stacking the third
stack on top of the
second stack

fSícutcut

(b) cutting a stack(a) a stack

Fig. 1. The cutting and stacking construction. In a given stack (a) the mapping fS is defined, except at the
top interval. In (b) the stack is cut into three substacks, and in (c) the third substack is stacked onto the second
one. This gives an extension fS′ of the map fS which was not defined on the top of substack two before

Given two stacks Si and S j , i �= j of equal width one can define a new stack S′ by
stacking S j on Si that is

S′ = {I ′
k}h(Si )+h(S j )

k=1 ,

I ′
k = I i

k for k ≤ h(Si ) and I ′
k = I j

k−h(Si )
for k > h(Si ).

Correspondingly one gets a new transformation fS′ which agrees with fSi and fS j

except on I i
h(Si )

, where fSi was not defined before.
It remains to define the cutting of stacks. A cutting of a stack S = {Ik} is a splitting

of S into two (or more) disjoint stacks S1and S2 with intervals {I 1
k } and {I 2

k } such that

I 1
k ∪ I 2

k = Ik and ∂− I 1
k < ∂+ I 1

k = ∂− I 2
k < ∂+ I 2

k ∀k

that is I 1
k is always the left component of the partition of Ik into I 1

k and I 2
k (Fig. 1(b)).

The definition of f{S1,S2} is as above. Multiple cutting of S is defined analogously.
A stack family S(n) is obtained from a stack family S(n−1) by cutting and stacking,

if each Si (n) from S(n) can be obtained by successive cuttings and stackings of stacks
from S(n − 1). By construction fS(n) is an extension of fS(n−1). If one has a sequence
{S(n)}n≥1 of stack families such that each S(n) is obtained from S(n − 1) by cutting
and stacking and furthermore

lim
n→∞

∑
Sk (n)∈S(n)

width(Sk(n)) = 0, (20)

then lim fS(n) = f is an invertible transformation on [0, 1] defined everywhere except
at a set of zero Lebesgue measure. Note that f is always aperiodic.

The “partition” of [0, 1] into the intervals of S(1), 1 the starting object of the con-
struction, gives a natural symbolic dynamics for f . The coding is unique for all points
whose infinite orbit is defined.

1 Here we can ignore the boundary points of the interval since f is not defined on them.
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1
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1/4

1/2

7/83/41/2

Fig. 2. The von Neumann-Kakutani transformation

For convenience, we denote the intervals of S(n) by I i
j (n), where i indexes the stack

and j the interval in the stack. We consider the set

S =
(
∪i,n∂ I i

h(Si )
(n)

)
∪ (∪i,n∂ I i

1(n)
)
.

The set S = S ( f ) is called the singularity set of the map f . It consists of all the
points of discontinuity of f and all the points where the map f or f −1 is not defined.
The boundary points of the intervals I i

j which are not top or bottom intervals are not
included in this set, the map is defined and continuous on such points! Furthermore
∪i, j,n∂ I i

j (n) is included in the set ∪k∈Z f k
S, where f k

S := {x : f −k x ∈ S}.
We give an simple example of a map f constructed by cutting and stacking due J. von

Neumann and S. Kakutani (unpublished, see [Fri92]). In this example there is exactly
one stack at each stage in the construction. The first stack S1 is of height two, the bottom
interval is I1 = [0, 1/2) and the top is I2 := [1/2, 1). Suppose the n − 1st stack Sn−1
has been defined. Now inductively define Sn by cutting Sn−1 in half and stack the right
half above the left half to form Sn . The stack Sn is of height 2n with base [0, 2−n) and
top [1 − 2−n, 1). The map of the interval defined is shown in Fig. 2.

Historically the cutting and stacking construction was invented to represent the
dynamics with respect to a single invariant measure as a countable interval exchange
transformation with the canonical invariant Lebesgue measure. The construction is
universal in the sense that for every measurable dynamical system (M, g, µ) one can
explicitly give a cutting and stacking representation ([0, 1] , f (g) , µL) [Shi96]. The
following proposition which will be needed for the application of Theorem 3 seemed to
be unknown.
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Proposition 3. Let (�, σ ) be a symbolic dynamical system over a finite or countable
alphabet and let µ be a shift-invariant measure such that µ ([w]) > 0 for all cylinder-
sets corresponding to finite words w appearing in �. Then the associated cutting and
stacking construction yields a representation ([0, 1] , f, µL) of (�, σ, µ) such that all
nonatomic invariant measures ν∗ on (�, σ ) have a corresponding isomorphic invariant
measure ν on ([0, 1] , f ) with the property ν (S ( f )) = 0.

Proof. By definition all finite symbolic words have a representation as orbit segments of
the cutting and stacking construction. Furthermore to each nonperiodic symbol sequence
corresponds a unique point in [0, 1] whose orbit under f is well defined and commutes
with the shift. By the Poincaré recurrence theorem every f − invariant measure is sup-
ported on recurrent points. Since the singular orbits, respectively symbolic sequences,
are the ones which eventually or asymptotically fall onto the singularity set they do
not intersect with the recurrent nonperiodic symbol sequences. Therefore all invariant
measures- except the finitely supported ones- give zero measure to the singularity set.
��

4.1. The approximating family. Each f defined by cutting and stacking provides us
with a natural approximation family { fS(n)} which we will use now to define the appro-
ximation mappings on the rational points DN = { Q

N : Q ∈ {0, . . . , N − 1}} for the
quantisation. Let the points in Gi, j (n, N ) := DN ∩ I i

j (n) be enumerated from left to
right and let

K (N , I i
j (n)) := �Gi, j (n, N ) and K (N , Si (n)) := min

j
{K (N , I i

j (n))}.

K (N , Si (n)) is just the smallest number of points from the discretisation in an inter-
val in the stack Si (n). Let Ĝi, j (n, N ) be the set of the first K (N , Si (n)) points from

Gi, j (n, N ) denoted by {x j,i
e }K (N ,Si (n))

e=1 .
We define fN ,n first on D̂N ,n = ∪i, j Ĝi, j (n, N ) by setting

fN ,n x j,i
e = x j+1,i

e for j < hi (n) := h (Si (n)) . (21)

We call these the internal orbit segments. Clearly
∣∣∣ fN ,n x j,i

e − f x j,i
e

∣∣∣ = O
( 1

N

)
.

We call each approximation mapping fN ,n on DN whose restriction to D̂N ,n is given
by the above construction an ergodic approximation.

Let ĎN ,n be the set of points not in D̂N ,n and not in any of the top intervals I i
h(Si )

(n).

For x ∈ ĎN ,n let fN ,n x be the closest point to f x . Note that fN ,n is not necessarily an
invertible map, thus the construction implies that max

x∈ĎN ,n

| fN ,n x − f x | = O
( 1

N

)
. It is

clear that for fixed n we have

lim
N→∞

�D̂N ,n

�DN
= 1. (22)

To complete the definition of fN ,n, it remains to define the mapping of the points
Ĝi,hi (n)(n, N ) on the tops of the stacks to points Ĝi,1(n, N ) on the bottoms of the
stacks. This will be done in a way to produce periodic orbits which approximately mimic
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µ typical orbit segment
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1

typical orbit
segment

*

fN

Fig. 3. The approximate mapping fN on the discrete set DN (denoted by the full dots), and the way the orbit
segments from different stacks are concatenated in order to produce a quantum limit of the form α1µ1 +α2µ2.
A singular limit µ∗ is obtained by a stack of small width and where the orbits are concatenated from top to
the bottom

a given invariant measure. Furthermore it remains to link N to a given n to get a good
approximation. In essence we have to require that for each fixed stage n construction we
have enough discretisation points in each stack. That means that with the increase of N we
pass from n to n+1 only as we pass a critical threshold value Nn .This can be done already
without a precise description of the gluing between the top and bottom of the stacks. We
need that the approximation family fN is good enough to apply Theorem 1 for a sequence
εN → 0 such that δN (εN ) → 0. Note that Theorem 1 does not impose any requirements
on the rate of convergence. The basic idea is to keep N large enough compared with
n such that all intervals I i

j (n) of S(n) contain sufficiently many points from DN . Let
bn = min

i
width(Si (n)). Choose a function n(N ) going to infinity such that

lim
N→∞ min

i
K (N , Si (n(N ))) = ∞, (23)

which is equivalent to require 1
bn

= o(N ). Furthermore let εN = max
i
width(Si (n)).

Equation (20) implies that εN tends to 0 since n(N ) tends to infinity. With this choice of
εN the points where fN ,n(N ) is not yet defined do not contribute to δN (εN ), hence one
obtains δN (εN ) = O( 1

N ). An approximation family fN := fN ,n(N ) for any function
n(N ) satisfying the above requirements is called proper.

We say that a measure µ appears as a quantum limit if one can find a proper appro-
ximating family fN and associated quantisation UN such that µ is a quantum limit
of UN . The notion of quantum limit as well as the notion of density were introduced in
Corollary 2.

Theorem 4. a) If µ is an absolute continuous ergodic measure for f , then µ appears
as a positive α and β− density quantum limit. Furthermore the quantum limit has
full α and β− density if µ is the Lebesgue measure.

b) If µ is a nonatomic, singular ergodic measure for f then µ appears as a quantum
limit. Furthermore the quantum limit must have zero α and β− density.

c) If µ1 and µ2 are two absolute continuous ergodic invariant measures, then α1µ1 +
α2µ2 appears as a positive α and β− density quantum limit for any α1, α2 ∈ (0, 1)
with α1 + α2 = 1.
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d) If µ1 and µ2 are two ergodic measures at least one of which is singular, then
α1µ1 + α2µ2 appears as a quantum limit for any α1, α2 ∈ (0, 1) with α1 + α2 = 1.
Furthermore the quantum limit must have zero α and β− density.

A transformation f : [0, 1] → [0, 1] is called a finite rank transformation if one can
construct it via cutting and stacking such that the number of stacks #{Si (n)} in the nth

stack family S(n) is bounded (independent of n).

Corollary 3. If f is a finite rank transformation, then every ergodic non atomic invariant
measure appears as the quantum limit of any proper ergodic approximation family.

Proof. For a finite rank transformation, the singularity set S is a countable set which has
only a finite number of points of density. Thus any non-atomic invariant measure can
not be supported on S. ��

A point x is called µ-typical if limm,u→∞ 1
m+u+1

m∑
i=−u

δ
(

f i x
) = µ. For the proof

of the theorem we need the following simple fact whose proof is omitted since it is
immediate from the definition of weak convergence of measures.

Proposition 4. Fix xµ-typical. Let j (m, u) and ε( j) be functions such that j (m, u) →
∞ for m, u → ∞ and ε( j) → 0 as j → ∞. Let {y( j)

k }k∈Z be a family of sequences with

the property that
∣∣∣y( j)

k − f k x
∣∣∣ ≤ ε( j) for −u ≤ k ≤ m. Then limm,u→∞ 1

m+u+1

m∑
k=−u

δ
(

y( j (m,u))
k

)
= µ.

Proof of Theorem 3. For the proof of part b) and part a) for α− density we complete the
definition of fN as follows. Let us complete each internal orbit segment into a periodic
orbit by setting fN xhi (n),i

e = x1,i
e (compare (21)). For points x ∈ DN \ S where the

map is not yet defined we have the freedom to map x anywhere; for preciseness define
fN x to be the closest point to f x . By Corollary 2 it is enough to show that there is a
sequence of periodic orbits on DN whose point-mass average converge for N → ∞ to
the considered measure µ.

Fix an arbitrary enumeration
{
O(N )

j

}
of the periodic orbits on DN . For µ absolute

continuous the set of points x ∈ [0, 1] with limm,u→∞ 1
m+u+1

m∑
i=−u

δ
(

f i x
) = µ has

positive Lebesgue measure and in the caseµ is the Lebesgue measure it has full measure.
Let x be µ-typical and consider for each N the stack Si (n(N )) in which x is placed,
where n(N ) is a function satisfying the requirements of Eq. (23). Let O(N )

jl
be the set

of periodic orbits in ∪ j Ĝi, j (n(N ), N ). They stay width(Si (n(N )))-close to the orbit
segment { f −m0 x, . . . , f n0 x}, where m0 and n0 are the smallest and largest iterates such
that f k

Si (n(N ))
x is still defined. Note that m0 + n0 + 1 = h (Si (n(N ))). Since

width(Si (n(N ))) ≤ εN := max
i
width(Si (n(N ))) → 0 for N → ∞

we can apply the above proposition to the family O(N )
jl

(with fixed l) to conclude that µ
is a quantum limit, however this construction has not yet proved the positive density.
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To prove the positive density we need a quantified version of the above. Let Jq be the
set of subintervals of [0, 1] with boundary points of the form p

q . For the convergence of a
sequence to a measure it is clearly enough to check the characteristic function averages
with respect to the elements of ∪qJq . A stack Si (n(N )) is called ε − q−good with
respect to µ if for all x ∈ I i

1(n(N )) (i.e. x in the base of the stack Si (n(N ))),

µ(J )− ε ≤ 1

hi (n(N ))

hi (n)∑
i=0

1J

(
f |iSi (n(N ))

(x)
)

≤ µ(J ) + ε f or ∀J ∈ Jq ,

where hi (n(N )) denotes the height of the stack Si (n(N )). Denote the family of such
stacks by G(n, q, ε, µ) and by G(n, q, ε, µ) the set of points contained in G(n, q, ε, µ).
Clearly one has ∀q, ε > 0,

lim
n→∞ µL(G(n, q, ε, µ)) = µL (x : x is µ− typical) and

lim
n→∞µ(G(n, q, ε, µ)) = 1.

Let ε(n) be a sufficiently slowly decreasing function and q(ε(n)) be a sufficiently slowly
increasing function that

lim
n→∞µL(G(n, q(n), ε(n), µ)) = µL (x : x is µ− typical) . (24)

With this new notation we are ready to prove that µ is a quantum limit of positive
density. We define the sequence O(N )

jl
of periodic orbits which give rise to the desired

quantum limit as follows. For fixed N the set G(n(N ), q(n(N )), ε(n(N )), µ)∩ D̂N ,n(N )

consists of a collection of points of periodic orbits. The sequence O(N )
jl

consists of the set
of these orbits. The positive β− density and full density in the case of Lebesgue measure
then follows from Eqs. (24) and (22). To prove part a) for the α− density we only need
to modify the map fN on top of the stacks. This will be done such that the collection
of periodic orbits O(N )

jl
becomes just one periodic orbit for each N . This completes the

proof of part a).
To prove part b) observe that due to Proposition 3 we have µ (S) = 0 and hence we

can apply Theorem 1 to get an invariant measure out of the quantum-limit. One considers
the set of µ -typical points. From the proof of Proposition 3 it follows that the orbit of
every µ-typical point does not intersect nor converge to the singularity set S. Since the
set of µ−typical points has zero Lebesgue measure we can obtain only a zero density
quantum limit just as in the proof of part a).

To prove part c) one has to modify the construction of the approximating mapping
fN in the following way. Instead of making fN periodic within each stack Si (n(N )) we
want to connect two stacks say Si (n(N )) and S j (n(N )), where the orbit segments in the
i th stack, respectively j th stack, are approximately typical for µ1, respectively µ2, to get
an average of µ1 and µ2.

For l = 1, 2 let Al(N ) := {i : Si (n(N )) ∈ G(n (N ) , q(n), ε(n), µl). On D̂N ,n(N )

define fN as before by fN x j,i
e = x j+1,i

e for j < hi (n). For x j,i
e ∈ G(n (N ) , q(n), ε(n),

µl) ∩ D̂N ,n(N ) one has for ∀J ∈ Jq(n),

µl(J )− ε(n) + O(
1

N
) ≤ 1

hi (n)

∑
0≤k≤hi (n)−1

1J

(
f k
N x1,i

e

)
≤ µl(J ) + ε(n) + O(

1

N
).
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Let θl := µL (x : x is µl − typical) and note that

# A1 (N ) ∩ D̂N ,n(N )

# A2 (N ) ∩ D̂N ,n(N )
→ θ1

θ2
for N → ∞.

Thus by gluing all the orbit segments of fN in the sets A1 (N )∩ D̂N ,n(N ) and A2 (N )∩
D̂N ,n(N ) in such a way that they form one periodic orbit we obtain a family of periodic
orbits with quantum limit α1µ1 + α2µ2, where αl = θl

θ1+θ2
. The α and β− densities are

just θ1 + θ2.

It is easy to construct in the same spirit approximation families fN for any values
α1 and α2 = 1− α1. Suppose first that α1 <

θ1
θ1+θ2

and hence α2 >
θ2

θ1+θ2
. Take in

each stack Si (n(N )) with i ∈ A1 (N ) approximately α1
α2

of the internal orbit segments.
The function n (N ) is sufficiently slowly growing (23) to ensure that there are enough
points in the discretisation set D̂N ,n(N ); we can guarantee the convergence to α1

α2
.Gluing

these segments together with all the internal orbit segments of A2 (N ) yields a single
periodic orbit O(N ). The family of periodic orbits

{O(N )
}

N defines a quantum limit for

the measure α1µ1 + α2µ2 with α and β− density α1
α2
θ1 + θ2 > 0. The case α1 >

θ1
θ1+θ2

is analogous.
The proof of d) follows immediately by combining the arguments from parts b) and

c). ��

5. Examples

5.1. Interval exchange maps. Consider a permutation π of {1, 2, . . . , n} and a vec-
tor v = (v1, . . . , vn) such that vi > 0 for all i and

∑n
i=1 vi = 1. Let u0 = 0,

ui = v1 + · · ·+vi and�i = (ui−1, ui ). The interval exchange transformation T = Tπ,v ,
T : [0, 1] → [0, 1] is the map that is an isometry of each interval �i which rearranges
these intervals according to the permutation π .

The Lebesgue measure is always an invariant measure for an IET. A typical IET is
uniquely ergodic, however there exist minimal, non-uniquely ergodic IETs. The first
example of a minimal, non-uniquely ergodic IET was given by Keynes and Newton
[KN76] and Keane [Kea77]. The number of ergodic invariant measures for a minimal
IET on m intervals is bounded by the �m/2� [Kat73,Vee78]. The set of invariant measures
always includes absolutely continuous measures but can also include singular measures.
It is known that an interval exchange transformation on m intervals is at most of rank
m; in particular it is a finite rank transformation (see for example [Fer97]). In fact the
typical IET is of rank 1 [Vee84], although we will not use this fact. Thus we can apply
Corollary 3 to conclude:

1. any uniquely ergodic IET is quantum uniquely ergodic,
2. any minimal, non-uniquely ergodic IET is not quantum uniquely ergodic,
3. any absolutely continuous invariant measures appear as a positive density quantum

limit,
4. any singular ergodic invariant measure appears as a zero density quantum limit.

5.2. The full shift. Another example of a cutting and stacking transformation fB that
has µL as an ergodic invariant measure and admits further singular measures µ such
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that µ(S) = 0 is given by the full shift. Take any cutting and stacking model of the full
two-sided shift on two symbols with Bernoulli-measure p0 = p1 = 1

2 (for details of such
models we refer to the book [Shi96]). Note that although the full shift has many periodic
orbits the cutting and stacking model has none. We remark that one could introduce
some periodic orbits at the boundaries of the subintervals but they would all sit or fall at
singularity points and hence do not appear as quantum limits, in other words there are
no scars in quantised cutting and stacking skew product mappings. By Proposition 3 all
other invariant measures of the full shift have no support on the singularity set. Hence
we can apply Theorem 3. It is interesting to note that the fractal-dimensions (box or
Hausdorff dimension) of the singularity set are rather large and that the upper and lower
dimensions do not coincide. A straightforward counting argument shows for instance
that the upper and lower box dimensions are in the open interval

( 1
2 , 1

)
.

6. Comments and Conclusions

We have shown in this paper that for a rather general class of dynamical systems on the
torus the variety of different invariant measures can be recovered as quantum limits of
the corresponding proper families of quantised maps. The quantisation scheme here used
is based on the one introduced by [MR00]. For a discussion of alternative quantisation
procedures and a critical comparison we refer to the recent work [Zel05].

One of the main features in our systems is the presence of singularities. In the quan-
tisation procedure this provides enough freedom to obtain eigenfunctions reflecting the
typical orbit structure with respect to any non-atomic ergodic measure. It is an interesting
question whether our results are still valid in case the classical dynamical system has no
singularities. We conjecture that similar statements can be obtained. For this it seems
natural to replace the top-bottom gluing scheme in the interval exchange approximating
family by cutting and “crossover-concatenation” of touching period orbits.

Concerning the quantisation of flows one might hope that a good understanding of
the associated quantised Poincaré maps can guide one to a deeper understanding of
concrete features of eigenfunctions and spectrum. A natural class of examples to study
these questions are polygonal billiards. In the case of rational polygons the associated
Poincare maps for the directional flow are interval exchange transformations which can
be quantised similar to the quantisation used in this paper. It would be interesting to
compare the results obtained that way with the semiclassical properties of the direct
flow quantisation via the billiard Hamiltonian.
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