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Rate of quantum ergodicity in Euclidean billiards
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For a large class of quantized ergodic flows the quantum ergodicity theorem states that almost all eigen-
functions become equidistributed in the semiclassical limit. In this work we give a short introduction to the
formulation of the quantum ergodicity theorem for general observables in terms of pseudodifferential operators
and show that it is equivalent to the semiclassical eigenfunction hypothesis for the Wigner function in the case
of ergodic systems. Of great importance is the rate by which the quantum-mechanical expectation values of an
observable tend to their mean value. This is studied numerically for three Euclidean bil§itadisim, cosine,
and cardioid billiardl using up to 6000 eigenfunctions. We find that in configuration space the rate of quantum
ergodicity is strongly influenced by localized eigenfunctions such as bouncing-ball modes or scarred eigen-
functions. We give a detailed discussion and explanation of these effects using a simple but powerful model.
For the rate of quantum ergodicity in momentum space we observe a slower decay. We also study the suitably
normalized fluctuations of the expectation values around their mean and find good agreement with a Gaussian
distribution.[S1063-651X98)13305-9

PACS numbdps): 05.45+hb, 03.65-w, 03.65.Ge

[. INTRODUCTION eigenfunction hypothesis is proved for ergodic systems.
For practical purposes it is important to know not only the
In quantum chaos much work is devoted to the investigasemiclassical limit of expectation values or Wigner func-
tion of the statistics of eigenvalues and properties of eigentions, but also how fast this limit is achieved, because in
functions of quantum systems whose classical counterpart @pplications one usually has to deal with finite valueé of
chaotic. For ergodic systems the behavior of almost alfinite energies, respectively. Thus the so-called rate of quan-
eigenfunctions in the semiclassical limit is described by thedum ergodicity determines the practical applicability of the
quantum ergodicity theorem, which was provedir5]; see  quantum ergodicity theorem. A number of articles have been
also [6,7] for general introductions. Roughly speaking, it devoted to this subject; see, e[d.3—15,6,16and references
states that for almost all eigenfunctions the expectation valtherein. The principal aim of this paper is to investigate the
ues of a certain class of quantum observables tend to thi@te of quantum ergodicity numerically for different Euclid-
mean value of the corresponding classical observable in théan billiards and to compare the results with the existing
semiclassical limit. analytical results and conjectures. A detailed numerical
Another commonly used description of a quantum-analysis of the rate of quantum ergodicity for hyperbolic
mechanical state is the Wigner functigB], which is a  surfaces and billiards can be found[iti7].
phase-space representation of the wave function. According Two problems arise when one wants to study the rate of
to the “semiclassical eigenfunction hypothesis,” the Wignerguantum ergodicity numerically. First, the fluctuations of the
function concentrates in the semiclassical limit on regions irexpectation values around their mean can be so large that it
phase space that a generic orbit explores in the long-timis hard or even impossible to infer a decay rate. This problem
limit t—o [9—12. For integrable systems the Wigner func- can be overcome by studying the cumulative fluctuations
tion W(p,q) is expected to localize on the invariant tori, 1
whereas for ergodic systems the Wigner function should = ey
semiclassically condense on the energy surface, i.e., SiEA) N(E) EnZ:E [Cn Adi) = o (A)], @
W(p,q)~[1N(Zg)]6(H(p,q) —E), where H(p,q) is the
Hamilton function andV(2g) is the volume of the energy Where (¢, ,Ayy,) is the expectation value of the quantum
shell defined byH(p,q)=E. observableA, o(A) is the mean value of the corresponding
As we will show below, the quantum ergodicity theorem classical observable(A), andN(E) is the spectral staircase
is equivalent to the validity of the semiclassical eigenfunc-function; see Sec. Il for detailed definitions. S9(E,A)
tion hypothesis for almost all eigenfunctions if the classicalcontains all information about the rate by which the quantum
system is ergodic. Thus a weak form of the semiclassicagéxpectation values tend to the mean value, but is a much
smoother quantity than the sequence of differences itself.
Second, since the quantum ergodicity theorem makes only
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eigenfunctions can be, for example, so-called scarred eigemvhich obey the scaling property Sg=EY%,

functions[18,19,, which are localized around unstable peri- :=={(E¥?p,q)|(p,q) € 2;} since the Hamilton function is

odic orbits, or in billiards with two parallel walls, so-called quadratic inp. Note that>; is justS'x Q.

bouncing-ball modes, which are localized on the family of The classical observables are functions on phase space

bouncing-ball orbits. R2x () and the mean value of an observablg,q) at en-
Although such subsequences of exceptional eigenfuncergy E is given by

tions are of density zero, they may have a considerable in-

fluence on the behavior &, (E,A). This is what we find in - 1

our numerical computations for the cosine, stadium, and car- a V(Sp) LEa(p,q)d,u

dioid billiards, which are based on 2000 eigenfunctions for

the cosine billiard and up to 6000 eigenfunctions for the 1 )

stadium and cardioid billiard. Ve f fRzma(p'qw(p ~Bydpdg (4
In order to obtain a quantitative understanding of the in-

fluence of non-quantum-ergodic subsequences on the ratg@here du=3dedq is the Liouville measure o®g and

we develop a simple model f&;(E,A) that is tested for the V(2g)=[5s du. The unusual factor 1/2 in the Liouville

corresponding billiards. The application of this model in the ,easure is due to the fact that we have chosémand not

case of the stadium billiard reveals, in addition to then2/s a5 the Hamilton function. For the mean value at energy
bouncing-ball modes, a subsequence of eigenfunctions, . Lo L
=1 we will for simplicity write a.

which appear to be non-quantum-ergodic in the considere The corresponding quantum system that we will study is
energy range. . o . A

A further interesting question is if the boundary condi- given by the Schrdinger equatior(in units/ =2m=1)
tions have any influence on the rate of quantum ergodicity. —A -E Q 5
This is indeed the case. For observables located near the Un(@)=Enn(@). aeld, ©
boundary a strong influence on the behaviorSefE,A) is  \ith Dirichlet boundary conditionsy,(q)=0 for qe dQ.
observed. However, fdE—  this influence vanishes, so the pare A=a2/&qf+a2/aq§ denotes the usual Laplacian and
asymptotic rate is independent of the boundary conditions. .. \vill assume that the eigenvalues are ordere& asE,

After having some knowledge of the rate by which thesEe,--- and that the eigenfunctions are normalized
expectation valueéy,, ,Ay,,) tend to their quantum-ergodic ol tn(@)|?dg=1
e n .

limit o(A), one is interested in how the suitably normalized” " The quantum ergodicity theorem describes the behavior
fluctuations(y, ,Ag,) — o(A) are distributed. It is conjec- of expectation value$y, Ay, in the high-energy(semi-
tured that they obey a Gaussian distribution, which we car|assica) limit E,— and relates it to the classical mean
confirm from our numerical data. value (4). The observable\ is assumed to be a pseudodif-
The outline of the paper is as follows. In Sec. Il we first ferential operator, so before we state the theorem we have to

give a short introduction to the quantum ergodicity theoremintroduce the concept of pseudodifferential operators; see,
and its implications. Then we discuss conjectures and thegs g. [20-23.

retical arguments for the rate of quantum ergodicity given in
the literature. In particular we study the influence of non-
guantum-ergodic eigenfunctions. In Sec. Ill we give a de-
tailed numerical study on the rate of quantum ergodicity for It is well known that every continuous operator
three Euclidean billiard systems for different types of observ-A:Cq(2)—D'(Q2) is characterized by its Schwarz kernel
ables, both in position and in momentum space. This inKae D' (X Q) such thatAg(q) = [oKa(d,9")¥(q’)dq’,
cludes a study of the influence of the boundary and a studwhere D’ (Q) is the space of distributions dual ©;(Q);

of the fluctuations of the normalized expectation valuessee, e.g.,[24], Chap. 5.2. In Dirac notation one has
around their mean. We conclude with a summary. Some oK(q,q’)=(q|A|q’). With such an operatoA one can as-
the more technical considerations using pseudodifferentiaociate its Weyl symbol, defined as

operators are given in the Appendixes.

A. Weyl quantization and pseudodifferential operators

q’ q’

WIA](p,q)= fRzeiq"’KA<q—7,q+7 da’, ()

II. QUANTUM ERGODICITY

The classical systems under consideration are given byhich in general is a distributiofi2l]. An operatorA is
the free motion of a point particle inside a compact two-cajled a pseudodifferential operator if its Weyl symbol be-
dimensional Euclidean domaifdCR* with a piecewise |ongs to a certain class of functions. One of the simplest
smooth boundary, where the particle is elastically reflectedg|gsses of symbols iS™(RZx ), which is defined as fol-
The phase space is given B <) and the Hamilton func-  |gws: a(p,q) e S(R2x Q) if it is in C*(R2x ) and for all
tion is (in units 2m=1) multiple indicesa,8 the estimate

H(p,a)=p*. 2 ‘[ya P

— ——a(p,q)|<C, 4(1+]|p[?)m~lahr2 7

The trajectories of the flow generated Hyp,q) lie on sur- ap* 9q” (P.q) A(1+1Pl) @

faces of constant enerdy, ) )
holds. Herem is called the order of the symbol. The main

Se={(p,q) e R?XQ|p?=E}, (3)  pointin this definition is that differentiation with respectgo
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lowers the order of the symbol. For instance, polynomials ofexistence of different operators with the same principal sym-
degreemin p, =|,|<mC (q)p®’, whose coefficients satisfy Dol just reflects the fact that the quantization process is not
|(9'8!99P)c r(q)TS\(: ,aﬁ are inS"(R2x Q). unique. Furthermore, one can show that the leading

An operatorA is called a pseudodifferential operator of @Symptotic behavior of expectation values of such operators
orderm, Ae S™(Q), if its Weyl symbol belongs to the sym- for high energies only depends on the principal symbol, as it

bol classSM(R2x Q) should be according to the correspondence principle. This is
' a special case of the Szedjmit theorem; seq27], Chap.
AecS"(Q):=W[A](p,q) e SYR?X Q). (8 29.1L

One advantage of the Weyl quantization over other quan-
For example, if the Weyl symbol is a polynomial iy then tization procedures is that the Wigner function of a stédje
the operator is in fact a differential operator and so pseudodappears naturally as the Weyl symbol of the corresponding
ifferential operators are generalizations of differential operaprojection operatof)y,
tors. Further examples include complex powers of the La-
placian (—A)??e S™¥(Q); see[25,26,22. - q' q
On the other hand, with any functiae S"(R"x Q) one WL )4l 1(p,a)= Lze'q pﬁq— 7) llf(q+ - |da’.

can associate an operatoe S™((), (12)
Af(a) = 1 i(q—a")p
af(q)= 2m2 ] Joxr® ajp, of an eigenstate y,, the simpler notation W,(p,q)
=W[|n){¢al1(p,q). For the expectation valuéy,Ay)
xf(q")dq'dp, (9)  one has the well-known expression in terms of the Weyl
symbolW[A] and the Wigner functioW[ | #){|],

!

g+q’ In the following we will use for a Wigner function

such that its Weyl symbol ia, i.e.,W[a]=a. This associa-

tion of the symbola with the operatora is called Weyl 1

guantization ofa. <‘/’-A¢>: (217')2 QxRZW[A](qu)WH¢><w|](p-(])
In practice one often encounters symbols with a special

structure, namely, those that have an asymptotic expansion Xdp dg (13

in homogeneous functions i, Pseudodifferential operators of order zero have a bounded

o Wigner function and therefore a bounded principal symbol
ap,a)~ 2 an_k(p,q) o(A); this boundedness of the classical observable carries
k=0 over to the operator level: The operators $1(Q) are
_ bounded in thd_? norm.
with The definition of pseudodifferential operators can be gen-
im—k eralized to manifolds of arbitrary dimension; the previous
am-k(AP,q)=A"""ay_(p,q) for A>0. (10 formulas are then valid in local coordinates. The symbols of
these operators exist only in local charts, but the principal
symbols can be glued together to a function on the cotangent
bundle T* ), which is the classical phase spacH. one

Note that it is not required thah be an integer; alilne R are
allowed. Since the degree of homogeneity tends to, this
can be seen as an expansion [fg—«; see[20,21]] for the . ! . " ;
exact definition of thispasympul)mt?'c series. These symbols ar ants to realize t.he. semiclassical limit notas the high-energy
often called classical or polyhomogeneous and we will con-Mit but as the limit of%—0, one has to incorporate ex-

; : . plicitly in the quantization procedure. In the framework of
25:;602&#5:(;?;3;:52 VxﬁyLzyg;aoolfeg;é%?S)tyﬁ)feAThe pseudodifferential operators this has been done by Voros in

: 9,10}; Isd28,7].
e SH(Q) and W(A)~2¢_sam_k, then the leading term [9,10]; see alsd28,7).)

am(p,q) is called the principal symbol oA and is denoted B. Quantum limits and the quantum ergodicity theorem
by o(A)(p,q)=am(p.q). It plays a distinguished role in the . .
theory of pseudodifferential operators. One reason for this is In quantum mechanics t_he states are elements of a Hilbert

space or, more generally, linear functionals on the algebra of

that operations such as multiplication or taking the commu- b bles. In classical hanics th tat int
tator are rather complicated in terms of the symbol, puPServables. In classical mechanics the pure states are points

simple for the principal symbol. For instance, one hash phase space and the observables are functions on phase

[20,21] space. More generally, the states are measures on phase
' space, which are linear functionals on the algebra of observ-
o(AB)=c(A)o(B), o([AB])=i{c(A),0(B)}, ables. The pure states are then represented fasctions.

(11  The eigenstates of a Hamilton operator are those that are
invariant under the time evolution defined Hy In the semi-
where{,} is the Poisson bracket. It furthermore turns outclassical limit they should somehow converge to measures
that the principal symbol is a function on phase space, i.e., ibn phase space that are invariant under the classical Hamil-
has the right transformation properties under coordinateéonian flow. The measures that can be obtained as semiclas-
transformations, whereas the full Weyl symbol does not havsical limits of quantum eigenstates are called quantum limits.
this property. More concretely, the quantum limits can be described as
So every operatoA with principal symbolo(A) can be limits of sequences of Wigner functions. gk, },.n be an
seen as a quantization of the classical observafhg). The  orthonormal basis of eigenfunctions of the Dirichlet Laplac-
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ian — A and{W,},n the corresponding set of Wigner func- number of elements, the corresponding counting function
tions; see Eq(12). We first consider expectation values for Nk(E) is unique up to a constant.

operators of order zero and then extend the results to opera- One should keep in mind that we have defined the quan-
tors of arbitrary order. tum limits and their counting functions here with respect to

Because pseudodifferential operators of order zero aréne chosen orthonormal basis of eigenfunctions
bounded, the sequence of expectation values¥n(d)}nen- If One takes a different orthonormal base of
{{n,A)tnen is bounded too. Every functiona  eigenfunctions{#,(q)}scn. the counting functions corre-
eC”(3,) can be extended to a function iB8*(R®{0}  sponding to the quantum limits, or even the quantum limits
X () by requiring it to be homogeneous of degree zerp.in themselves, may change. So when studying the set of all
Via the quantizatiora of a and Eq.(13), one can view the quantum limits, one has to take all bases of eigenfunctions
Wigner functionW,(p,q) as a distribution orC*(X.), into account.

The lift of any quantum limit from; to the whole phase
spaceR?x () follows straight-forwardily from some well-
known methods in pseudodifferential operator theory, as
shown in Appendix B. For a pseudodifferential operator of
orderm, Ae Sj(Q)), one gets for the expectation values

) 1
a—> (¢, ,ag,)= 2m? j JQXRZa(p,CI)
XW,(p,q)dp dg (14

(Strictly speakinga is not an allowed symbol because it is
not smooth ap=0. Let y(p) € C*(R?) satisfy y(p)=0 for lim E_km/2<¢nk,Awnk>
|p|<1/4 andx(p)=1 for |p|=1/2. By multiplying a with joe i i
this excision functiony(p) we get a sygnbolxae SU(R?
% (1), whose Weyl quantizatiofa is in S°(Q2). However, - zf
the semiclassical properties @@ are independent of the oAl Ela(A)(p'q)Mk(p'Q)dM'
special choice of¢(p), which can be seen, e.g., in E44), (16)
since W, is concentrated on the energy shElI;n for n
—oo, Therefore, we will proceed for simplicity wita in-  In terms of the Wigner functions this expression can be writ-
stead ofya.) The sequence of these distributions is boundeden as(see Appendix €
because the operato@ are bounded. The accumulation
points of {W,(p,q)}ncn are called quantum limitg,(p,q) _ 2 2 S(H(p,q)—1)
and we label them bie |, wherel is some index set. Cor- lim E i Wik(E P, Q) = k(P ) — 5y (17

. . . joeo ] i (21)
responding to the accumulation poinis(p,q), the se-
quence{W,(p,q)},n Can be split into disjoint convergent
subsequencescc {Wy(p,a)}; cn={Wa(P.@)}ncn. That

is, for everyk we have S(H(p,q) — E k)
’ n.
I I
Wik(P. @)~ (P, Q) Ve, (18
i

Without the scaling op with VE we have

Iimf f ,a(P, ) Wrk(p,q)dp dq
jowd JOXR i
for Enrﬂoc and u(p,q) is extended fronk; to the whole

=f f a(p,q) uk(p,q)dp dq (15) phase space by requiring it to be homogeneous of degree
QxR? zero inp.

for all ac C*(3,,) viewed as homogeneous functions of de- For ergodic systems the only invariant measure whose
€ 1 nogeneous X support has nonzero Liouville measure is the Liouville mea-
gree zero on phase space. This splitting is unique up to

finite number of terms, in the sense that for two differentgure itself. For these systems the quantum ergodicity theorem

e ) tates that almost all eigenfunctions have the Liouville mea-
splittings the subsequences belonging to the same accumula- "
! ‘ - e ure as quantum limit.
tion point differ only by a finite number of terms. As has

.. 2 _
been shown 1129] the quantum imityy ave measures on . QT SR EY (TR (e C R R e
3, that are invariant under the classical flow generated by P

H(p.q) %ry and let{#,} be an orthonormal set of eigenfunctions of
g’r?e.of the main questions in the field of quantum chaos iéhe Dirichlet LaplacianA on Q. If the classical billiard flow
N q on the energy shelt;=S!'xR? is ergodic, then there is a

which classical invariant measures Bp can actually occur subsequencn;} CN of density one such that

as quantum limits of Wigner functions. For example, if the
orbital measure along an unstable periodic orbit occurs as ] E—
quantum limit ., then the corresponding subsequence of lim (g, Adn, )= o(A) (19
eigenfunctions has to show an enhanced probability, i.e., 1=
scarring, along that orbit.

Given any quantum limitw,, one is furthermore inter-
ested in the counting functioN(E) :=#{En:_<< E} for the

for every polyhomogeneous pseudodifferential operator A
eS°(Q) of order zero, whose Schwarz kerneh(d,q’)

. _ . =(q|Alq") has support in the interior af) X (). Here o(A)
corresponding SUbsequeanf}jeN of Wigner functions. s the principal symbol of A and(A) is its classical expec-
Since the subsequenc{wnjk}jeN is unique up to a finite tation value see Eq.(4).
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A subsequencén;} CN has density one if C. Examples
As an illustration of the quantum ergodicity theorem and
#{”j|Enj<E}_ for later use, we now consider some special observables

lim

E—o

(20) whose symbol only depends on the positignor on the

momentump. If the symbol depends only on the positign
i.e., a(p,q)=a(q), the operator is just the multiplication
)pperator with the functiom(q) and one has

N(E) =1

whereN(E):=#{n|E,<E} is the spectral staircase function,
counting the number of energy levels below a given energ
E. So almost all expectation values of a quantum observable

tend to the mean value of the corresponding classical observ- (g, Ag)y={(¢,ap)= Jﬂa(q)| (q)|?da. (22
able.

The special situation that there is only one guantum Iimit’In the special case that one wants to measure the probabilit
i.e., the Liouville measure, is called unique quantum ergod- P P y

icity. This behavior is conjectured to be true for the eigen—Of the particle to be in a given domatnc (), the symbol is

functions of the Laplacian on a compact manifold of nega-e characteristic function b, i.e.,a(p.q)=xp(d). Then
tive curvature[6,15], Xp IS not a pseudodifferential operator, but nevertheless the

We have stated here for simplicity the quantum ergodicityquamum ergodicity theorem remains valid for this observ-

theorem only for two-dimensional Euclidean domains, but itable.[4]' S|.nce the principal symbol is then(A) = xp . we
is true in far more general situations. For compact Riemann(—)btaln for its mean value
ian manifolds without a boundary the quantum ergodicity o 1
the(_)rem was given by Shnlrel_ma[ti], Zeldltch_ [3], ar_1d g(A):_f xo(q)du=
Colin de Verdiee [4]. For a certain class of manifolds with a V(X1) Jsixa
boundary it was proved if81], without the restriction on the
support of the Schwarz kernel of the operaforThe tech-
niques of[31] can possibly be used to remove these restric- V(D)
tions here as well; see the remarkd30]. One can allow as lim f | (@)]%dg= -~ (24)
well more general Hamilton operators; on manifolds without joedD V()
a boundary every elliptic self-adjoint operator&Bﬁ,(Q) is ) )
allowed and on manifolds with a boundary at least everyor & subsequencn;} CN of density one. As discussed at
second-order elliptic self-adjoint differential operator with the end of Sec. Il B, this is what one should expect from the
smooth coefficients is allowed. This includes, for instance, &°respondence principle.
free particle in a smooth potential or in a magnetic field. In  If instead the symbol depends only on the momenfym
the semiclassical setting, where the Hamilton operator ank€-»a(P.d)=2a(p), one obtains from E¢13) for the expec-
the observables depend explicitly dna similar theorem for  tation value
the limit #—0 has been proved if6]; see alsd7] for an
introduction. A :f alo)l #(o)l2dp. 25

In light of the correspondence principle, the quantum er- (A R? (Plvpldp @3
godicity theorem appears very natural: Classical ergodicit
means that for a particle moving along a generic trajector§
with energyE, the probability of finding it in a certain region
U CX¢ of phase space is proportional to the voluv&J) of
that region, but does not depend on the shape or location d
U. The corresponding quantum observable is the quantizas-
tion of the chgra_cteristic functiogpy of U and by thg corre- C(8,A0)={(r,0)|r eR*,0e[6—ABI2,6+A6/2]).
spondence principle one expects that the expectation value of (26)
this observable in the statg, tends to the classical expecta-
tion value forE,—c. This is the content of the quantum The mean value of the principal symbol then reduces to
ergodicity theorem.

V(D)
Ok (23

Thus the quantum ergodicity theorem gives for this case

n the same way as if4] for a characteristic function in
position space, it follows that the quantum ergodicity theo-
rem remains valid for the case whea€p) = xc(g,a0)(P) IS

|'Fe characteristic function of a circular sector in momentum
pace of angl®. In polar coordinates this is given by the set

In terms of the Wigner functiongV,, the theorem gives — 1 A6
[see Eq(18)] o(A)= VS, Slm)(cw,m(p)d/i— > (@7
5(H(p,q)—Enj) which does not depend ot Thus the quantum ergodicity
W, (p.g)~ TG (21)  theorem reads in the case of a characteristic function in mo-
EFI
]

mentum space

for j—e, for a subsequencén;}CN of density one. So ) - oy
almost all Wigner functions become equidistributed on the _I"To‘c C(Ma)w’nj(p)l dp= o (28)
energy sheII§En . That is, for ergodic systems the validity = '

i

of the semiclassical eigenfunction hypothesis for a subsefor a subsequencgn;} CN of density one. This means that
guence of density one is equivalent to the quantum ergodigguantum ergodicity implies an asymptotic equidistribution of
ity theorem. the momentum directions of the particle.
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It is instructive to compute the observables discussed 1 N
above for certain integrable systems. First consider a two- Sm(E,A)= NE) > i Ady—a (A (32)
dimensional torus. The eigenfunctions, labeled by the two En=E
guantum numbers n,meZ, read Ynm(X,y)

v . : ) ) have been proposed and studied18,14]. Quantum ergod-
—exg(2f|nx)exp_€[2w|my). Obv_lously, thesezilrle bq??rr:tum icity is equivalent toS,(E,A) —0 for E—o andm=1.
ergodic” in position space sincy, m(x,y)|°=1, but they Let us first summarize some of the known results for the

fon Space the situaton changes i one 1akes a diferent oy 2Le of quantum ergodicty. Zeldich proved] by relat
. . . S ing the rate of quantum ergodicity to the rate of convergence
thogonal basis of eigenfunctiorisote that the multiplicities 9 d g y g

L . ) of classical expectation values and using a central limit theo-
}_en_d to '”f"?'% _seﬁ[32] for all d_lscuss!gndog thﬁ qéj_a_nt#lm rem for the classical flow that for compact manifolds of
ImKIS on tori. _S|m]lar et_xampfe IS pr(t)w el ybt_"_e d'r'c et negative curvatur&,(E,A)=0((In E)"™?). However, this
or feumann eigenfunctions ot a rectangular bifiiard. bound is believed to be far from being sharp. Moreover, in
The circle billiard shows a converse behavior. Let the

radius be one; then the eigenfunctions are given in pol 14] lower bounds forSy(E,A) have been derived. In
coordinates by' 9 9 P 15,36,37 it is proved for a Hecke basis of eigenfunctions on

the modular surface th&,(E,A)<C(g)E 2"* for every
B . il £>0. It is furthermore conjecturdd, 15| that this estimate is
Pa(r, ) =Nidi(jr)e”. (29 aIso valid for the eigenfunctions of the Laplacian on a com-
pact manifolds of negative curvature and moreover that it is
Herejy is thekth zero of the Bessel functiody(x), x>0,  satisfied for each eigenstate individually{,,Ayy)
andNy, is a normalization constant. These eigenfunctions do_ ;(a)| <C(e)E~Y4** for everye>0.
not exhibit quantum ergodicity in position space. However, |, [16] a study ofS,(E,A) based on the Gutzwiller trace
for their Fourier transforms one can show that formula has been performed. For completely desymmetrized
systems having only isolated and unstable periodic orbits, the

N 24 so-called diagonal approximation for a double sum over pe-
C(HM)WK'(M dp=5_- (30 iodic orbits and further assumptions lead to
and so we have “quantum ergodi_city” in momentum space. Sz(E,A)NQLQp(A)E_M- (33)
A remarkable example was discussed by Zeldit8A]. V(Q)

He considered the Laplacian on the sph&fe Since the

multiplicity of the eigenvalué (1 +1) is 2 +1, which tends Hereg=2 if the system is invariant under time reversal and
to infinity asl—c, one can choose infinitely many orthonor- otherwiseg=1; p(A) is the variance of the fluctuations of
mal bases of eigenfunctions. Zelditch showed that almost al\,= (1/T,/)f37<r(A)[y(t)]dt around their meam(A), com-

of these bases exhibit quantum ergodicity in the whole phasputed using all periodic orbity of the system. More pre-
space. Although this is clearly an exceptional case due to thgisely, it is assumed th%rmle“P(A)/Ty, whereT,

high multiplicities, it shows that one has to be careful with denotes the primitive length of.

the notion of quantum ergodicity. In a recent work Jakobson |n the general case where not all periodic orbits are iso-
and Zelditch34] have furthermore shown that for the sphere|ated and unstable it is argued that the rate of quantum er-
all invariant measures on phase space do occur as quantugadicity is related to the decay rate of the classical autocor-

limits. One might conjecture that for an integrable system alkelation functionC(7) [16]. If C(7)~ 77 then the result is
classical measures that are invariant under the flow and all

symmetries of the Hamilton function do occur as quantum TH
limits. The general question whether quantum ergodicity for S2(E,A)~ fo C(n)dr
all orthonormal bases of eigenfunctions in the whole phase

space implies ergodicity of the classical system is still open. E-1? for n>1
V(Q) -
D. Rate of quantum ergodicity ~ In(TE”Z) E-Y2 for =1 (34
We now come to the central question of the approach to E-7/2 for p<1,

the quantum-ergodic limit. First we note that an equivalent
formulation of the quantum ergodicity theorem, which whereT,=[V(Q)/2]E? is the so-called Heisenberg time.

avoids choosing subsequences, is given by For the stadium billiard38] and the Sinai billiard39] it
1 _ is believed that the correlations decay-a$/r; see[40] and

lim —— > [(n,Agn)—o(A)|=0. (31  [41] for numerical results for the Sinai billiard. Thus, for

e N(E) E:=<E both the stadium and the Sinai billiard a logarithmic contri-

bution to the decay db,(E,A) is expected. Also a Gaussian
This equivalence follows from a standard lemma concerningandom behavior of the eigenfunctiofisl] implies in posi-
the influence of subsequences of density zero on the averagien space a rat&,(E,A)=0(E~?), which follows from

of a sequence; see, e.fB5], Theorem 1.20. [42], Chap. IV; see alsp16,43.

In order to characterize the rate of approach to the ergodic Random matrix theorysee[44], Sec. VIl predicts for
limit the quantities suitable observables the same r&¢E,A)=0(E~*?) and
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furthermore  Gaussian  fluctuations  of [{#,, ,A¢,) v"(A)=lim S|(E,A) (39
—a(A)]/S,(E,,A) around zero, which we study numeri- E—o
cally in Sec. Il C. . . .

Since for the systems under investigation we have nondePends only orr(A) and defines an invariant measure on
guantum-ergodic subsequences of eigenfunctions, we now?1: i
discuss in general the influence of such subsequences on the L€t us assume for the quantum-ergodic parsgfE,A) a
behavior ofS,(E,A). To this end we split the sequence of Certain rate of decay
eigenfunctions into two subsequences. The first, denoted by / _ —a —a
{4}, contains all quantum-ergodic eigenfunctions, i.e., the SUEA)=v (AR “+o(E™) (40)
corresponding quantum limit of the associated sequence @fnq for the counting function of the non-quantum-ergodic
Wigner functions is the Liouville measure. The counting giates
function of this subsequence will be denotedMy(E). The
other sequence{¢,,} contains all non-quantum-ergodic N"(E)=cEf+o(EP), (42
eigenfunctions. This subsequence may have different quan- o ]
tum limits 4, that are all different from the Liouville mea- Where by quantum ergodicity>0 andg<1. With Weyl's
sure. Their counting function will be denoted M/(E). Ex-  law N(E)=[V(Q)/4w]E+O(EY%) we then obtain in Eq.
amples would be a subsequence of bouncing-ball modes ¢85 for Si(E,A)
eigenfunctions scarred by an unstable periodic orbit. Simi-
larly, we split Sl(!E,A) into_ two parts corresponding to the S((E,A)=v'(A)E"*+
two classes of eigenfunctions. Due to the separah¢R) V(Q)
=N'(E)+N"(E) we obtain +o(EFY), (42)

47rcC

V'(A)EP 1+ 0(E™ %)

One sees that i-a>pB—1, the asymptotic behavior of
Si(E,A) is governed by the quantum-ergodic sequences of
eigenfunctions, whereas in the opposite case< -1, the
_ N'(E) SI(E.A)+ N"(E) S/(E,A) non-quantum-ergodic sequences dominate the behavior as-
N(E) ~t* N(E) ~t* ymptotically. Especially if3—1>—1/4, i.e., B>3/4, the
, , rate of quantum ergodicity cannot ki E 4.
:(1_ N (E))Sr(E A)+ N"(E) S/(E,A) To obtain a simple model for the rate of quantum ergod-
N(E) /™" N(E) V' icity, let us now assume that the conjectured optimal rate is
(35) valid for the subsequence of quantum-ergodic eigenfunc-
tions, that is,«=1/4 can be chosen in E¢40). To be more
Here we defined precise, it should b&;(E,A)=O(E~Y#**) for everye>0,
but for comparison with numerical data on a finite energy
1 - range we will assume that=0. For the non-quantum-
Si(E,A)= N (E) > K A )—o(A)], (36)  ergodic eigenfunctions the knowledge of their counting func-
En<E tion N”(E) is very poor; in general, it is unknown. Thus, if
we neglect the higher-order terms in E¢40) and (41) we

’ .1 — obtain from Eqgs.(35) and(39) a simple model for the be-
S,l(E!A)_ W EnZéE |<¢n"uAlﬂn”>_U(A)|- (37) havior OfSl(E,A),

1 -
SUBA = {E o2, | Ao = o (A)]

So the behavior of5,(E,A) is given in terms of the three ST"dekE,A):
quantitiesS;(E,A), Sj(E,A), and N”(E), which describe
the behavior of the quantum-ergodic and the non-quantum- A
ergodic subsequences, respectively. +

The behavior ofS(E,A) can be described in terms of the V(@)
non-quantum-ergodic limits and their counting functions. Wer
splti)t the non-quantum-ergdqdic subr;sequence intlp gonverge%is close to 1.
subsequences corresponding to the quantum ligajts w, imilar consideration n m EA) for
{%H}ZUK{%&N’ with ﬂE):Eka(E), and m>81, Ieaad%c:; tsode ations can be made f8(E,A), fo
(ot Atk) = o (A)~ (o (A) — o (A)). Then S{(E,A) s

41C
—  EB1)y —1/4
1 V(Q)E )V (AE

V'(A)EP L, (43

he first factor in large parentheses will only be important if

. . N//(E) N//(E)
asymptotically given b =1- —|¢ "
ymp y g y Sm(E,A) (1 N(E) )Sm(E,A)Jr N(E) Sh(E,A),
1 s _ (44)
S/(E,A)~ ——— Ny (E) | (a(A)—a(A))
i S NW(E) k {(B)lda | where S/ (E,A) and S (E,A) correspond to the quantum-
T K ergodic and the non-quantum-ergodic part, respectively.

(38)  They are defined as in Eq&6) and(37) with the mth pow-
ers of the absolute values instead of the absolute values
and the limit themselves. To see the specific properties oRheE,A) for
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If the bouncing-ball modes are the only non-quantum-
ergodic eigenfunctions or at least constitute the dominant
contribution to them, themN”(E)~Ngg(E)~CcE?. The ex-
ponentB andv”(A) are explicitly known and the constant
is known from a numerical fit if46] for the billiards we will
consider in Sec. lll. Thus, in this case the only free parameter
in the model(43) is v’ (A).

The asymptotic behavior of E@43) is governed by the
term with the larger exponent, but this can be hidden at low
energies if one of the constants is much larger than the other.
Assume, for instance, th@—1>1/4, i.e., the non-quantum-
ergodic eigenfunctions dominate the rate asymptotically. If

dzcv"(A)
V) (A) S

L T TR A B L

L e o B, (snges "%,
/":lllnnmn W ::::'\((Qn\«“"“,m,'wmll "'vi,'.?%\ \ i

)L ,, ; R ©

(46)

%%y

for an observabléd, then up to a certain energy (E,A)

will be approximately proportional t&€ ¥ In numerical
studies where only a finite energy range is accessible such a
behavior can hide the true rate of quantum ergodicity. This
turns out to be the case for the cosine billiard; see Sec.
A 1. This effect gets even more pronounced for the

FIG. 1. Left: density plot$y,(q)|? for three different odd-odd
eigenfunctions of thea=1.8 stadium billiard:(a) n=1992, “ge-
neric”; (b) n=1660, bouncing-ball mode; ar{d) n=1771, local-

ized eigenfunction. Right: density plots for two eigenfunctions of : ” ,
the cardioid billiard with odd symmetryd) n=1816, generic and Sm(E,A) with m>1 because for"(A)/»'(A)<1 one has

— " ! m " ’ H
(e) n=1817, localized along thaB orbit. Notice that according to ["(A)v (A <v"(A)/v'(A). Therefore, in such cases

the quantum ergodicity theorem, the nonlocalized eigenfunctions o?l(E’A) seems to be the optimal choice for numerical stud-
i

type (a) and (d) are the overwhelming majority. es. o _ _ _
The main ingredient of the modé#3) is the conjectured

behavior of the rate for the quantum-ergodic eigenfunctions.
By comparing Eq(43) with numerical data for different ob-
Igervables one can test this conjecture. If this conjecture is
true then it means that the only deviations from the optimal
rate of quantum ergodicity are due to subsequences of non-

m>1 we study the special case that there is only one non
guantum-ergodic sequen¢e,»} with quantum limity” and
that the rate for the quantum-ergodic sequence is propo
tional to »'(A)E~Y4 Then one easily sees th&f,(E,A)
NV”(A,)m and S%SE’ﬁ)N[V’(A)m/(l_m/4)]E7m/4, for m quantum-ergodic eigenfunctions.
<4'7lSm(E’A)~V (A)" In(E)E for m=4, and S(E,A) Clearly, similar models based on a splitting such as Eq.
~E"* for m>4. Therefore, by changing one can change (35 can be developed for other situations as well. For ex-
the relative weight of the quantum-ergodic and the nonymple, if the eigenfunctions split into a quantum-ergodic
guantum-ergodic contribution t&,. The non-quantum- subsequence of density one with rate proportionaE td’
ergodic part gets more pronounced with largerbut as will - and a quantum-ergodic subsequence of density zero with a
be discussed below, this effect can be hidden or even resjiower, and maybe spatial inhomogeneous, rate, one would
versed on a finite-energy intervalif' (A)<v'(A). expect a similar behavior &,(E,A) as in the case consid-
We will now discuss the influence of a special type of ered above. So it will be hard without soraepriori infor-
non-quantum-ergodic subsequences in more detail. In bilmation on non-quantum-ergodic eigenfunctions to distin-
liards with two parallel walls, one has a subsequence of sogyish between these two scenarios.
called bouncing-ball moddg5], which are localized on the
bouncing-ball orbits; see Fig(l) for an example of such an
eigenfunction. In[46] it was shown that for every 1283
<1 there exists an ergodic billiard that possesses a non- |n order to study the rate of quantum ergodicity numeri-
quantum-ergodic subsequence, given by bouncing-ballally we have chosen three different Euclidean billiard sys-
modes, whose counting function is asymptotically of ordertems, given by the free motion of a point particle inside a
EP. However, for3=1- ¢, with some smalls>0, Eq.(42  compact domain with elastic reflections at the boundaries.
shows thatS;(E,A)=0O(E™°) at least for some\. So the  See Fig. 2 for the chosen billiard shapes.
best possible estimate of the rate of quantum ergodicity that The first is the stadium billiard, which is proven to be
is valid without further assumptions on the system other tharrgodic, mixing, and &-system[38,47. The height of the
ergodicity is desymmetrized billiard is chosen to be 1 amdienotes the
length of the upper horizontal line. For this system our analy-
Si(E,A)=0(1), i.e. lim S(E,A)=0. (45 sis is based on computations of the first 6000 eigenfunctions
E—o for odd-odd parity, i.e., everywhere Dirichlet boundary con-
ditions in the desymmetrized system with the paramater
Especially for the Sinai billiard the result for the exponent is=1.8. We also studied stadium billiards with parameters
B=9/10 and therefor&, (E,A)~cE~ Y% which contradicts =0.5 anda=4.0 using the first 2000 eigenfunctions in each
the result(34) from [16]. case to investigate the dependenceagnsee below. The

Ill. NUMERICAL RESULTS
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FIG. 2. Shapes of the billiards studied numerically in this work:
(a) desymmetrized stadium billiardh) desymmetrized cosine bil-

liard, and(c) desymmetrized cardioid billiard. The rectangles in the 002 R ) i
interior of the billiards mark the domain®; of integration for stadium billiard, domain Dy
studying the rate of quantum ergodicity in configuration space. -0.03 ' ' ' ' '

0 1000 2000 3000 4000 5000 n 6000

stadium billiard is one of the most intensively studied sys- 0.03 . . . . .
tems in quantum chaos; for investigations of the eigenfunc- dstm |-
tions see, e.9[45,18,19,48,4Pand references therein. 002 b T 4
The second system is the cosine billiard, which is con- PR '
structed by replacing one side of a rectangular box by a
cosine curve. The cosine billiard has been introduced and
studied in detail in[50,51]. The ergodic properties are un-
known, but numerical studies do not reveal any stability is-
lands. If there were any they are so small that one expects ;
that they do not have any influence in the energy range under-0-01 [,
consideration. The height of the cosine billiard is 1 and the
upper horizontal line has length 2 in our numerical compu- -0.02

0.01

0.00 v

tations. The cosine is parametrized B(y)=2+3[1 cardioid billiard, domain Ds

+cos(ry)]; see Fig. Zb). For our analysis of this system we 03 L L L L L

used the first 2000 eigenfunctions with Dirichlet boundary 0 1000 2000 3000 4000 5000 n 6000
conditions everywhere. FIG. 3. Plot of di(n) = |¥a()|%da—V(D)/V(Q) for do-

The third system is the cardioid billiard, which is the lim- main 4 in the stadium billiard and for domain 5 in the cardioid

iting.c.ase. Qf a.family of billiards intyodu_cgd ifb2]. The  puiard. Since |(q)|2=0, one hasd;(n)=—V(D,)/V(Q). For
cardioid billiard is proven to be ergodic, mixingKasystem,  qomain D, in the stadium this lower bound is attained by the
and a Bernoulli systerf53—57. Both the classical system poyuncing-ball modes whose probability densiiy,(q)|? nearly

[52,58-60 and the quantum-mechanical system have beepanishes irD,; they are responsible for the sharp edge seen in the
studied in detai[61,62,58,63 The eigenvalues of the car- piot of d,(n).

dioid billiard have been provided by Prosen and Rolj6iK
and were calculated by means of the copformal mappingcity theorem, the overwhelming majority of states in the
technique; see, €.d61,65,66. Using these eigenvalues, our semiclassical limit are of the tyg@) and(d), which we also

study is based on computations for the first 6000 eigenfuncopserve for the eigenfunctions of the studied systems.
tions of odd symmetry, which were obtained from the eigen-

values by means of the boundary integral methi6d,68
using the singular value decomposition metH&&]. The
boundary integral method was also used for the computa- The quantum ergodicity theorem applied to the observ-
tions of the eigenvalues and eigenfunctions of the stadiumable with symbohk(q)= xp(q), discussed in Sec. Il C, states

A. Quantum ergodicity in coordinate space

and the cosine billiard. that the difference

Let us first illustrate the structure of wave functions by
showing density plots dfi#,(q)|? for three different types of d(n)= J’ ()| 2dq— V(Di) @
wave functions of the stadium billiard and two different ' D; " V(Q)

types of the cardioid billiard. Figure(d) shows a “generic”

wave function, whose density looks irregular. The examplevanishes for a subsequence of density one. The first set of
in Fig. 1(b) belongs to the class of bouncing ball modes anddomainsD; for which we investigate the approach to the
its Wigner function is localized in phase space on the bouncergodic limit is shown in Fig. 2. Plots af;(n) for domain

ing ball orbits; see the discussion in Sec. Il C. Figuf@ is D, of the stadium billiard andD s of the cardioid billiard in
another example of an eigenfunction showing some kind ofig. 3 show quite large fluctuations around zero. In particu-
localization. Figure (d) shows a generic wave function for lar, for the stadium billiard there are many states for which
the cardioid billiard and Fig. (&) is an example of an eigen- d,(n) is quite large andi,(n) is quite small. As one would
function that shows a strong localization in the surroundingexpect, a large number of them are bouncing-ball modes.
of the shortest periodic orbitwith code AB; see[58,59).  The fluctuations ofi;(n) for the cosine billiard behave simi-
We should emphasize that according to the quantum ergodarly to the stadium billiard.
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0.020

all domainsD; of the considered systems; rather we find
several significant exceptions, which will be discussed in the
following.

S1(Exp) .‘
0015

1. Cosine billiard

For the cosine billiard one would expect a strong influ-
ence of the bouncing-ball modes on the rate since their num-
ber increases according {d6] as Ngg(E)~cE¥°. How-
ever, the prefactoc turns out to be very small and therefore
the influence of the bouncing-ball modes is suppressed at
low energies. The model f@&;(E,A) [Eq. (43)] gives for the

0.010

0.005

0000 0 2(JIU() 4(;0() é()llJO 80'00 E l(JlIJO(J cosine bllllard
FIG. 4. Plot ofSy(E, xp ) for different domainsD; for the co- SrlmdetE,)(Di)=(1—0.20]E_0'l:5V'()(Di)E_ll4
sine billiard using the first 2000 eigenfunctions; see Fig) for the
location of the domain®; . The inset shows the same curves in a +0-20]1/gB(XDi)Efo'13, (50)
double-logarithmic representation together with a fit $£i|'(E)
=aE "¢ o0 the numerical data. where we have inserted the values-0.04 and3=0.87,

obtained in[46] from a fit to Ngg(E) that was performed
When trying to study the rate of the approach to theover the same energy range that we consider here. For the
quantum-ergodic limit numerically one therefore is facedsake of completeness we have included the first factor (1
with two problems. On the one handi(n) is strongly fluc- —0.20EE~°"9), but the numerical fits we perform below
tuating, which makes an estimate of the approach to thenly change marginally if one sets this factor equal to 1.
mean very difficult, if not impossible for the available nu- The asymptotic behavior of the probability density
merical data. On the other hand, one does not kaqwiori | #y(q)|? of the bouncing-ball modes in the weak senge
which subsequences should be excluded in(B@.. There-
fore, the investigation of the asymptotic behavior of the “cu- g )|2~[ IN(R) for qeR (51)
mulative” version(31) of the quantum ergodicity theorem is nd 0 for ge O\R
much more appropriate. For the observabjgq) we have
asn”—oo, whereR denotes the rectangular part of the bil-
1 (D) liard. So the expectation values are asymptotically
Si(E,xp)= NE) EZE (s Xo¥n) — V)| (48) (Y xpUn)~V(DNR)/V(R) and since vjg(xp)
n- =limg_.. S"(E,xp) is the mean value of{ ¥, xp )

In Figs. 4-6 we displa;Sl(E,XDi) for the different do- —V(D)/V(Q)| over all bouncing-ball modes one has

mains D;, shown in Fig. 2, in the desymmetrized cosine, ) V(DNR) V(D)‘

stadium, and cardioid billiards, respectively. One clearly sees ves(Xp) = VR V()| (52)
that the numerically determined curves f8{(E,xp ) de-

crease with increasing energy. This is of course expecteBor fixed volumeV(D) the quantityvgg(xp) is maximal for
from the quantum ergodicity theorem; however, since this islomainsD lying entirely outside of the rectangular region
an asymptotic statement, it is not cleapriori whether one v (xp)=V(D)/V(2). For domains lying entirely inside
can observe such a behavior also at low energies. It shoulghe rectangular part of the billiard, we have the minimal
be emphasized that Fig. 4 is based on the expectation valugg|ye vae(xo) =3[ V(D)/V(Q)]. Therefore, the strongest
(¥n.xp,¥n) for 2000 eigenfunctions and Figs. 5 and 6 arecontribution of the bouncing-ball modes 8(E, xp) in Eq.

based on 6000 eigenfunctions in each case. (50) is expected for the domains outside the rectangular re-
In order to study the rate of quantum ergodicity quantita-gion.
tively a fit of the function The values forvgB(XDi) are given in Table I. The largest
" v values for the small domains are obtained for the domains
S (E)=aE Y*** (49  outside the rectangular part of the billiard for which also the

rate of quantum ergodicity is the slowest. Furthermore, we
to the numerical data foSl(E,XDi) is performed. As dis- see from Table | that the factor O.Zﬁg]B(XDi) in front of

cussed in Sec. Il D, for certain systems a behaGdiE,A) E~9%13in Eq. (50) is for all domains much smaller than the
=O(E~Y*"*) for all £>0 is expected, so that the fit param- prefactora from the fit to Eq.(49). This already indicates
eter e characterizes the rate of quantum ergodicity. A posi-that the contribution of the bouncing-ball modes is sup-
tive value ofe thus means a slower decrease(fE,A) pressed, explaining why the rate for the cosine billiard is in
than the expectedE Y% The results fore are shown in such good agreement with=0.

Tables 1-1V, and the insets in Figs. 4-11 show the same In order to test this quantitatively we have performed a fit
curvesSl(E,XDi) in a double-logarithmic plot together with of the model(50) to the numerical data, where the only free

these fit curves. We find good agreement of the fits with thé?arameter is»’(xp ). The accuracy of the fits is very good
computed function:Sl(E,XDi). However,e is not small for and the results fow’(XDi) are shown in Table [; they are
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TABLE |. Rate of quantum ergodicity for the cosine billiard TABLE Il. Rate of quantum ergodicity for the stadium billiard
with domainsD; as shown in Figs. 2 and 4 and in the inset of Fig. with domainsD; as shown in Figs. 2 and 8. Shown are the results

7. Shown are the results for and a of the fit of S'(E)  for & anda of the fit SI'(E)=aE~Y*** to Si(E,xp,). The values
=aE~ Y#** to the numerical data. The values for the relative areafor the relative area of the corresponding domains and the results
of the corresponding domains, the quantiti%%(XDi) computed p’(XDi) andb(A) of the fit of the mode(54) to Sl(E,XDi) are also
according to Eq(52), and the result/’(XDi) of the fit of the model  tabulated.

(50) to Sy(E, xp,) are also tabulated.

Domain Relative area € a v’(XDl) b(A)
Domain Relative area a_ Vo) veslxo) 1 0.015 +0.009 0041 0058  0.000
1 0018  —0002 0052 00525 0.0045 2 0015  +0012 0041 0059  0.000
2 0018  +0012 0026 0.0468  0.0067 3 0015  +0.033 0035 0055 0.001
3 0008  +0.013 0043 0.0297  0.0020 4 0015  +0.095 0029 0046 0.006
4 0008  +0.022 0023 00273  0.0030 5 0015  +0.022 0039 0058 0.000
5 0015  +0.020 0050 0.0543  0.0150 6 0278  +0.125 0082 0112 0.034
6 0336  +0.009 0258 02471  0.0840 7 0433  +0.162 0076 0044  0.059
7 0512  +0.023 0352 02920 0.1280 8 0557  +0.172 0086 0011  0.080
8 0648  +0.009 0381 03410 0.1620 9 0696  +0.172 0113 0023 0.104
9 0800  +0.054 0279 03264  0.2500 10 0681  +0.092 0164 0257 0.035

much larger than the corresponding prefactorsonly one free parameter. Furthermore, the cosine billiard

" . provides an interesting example of a system for which the
O'ZObBB(XDi) (_)f the bouncing-ball part Ofsl(E’XDi)' asymptotic regime fofS,(E,A) is reached very late. Up to
Therefore, the influence of the bouncing-ball modes on thgne 2000th eigenfunction the asymptotic beha\8g(E,A)
rate is negligibly small on the present energy interval, de-_cg-1/10 i5 gimost completely hidden. A continuat,ion of
spite the fact that asymptotically they should dominate thesTodetE xr) for the domairR= D with the strongest influ-

rate. ence of the bouncing-ball modes shows thaEat1(® the

Thﬁ ?gmaini;CDl andp4lc D_I%hshqwda sligh'ﬂy ?Iowehr two contributions have the same magnitude and one has to
rate tharD, andD, respectively. This Is due to the fact that go up as high a£~10” to see the asymptotic behavior

choosing a smaller domai implies larger fluctuations of S,(E XR)NCEfl/lO_ Therefore there is no contradiction be-

{#n.xp ) for the same set of eigenfunctions. tween the observed fast rate of quantum ergodicity in the

As an additional test we have computB{(E,xp,) NU-  present energy range and the increase of the number of
merically for four further domaingshown in the inset of Fig.  bouncing-ball modedlgg(E) ~cE** found in[46].

7) having a much larger area than the previous ones. For
these domains’E’;B(XDi) is larger and one therefore expects a 2. Stadium billiard

stronger influence of the bouncing-ball modes and corre- For the stadium billiard the number of bouncing-ball
spondingly a slower rate of quantum ergodicity. The resultsnodes grows asNgg(E)~CcE3* [70,46. Therefore, the
are shown in Table | and Fig. 7 and our findings are com+yoyncing-ball mode contribution 8, (E,A) is, according to
pletely consistent with the previous one as well as with the=q, (43), proportional toE = and thus of the same order as
model (50). We also observe in Fig. 7 that for the large the expected rate of quantum ergodicity for the quantum-
domains, except for the whole rectangular fag=R, the  ergodic eigenfunctions. One therefore expects for all do-
rate is faster at low energies than at high energies. This igains in position space a rateBf 4 We have investigated
due to the influence of the boundary and will be discussed ifhe rate of quantum ergodicity for the stadium billiard using

Sec. '”_A 4. ) ] ~ the small domains shown in Fig(& and for larger domains
As discussed in Sec. Il D, the influence of the bouncing-spown in Fig. 8. The results of the fits Osflit(E)

ball modes on the rate might be bgtter \{,isible in _the behavio;aE—1/4+a to the numerical data fd8,(E, xp.) are given in
of the S, for m>1. However, smcevBB()(Di) is much Table II :

smaller thanv’(xp,) their influence is even stronger sup- | et ys first discuss the rate for the small domains shown
pressed form>1 than form=1. We have computed the in Fig. 2(a). For the domain®; andD, that lie inside the
Sm(E,xp) numerically for differentm and the different do- rectangular part of the billiard the rate is in very good agree-
mains. For the small domains we found that the non-ment withE~ Y4 However, both for the domaib; that lies
quantum-ergodic contribution is strongly suppressed, as exn the border between the rectangular part and the quarter
pected. For the larger domains their influence is bettetircle and in particular for domail, that lies inside the
visible, e.g., forDg. quarter circle, one finds a slower rate than expected. This is a
Summarizing the results for the cosine billiard, we foundbehavior that one would expect for a billiard with a much
that the rate of quantum ergodicity is in impressive agreefaster increasing number of bouncing-ball modes.
ment with a rate proportional &~ for the subsequence of ~ We see three possible explanations for this behavior of
guantum-ergodic eigenfunctions. The phenomenologicathe rate for the stadium billiard.
modelS*(E, xp) [Eq. (50)] is in good agreement with the (i) First, the counting functioMgg(E) for the bouncing-
numerical data, especially in view of the fact that it containsball modes might increase with a larger exponent than 3/4,
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0.020

located at different regions in the billiard. A selection of
them is shown in Fig. 8. With the larger domains one neces-
sarily comes closer to the boundary of the billiard. To rule
out the possibility that the observed behavior of the rate is
due to the influence of the boundary and not due to the
dependence on the volume and location of the domains, we
computed in additiors; (E, xp) for the small domairD 5 that
is close to the boundary.

The results are also given in Table Il and some examples
of Sl(E,XDi) for these large domains are shown in Fig. 9. As

> for the cosine billiard, we also found that for large domains
0000 L 4 . s . . at small energies the rate may be much faster than at higher
0 5000 10000 15000 20000 25000 E 30000 energies, which is clearly seen in Fig. 9 for the domdins
FIG. 5. Plot ofSl(E,XDi) for different domainD; for the sta- andDg. -Ill-rgs effect_ is due to the. Ir:lfluence Ofl the bouhnda[]y,
dium billiard using the first 6000 eigenfunctions; see Fi@) Zor as we will discuss in Sec. lll A 4; here we only note that the

the location of the domains; . The inset shows the same curves in boundary influence vanishes for large gnergigs.
a double-logarithmic representation together with a fit of @§). The observed rate of quantum ergodmt_y displays a strong
dependence on the volume of the dom&in whereas the

i ) . location, as long as one stays inside the rectangular part, has
Ngg(E)~CcE®, B>3/4. This would contradict the results in no influence. For example, for the domdy, which con-
[70,46, derived by independent methods. Moreover, the eXtainle andD,, one gets a much slower rate than g
ponent 8 was tested numerically if46] up to energyE  anqp, . In contrast tdDg, the rate for the small domaids
~10 000 and we found very good agreement Wit 3/4.  naar the boundary is rather close to the oneDgrand D .

Even if we relaxed the criteria for the selection of the The slightly slower rate foDs is due to the smaller energy

bouncing-ball modes drastically, the exponent did notrange for which we have compute®(E,xp.). A fit of
change significantly; only the prefactorincreased. There- SUEY—aE- Y4 10 S (E ds E’ Ps’ h
fore, we think that this first possibility is clearly ruled out. S1(E)=2 t0 Si(E,xo,) and Si(E,xp,) using the

(i) Second, the rate for the quantum-ergodic eigenfuncfirst 2000 eigenfunctions gives anof 0.022 for D; and
tions might not be proportional t& 4 but has a slower 0.011 forD;, which is of the same magnitude as the result
decay rate. Then we have to assume a position dependent® Ds. Moreover, the rate decreases monotonically with in-
of the rate in order to explain the different behavior for thecreasing area of the domaiy, as long as they are inside
different domains: In the rectangular part of the billiard thethe rectangular paR of the billiard.
rate has to be proportional ® ' to explain the value of The domainD, is interesting because it extends over
obtained for the domain®, and D,, whereas inside the both parts of the billiard. The enhanced probability density
quarter circle the rate of decay has to decrease a@f the exceptional eigenfunctions in the rectangular part is
Si(E.xp,)~ v (A)E~%15in order to explain the value of  Partially compensated by the lower probability density in the

obtained forD5 andDy. A priori such a dependence of the quarter circle. Therefore one expects a rate similar to a do-
rate of the quantum-ergodic eigenfunctions on the location o\;nazl\r; g‘ the Qre;tar}g\;/ugr _pgr;;’i"th re_llz:';\r:[ve alrél_d(Dlo)

the domain in the billiard is not impossible. If this is the case 2V[P10N (NR)1}/V(£)=0.371... . This relative area
then one should observe no dependence of the rate on tHES Petween the values f@rs andD; and indeed the rate for

volume of the domairD, as long as one stays in the sameP10 lies between the rate fdds andD, top. : .
region of the billiard. For example, the rate for a domain_1heSe results strongly support the third explanation, i.e.,

such asDg, which containsD; and D, and is far enough the existence of a large density zero subsequence that is re-

. g ~1/4 « "
away from the quarter circle, should be the same as the orPOnsible for the deviations of the rate frdn ™. “Large”
for D; andD,. means that the counting function increases sufficiently

(iii) The third possible explanation for the observed peStrongly to cause the rate to deviate from the expected be-

havior of the rate is that there exist more non-quantum!aVior- A lower bound on this counting function is given

C . o ~according to Eq(42) by the slowest rate that is observed.
ergodic eigenfunctions that have a larger probability densn£0r the stadium billiard this is the one fBr,, which leads to

in the rectangular part than in the quarter circle and are n 0.92

! . II(E)ZE 92

bouncing-ball modes. Alternatively, the reason could be e\ ; . o

subsequence of density zero of quantum-ergodic eigenfunc- 1° test this conjecture quantitatively one has to compare

tions, which has a sufficiently increasing counting functionth® numerical data with the conjectured behavior

and a slow rate; see the remark at the end of Sec. Il D. In

bot_h cases the model fc_81(E,A) discussed in Sec. I! D ST"dekE,A):(1—cE*5)v’(A)E*1’4+ b(A)E ™A,

which we already used in the case of the cosine billiard, (53)

would be applicable. In contrast to the second possibility in

this scenario, one expects a dependence of the rate of

S,(E, xp) on the volume of the domaib, as in the case of Since this model contains the four free parameterss,

the cosine billiard. v'(A), andb(A), the numerical fit is not very stable. There-
To decide which explanation is the correct one we studiedore, it is desirable to get some additional information from a

the rate for a number of domains with different area anddifferent source.

$1(Exp)

0.015

0.010 \

0.005
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To this end we plotted dg(n)=(n.xp,¥n) TABLE IIl. Results fore of the fit of SI'(E) =aE~**"* to the

—V(Dg)/V(Q) for domainDg, which is the whole rectan- numerically obtaine(ﬁl(E,XDi), for stadium billiards with differ-
gular part and shows a slow rate; see Fig. 3. Then we divide§"t Parametea for three different domaing, B, andC. DomainA
the spectrum into two parts by inserting a horizontal lipe lies within the rectangular part of the billiard, domdnis centered
y>0. The part of the spectrum above the line corresponds Bt =@ and domairC is located in the quarter circle.

the non-quantum-ergodic eigenfunctions whose quantum

limits satisfy v(XD9)>|D9|+ v. From this we obtained for System Domaih  DomainB  DomainC
the counting function of the non-quantum-ergodic subsestadium @=0.5) +0.111 +0.062 +0.056
quenceN”(E)=0.08E"% This allows us to determine the stadium @=1.8) +0.009 +0.033 +0.095
parametersc=0.0§ 47/V(Q)]=0.39... andB=-0.07 in  stadium @=4.0) —0.008 +0.031 +0.095

the model(53) giving

mode _ _ -0.0 ' -1/4 -0.07
SI**(E,A)=(1-03E %)y (A)E" ¥+ b(A)E g the model(54) by E-V4IM{VIDZIETS. Again we find

that from our numerical data that this possibility is excluded,

We have now eliminated two of the four free parameters an@t léast for the energy range under consideration. For the
can therefore test this formula with the numerical data. Theéstadium billiard it is known that the asymptotic behavior of
results forv’(xp.) andb(xp ) are also shown in Table II the classical autocorrelatio®(7)~1/7, which leads to
and for three large domains the plot 8f(E,xp) and the Sy(E,A)~CE 2 In{[V(Q)/2]E"? according td16], sets in
corresponding ﬁsTodekE,XD) is shown in Fig. 9. rather Iat.e. So it Woulq be very mtgrestmg to compare the

The agreement of the fits with the numerical data is good€Sults with those obtained by inserting the numerically com-
Moreover, the values for’(D;) andb(D;) are reasonable: puted autocorrelation function in the integral in Eg§4). _
The behavior ob(D;) is in accordance with what one ex- W€ now return to the question of what type these addi-
pects for a sum of quantum limits that are concentrated ofOnal subsequences of eigenfunctions are. As additional in-
the rectangular part of the billiard. The values increase whefPrmation for the model, the counting function for the num-
moving D; into the quarter circle and they increase with ber of states for which(yn,xp ¥n)—V(Do)/V(Q) is
increasing volume oD;, as long ad; lies entirely inside  smaller than—y has been used. For comparison we have
the rectangular part. Fdb o the parameteb(D ) takes an  carried out the same procedure for the observale that

intermediate value betweem(Dg) and b(D;), as one ex- jiag ynder the quarter circle. As expected, the bouncing-ball

tphects flrortr_1 ourfmtﬁdel. Varyingtthe para(;ne’getfg)at governs r%odes appeared in both subsequences, but additionally a
€ selection of In€ non-quantum-ergoadic SUBSEqUENCe, ang,qiqeraple number of other types of eigenfunctions show

thereforeN"(E), leads only to slight variations of the coef- up. In Fig. 11 we show some examples of such eigenfunc-

2?'?}?;5;) (i[r)wi)E?qn?E? i)Dit)HeD\l/Jae ri?'cighn(as p()rg}sligg;a :I;n IZ?;; ; tions. They all show a reduced probability density inside the
than tholse ob(b-) ’ ! quarter circle, but their structure is essentially different from
The inclusionlc;f the factor 0.3 % in Eq. (54) the bouncing-ball modes. Their semiclassical origin are

turned out to be necessary to get satisfactory results. Th@aybe periodic orbits bouncing up and down between the

contribution of E-%%7 cannot be neglected in the presenttw‘? perpendicular walls for.a long time_ bgt then leaving the
energy range because of the small exponent. Without thig€ighborhood of the bouncing-ball orbits in phase space. At
factor we obtained for some of the domains negative value!$ast it seems difficult to associate short unstable periodic
for »'(D;), which is impossible becaus(E,A) is by defi- orbits with the patter_n_s in the shown states because the lines
nition positive. This also sheds some light on the limitations®f €nhanced probability do not always obey the laws of re-
of such a simple model liké4). Nothing is known about the ~ flection or they look too irregular.
behavior of the higher-order contributions 8(E,A) and A further test of the hypothesis that a density zero subse-
S/(E,A). In view of this, it is surprising how good this 9uence is responsible fpr the slow rate is prowdgd by vary-
model fits with the numerical data. We believe that this givednd the lengtha of the billiard. Here we used the first 2000
strong support for the underlying conjectures, namely, that &igenfunctions for both tha=0.5 and thea=4.0 stadium
density one subsequence of quantum-ergodic eigenfunctios¥lliard in addition to the results for thea=1.8 stadium
has a rates| (E,A)~cE~Y*and the deviations in the rate of based on 6000 eigenfunctions. We have chosen three differ-
S,(E,A) from this behavior are due to a subsequence ofnt domains for these three systems: domaifies within
density zero. the rectangular part of the billiard, domahis centered at

As mentioned in Sec. IID, a behavioS,(E,A) x=a, and domainC is located in the quarter circle. The
~CcE~ Y2 In{[V(Q)/2]EY? for the stadium billiard is claimed results for the rate of quantum ergodicity are shown in Table
in [16]. We have tested this both for the small domahs  Ill. For different parameters the quantitieéD;) change and
and D,, which are not influenced by the bouncing-ball therefore the weights of the different contributions to
modes, and also for some larger domains. However, the res; (E,A) in Eq. (54). For smallera the relative fraction of
sulting fits clearly show that this result does not apply to ourthe volume of the rectangular pai,(R)/V({)) becomes
numerical data; see Fig. 10. We also tested if this resulsmaller. Therefore, one expects that for smadiehe influ-
applies to the quantum-ergodic subsequence, $E,A)  ence of the non-quantum-ergodic subsequenc&s(tB, xp)
~cE"YI{[V(Q)/2]ETA, by replacing the ternE~Y*in  becomes stronger in the rectangular part and weaker in the
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FIG. 8. Domains in thea=1.8 stadium billiard used to decide
between the different explanations for the slow rates in the stadium

0005 billiard.
e orbits. One might therefore expeatpriori a better rate of
0'000 1 1 1 1 1 1 .. arge
0 5000 10000 15000 20000 23000 30000 E quantum ergodicity than for the other billiards.

We have computeSl(E,xDi) for five small domaingsee

_ FIG. 6. Plot of$,(E, xp) for different domainsD; for the car- g )] by using the first 6000 eigenfunctions up to energy
dioid billiard using the first 6000 eigenfunctions; see Fi¢p) Zor E~32 000 and for three larger domaifisee Fig. 12 by
thzlockjtlﬁn of t_?he domains; . Tthf. '”sft Shtc;]WS th_‘:t"hsamfi%{ées " using the first 2000 eigenfunctions. The results are displayed
iaggllggog[eér(;.(r:g):]-represenalon ocgether with a ) in Figs. 6 and 12. To determine the rate a fit §1'I’(E)

' =aE~Y4"¢ has been performed and the resulting values for

quarter circle. This is clearly seen in the numerically found® ande are listed in Table IV.

behavior of the rate for the domaiAdsandC shown in Table We_ f!nd that domairDy gIves the lowest _ra'_[e of quantum
m ergodicity for the small domain®;—D5. This is caused by

To summarize our results for the stadium billiard, we @ considerable number of eigenfunctions showing an en-

have given numerical evidence for the existence of a largd}2nced probability as in Fig(@) along the vertical orbi&\B.

but density zero, subsequence of eigenfunctions that have & domainsD,,D, we also find a slower rate than for the
enhanced probability distribution on the rectangular part oPther region,,Ds; in this case the slower rate seemingly
the billiard but a different structure from the bouncing-ball €annot be attributed to one type of localized eigenfunctions.
modes. We demonstrated that the observed effects can be The larger domains show a slower rate than the small
explained with the influence of this subsequence of densitffomains, but the rate is not monotonically decreasing with
zero. This subsequence shows a different behavior from th&'€ area of the domain. The rate for the largest dorbajiis
majority of quantum-ergodic eigenfunctions for which our €v€n of the same order of magnitude as the onelfgr
results imply a uniform rate o~ Clearly, we cannot especially |f' one takes thg smaller energy rangeD@nnt_o
decide if this exceptional subsequence will ultimately be@ccount. This slower rate is probably caused by the existence
non-quantum-ergodic or if it is a quantum-ergodic subse©f different non-quantum-ergodic subsequences with quan-
quence with an exceptional behavior of the rate. We can onl{um limits w, in different regions of the billiard. For each of
say that on the presently studied energy range UfE to he domains the influence of these subsequences is different

~30 000, i.e., up to the 6000th eigenfunction, they behavé&@nd therefore one observes different rates.

non-quantum-ergodically. A guantitative test in a way similar to that for the other
billiards using a model fo8,(E,A) is very difficult because
3. Cardioid billiard the deviations from the conjectured optimal rate is not only

The cardioid billiard is probably the most generic one of
our three billiards, in the sense that it possesses no two-
dimensional family of periodic orbits like the bouncing-ball ~ $1®

015 |

0.20 T T T T T

0.09 T T T

$i(Eap)
0.10

10000 E  30000|

0.05

0.06

0.00 1 1 1 1 1

0 5000 10000 15000 20000 25000 E 30000

FIG. 9. Plot ofS;(E, xp) for large domaingsee Fig. 8 for the
- ~~ a=1.8 stadium billiard using the first 2000 eigenfunctions. The
o -~ pron oo inset shows the same curves in a double-logarithmic representation
together with a fit of Eq(49). For the domain®-, and in particular
FIG. 7. Plot ofS,(E, xp,) for two further domaindg andDy  for domainDg a sharp transition from a fast to a slower decay of
(dashed curvein the cosine billiard using the first 2000 eigenfunc- the rate is visible. This effect is due to the boundary and will be
tions. Also shown is the fis]**(E, xp ) [Eq. (50)]. explained in Sec. lll A 4.




57 RATE OF QUANTUM ERGODICITY IN EUCLIDEAN BILLIARDS 5439

0.00010

012 f T T T T

SxExp) [1] $(Bixp)

0.00008 |

0.00006

0.00004

0.00002

0 5000 10000 15000 20000 25000 E 30000 200 1000 2000 4000 E 10000

FIG. 10. Plot ofS,(E, xp) for the domainsD; and D in the FIG. 12. Plot ofS,(E, xp,) for larger domains for the cardioid
stadium billiard. The dashed lines show the fit of the conjecturedilliard using the first 2000 eigenfunctions. Also shown are fits to
behaviorc E™2 In{[V(Q)/2]EY? to S:(E, xp,)- The resultof the it Eq. (49) for the corresponding energy regions.
shows that the numerical data for the first 6000 expectation values
cannot be described with this rate. that the theoretical prediction is too large by a factor of ap-
proximately 2. This deviation might be related to the fagtor
in Eq. (33), which counts the mean multiplicities in the clas-

due to one subsequence. However, the result®joandDs gi_cal length spectrum. In the cardioid billiard the asymptotic

clearly shows that here as well one has a density one subs

quence of quantum-ergodic eigenfunctions with ratevalueg=2 is reached very late; for the shorter periods one

SI(E,xo)~ ' (D)E~ ¥ We hope to return to the problem rather hasgwl, which would lead to a better agreement of
of determining the non-quantum-ergodic subsequences anE . (33) with the data forD‘} an.dD5. .
For a better understanding it seems necessary to check in

their guantum limits in the future. detail whether any of the assumptions leading to(B8) are
The cardioid billiard is the only system we have studied to, - fied for the domains of the cardioid billiard. It would

which the result(33) should be applicable. However, for also be very interesting to investigate if the slower rates can
most of the domains the rate is much slower than the pre; ery ; 9 lga g
. . be described using the expression in terms of the classical
dicted one. Only the domains 4 and 5 show the expected rate, X . . .
; correlation function. We will leave these questions for a

Therefore, we have computed for these domains the factosre arate stud
p(A) in Eq. (33). For the computation gb(A) the variance P y

of <XDi)|—V(Di)/V(Q) as a function ofl has been com-

puted using trajectory segments of lengitbf a generic tra- -
jectory {q(t)}. The quantity<XDi>I:(1/I)f|0XDi[q(t)]dt is In all three billiards we observe the phenomenon that for

) \ s large domainsS,(E, yp) decays faster at low energies than
the_ relative length of the _tr_ajectory segment Iylng in the do-4; high energies. This can be seen in Fig. 7 for dorajrin
main D;. By ergodicity we have lim...(xo,i the cosine billiard, in Fig. 9 for domair®, and Dy in the

=V(D))/V(Q). The variance of xp ) —V(D;)/V(Q) de-  stadium billiard, and in Fig. 12 for domaiti, D7, andDg

creases likgp(A)l 1. in the cardioid billiard. The other large domains we studied
Using the corresponding results in E@3), we obtain  showed the same behavior. The only exceptions are the do-

S,Z(E,XD“):0,006:{?1’2 and sZ(E,XDs):o,oonE*l/Z, mainsDy in the cosine billiard and in the stadium billiard,

These numbers have to be compared with the result of a fWhich consist of the whole rectangular part. For these do-

fit - fit mains no faster rate at low energies is visible.
E,A) to E.xp). We obtain E, I ; ,
?20( 003)65‘0' 47 SZ( fi( EI):_I) — 0.003E-048 Si)( Xo,) Qualitatively this behavior can be understood by the van-
=Y and S (E, xo,) =0. - UN€ S€ES  ishing of the probability densityiy,(q)|? of the eigenstates

4. Influence of the boundary

~TABLE IV. Rate of quantum ergodicity obtained from a fit of
b) Si(E)y=aE~Y*** to Si(E, xp,) for the cardioid billiard with do-
mainsD; as shown in Figs. @) and 12.

Domain Relative area € a
1 0.01722 +0.047 0.028
i 2 0.01722 +0.039 0.037
3 0.01722 +0.064 0.046
4 0.01722 +0.007 0.048
5 0.01722 +0.009 0.042
FIG. 11. Four examples of the exceptional eigenfunctions show- 6 0.18674 +0.098 0.125
ing localization in the rectangular part of the stadium billiard, which 7 0.33104 +0.115 0.140
are not bouncing-ball modega) n=1643, (b) n=1652, (¢) n 8 0.50930 +0.071 0.213

=1797, and(d) n=1834.




5440 A. BACKER, R. SCHUBERT, AND P. STIFTER 57

the normalized sum

0.5¢

0 T T
Woam| [\
F0.40 /\v ) /\ 1

1
: PO = gy 2 [y (56)

L is displayed for the stadium billiard, using the first 250
00 02 04 06 08 y 10 eigenfunctions. One clearly sees how the probability density

o is forced to vanish at the boundary and how the compensa-
oo [l i tion leads to large oscillations near the boundary. In Figs.
- 13(b) and 13c) we show two cross sections through the

function (56) at two different energies and compare it to the
result one gets from the first two terms on the right-hand side
of Eq. (55). The agreement is quite impressive, especially
00 02 04 06 08 y 10 near the boundarfy=0 andy=1). So although the stadium
billiard does not have &~ boundary, the resul55) seems
FIG. 13. In(a) we show a three-dimensional plot of the sum tg remain valid. One furthermore observes that with higher
We(x,y) =[1N(E)]Zg, <el#/(x,y)|? involving the first 250 eigen-  energies they range on which the agreement is excellent
functions of thea=1.8 stadium with odd-odd symmetry. The pic- increases.
tures on the right show a cross sectii(1,y) for using the first The averaged probability densit$6) shows exactly the
(b) 250 and(c) 1000 eigenfunctions. The dashed curvestinand  pehavior we assumed for the individual wave functions in
(c) display the evaluation using the first two terms in form(@§). order to explain the fast rate of quantum ergodicity at low
These results are used. Fo explain the fast .rate in the low‘energ@;‘nergies for domains near the boundary. The influence of the
range for the stadium billiard for large domains. Dirichlet boundary condition is concentrated near the bound-
ary and it decays at a length scale proportional to the de
‘Broglie wavelength. So with the help of E(5) one gets a
ood qualitative understanding of the boundary influence on
e rate of quantum ergodicity.
In order to try to get a quantitative understanding we used

at the boundary due to the Dirichlet boundary conditions
Because of the normalization @f,(q), the reduced prob-
ability density at the boundary has to be compensated by
enhancement of the probability density inside the billiard,

which leads to larger oscillations of the probability densityEq (55) to derive as iN17] a mean eigenfunction that in-

near the boundary. . . ..._corporates the boundary influence
Let us assume that this compensation of the probability

density takes place in a strip along the boundary with a width 1

of a few de Broglie wavelengths. Then the integral of the | (@) |2~ ———————{1—J[2d(q) VE,]}. (57)
probability density|#,(q)|?> over a domairD “feels” the V(9Q)

influence of the boundary only up to a certain energy, pro- 2\/E_n

portional to the inverse square of the distance betvizamd

the bounda_try&Q. Furthermore, the boundary infl_uence will Integrating this expression over a doma@inshould give for

be proportional to the overlap dd and the strip at the the expectation values the mean value plus the corrections
boundary. This overlap decreases likg/B/, and therefore due to the boundary of(p. By incorporating this into
S1(E, xp) should decrease with such a rate at low energiesg, (g y) one obtains an expression, which we compared
So the assumption that the compensation takes place in\gith our numerical data. Although E@57) implies a faster
small strip along the boundary leads exactly to the behaviogecay rate at low energies, it is not as strong as the numeri-
we observe. Moreover, a domain lik®, that extends to the cally observed one. This deviation must be caused by con-
boundarya(} will not feel any influence because the bound- sigerable fluctuations of the boundary influence on the indi-

ary effect is compensated entirely inside this domain. vidual statesy,, around the mean influence described by Egs.
To justify our assumption on the range of the boundary(ss) and (57).

influence we refer to the following result on the asymptotic

behavior of the summed probability densities on a two-

dimensional Riemannian manifold withG® boundary(see

[20], Theorem 17.5.10 Up to here we have investigated the behavior of the wave

functions in position space only. Now we turn our attention

, 1 1 J4[2d(q) \/E] to the rate of quantum ergodicity in momentum space, which

EE<E [ n(@)|*= 7B~ — T A VE+R(@.E), s studied here numerically.

" (55) Quantum ergodicity predicts that the angular distribution

of the momentum probability distributiohnpn(p)|2 tends to
whered(q) is the shortest distance of the pom& Q) to the  1/2# in the weak sense; see E@B). Therefore, we study an
boundary. The remaindeR(q,E) satisfies the estimate observable with symbolxc g (p) whose expectation
|R(q,E)|<C\E. The second term in Eq55) describes the value gives the probability of finding the particle with mo-
influence of the boundary; fod(g)—0 the term tends to mentum direction in the intervalfl-A6/2,6+ A 6/2[. Re-
—E/(47) and cancels the contribution from the first term call that xc (4,44 (P) denotes the characteristic function of
such that the boundary conditions are fulfilled. In Fig(@3 the circular sector C(6,Af0)={pe R2|arctanpy/px) elo

B. Quantum ergodicity in momentum space
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—A6/2,60+A6/2[} and
Xc(o.a0)(P) is A6I2m.

Only eigenfunctions of odd parity of the nondesymme-
trized systems are considered here due to our method @
computing the Fourier transformation directly from the nor-
mal derivative u,(w) of the eigenfunctiony,(q). From
Green’s theorem one easily finds the formula

the classical mean value of

. 1 1 .
(P)= 02 E 7n e Py (w)dw,
n

Q)

(58)

whereq(w) denotes a point on the boundaif). The advan-

tage of this formula is that it allows one to compute the
Fourier transform directly fromu,(w), which can be ob-

tained using the boundary integral method. For desymme:-
trized systems, like the ones considered here, one uses gl
appropriate Green’s function that vanishes at the lines of
symmetry and therefore removes them from the boundary
integral; see, e.gl,71]. This reduces the computational ef-

fort, but one does not get the normal derivatives on these
parts of the boundary of the desymmetrized system. There-
fore, our results for the rate of quantum ergodicity in mo-

mentum space are sufficient to rule out the possibility of a
totally different behavior in momentum space than in posi-
tion space. Since the rate for all eigenfunctions cannot be
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FIG. 14. Plot ofS,(E,Xc(s, ag) for 6= (i—1/2)(w/10) with

i=1,...,5 andA §==/10 for the stadium billiard using the first

ROO eigenfunctions.
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faster than the one for a subsequence of positive density, we

get a lower bound for the rate of the full system. a

nd so the coefficiening()}c(gi .Ag) in the model(43) for

The time-reversal invariance leads, for the Fourier—sl(E,)}C(,,i Ag) Is given by

transformed eigenfunctions, to the symmetiy,(—p)

= ¢,(p). Therefore|yn(—p)|?=|¥n(p)|? and this reduces
the angle interval we have to study [t@,7{. The additional
reflection symmetries in the considered billiards further re-
duce the relevant angle interval t6,7/2] .

For our numerical computations we have chosen five
equidistant intervals, centered &t= (i — 1/2)(7/10) with i
=1,...,5 ofwidth A§d==/10. As in the case of quantum

! f =1 4
oo 2—0 or I1=1,...,
ves(Xc(o.00)=1 19 (61)
20 for i=5.

The results for the rate of quantum ergodicity, character-

ergodicity in coordinate Spaqeee Eq(47) and F|g 3, one ized by8, are listed in Table V. It tumS. Out that the rate is
observes large fluctuations @i/, xc(s.a0)%n)— A 6/(27) slower than the rate of quantum ergodicity for the small do-
around 0. Therefore, we again consider the cumulative verains in configuration space. Moreover, the agreement of
sion (31) of the quantum ergodicity theorem, which reads inSi(E. xc(s, .a6) With the fit is not as good as in the case of
this case Si(E,xp); in particular the fluctuations (ﬁl(E,)}C(gi A0)

are much larger than in position space.

- _ 1 2 iy 2d _ ﬁ 0.025
Si1(E.Xc(o,00) = N(E) 2 [a(p)|dp 5
ne cloan S(EOplxcD
—0 for E—oo, (59

The results forSl(E,)}c(,gi Ag) are shown in Fig. 14 for

the stadium billiard and in Fig. 15 for the cardioid billiard. In
each case 2000 eigenfunctions have been used. For the cal
dioid billiard the inset shows a double-logarithmic represen-
tation together with the fits oSI'(E) [Eq. (49)]. For the
cosine billiard no computations of the raﬁ:‘@(E,)}C(gi A0)

in momentum space have been performed.

As in position space one expects that the rate is strongly
influenced by non-quantum-ergodic subsequences of eigen- FIG. 15. Plot ofsl(E,)“(C((,i ag) for 6,=(i—1/2)(=/10) with
functions. For the bouncing-ball modes in the stadium bil-i=1,...,5 andA #= /10 for the cardioid billiard using the first
liard one has 2000 eigenfunctions.

0015 F

0.010
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8000 E 10000
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- TABLE V. Rate of quantum ergodicity obtained from a fit of L0
Si'(E)y=aE~"Y#"* to the numerically obtained function K&) | 2 stadium billiard,
Sl(E,S(C((,i ag) for the different systems and angle sectors 081 A=o,
C(6;,A0). 06
0.6 PE)
System Domain € M 1
04
stadium 1 0.15 o2 )
2 0.12 o2k .
3 0.15 4 s
4 0.09 0.0 -l . . ) .
5 0.18 4 3 2 -1 0 1 2 3 4 586
cardioid 1 0.050 1(15;) R
2 0.075 osl A=To-To,
3 0.026 "
4 0.079 06+ PE)
5 0.076
04
In the stadium billiard the interval 5, which corresponds o2l
the direction of the bouncing ball orbits, shows the slowest
rate. However, as we already noted in the discussion of the 0.0 N
rate in position space, the bouncing-ball modes alone cannot 4 3 2 -1 0 1 2 3 4 5¢&6

cause such a slow rate because their counting function in- . N
creases only aE®* So a considerable number of the addi- _FIG. 16, Cumulative d'St_“bUt'o_n_ of f”:[w’”_’A‘/’“)
tional non-quantum-ergodic states that are responsible for the 7(A)1/ VS(E,,A) for the stadium billiard for domain 4A
slow rate in position space must also have an enhanced ma-Xo,, @nd for the cardioid billiard with observablé=xop,
mentum density aroung/2. However, the slow rates for the ~Xo,- In both cases we haven chosea[2000,6000. The dashed
other angular intervals indicate that not all non-quantum-curve corresponds to the cumulative normal distribution. The insets
ergodic states show this behavior in momentum space. show the distribution o_fgn tqgether with the normal distribution
For both billiards one observes that the order of magni\Vith zero mean and unit varian¢eq. (64)] (dashed curve

tude of e in momentum space is the same as for the large
domains in position space. Therefore, the results are compat-

— _ g2
ible with the results in position space, but the large fluctua- P(§)= /_ZWexp( &72), (64)
tions indicate that one has to go higher in the energy in
momentum space than in position space. as in random matrix theorysee[44], Sec. VI). Note that

this is a conjecture for every observable, i.e., the asymptotic
distribution should be independent of the special observable
under investigation. For hyperbolic surfaces a stud ¢f)
Another aspect of great interest is how the expectatiofor an observable in position space is contained ],

C. Fluctuations of expectation values

values( i, , Ay, fluctuate around their mean valugA).  where good agreement with a Gaussian normal distribution
Since the mean fluctuations decrease for largene has to was observed. 1h16] P(£) was studied for the Baker map
consider the distribution of and the hydrogen atom in a strong magnetic field and fair
- agreement with a Gaussian was found.
(n , Ahy)— o (A) However, already from the plots df(n) shown in Fig. 3
n= — . (62) it is clear that the fluctuations are not symmetrically distrib-
VSy(En,A) uted around zero, but have more peaks with large positive

values. The reason is thatd;(n)=(¢, ,)(Dil,//n>
Here S,(E,A) = ES,(E,A), with E being a correction nec- —V(D;)/V(2) has to satisfy the inequality
essary to ensure that the distributionéggfhas unit variance;

see below for an explanation. So the question is whether a V(D;) V(D) V(D)
limit distribution P(¢) of &, exists in the weak sense, i.e., V) <(¥n XD, ¥n) — ViQ) <1- V) (65

1 N o This already indicates that the approach to an asymptotic
lim N E g(gn)=f g(&)P(¢&)d¢, (63 Gaussian behavior could be rather slow. Therefore, we have
N—e (N N=1 m tested additionally for the cardioid billiard the observaBle
=Xp,~ XDy where the expectation values fluctuate sym-
whereg(§) is a bounded continuous function. It is natural to metrically around zero and one expects a faster approach to a
conjecture that this distribution tends to a Gaussian normaBaussian behavior. In Fig. (@ we show the cumulative
distribution distribution
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Lo E =1/2. Sed63] for a more detailed discussion on this point
I&) in the case of the distribution of the normalized mode fluc-
08F 1 tuations.
Let us now discuss the influence of non-quantum-ergodic
0.6 E sequences to the possible limit distribution. Assume that the
rate for the quantum-ergodic statesSi{E,A)~aE™“ with
04 . some powera. If we have a subsequence of non-quantum-
ergodic states such that the total rateSi$E,A)~a’'E~“,
02r T we can have two different situations, either=a’ or «
<a'. In the first case the non-quantum-ergodic states have
0.0 ot no influence on the limit distribution. In the second case

4 03 2 10 1 2 3 4 586 where the non-quantum-ergodic states dominate the rate, the

FIG. 17. Cumulative distribution of &=[(yn A normalization by a rate that is slower than the one of the

— (M 1IVEAE..A) for the cardioid billiard, for the observable duantum-ergodic subsequence implies that we hage)

. . =6(¢).
Xc(o,a0(P) in momentum space witl=57/20 andA 6= 7/10. . . . .
The dashed curve corresponds to the cumulative normal distribu- If one instead normalizes the fluctuations with the rate of

tion. The inset shows the distribution &f together with the normal ~ the quantum-ergodic subsequerB¢E,A),
distribution with zero mean and unit varianfg. (64)] (dashed

curve. (U Ad)—a(A)

N VSH(En.A)

with S5(E,,A)=ES,(E,A), then the limit distribution is
for domainD 4 of the stadium billiard and in Fig. 16) | ((¢)  determined only by the quantum-ergodic subsequence, inde-
is shown for the observablé=xp,— xp, in case of the pendently of the behavior of the non-quantum-ergodic sub-
cardioid billiard. In both cases all values @f, with n  Sequence. To see this we split E63) into the different parts

€[2000,6000 have been taken into account, giving ,
=4000. For the rat&,(E, xp) we used the result of a fit to L 2 (F.)= N'(E) 1 2 (Z.)
Si{(E)=aE®. The insets show the corresponding distribu-  N(E) g2 9LEn) = NE) N'(E) g2 96
tions of &, in comparison with the normal distributidieg. "

(64)]. Notice that no further fit of the mean or the variance of N"(E) 1 E 9(F.)
the Gaussian has been made. Figuréall& the case for N(E) N"(E) e5%e "
which we have found the worst agreement with a Gaussian

(of all the small domains we have testedhe observable
chosen for Fig. 1) gives very good agreement with the
Gaussian distribution. In the case g, in the stadium bil-

liard there is a significant peak arouger — 2, which is due
to the bouncing-ball modes, for which, aXD4$n”> is ap-

; . ; 1 ~ 1 ~
proximately zero; see Fig. 3. Therefore, one has a larger ., = lim )
fraction with negativet,». For the distribution in case of the £ N(E) EnzéE 9(&n) £ N'(E) EanéE 9(&n).
observableﬁx=)(D4—)(D5 of the cardioid billiard we obtain a (69)

significance level of 23% for the Kolmogorov-Smirnov test
(see, e.g.[72]) with respect to the cumulative normal distri- We conjecture that the fluctuations of the quantum-ergodic
bution. subsequence is Gaussian and therefore all fluctuations, when
We also studied the distribution &f, for the observables normalized with the rate of the quantum-ergodic subse-
a(p,q)=a(p) = xcs,a6(P) in momentum space. For the quence, are Gaussian.
stadium billiard the computed distributions show in the con-
sidered energy range clear deviations from a Gaussian, as
one already expects from Fig. 14. The best result was ob-
tained for the cardioid billiard for the interval given by The aim of the present paper is to give a detailed study of
=3 [with 6;=(i—1/2)(#/10) and A#=(w/10)] and is the rate of quantum ergodicity in Euclidean billiards. We
shown in Fig. 17. The agreement is quite good; thefirst have given a short introduction to the quantum ergodic-
Kolmogorov-Smirnow test gives a significant level of 29%. ity theorems in terms of pseudodifferential operators. We
There is one subtle point concerning the variance of thdnave shown that the quantum ergodicity theorems of Shnire-
distribution of&,. SinceS,(E,A) does not represent a local Iman, Zelditch, Colin de Verdre, and others are equivalent
variance around, but a global one, it is necessary to take to a weak form of the semiclassical eigenfunction hypothesis
this into account to obtain for the fluctuations a variance offor ergodic systems put forth {®-12]. That is, the quantum
unity. If the rate behaves &(E,A)=aE", then the correc- ergodicity theorem is equivalent to the statement that for
tion E is given byE=a+1, e.g., fora=—1/2 we have ergodic systems the Wigner functioi,(p,q) fulfill

(67)
1
D= 2,1 (66)

n<¢

(68)

Since lime_.. N'(E)/N(E)=1, lime_... N"(E)/N(E)=0,
and IN"(E)S¢ ,9(€y) <max..rg(£), one gets

IV. SUMMARY
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1 eral possibilities, our explanation for this observation is that
an(p,q)~m6(H(p,q)—Enj) (700 in the stadium billiard there exists a much larger subse-
En, guence of eigenfunctions that have an enhanced probability

density in the rectangular part of the billiard than just the
for Enj—mo and{n;}CN a subsequence of density one. bouncing-ball modes. They nevertheless have densi}y Zero,
Of great importance for the practical applicability of the but their counting function increases more strongly tRdA. _
quantum ergodicity theorem is the question at which rat f course, we cannot decide whether this subsequence either

quantum-mechanical expectation valugs, ,As,) tend to as a quantum limit different from the Liouville measure, or
1 n

their mean valuer(A). Different arguments were presented glgvbsrgtguantum-ergodlc subsequence with an exceptionally

previously in favor of an expected rate of quantum ergodicity £ the cardioid billiard we also have domains for which
S,(E,A)=0O(E""""°) for all £>0, in the case of strongly e rate is proportional t& % However, we also find sig-
chaotic systems. In Sec. Il D we discussed the influence O_iflificant exceptions; in particular for domab; the rate is

non-quantum-ergodic subsequences to the rate. If thejfy,ch siower, and this can be attributed to a number of eigen-
counting function increases sufficiently fast, they can domistates that show localization along the unstable periodic orbit
nate the behavior o8, (E,A) asymptoucally. Together W'th AB. For the cardioid billiard we also tested the result from
results from[46] for the number of bouncing-ball modes in [16] [Eq. (33)] for the domainsD, and Dy, for which the

certain billiards, it follows that one can find for arbitrady o6 s closest to the optimal rate. However, the semiclassical

L ) - —s
.>O an ergodic billiard fo'r Wh'crsl(E'A? =O(E™"). That esult does not agree with our numerical results for the rate.
is, the quantum ergodicity theorem gives a sharp boun t would be interesting to study this in more detail.

which cannot be improved without additional assumptions £.0 0\r numerical results we obtain the following gen-

on the system. eral picture: In the studied systems there is a quantum-

We furthermore developed a simple model for the behav- . :
: ) -~ ergodic subsequence of density one whose raf® (&, A
ior of S;(E,A) in the presence of non-quan'[um-ergodlc:gO(E,MH)_?f one observesgslower rate S{(%g\) bg/

eigenfunctions, whose main ingredient is that the quantumasin all eigenfunctions, this is caused by a subsequence of
ergodic eigenfunctions should obey the optimal rate**. 9 9 ’ y q

The discussion shows that the total rate of quantum er odico—IenSity zero, whose counting function increases more
ity can be strongly influenced by those exqce tional S%bsegtrongly thanE™™. These exceptional eigenfunctions show
y gy y P localization effects and probably they tend to some non-
guences. Not only can they cause the rate to be much slower

thanE~ 14 they can lead as well to a grossly different be- uantum-ergodic limit. However, we cannot rule out the pos-

: . . ; . sibility that they are quantum ergodic but with a much
havior of S;(E,A) at low, intermediate, and high energies. slower rate than the majority of eigenfunctions.

The numerical investigations are carried out for three
. . ) AR Furthermore, we have found an effect due to the boundar
types of Euclidean billiards: the stadium billiagwith differ- conditions. For domains lying next to the boundary we ob-y

ent parametejsthe cosine biIIiard,' and the pardioid biIIiard.' served that the rate may be considerably faster at low ener-
The results are based on 2000 eigenfunctions for the cosmgeies_ The qualitative explanation of the phenomenon is that

billiard and up to 6000 eigenfunctions for the stadium andthe probability density of the eigenstates shows enhanced

the cardioid billiard. As observables we have used Charade'fl’uctuations near the boundary because of the boundary con-
istic functions of different domains in position space and aI:soditions

a class of observables in momentum space. " Using an observable depending only on the momentum,
It tums out that the rate of gquantum ergodicity in pOSIt'onwe studied quantum ergodicity in momentum space too. We
space is in good agreement with a power-law OIeCa“find that, in general, the rate of quantum ergodicity is of the

_E—V4t+e ;
Sl(dEyle\z)l . Ef d .t Trge d|ffer|(|erf\ces betweleg the_expondent same magnitude as for the large domains in position space.
an IS found to be smat Tor several domains and SySg,thermore, the oscillations @&, (E,A) are larger in mo-

tems. However, we also find a number of significant eX-mentum space, which might indicate that one has to go

amplgs showmg asloyv rafee., £>0 anq not smajl These higher in the energy in momentum space than in position
are discussed in detail and can be attributed to subsequencggace

of localized eigenfunctions. . o .
. - ) We al | he distribution of th itably normal-
For the cosine billiard we find that the rate agrees well. e also studied the distribution of the suitably norma

with the expected rate, in particular for the small domains.2€d fluctuations of n, Ain) — o(A) [see Eq(62)] for op-

: erators both in position space and in momentum space. For

H%V\fel\/l%rb asymptotically t_he rate .has 0 Ob@‘{(EfA) the observabld= yp — xp., in the case of the cardioid bil-
~ ecause the counting function of the bouncing-ball . 4 5 , i
modes increases &''°. The asymptotic regime for the rate I|z_:1rd.we. find very good agreement with a Gaussugn normal
lies far beyond any presently computable number of energ istribution and in the case of obsgrvables depending only on
levels. By incorporating the knowledge of the counting func-the momentum good agreement is found. However, for the
tion obtained from our previous work, we tested our modefStadium billiard(and also domairD; for the cardioid bil-
(43) for the rate for all the considered domains. liard) we clearly find that again subsequences of non-

For the stadium billiard the situation is more complicated:quantum-ergodic states may have a considerable influence. If
Here the counting function of the bouncing-ball modes in-they dominateS,(E,A), the distribution will tend to a5
creases aE¥* and therefore, as discussed in Sec. Il D, canfunction due to the normalization byS,(E,A). However,
not influence the rate. However, we find for the stadium bil-when normalizing instead with the rate of the quantum-
liard that the rate is for several domains in position spacergodic state$;(E,A), we expect a universal Gaussian dis-
much slower than expected. After discussing and testing sevribution of the fluctuations.
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As possible investigations for the future it seems very )
interesting to study whether the expression givefili§] for lim (. A ) = L (P, @)a(A)(p,g)du  (BI)
the rate in terms of the classical correlation function can 1= !

describe our numerical results. In particular, for the cardioidfor all Ac S2(Q). We want to discuss the lift gf, from S
billiard a more detailed investigation along these lines Seems e wholcelz phése space k !

promising as this system is the most generic one of the three To this end we express the expectation values for an op-

studied systems and we find both the optimal rate and als(grator of arbitrary ordeme R by the expectation values of

clear deviatjons. The present paper also shows t_hat a det?"%% operator of order zero. This can be achieved by using the
understanding of the phenomenon of scarred elgenfunctlonf%Ct that for everymeR, (—A)™2 is a pseudodifferential

gsr gggie;?ary because these clearly affect the rate of quantuonaera,[Or of orderm with principal symbol of (—A)™2]

=[o(—~A)]™2=H(p,q)™? see[25,26,23. By multiplying
an operatoA e S"(R™) of orderm by operator A)~ ™2,
ACKNOWLEDGMENTS which is of order—m, we get an operator{A) ™ ™?A
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and on the right-hand side we have an operator of order zero.
The principal symbol of £ A)~™2A is, according to Eq.

: -m/2 _
APPENDIX A: KOHN-NIRENBERG QUANTIZATION j'['l En (Yn A ) = JEle(paQ)U(A)(pﬂ)dM-

In the mathematical literature one often prefers a different (B3)
guantization procedure, sometimes called the Kohn- ) .
Nirenberg quantizatiofi20,21], and the literature on quan-  Thus Eq.(B3) provides the extension of the quantum er-
tum ergodicity often refers to this quantization proceduregodicity theorem to pseudodifferential operators of arbitrary
With the symbola e S"(R2x ()) one associates the operator orderm.

APPENDIX C: CONNECTION TO THE SEMICLASSICAL

N 1 : .
A (@)= 552 fRze'pqa(p,Q)f(P)dp, (A1) EIGENFUNCTION HYPOTHESIS

. ‘ By introducing the definition of the Liouville measuge
wheref(p):=[qe '9Pf(q)dq is the Fourier transform of. Eq. (B3) can be written as
The principal symbol is defined in the same way as before,

i.e., if a~2_oam_k, then the leading terra,, is called the Wn_,A%_%EmQJ f wil(p, @) o (A)(p,q)
principal symbol,c*N(akN)=a,,. ] ! J

The usual quantum ergodicity theorem is now the same S(H(p,q)—1)
theorem as we have stated it, but with the Kohn-Nirenberg X————dpdqg (C1

principal symbolaXN instead of the principal symbol corre- V(1)

sponding to the Weyl symbol that we have used. However, iff 5he uses the homogeneity of(A), i.e., Em/zo(A)(p,q)
]

is well known(see[21,20) that ifae S"(R"XR"), thenthe 12 ; h fth
Weyl symbol of the Kohn-Nirenberg operator belongs to the= ¢ (A)(EnP,d), and performs a change of the momentum

same symbol spad&[a<N] e ST(R"x R") and that the prin-  coordinates fronp to E,jjl’zp one obtains
cipal symbol coincides with the Kohn-Nirenberg principal
symbol

W)~ | [ miE )0 p.0)
S(H(E, *p,a0)—1)
X

i ici E,"?dpd
Therefore, the two formulations of the quantum ergodicity V() n, dpdq
theorem are equivalent.

a(aN) = gKN(EKN), (A2)

= f f (EnYp,q)a(A)(p,a)
APPENDIX B: GENERALIZATIONS OF THE QUANTUM J

ERGODICITY THEOREM 5(H(D7Q)_Enj)
Assume we have given a quantum limpif on X, that is, X\/(E—l)Eﬂ’Tld pdg (C2
j

we have a subsequence of eigenfunctiwﬁj}jeN, such
that where furthermore the homogeneity propertiesHifp,q)
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and of thed function have been used. In terms of the Wigner

functionsWnj corresponding topnj, Eq. (C2) reads

J f a(A)(p,q)Wn (p,q)dp dq

~ f f a(A)(p.a) u(En . 0)

5(H(p,a)~Ey)

X——— 1 dpdg

(C3
1

whereo(A)(p,q) can be any function homogeneouspirof
degreem, for some arbitraryme R. However, since the set
of all polynomials inp is already dense i€*(R?>Xx ) the
set of homogeneous functions jnis dense iNC*(R?>X )
too. Therefore, one gets

A. BACKER, R. SCHUBERT, AND P. STIFTER

5(H(p,a)~ Ey)

TV ETET (C4
nj

Wi (p,@)~ u(Eq *%p.0)
Note thatV(El)Eﬂ;2'1=V(2En) and if we extendu,(p,q)
i

from 3, to the whole phase space by requiring it to
be homogeneous of degree  zero,u,(p,q):

= u(p/VH(p,q),q) for (p,q) ¢, then we finally can

write

6(H(p,9)—En)
V(Zg,)

]

W, (P,@) ~ pi(P,9) for j—oe

(CH

for a subsequencgn;}CN of density one. This shows that
the quantum ergodicity theorem is equivalent to the semi-
classical eigenfunction hypothesis for ergodic systems for a
subsequence of density one.
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