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Rate of quantum ergodicity in Euclidean billiards
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For a large class of quantized ergodic flows the quantum ergodicity theorem states that almost all eigen-
functions become equidistributed in the semiclassical limit. In this work we give a short introduction to the
formulation of the quantum ergodicity theorem for general observables in terms of pseudodifferential operators
and show that it is equivalent to the semiclassical eigenfunction hypothesis for the Wigner function in the case
of ergodic systems. Of great importance is the rate by which the quantum-mechanical expectation values of an
observable tend to their mean value. This is studied numerically for three Euclidean billiards~stadium, cosine,
and cardioid billiard! using up to 6000 eigenfunctions. We find that in configuration space the rate of quantum
ergodicity is strongly influenced by localized eigenfunctions such as bouncing-ball modes or scarred eigen-
functions. We give a detailed discussion and explanation of these effects using a simple but powerful model.
For the rate of quantum ergodicity in momentum space we observe a slower decay. We also study the suitably
normalized fluctuations of the expectation values around their mean and find good agreement with a Gaussian
distribution.@S1063-651X~98!13305-6#

PACS number~s!: 05.45.1b, 03.65.2w, 03.65.Ge
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I. INTRODUCTION

In quantum chaos much work is devoted to the investi
tion of the statistics of eigenvalues and properties of eig
functions of quantum systems whose classical counterpa
chaotic. For ergodic systems the behavior of almost
eigenfunctions in the semiclassical limit is described by
quantum ergodicity theorem, which was proved in@1–5#; see
also @6,7# for general introductions. Roughly speaking,
states that for almost all eigenfunctions the expectation
ues of a certain class of quantum observables tend to
mean value of the corresponding classical observable in
semiclassical limit.

Another commonly used description of a quantu
mechanical state is the Wigner function@8#, which is a
phase-space representation of the wave function. Accor
to the ‘‘semiclassical eigenfunction hypothesis,’’ the Wign
function concentrates in the semiclassical limit on regions
phase space that a generic orbit explores in the long-t
limit t→` @9–12#. For integrable systems the Wigner fun
tion W(p,q) is expected to localize on the invariant to
whereas for ergodic systems the Wigner function sho
semiclassically condense on the energy surface,
W(p,q);@1/V(SE)#d„H(p,q)2E…, where H(p,q) is the
Hamilton function andV(SE) is the volume of the energy
shell defined byH(p,q)5E.

As we will show below, the quantum ergodicity theore
is equivalent to the validity of the semiclassical eigenfun
tion hypothesis for almost all eigenfunctions if the classi
system is ergodic. Thus a weak form of the semiclass
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eigenfunction hypothesis is proved for ergodic systems.
For practical purposes it is important to know not only t

semiclassical limit of expectation values or Wigner fun
tions, but also how fast this limit is achieved, because
applications one usually has to deal with finite values of\ or
finite energies, respectively. Thus the so-called rate of qu
tum ergodicity determines the practical applicability of t
quantum ergodicity theorem. A number of articles have be
devoted to this subject; see, e.g.,@13–15,6,16# and references
therein. The principal aim of this paper is to investigate t
rate of quantum ergodicity numerically for different Euclid
ean billiards and to compare the results with the exist
analytical results and conjectures. A detailed numeri
analysis of the rate of quantum ergodicity for hyperbo
surfaces and billiards can be found in@17#.

Two problems arise when one wants to study the rate
quantum ergodicity numerically. First, the fluctuations of t
expectation values around their mean can be so large th
is hard or even impossible to infer a decay rate. This prob
can be overcome by studying the cumulative fluctuations

S1~E,A!5
1

N~E! (
En<E

u^cn ,Acn&2s~A!u, ~1!

where ^cn ,Acn& is the expectation value of the quantu
observableA, s(A) is the mean value of the correspondin
classical observables(A), andN(E) is the spectral staircas
function; see Sec. II for detailed definitions. SoS1(E,A)
contains all information about the rate by which the quant
expectation values tend to the mean value, but is a m
smoother quantity than the sequence of differences itsel

Second, since the quantum ergodicity theorem makes o
a statement about almost all eigenfunctions~i.e., a subse-
quence of density one; see below!, there is the possibility of
non-quantum-ergodic subsequences of eigenfunctions. S
5425 © 1998 The American Physical Society
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eigenfunctions can be, for example, so-called scarred ei
functions@18,19#, which are localized around unstable pe
odic orbits, or in billiards with two parallel walls, so-calle
bouncing-ball modes, which are localized on the family
bouncing-ball orbits.

Although such subsequences of exceptional eigenfu
tions are of density zero, they may have a considerable
fluence on the behavior ofS1(E,A). This is what we find in
our numerical computations for the cosine, stadium, and
dioid billiards, which are based on 2000 eigenfunctions
the cosine billiard and up to 6000 eigenfunctions for t
stadium and cardioid billiard.

In order to obtain a quantitative understanding of the
fluence of non-quantum-ergodic subsequences on the
we develop a simple model forS1(E,A) that is tested for the
corresponding billiards. The application of this model in t
case of the stadium billiard reveals, in addition to t
bouncing-ball modes, a subsequence of eigenfuncti
which appear to be non-quantum-ergodic in the conside
energy range.

A further interesting question is if the boundary cond
tions have any influence on the rate of quantum ergodic
This is indeed the case. For observables located near
boundary a strong influence on the behavior ofS1(E,A) is
observed. However, forE→` this influence vanishes, so th
asymptotic rate is independent of the boundary condition

After having some knowledge of the rate by which t
expectation valueŝcn ,Acn& tend to their quantum-ergodi
limit s(A), one is interested in how the suitably normaliz
fluctuations^cn ,Acn&2s(A) are distributed. It is conjec
tured that they obey a Gaussian distribution, which we
confirm from our numerical data.

The outline of the paper is as follows. In Sec. II we fir
give a short introduction to the quantum ergodicity theor
and its implications. Then we discuss conjectures and th
retical arguments for the rate of quantum ergodicity given
the literature. In particular we study the influence of no
quantum-ergodic eigenfunctions. In Sec. III we give a d
tailed numerical study on the rate of quantum ergodicity
three Euclidean billiard systems for different types of obse
ables, both in position and in momentum space. This
cludes a study of the influence of the boundary and a st
of the fluctuations of the normalized expectation valu
around their mean. We conclude with a summary. Some
the more technical considerations using pseudodifferen
operators are given in the Appendixes.

II. QUANTUM ERGODICITY

The classical systems under consideration are given
the free motion of a point particle inside a compact tw
dimensional Euclidean domainV,R2 with a piecewise
smooth boundary, where the particle is elastically reflec
The phase space is given byR23V and the Hamilton func-
tion is ~in units 2m51!

H~p,q!5p2. ~2!

The trajectories of the flow generated byH(p,q) lie on sur-
faces of constant energyE,

SE :5$~p,q!PR23Vup25E%, ~3!
n-
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which obey the scaling property SE5E1/2S1
:55$(E1/2p,q)u(p,q)PS1% since the Hamilton function is
quadratic inp. Note thatS1 is just S13V.

The classical observables are functions on phase s
R23V and the mean value of an observablea(p,q) at en-
ergy E is given by

āE5
1

V~SE!
E

SE

a~p,q!dm

5
1

V~SE!
E E

R23V
a~p,q!d~p22E!dp dq, ~4!

where dm5 1
2 dw dq is the Liouville measure onSE and

V(SE)5*SE
dm. The unusual factor 1/2 in the Liouville

measure is due to the fact that we have chosenp2 and not
p2/2 as the Hamilton function. For the mean value at ene
E51 we will for simplicity write ā.

The corresponding quantum system that we will study
given by the Schro¨dinger equation~in units \52m51!

2Dcn~q!5Encn~q!, qPV, ~5!

with Dirichlet boundary conditionscn(q)50 for qP]V.
Here D5]2/]q1

21]2/]q2
2 denotes the usual Laplacian an

we will assume that the eigenvalues are ordered asE1<E2
<E3¯ and that the eigenfunctions are normaliz
*Vucn(q)u2dq51.

The quantum ergodicity theorem describes the beha
of expectation valueŝcn ,Acn& in the high-energy~semi-
classical! limit En→` and relates it to the classical mea
value ~4!. The observableA is assumed to be a pseudod
ferential operator, so before we state the theorem we hav
introduce the concept of pseudodifferential operators; s
e.g.,@20–23#.

A. Weyl quantization and pseudodifferential operators

It is well known that every continuous operato
A:C0

`(V)→D8(V) is characterized by its Schwarz kern
KAPD8(V3V) such thatAc(q)5*VKA(q,q8)c(q8)dq8,
whereD8(V) is the space of distributions dual toC0

`(V);
see, e.g., @24#, Chap. 5.2. In Dirac notation one ha
KA(q,q8)5^quAuq8&. With such an operatorA one can as-
sociate its Weyl symbol, defined as

W@A#~p,q!:5E
R2

eiq8pKAS q2
q8

2
,q1

q8

2 Ddq8, ~6!

which in general is a distribution@21#. An operatorA is
called a pseudodifferential operator if its Weyl symbol b
longs to a certain class of functions. One of the simpl
classes of symbols isSm(R23V), which is defined as fol-
lows: a(p,q)PSm(R23V) if it is in C`(R23V) and for all
multiple indicesa,b the estimate

U ] uau

]pa

] ubu

]qb a~p,q!U<Ca,b~11upu2!~m2uau!/2 ~7!

holds. Herem is called the order of the symbol. The ma
point in this definition is that differentiation with respect top
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lowers the order of the symbol. For instance, polynomials
degreem in p, ( ua8u<mca8(q)pa8, whose coefficients satisfy
u(] ubu/]qb)ca8(q)u<Ca8,b , are inSm(R23V).

An operatorA is called a pseudodifferential operator
orderm, APSm(V), if its Weyl symbol belongs to the sym
bol classSm(R23V),

APSm~V!:⇔W@A#~p,q!PSm~R23V!. ~8!

For example, if the Weyl symbol is a polynomial inp, then
the operator is in fact a differential operator and so pseud
ifferential operators are generalizations of differential ope
tors. Further examples include complex powers of the
placian (2D)z/2PSRz(V); see@25,26,22#.

On the other hand, with any functionaPSm(Rn3V) one
can associate an operatorâPSm(V),

â f ~q!:5
1

~2p!2 E E
V3Rn

ei ~q2q8!paS p,
q1q8

2 D
3 f ~q8!dq8dp, ~9!

such that its Weyl symbol isa, i.e.,W@ â#5a. This associa-
tion of the symbola with the operatorâ is called Weyl
quantization ofa.

In practice one often encounters symbols with a spe
structure, namely, those that have an asymptotic expan
in homogeneous functions inp,

a~p,q!;(
k50

`

am2k~p,q!

with

am2k~lp,q!5lm2kam2k~p,q! for l.0. ~10!

Note that it is not required thatm be an integer; allmPR are
allowed. Since the degree of homogeneity tends to2`, this
can be seen as an expansion forupu→`; see@20,21# for the
exact definition of this asymptotic series. These symbols
often called classical or polyhomogeneous and we will c
sider only operators with Weyl symbols of this type. T
space of these operators will be denoted byScl

m(V). If A
PScl

m(V) and W(A);(k50
` am2k , then the leading term

am(p,q) is called the principal symbol ofA and is denoted
by s(A)(p,q):5am(p,q). It plays a distinguished role in th
theory of pseudodifferential operators. One reason for thi
that operations such as multiplication or taking the comm
tator are rather complicated in terms of the symbol,
simple for the principal symbol. For instance, one h
@20,21#

s~AB!5s~A!s~B!, s~@A,B# !5 i $s~A!,s~B!%,
~11!

where $ , % is the Poisson bracket. It furthermore turns o
that the principal symbol is a function on phase space, i.e
has the right transformation properties under coordin
transformations, whereas the full Weyl symbol does not h
this property.

So every operatorA with principal symbols(A) can be
seen as a quantization of the classical observables(A). The
f
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existence of different operators with the same principal sy
bol just reflects the fact that the quantization process is
unique. Furthermore, one can show that the lead
asymptotic behavior of expectation values of such opera
for high energies only depends on the principal symbol, a
should be according to the correspondence principle. Th
a special case of the Szego¨ limit theorem; see@27#, Chap.
29.1.

One advantage of the Weyl quantization over other qu
tization procedures is that the Wigner function of a stateuc&
appears naturally as the Weyl symbol of the correspond
projection operatoruc&^cu,

W@ uc&^cu#~p,q!5E
R2

eiq8pc̄S q2
q8

2 DcS q1
q8

2 Ddq8.

~12!

In the following we will use for a Wigner function
of an eigenstate cn the simpler notation Wn(p,q)
:5W@ ucn&^cnu#(p,q). For the expectation valuêc,Ac&
one has the well-known expression in terms of the W
symbolW@A# and the Wigner functionW@ uc&^cu#,

^c,Ac&5
1

~2p!2 E E
V3R2

W@A#~p,q!W@ uc&^cu#~p,q!

3dp dq. ~13!

Pseudodifferential operators of order zero have a boun
Wigner function and therefore a bounded principal sym
s(A); this boundedness of the classical observable car
over to the operator level: The operators inS0(V) are
bounded in theL2 norm.

The definition of pseudodifferential operators can be g
eralized to manifolds of arbitrary dimension; the previo
formulas are then valid in local coordinates. The symbols
these operators exist only in local charts, but the princi
symbols can be glued together to a function on the cotang
bundle T* V, which is the classical phase space.~If one
wants to realize the semiclassical limit not as the high-ene
limit but as the limit of\→0, one has to incorporate\ ex-
plicitly in the quantization procedure. In the framework
pseudodifferential operators this has been done by Voro
@9,10#; see also@28,7#.!

B. Quantum limits and the quantum ergodicity theorem

In quantum mechanics the states are elements of a Hil
space or, more generally, linear functionals on the algebr
observables. In classical mechanics the pure states are p
in phase space and the observables are functions on p
space. More generally, the states are measures on p
space, which are linear functionals on the algebra of obs
ables. The pure states are then represented asd functions.
The eigenstates of a Hamilton operator are those that
invariant under the time evolution defined byH. In the semi-
classical limit they should somehow converge to measu
on phase space that are invariant under the classical Ha
tonian flow. The measures that can be obtained as semi
sical limits of quantum eigenstates are called quantum lim

More concretely, the quantum limits can be described
limits of sequences of Wigner functions. Let$cn%nPN be an
orthonormal basis of eigenfunctions of the Dirichlet Lapla
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ian 2D and$Wn%nPN the corresponding set of Wigner func
tions; see Eq.~12!. We first consider expectation values f
operators of order zero and then extend the results to op
tors of arbitrary order.

Because pseudodifferential operators of order zero
bounded, the sequence of expectation val
$^cn ,Acn&%nPN is bounded too. Every functiona
PC`(S1) can be extended to a function inC`(R2\$0%
3V) by requiring it to be homogeneous of degree zero inp.
Via the quantizationâ of a and Eq.~13!, one can view the
Wigner functionWn(p,q) as a distribution onC`(S1),

a°^cn ,âcn&5
1

~2p!2 E E
V3R2

a~p,q!

3Wn~p,q!dp dq. ~14!

„Strictly speaking,a is not an allowed symbol because it
not smooth atp50. Let x(p)PC`(R2) satisfyx(p)50 for
upu<1/4 andx(p)51 for upu>1/2. By multiplying a with
this excision functionx(p) we get a symbolxaPS0(R2

3V), whose Weyl quantizationxâ is in S0(V). However,
the semiclassical properties ofxâ are independent of the
special choice ofx(p), which can be seen, e.g., in Eq.~14!,
since Wn is concentrated on the energy shellSEn

for n

→`. Therefore, we will proceed for simplicity witha in-
stead ofxa.… The sequence of these distributions is bound
because the operatorsâ are bounded. The accumulatio
points of $Wn(p,q)%nPN are called quantum limitsmk(p,q)
and we label them bykPI , whereI is some index set. Cor
responding to the accumulation pointsmk(p,q), the se-
quence$Wn(p,q)%nPN can be split into disjoint convergen
subsequencesøkPI$Wn

j
k(p,q)% j PN5$Wn(p,q)%nPN . That

is, for everyk we have

lim
j→`

E E
V3R2

a~p,q!Wn
j
k~p,q!dp dq

5E E
V3R2

a~p,q!mk~p,q!dp dq ~15!

for all aPC`(S1) viewed as homogeneous functions of d
gree zero on phase space. This splitting is unique up
finite number of terms, in the sense that for two differe
splittings the subsequences belonging to the same accum
tion point differ only by a finite number of terms. As ha
been shown in@29#, the quantum limitsmk are measures on
S1 that are invariant under the classical flow generated
H(p,q).

One of the main questions in the field of quantum chao
which classical invariant measures onS1 can actually occur
as quantum limits of Wigner functions. For example, if t
orbital measure along an unstable periodic orbit occurs
quantum limit mk , then the corresponding subsequence
eigenfunctions has to show an enhanced probability,
scarring, along that orbit.

Given any quantum limitmk , one is furthermore inter-
ested in the counting functionNk(E):5#$En

j
k<E% for the

corresponding subsequence$Wn
j
k% j PN of Wigner functions.

Since the subsequence$Wn
j
k% j PN is unique up to a finite
ra-
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number of elements, the corresponding counting funct
Nk(E) is unique up to a constant.

One should keep in mind that we have defined the qu
tum limits and their counting functions here with respect
one chosen orthonormal basis of eigenfunctio
$cn(q)%nPN . If one takes a different orthonormal base
eigenfunctions$c̃n(q)%nPN , the counting functions corre
sponding to the quantum limits, or even the quantum lim
themselves, may change. So when studying the set o
quantum limits, one has to take all bases of eigenfuncti
into account.

The lift of any quantum limit fromS1 to the whole phase
spaceR23V follows straight-forwardily from some well-
known methods in pseudodifferential operator theory,
shown in Appendix B. For a pseudodifferential operator
orderm, APScl

m(V), one gets for the expectation values

lim
j→`

En
j
k

2m/2
^cn

j
k,Acn

j
k&

5mk„s~A!uS1
…5E

S1

s~A!~p,q!mk~p,q!dm.

~16!

In terms of the Wigner functions this expression can be w
ten as~see Appendix C!

lim
j→`

En
j
k

n/2
Wn

j
k~En

j
k

1/2
p,q!5mk~p,q!

d„H~p,q!21…

V~S1!
. ~17!

Without the scaling ofp with AE we have

Wn
j
k~p,q!;mk~p,q!

d„H~p,q!2En
j
k…

V~SEnj
k!

~18!

for En
j
k→` andmk(p,q) is extended fromS1 to the whole

phase space by requiring it to be homogeneous of de
zero inp.

For ergodic systems the only invariant measure wh
support has nonzero Liouville measure is the Liouville me
sure itself. For these systems the quantum ergodicity theo
states that almost all eigenfunctions have the Liouville m
sure as quantum limit.

Quantum ergodicity theorem [30]. LetV,R2 be a com-
pact two-dimensional domain with piecewise smooth bou
ary and let$cn% be an orthonormal set of eigenfunctions
the Dirichlet LaplacianD on V. If the classical billiard flow
on the energy shellS15S13R2 is ergodic, then there is a
subsequence$nj%,N of density one such that

lim
j→`

^cnj
,Acnj

&5s~A! ~19!

for every polyhomogeneous pseudodifferential operator
PS0(V) of order zero, whose Schwarz kernel KA(q,q8)
5^quAuq8& has support in the interior ofV3V. Heres(A)
is the principal symbol of A ands(A) is its classical expec-
tation value; see Eq.~4!.
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A subsequence$nj%,N has density one if

lim
E→`

#$nj uEnj
,E%

N~E!
51, ~20!

whereN(E):5#$nuEn,E% is the spectral staircase functio
counting the number of energy levels below a given ene
E. So almost all expectation values of a quantum observa
tend to the mean value of the corresponding classical obs
able.

The special situation that there is only one quantum lim
i.e., the Liouville measure, is called unique quantum erg
icity. This behavior is conjectured to be true for the eige
functions of the Laplacian on a compact manifold of neg
tive curvature@6,15#.

We have stated here for simplicity the quantum ergodic
theorem only for two-dimensional Euclidean domains, bu
is true in far more general situations. For compact Riema
ian manifolds without a boundary the quantum ergodic
theorem was given by Shnirelman@1#, Zelditch @3#, and
Colin de Verdière @4#. For a certain class of manifolds with
boundary it was proved in@31#, without the restriction on the
support of the Schwarz kernel of the operatorA. The tech-
niques of@31# can possibly be used to remove these rest
tions here as well; see the remarks in@30#. One can allow as
well more general Hamilton operators; on manifolds witho
a boundary every elliptic self-adjoint operator inScl

2 (V) is
allowed and on manifolds with a boundary at least ev
second-order elliptic self-adjoint differential operator wi
smooth coefficients is allowed. This includes, for instance
free particle in a smooth potential or in a magnetic field.
the semiclassical setting, where the Hamilton operator
the observables depend explicitly on\, a similar theorem for
the limit \→0 has been proved in@5#; see also@7# for an
introduction.

In light of the correspondence principle, the quantum
godicity theorem appears very natural: Classical ergodi
means that for a particle moving along a generic traject
with energyE, the probability of finding it in a certain region
U,SE of phase space is proportional to the volumeV(U) of
that region, but does not depend on the shape or locatio
U. The corresponding quantum observable is the quant
tion of the characteristic functionxU of U and by the corre-
spondence principle one expects that the expectation valu
this observable in the statecn tends to the classical expect
tion value for En→`. This is the content of the quantum
ergodicity theorem.

In terms of the Wigner functionsWn the theorem gives
@see Eq.~18!#

Wnj
~p,q!;

d„H~p,q!2Enj
…

V~SEnj
!

~21!

for j→`, for a subsequence$nj%,N of density one. So
almost all Wigner functions become equidistributed on
energy shellsSEnj

. That is, for ergodic systems the validit

of the semiclassical eigenfunction hypothesis for a sub
quence of density one is equivalent to the quantum ergo
ity theorem.
y
le
rv-

t,
-
-
-

y
it
n-

-

t

y

a

d

-
y
y

of
a-

of

e

e-
c-

C. Examples

As an illustration of the quantum ergodicity theorem a
for later use, we now consider some special observa
whose symbol only depends on the positionq or on the
momentump. If the symbol depends only on the positionq,
i.e., a(p,q)5a(q), the operator is just the multiplication
operator with the functiona(q) and one has

^c,Ac&5^c,ac&5E
V

a~q!uc~q!u2dq. ~22!

In the special case that one wants to measure the probab
of the particle to be in a given domainD,V, the symbol is
the characteristic function ofD, i.e., a(p,q)5xD(q). Then
x̂D is not a pseudodifferential operator, but nevertheless
quantum ergodicity theorem remains valid for this obse
able @4#. Since the principal symbol is thens(A) 5xD , we
obtain for its mean value

s~A!5
1

V~S1!
E

S13V
xD~q!dm5

V~D !

V~V!
. ~23!

Thus the quantum ergodicity theorem gives for this case

lim
j→`

E
D

ucnj
~q!u2dq5

V~D !

V~V!
~24!

for a subsequence$nj%,N of density one. As discussed a
the end of Sec. II B, this is what one should expect from
correspondence principle.

If instead the symbol depends only on the momentump,
i.e., a(p,q)5a(p), one obtains from Eq.~13! for the expec-
tation value

^c,Ac&5E
R2

a~p!uĉ~p!u2dp. ~25!

In the same way as in@4# for a characteristic function in
position space, it follows that the quantum ergodicity the
rem remains valid for the case wherea(p)5xC(u,Du)(p) is
the characteristic function of a circular sector in moment
space of angleu. In polar coordinates this is given by the s

C~u,Du!:5$~r ,w!ur PR1,wP@u2Du/2,u1Du/2#%.
~26!

The mean value of the principal symbol then reduces to

s~A!5
1

V~S1!
E

S13V
xC~u,Du!~p!dm5

Du

2p
, ~27!

which does not depend onu. Thus the quantum ergodicity
theorem reads in the case of a characteristic function in
mentum space

lim
j→`

E
C~u,Du!

uĉnj
~p!u2dp5

Du

2p
~28!

for a subsequence$nj%,N of density one. This means tha
quantum ergodicity implies an asymptotic equidistribution
the momentum directions of the particle.
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It is instructive to compute the observables discus
above for certain integrable systems. First consider a t
dimensional torus. The eigenfunctions, labeled by the
quantum numbers n,mPZ, read cn,m(x,y)
5exp(2pinx)exp(2pimy). Obviously, these are ‘‘quantum
ergodic’’ in position space sinceucn,m(x,y)u251, but they
are not quantum ergodic in momentum space. Even in p
tion space the situation changes if one takes a different
thogonal basis of eigenfunctions~note that the multiplicities
tend to infinity!; see@32# for a discussion of the quantum
limits on tori. A similar example is provided by the Dirichle
or Neumann eigenfunctions of a rectangular billiard.

The circle billiard shows a converse behavior. Let t
radius be one; then the eigenfunctions are given in p
coordinates by

ckl~r ,f!5NklJl~ j k,l r !eil f. ~29!

Here j k,l is thekth zero of the Bessel functionJl(x), x.0,
andNkl is a normalization constant. These eigenfunctions
not exhibit quantum ergodicity in position space. Howev
for their Fourier transforms one can show that

E
C~u,Du!

uĉkl~p!u2dp5
Du

2p
~30!

and so we have ‘‘quantum ergodicity’’ in momentum spa
A remarkable example was discussed by Zelditch@33#.

He considered the Laplacian on the sphereS2. Since the
multiplicity of the eigenvaluel ( l 11) is 2l 11, which tends
to infinity asl→`, one can choose infinitely many orthono
mal bases of eigenfunctions. Zelditch showed that almos
of these bases exhibit quantum ergodicity in the whole ph
space. Although this is clearly an exceptional case due to
high multiplicities, it shows that one has to be careful w
the notion of quantum ergodicity. In a recent work Jakobs
and Zelditch@34# have furthermore shown that for the sphe
all invariant measures on phase space do occur as qua
limits. One might conjecture that for an integrable system
classical measures that are invariant under the flow and
symmetries of the Hamilton function do occur as quant
limits. The general question whether quantum ergodicity
all orthonormal bases of eigenfunctions in the whole ph
space implies ergodicity of the classical system is still op

D. Rate of quantum ergodicity

We now come to the central question of the approach
the quantum-ergodic limit. First we note that an equival
formulation of the quantum ergodicity theorem, whic
avoids choosing subsequences, is given by

lim
E→`

1

N~E! (
En<E

u^cn ,Acn&2s~A!u50. ~31!

This equivalence follows from a standard lemma concern
the influence of subsequences of density zero on the ave
of a sequence; see, e.g.,@35#, Theorem 1.20.

In order to characterize the rate of approach to the ergo
limit the quantities
d
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Sm~E,A!5
1

N~E! (
En<E

u^cn ,Acn&2s~A!um ~32!

have been proposed and studied in@13,14#. Quantum ergod-
icity is equivalent toSm(E,A)→0 for E→` andm>1.

Let us first summarize some of the known results for
rate of quantum ergodicity. Zelditch proved in@13# by relat-
ing the rate of quantum ergodicity to the rate of converge
of classical expectation values and using a central limit th
rem for the classical flow that for compact manifolds
negative curvatureSm(E,A)5O„(ln E)2m/2

…. However, this
bound is believed to be far from being sharp. Moreover,
@14# lower bounds forSm(E,A) have been derived. In
@15,36,37# it is proved for a Hecke basis of eigenfunctions
the modular surface thatS2(E,A),C(«)E21/21« for every
«.0. It is furthermore conjectured@6,15# that this estimate is
also valid for the eigenfunctions of the Laplacian on a co
pact manifolds of negative curvature and moreover that i
satisfied for each eigenstate individually:u^cn ,Acn&
2s(A)u,C(«)E21/41« for every«.0.

In @16# a study ofS2(E,A) based on the Gutzwiller trac
formula has been performed. For completely desymmetri
systems having only isolated and unstable periodic orbits,
so-called diagonal approximation for a double sum over
riodic orbits and further assumptions lead to

S2~E,A!;g
2

V~V!
r~A!E21/2. ~33!

Hereg52 if the system is invariant under time reversal a
otherwiseg51; r(A) is the variance of the fluctuations o
Ag5(1/Tg)*0

Tgs(A)@g(t)#dt around their means(A), com-
puted using all periodic orbitsg of the system. More pre-
cisely, it is assumed thatuAg2s(A)u2;r(A)/Tg , whereTg
denotes the primitive length ofg.

In the general case where not all periodic orbits are i
lated and unstable it is argued that the rate of quantum
godicity is related to the decay rate of the classical autoc
relation functionC(t) @16#. If C(t);t2h then the result is

S2~E,A!;E
0

TH
C~t!dt

;H E21/2 for h.1

lnS V~V!

2
E1/2DE21/2 for h51

E2h/2 for h,1,

~34!

whereTH5@V(V)/2#E1/2 is the so-called Heisenberg time
For the stadium billiard@38# and the Sinai billiard@39# it

is believed that the correlations decay as;1/t; see@40# and
@41# for numerical results for the Sinai billiard. Thus, fo
both the stadium and the Sinai billiard a logarithmic cont
bution to the decay ofS2(E,A) is expected. Also a Gaussia
random behavior of the eigenfunctions@11# implies in posi-
tion space a rateS2(E,A)5O(E21/2), which follows from
@42#, Chap. IV; see also@16,43#.

Random matrix theory~see @44#, Sec. VII! predicts for
suitable observables the same rateS2(E,A)5O(E21/2) and
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furthermore Gaussian fluctuations of @^cn ,Acn&
2s(A)#/AS2(En ,A) around zero, which we study numer
cally in Sec. III C.

Since for the systems under investigation we have n
quantum-ergodic subsequences of eigenfunctions, we
discuss in general the influence of such subsequences o
behavior ofS1(E,A). To this end we split the sequence
eigenfunctions into two subsequences. The first, denote
$cn8%, contains all quantum-ergodic eigenfunctions, i.e.,
corresponding quantum limit of the associated sequenc
Wigner functions is the Liouville measure. The counti
function of this subsequence will be denoted byN8(E). The
other sequence$cn9% contains all non-quantum-ergod
eigenfunctions. This subsequence may have different qu
tum limits mk that are all different from the Liouville mea
sure. Their counting function will be denoted byN9(E). Ex-
amples would be a subsequence of bouncing-ball mode
eigenfunctions scarred by an unstable periodic orbit. Si
larly, we split S1(E,A) into two parts corresponding to th
two classes of eigenfunctions. Due to the separationN(E)
5N8(E)1N9(E) we obtain

S1~E,A!5
1

N~E! (
En<E

u^cn ,Acn&2s~A!u

5
N8~E!

N~E!
S18~E,A!1

N9~E!

N~E!
S19~E,A!

5S 12
N9~E!

N~E! DS18~E,A!1
N9~E!

N~E!
S19~E,A!.

~35!

Here we defined

S18~E,A!:5
1

N8~E! (
En8<E

u^cn8 ,Acn8&2s~A!u, ~36!

S19~E,A!:5
1

N9~E! (
En9<E

u^cn9 ,Acn9&2s~A!u. ~37!

So the behavior ofS1(E,A) is given in terms of the three
quantitiesS18(E,A), S19(E,A), and N9(E), which describe
the behavior of the quantum-ergodic and the non-quant
ergodic subsequences, respectively.

The behavior ofS19(E,A) can be described in terms of th
non-quantum-ergodic limits and their counting functions. W
split the non-quantum-ergodic subsequence into conver
subsequences corresponding to the quantum limitsmkÞm,
$cn9%5øk$cn

j
k% j PN , with N9(E)5(kNk(E), and

^cn
j
k,Acn

j
k&2s(A);mk„s(A)2s(A)…. Then S19(E,A) is

asymptotically given by

S19~E,A!;
1

(
k

Nk~E!
(

k
Nk~E!umk„s~A!2s~A!…u

~38!

and the limit
-
w
the

by
e
of

n-

or
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-

e
nt

n9~A!:5 lim
E→`

S19~E,A! ~39!

depends only ons(A) and defines an invariant measure
S1 .

Let us assume for the quantum-ergodic part ofS1(E,A) a
certain rate of decay

S18~E,A!5n8~A!E2a1o~E2a! ~40!

and for the counting function of the non-quantum-ergo
states

N9~E!5cEb1o~Eb!, ~41!

where by quantum ergodicitya.0 andb,1. With Weyl’s
law N(E)5@V(V)/4p#E1O(E1/2) we then obtain in Eq.
~35! for S1(E,A)

S1~E,A!5n8~A!E2a1
4pc

V~V!
n9~A!Eb211o~E2a!

1o~Eb21!. ~42!

One sees that if2a.b21, the asymptotic behavior o
S1(E,A) is governed by the quantum-ergodic sequences
eigenfunctions, whereas in the opposite case2a<b21, the
non-quantum-ergodic sequences dominate the behavio
ymptotically. Especially ifb21.21/4, i.e., b.3/4, the
rate of quantum ergodicity cannot beO(E21/4).

To obtain a simple model for the rate of quantum ergo
icity, let us now assume that the conjectured optimal rate
valid for the subsequence of quantum-ergodic eigenfu
tions, that is,a51/4 can be chosen in Eq.~40!. To be more
precise, it should beS18(E,A)5O(E21/41«) for every«.0,
but for comparison with numerical data on a finite ener
range we will assume that«50. For the non-quantum
ergodic eigenfunctions the knowledge of their counting fun
tion N9(E) is very poor; in general, it is unknown. Thus,
we neglect the higher-order terms in Eqs.~40! and ~41! we
obtain from Eqs.~35! and ~39! a simple model for the be
havior of S1(E,A),

S1
model~E,A!5S 12

4pc

V~V!
Eb21D n8~A!E21/4

1
4pc

V~V!
n9~A!Eb21. ~43!

The first factor in large parentheses will only be importan
b is close to 1.

Similar considerations can be made forSm(E,A), for
m.1, leading to

Sm~E,A!5S 12
N9~E!

N~E! DSm8 ~E,A!1
N9~E!

N~E!
Sm9 ~E,A!,

~44!

where Sm8 (E,A) and Sm9 (E,A) correspond to the quantum
ergodic and the non-quantum-ergodic part, respectiv
They are defined as in Eqs.~36! and~37! with themth pow-
ers of the absolute values instead of the absolute va
themselves. To see the specific properties of theSm(E,A) for
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m.1 we study the special case that there is only one n
quantum-ergodic sequence$cn9% with quantum limitn9 and
that the rate for the quantum-ergodic sequence is pro
tional to n8(A)E21/4. Then one easily sees thatSm9 (E,A)
;n9(A)m and Sm8 (E,A);@n8(A)m/(12m/4)#E2m/4 for m
,4, Sm8 (E,A);n8(A)4 ln(E)/E for m54, and Sm8 (E,A)
;E21 for m.4. Therefore, by changingm one can change
the relative weight of the quantum-ergodic and the n
quantum-ergodic contribution toSm . The non-quantum-
ergodic part gets more pronounced with largerm, but as will
be discussed below, this effect can be hidden or even
versed on a finite-energy interval ifn9(A)!n8(A).

We will now discuss the influence of a special type
non-quantum-ergodic subsequences in more detail. In
liards with two parallel walls, one has a subsequence of
called bouncing-ball modes@45#, which are localized on the
bouncing-ball orbits; see Fig. 1~b! for an example of such an
eigenfunction. In@46# it was shown that for every 1/2,b
,1 there exists an ergodic billiard that possesses a n
quantum-ergodic subsequence, given by bouncing-
modes, whose counting function is asymptotically of ord
Eb. However, forb512d, with some smalld.0, Eq.~42!
shows thatS1(E,A)5O(E2d) at least for someA. So the
best possible estimate of the rate of quantum ergodicity
is valid without further assumptions on the system other t
ergodicity is

S1~E,A!5o~1!, i.e., lim
E→`

S1~E,A!50. ~45!

Especially for the Sinai billiard the result for the exponent
b59/10 and thereforeS1(E,A);cE21/10, which contradicts
the result~34! from @16#.

FIG. 1. Left: density plotsucn(q)u2 for three different odd-odd
eigenfunctions of thea51.8 stadium billiard:~a! n51992, ‘‘ge-
neric’’; ~b! n51660, bouncing-ball mode; and~c! n51771, local-
ized eigenfunction. Right: density plots for two eigenfunctions
the cardioid billiard with odd symmetry:~d! n51816, generic and
~e! n51817, localized along theAB orbit. Notice that according to
the quantum ergodicity theorem, the nonlocalized eigenfunction
type ~a! and ~d! are the overwhelming majority.
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If the bouncing-ball modes are the only non-quantu
ergodic eigenfunctions or at least constitute the domin
contribution to them, thenN9(E);NBB(E);cEb. The ex-
ponentb andn9(A) are explicitly known and the constantc
is known from a numerical fit in@46# for the billiards we will
consider in Sec. III. Thus, in this case the only free parame
in the model~43! is n8(A).

The asymptotic behavior of Eq.~43! is governed by the
term with the larger exponent, but this can be hidden at l
energies if one of the constants is much larger than the ot
Assume, for instance, thatb21.1/4, i.e., the non-quantum
ergodic eigenfunctions dominate the rate asymptotically.

4pcn9~A!

V~V!n8~A!
!1 ~46!

for an observableA, then up to a certain energyS1(E,A)
will be approximately proportional toE21/4. In numerical
studies where only a finite energy range is accessible su
behavior can hide the true rate of quantum ergodicity. T
turns out to be the case for the cosine billiard; see S
III A 1. This effect gets even more pronounced for th
Sm(E,A) with m.1 because forn9(A)/n8(A),1 one has
@n9(A)/n8(A)#m,n9(A)/n8(A). Therefore, in such case
S1(E,A) seems to be the optimal choice for numerical stu
ies.

The main ingredient of the model~43! is the conjectured
behavior of the rate for the quantum-ergodic eigenfunctio
By comparing Eq.~43! with numerical data for different ob
servables one can test this conjecture. If this conjectur
true then it means that the only deviations from the optim
rate of quantum ergodicity are due to subsequences of n
quantum-ergodic eigenfunctions.

Clearly, similar models based on a splitting such as
~35! can be developed for other situations as well. For
ample, if the eigenfunctions split into a quantum-ergod
subsequence of density one with rate proportional toE21/4

and a quantum-ergodic subsequence of density zero wi
slower, and maybe spatial inhomogeneous, rate, one w
expect a similar behavior ofS1(E,A) as in the case consid
ered above. So it will be hard without somea priori infor-
mation on non-quantum-ergodic eigenfunctions to dist
guish between these two scenarios.

III. NUMERICAL RESULTS

In order to study the rate of quantum ergodicity nume
cally we have chosen three different Euclidean billiard s
tems, given by the free motion of a point particle inside
compact domain with elastic reflections at the boundar
See Fig. 2 for the chosen billiard shapes.

The first is the stadium billiard, which is proven to b
ergodic, mixing, and aK-system@38,47#. The height of the
desymmetrized billiard is chosen to be 1 anda denotes the
length of the upper horizontal line. For this system our ana
sis is based on computations of the first 6000 eigenfuncti
for odd-odd parity, i.e., everywhere Dirichlet boundary co
ditions in the desymmetrized system with the parametea
51.8. We also studied stadium billiards with parametersa
50.5 anda54.0 using the first 2000 eigenfunctions in ea
case to investigate the dependence ona; see below. The

f
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stadium billiard is one of the most intensively studied s
tems in quantum chaos; for investigations of the eigenfu
tions see, e.g.,@45,18,19,48,49# and references therein.

The second system is the cosine billiard, which is co
structed by replacing one side of a rectangular box b
cosine curve. The cosine billiard has been introduced
studied in detail in@50,51#. The ergodic properties are un
known, but numerical studies do not reveal any stability
lands. If there were any they are so small that one exp
that they do not have any influence in the energy range un
consideration. The height of the cosine billiard is 1 and
upper horizontal line has length 2 in our numerical comp
tations. The cosine is parametrized byB(y)521 1

2 @1
1cos(py)]; see Fig. 2~b!. For our analysis of this system w
used the first 2000 eigenfunctions with Dirichlet bounda
conditions everywhere.

The third system is the cardioid billiard, which is the lim
iting case of a family of billiards introduced in@52#. The
cardioid billiard is proven to be ergodic, mixing, aK-system,
and a Bernoulli system@53–57#. Both the classical system
@52,58–60# and the quantum-mechanical system have b
studied in detail@61,62,58,63#. The eigenvalues of the car
dioid billiard have been provided by Prosen and Robnik@64#
and were calculated by means of the conformal mapp
technique; see, e.g.,@61,65,66#. Using these eigenvalues, ou
study is based on computations for the first 6000 eigenfu
tions of odd symmetry, which were obtained from the eige
values by means of the boundary integral method@67,68#
using the singular value decomposition method@69#. The
boundary integral method was also used for the comp
tions of the eigenvalues and eigenfunctions of the stad
and the cosine billiard.

Let us first illustrate the structure of wave functions
showing density plots ofucn(q)u2 for three different types of
wave functions of the stadium billiard and two differe
types of the cardioid billiard. Figure 1~a! shows a ‘‘generic’’
wave function, whose density looks irregular. The exam
in Fig. 1~b! belongs to the class of bouncing ball modes a
its Wigner function is localized in phase space on the bou
ing ball orbits; see the discussion in Sec. II C. Figure 1~c! is
another example of an eigenfunction showing some kind
localization. Figure 1~d! shows a generic wave function fo
the cardioid billiard and Fig. 1~e! is an example of an eigen
function that shows a strong localization in the surround
of the shortest periodic orbit~with codeAB; see@58,59#!.
We should emphasize that according to the quantum erg

FIG. 2. Shapes of the billiards studied numerically in this wo
~a! desymmetrized stadium billiard,~b! desymmetrized cosine bil
liard, and~c! desymmetrized cardioid billiard. The rectangles in t
interior of the billiards mark the domainsDi of integration for
studying the rate of quantum ergodicity in configuration space.
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icity theorem, the overwhelming majority of states in th
semiclassical limit are of the type~a! and~d!, which we also
observe for the eigenfunctions of the studied systems.

A. Quantum ergodicity in coordinate space

The quantum ergodicity theorem applied to the obse
able with symbola(q)5xD(q), discussed in Sec. II C, state
that the difference

di~n!5E
Di

ucn~q!u2dq2
V~Di !

V~V!
~47!

vanishes for a subsequence of density one. The first se
domainsDi for which we investigate the approach to th
ergodic limit is shown in Fig. 2. Plots ofdi(n) for domain
D4 of the stadium billiard andD5 of the cardioid billiard in
Fig. 3 show quite large fluctuations around zero. In parti
lar, for the stadium billiard there are many states for wh
d1(n) is quite large andd4(n) is quite small. As one would
expect, a large number of them are bouncing-ball mod
The fluctuations ofdi(n) for the cosine billiard behave simi
larly to the stadium billiard.

:

FIG. 3. Plot of di(n)5*Di
ucn(q)u2dq2V(Di)/V(V) for do-

main 4 in the stadium billiard and for domain 5 in the cardio
billiard. Since ucn(q)u2>0, one hasdi(n)>2V(Di)/V(V). For
domain D4 in the stadium this lower bound is attained by th
bouncing-ball modes whose probability densityucn(q)u2 nearly
vanishes inD4 ; they are responsible for the sharp edge seen in
plot of d4(n).
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When trying to study the rate of the approach to t
quantum-ergodic limit numerically one therefore is fac
with two problems. On the one hand,di(n) is strongly fluc-
tuating, which makes an estimate of the approach to
mean very difficult, if not impossible for the available n
merical data. On the other hand, one does not knowa priori
which subsequences should be excluded in Eq.~47!. There-
fore, the investigation of the asymptotic behavior of the ‘‘c
mulative’’ version~31! of the quantum ergodicity theorem
much more appropriate. For the observablexD(q) we have

S1~E,xD!5
1

N~E! (
En<E

U^cn ,xDcn&2
V~D !

V~V!
U. ~48!

In Figs. 4–6 we displayS1(E,xDi
) for the different do-

mains Di , shown in Fig. 2, in the desymmetrized cosin
stadium, and cardioid billiards, respectively. One clearly s
that the numerically determined curves forS1(E,xDi

) de-
crease with increasing energy. This is of course expec
from the quantum ergodicity theorem; however, since thi
an asymptotic statement, it is not cleara priori whether one
can observe such a behavior also at low energies. It sh
be emphasized that Fig. 4 is based on the expectation va
^cn ,xDi

cn& for 2000 eigenfunctions and Figs. 5 and 6 a
based on 6000 eigenfunctions in each case.

In order to study the rate of quantum ergodicity quanti
tively a fit of the function

S1
fit~E!5aE21/41« ~49!

to the numerical data forS1(E,xDi
) is performed. As dis-

cussed in Sec. II D, for certain systems a behaviorS1(E,A)
5O(E21/41«) for all «.0 is expected, so that the fit param
eter « characterizes the rate of quantum ergodicity. A po
tive value of « thus means a slower decrease ofS1(E,A)
than the expectedE21/4. The results for« are shown in
Tables I–IV, and the insets in Figs. 4–11 show the sa
curvesS1(E,xDi

) in a double-logarithmic plot together wit
these fit curves. We find good agreement of the fits with
computed functionsS1(E,xDi

). However,« is not small for

FIG. 4. Plot ofS1(E,xDi
) for different domainsDi for the co-

sine billiard using the first 2000 eigenfunctions; see Fig. 2~b! for the
location of the domainsDi . The inset shows the same curves in
double-logarithmic representation together with a fit ofS1

fit(E)
5aE21/41« to the numerical data.
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all domainsDi of the considered systems; rather we fi
several significant exceptions, which will be discussed in
following.

1. Cosine billiard

For the cosine billiard one would expect a strong infl
ence of the bouncing-ball modes on the rate since their n
ber increases according to@46# as NBB(E);cE9/10. How-
ever, the prefactorc turns out to be very small and therefo
the influence of the bouncing-ball modes is suppressed
low energies. The model forS1(E,A) @Eq. ~43!# gives for the
cosine billiard

S1
model~E,xDi

!5~120.201E20.13!n8~xDi
!E21/4

10.201nBB9 ~xDi
!E20.13, ~50!

where we have inserted the valuesc50.04 andb50.87,
obtained in@46# from a fit to NBB(E) that was performed
over the same energy range that we consider here. For
sake of completeness we have included the first factor
20.201E20.13), but the numerical fits we perform below
only change marginally if one sets this factor equal to 1.

The asymptotic behavior of the probability densi
ucn9(q)u2 of the bouncing-ball modes is~in the weak sense!

ucn9~q!u2;H 1/V~R! for qPR

0 for qPV\R
~51!

as n9→`, whereR denotes the rectangular part of the b
liard. So the expectation values are asymptotica
^cn9 ,xDcn9&;V(DùR)/V(R) and since nBB9 (xD)
5 limE→` S9(E,xD) is the mean value ofu^cn9 ,xDcn9&
2V(D)/V(V)u over all bouncing-ball modes one has

nBB9 ~xD!5UV~DùR!

V~R!
2

V~D !

V~V!
U. ~52!

For fixed volumeV(D) the quantitynBB9 (xD) is maximal for
domainsD lying entirely outside of the rectangular regio
nBB9 (xD)5V(D)/V(V). For domains lying entirely inside
the rectangular part of the billiard, we have the minim
value nBB9 (xD)5 1

4 @V(D)/V(V)#. Therefore, the stronges
contribution of the bouncing-ball modes toS1(E,xD) in Eq.
~50! is expected for the domains outside the rectangular
gion.

The values fornBB9 (xDi
) are given in Table I. The larges

values for the small domains are obtained for the doma
outside the rectangular part of the billiard for which also t
rate of quantum ergodicity is the slowest. Furthermore,
see from Table I that the factor 0.201nBB9 (xDi

) in front of

E20.13 in Eq. ~50! is for all domains much smaller than th
prefactora from the fit to Eq.~49!. This already indicates
that the contribution of the bouncing-ball modes is su
pressed, explaining why the rate for the cosine billiard is
such good agreement with«50.

In order to test this quantitatively we have performed a
of the model~50! to the numerical data, where the only fre
parameter isn8(xDi

). The accuracy of the fits is very goo

and the results forn8(xDi
) are shown in Table I; they are
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57 5435RATE OF QUANTUM ERGODICITY IN EUCLIDEAN BILLIARDS
much larger than the corresponding prefact
0.201nBB9 (xDi

) of the bouncing-ball part ofS1(E,xDi
).

Therefore, the influence of the bouncing-ball modes on
rate is negligibly small on the present energy interval,
spite the fact that asymptotically they should dominate
rate.

The domainsD3,D1 andD4,D2 show a slightly slower
rate thanD1 andD2 , respectively. This is due to the fact th
choosing a smaller domainD implies larger fluctuations o
^cn ,xDcn& for the same set of eigenfunctions.

As an additional test we have computedS1(E,xDi
) nu-

merically for four further domains~shown in the inset of Fig.
7! having a much larger area than the previous ones.
these domainsnBB9 (xDi

) is larger and one therefore expects
stronger influence of the bouncing-ball modes and co
spondingly a slower rate of quantum ergodicity. The resu
are shown in Table I and Fig. 7 and our findings are co
pletely consistent with the previous one as well as with
model ~50!. We also observe in Fig. 7 that for the larg
domains, except for the whole rectangular partD95R, the
rate is faster at low energies than at high energies. Thi
due to the influence of the boundary and will be discusse
Sec. III A 4.

As discussed in Sec. II D, the influence of the bouncin
ball modes on the rate might be better visible in the beha
of the Sm for m.1. However, sincenBB9 (xDi

) is much

smaller thann8(xDi
) their influence is even stronger su

pressed form.1 than for m51. We have computed th
Sm(E,xD) numerically for differentm and the different do-
mains. For the small domains we found that the no
quantum-ergodic contribution is strongly suppressed, as
pected. For the larger domains their influence is be
visible, e.g., forD9 .

Summarizing the results for the cosine billiard, we fou
that the rate of quantum ergodicity is in impressive agr
ment with a rate proportional toE21/4 for the subsequence o
quantum-ergodic eigenfunctions. The phenomenolog
modelS1

model(E,xD) @Eq. ~50!# is in good agreement with th
numerical data, especially in view of the fact that it conta

TABLE I. Rate of quantum ergodicity for the cosine billiar
with domainsDi as shown in Figs. 2 and 4 and in the inset of F
7. Shown are the results for« and a of the fit of S1

fit(E)
5aE21/41« to the numerical data. The values for the relative a
of the corresponding domains, the quantitiesnBB9 (xDi

) computed
according to Eq.~52!, and the resultn8(xDi

) of the fit of the model
~50! to S1(E,xDi

) are also tabulated.

Domain Relative area « a n8(xDi
) nBB9 (xDi

)

1 0.018 20.002 0.052 0.0525 0.0045
2 0.018 10.012 0.026 0.0468 0.0067
3 0.008 10.013 0.043 0.0297 0.0020
4 0.008 10.022 0.023 0.0273 0.0030
5 0.015 10.020 0.050 0.0543 0.0150
6 0.336 10.009 0.258 0.2471 0.0840
7 0.512 10.023 0.352 0.2920 0.1280
8 0.648 10.009 0.381 0.3410 0.1620
9 0.800 10.054 0.279 0.3264 0.2500
s
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only one free parameter. Furthermore, the cosine billi
provides an interesting example of a system for which
asymptotic regime forS1(E,A) is reached very late. Up to
the 2000th eigenfunction the asymptotic behaviorS1(E,A)
;CE21/10 is almost completely hidden. A continuation o
S1

model(E,xR) for the domainR5D9 with the strongest influ-
ence of the bouncing-ball modes shows that atE'106 the
two contributions have the same magnitude and one ha
go up as high asE'1020 to see the asymptotic behavio
S1(E,xR);CE21/10. Therefore there is no contradiction be
tween the observed fast rate of quantum ergodicity in
present energy range and the increase of the numbe
bouncing-ball modesNBB(E);cE9/10 found in @46#.

2. Stadium billiard

For the stadium billiard the number of bouncing-ba
modes grows asNBB(E);cE3/4 @70,46#. Therefore, the
bouncing-ball mode contribution toS1(E,A) is, according to
Eq. ~43!, proportional toE21/4 and thus of the same order a
the expected rate of quantum ergodicity for the quantu
ergodic eigenfunctions. One therefore expects for all
mains in position space a rate ofE21/4. We have investigated
the rate of quantum ergodicity for the stadium billiard usi
the small domains shown in Fig. 2~a! and for larger domains
shown in Fig. 8. The results of the fits ofS1

fit(E)
5aE21/41« to the numerical data forS1(E,xDi

) are given in
Table II.

Let us first discuss the rate for the small domains sho
in Fig. 2~a!. For the domainsD1 and D2 that lie inside the
rectangular part of the billiard the rate is in very good agr
ment withE21/4. However, both for the domainD3 that lies
on the border between the rectangular part and the qua
circle and in particular for domainD4 that lies inside the
quarter circle, one finds a slower rate than expected. This
behavior that one would expect for a billiard with a mu
faster increasing number of bouncing-ball modes.

We see three possible explanations for this behavior
the rate for the stadium billiard.

~i! First, the counting functionNBB(E) for the bouncing-
ball modes might increase with a larger exponent than 3

.

a

TABLE II. Rate of quantum ergodicity for the stadium billiar
with domainsDi as shown in Figs. 2 and 8. Shown are the resu
for « anda of the fit S1

fit(E)5aE21/41« to S1(E,xDi
). The values

for the relative area of the corresponding domains and the res
n8(xDi

) andb(A) of the fit of the model~54! to S1(E,xDi
) are also

tabulated.

Domain Relative area « a n8(xDi
) b(A)

1 0.015 10.009 0.041 0.058 0.000
2 0.015 10.012 0.041 0.059 0.000
3 0.015 10.033 0.035 0.055 0.001
4 0.015 10.095 0.029 0.046 0.006
5 0.015 10.022 0.039 0.058 0.000
6 0.278 10.125 0.082 0.112 0.034
7 0.433 10.162 0.076 0.044 0.059
8 0.557 10.172 0.086 0.011 0.080
9 0.696 10.172 0.113 0.023 0.104

10 0.681 10.092 0.164 0.257 0.035
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NBB(E);cEb, b.3/4. This would contradict the results i
@70,46#, derived by independent methods. Moreover, the
ponent b was tested numerically in@46# up to energyE
'10 000 and we found very good agreement withb53/4.
Even if we relaxed the criteria for the selection of t
bouncing-ball modes drastically, the exponent did n
change significantly; only the prefactorc increased. There
fore, we think that this first possibility is clearly ruled out

~ii ! Second, the rate for the quantum-ergodic eigenfu
tions might not be proportional toE21/4, but has a slower
decay rate. Then we have to assume a position depend
of the rate in order to explain the different behavior for t
different domains: In the rectangular part of the billiard t
rate has to be proportional toE21/4 to explain the value of«
obtained for the domainsD1 and D2 , whereas inside the
quarter circle the rate of decay has to decrease
S18(E,xD4

);n8(A)E20.15 in order to explain the value of«

obtained forD3 andD4 . A priori such a dependence of th
rate of the quantum-ergodic eigenfunctions on the location
the domain in the billiard is not impossible. If this is the ca
then one should observe no dependence of the rate on
volume of the domainD, as long as one stays in the sam
region of the billiard. For example, the rate for a doma
such asD6 , which containsD1 and D2 and is far enough
away from the quarter circle, should be the same as the
for D1 andD2 .

~iii ! The third possible explanation for the observed b
havior of the rate is that there exist more non-quantu
ergodic eigenfunctions that have a larger probability den
in the rectangular part than in the quarter circle and are
bouncing-ball modes. Alternatively, the reason could b
subsequence of density zero of quantum-ergodic eigenf
tions, which has a sufficiently increasing counting functi
and a slow rate; see the remark at the end of Sec. II D
both cases the model forS1(E,A) discussed in Sec. II D
which we already used in the case of the cosine billia
would be applicable. In contrast to the second possibility
this scenario, one expects a dependence of the rat
S1(E,xD) on the volume of the domainD, as in the case o
the cosine billiard.

To decide which explanation is the correct one we stud
the rate for a number of domains with different area a

FIG. 5. Plot ofS1(E,xDi
) for different domainsDi for the sta-

dium billiard using the first 6000 eigenfunctions; see Fig. 2~a! for
the location of the domainsDi . The inset shows the same curves
a double-logarithmic representation together with a fit of Eq.~49!.
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located at different regions in the billiard. A selection
them is shown in Fig. 8. With the larger domains one nec
sarily comes closer to the boundary of the billiard. To ru
out the possibility that the observed behavior of the rate
due to the influence of the boundary and not due to
dependence on the volume and location of the domains,
computed in additionS1(E,xD) for the small domainD5 that
is close to the boundary.

The results are also given in Table II and some examp
of S1(E,xDi

) for these large domains are shown in Fig. 9.
for the cosine billiard, we also found that for large domai
at small energies the rate may be much faster than at hi
energies, which is clearly seen in Fig. 9 for the domainsD7
andD8 . This effect is due to the influence of the bounda
as we will discuss in Sec. III A 4; here we only note that t
boundary influence vanishes for large energies.

The observed rate of quantum ergodicity displays a str
dependence on the volume of the domainD, whereas the
location, as long as one stays inside the rectangular part,
no influence. For example, for the domainD6 , which con-
tains D1 and D2 , one gets a much slower rate than forD1
andD2 . In contrast toD6 , the rate for the small domainD5
near the boundary is rather close to the one forD1 andD2 .
The slightly slower rate forD5 is due to the smaller energ
range for which we have computedS1(E,xD5

). A fit of

S1
fit(E)5aE21/41« to S1(E,xD1

) and S1(E,xD2
) using the

first 2000 eigenfunctions gives an« of 0.022 for D1 and
0.011 forD2 , which is of the same magnitude as the res
for D5 . Moreover, the rate decreases monotonically with
creasing area of the domainsDi , as long as they are insid
the rectangular partR of the billiard.

The domainD10 is interesting because it extends ov
both parts of the billiard. The enhanced probability dens
of the exceptional eigenfunctions in the rectangular par
partially compensated by the lower probability density in t
quarter circle. Therefore one expects a rate similar to a
main in the rectangular part with relative area$V(D10)
22V@D10ù(V\R)#%/V(V)50.371... . This relative area
lies between the values forD6 andD7 and indeed the rate fo
D10 lies between the rate forD6 andD7 too.

These results strongly support the third explanation, i
the existence of a large density zero subsequence that i
sponsible for the deviations of the rate fromE21/4. ‘‘Large’’
means that the counting function increases sufficien
strongly to cause the rate to deviate from the expected
havior. A lower bound on this counting function is give
according to Eq.~42! by the slowest rate that is observe
For the stadium billiard this is the one forD9 , which leads to
N9(E)*E0.92.

To test this conjecture quantitatively one has to comp
the numerical data with the conjectured behavior

S1
model~E,A!5~12cE2b!n8~A!E21/41b~A!E2b.

~53!

Since this model contains the four free parametersc, b,
n8(A), andb(A), the numerical fit is not very stable. There
fore, it is desirable to get some additional information from
different source.
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To this end we plotted d9(n)5^cn ,xD9
cn&

2V(D9)/V(V) for domainD9 , which is the whole rectan
gular part and shows a slow rate; see Fig. 3. Then we divi
the spectrum into two parts by inserting a horizontal lineg,
g.0. The part of the spectrum above the line correspond
the non-quantum-ergodic eigenfunctions whose quan
limits satisfy n(xD9

)>uD9u1g. From this we obtained for
the counting function of the non-quantum-ergodic sub
quenceN9(E)50.08E0.93. This allows us to determine th
parametersc50.08@4p/V(V)#50.39... andb520.07 in
the model~53! giving

S1
model~E,A!5~120.39E20.07!n8~A!E21/41b~A!E20.07.

~54!

We have now eliminated two of the four free parameters
can therefore test this formula with the numerical data. T
results forn8(xDi

) and b(xDi
) are also shown in Table I

and for three large domains the plot ofS1(E,xD) and the
corresponding fitS1

model(E,xD) is shown in Fig. 9.
The agreement of the fits with the numerical data is go

Moreover, the values forn8(Di) and b(Di) are reasonable
The behavior ofb(Di) is in accordance with what one ex
pects for a sum of quantum limits that are concentrated
the rectangular part of the billiard. The values increase w
moving Di into the quarter circle and they increase w
increasing volume ofDi , as long asDi lies entirely inside
the rectangular part. ForD10 the parameterb(D10) takes an
intermediate value betweenb(D6) and b(D7), as one ex-
pects from our model. Varying the parameterg that governs
the selection of the non-quantum-ergodic subsequence,
thereforeN9(E), leads only to slight variations of the coe
ficientsn8(Di) andb(Di). Due to the presence ofc in front
of n8(Di) in Eq. ~54!, the variations ofn8(Di) are larger
than those ofb(Di).

The inclusion of the factor 120.39E20.07 in Eq. ~54!
turned out to be necessary to get satisfactory results.
contribution of E20.07 cannot be neglected in the prese
energy range because of the small exponent. Without
factor we obtained for some of the domains negative val
for n8(Di), which is impossible becauseS18(E,A) is by defi-
nition positive. This also sheds some light on the limitatio
of such a simple model like~54!. Nothing is known about the
behavior of the higher-order contributions toS18(E,A) and
S19(E,A). In view of this, it is surprising how good thi
model fits with the numerical data. We believe that this giv
strong support for the underlying conjectures, namely, th
density one subsequence of quantum-ergodic eigenfunc
has a rateS18(E,A);cE21/4 and the deviations in the rate o
S1(E,A) from this behavior are due to a subsequence
density zero.

As mentioned in Sec. II D, a behaviorS2(E,A)
;cE21/2 ln$@V(V)/2#E1/2% for the stadium billiard is claimed
in @16#. We have tested this both for the small domainsD1
and D2 , which are not influenced by the bouncing-ba
modes, and also for some larger domains. However, the
sulting fits clearly show that this result does not apply to o
numerical data; see Fig. 10. We also tested if this re
applies to the quantum-ergodic subsequence, i.e.,S18(E,A)
;cE21/4Aln$@V(V)/2#E1/2%, by replacing the termE21/4 in
d
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the model~54! by E21/4Aln$@V(V)/2#E1/2%. Again we find
that from our numerical data that this possibility is exclude
at least for the energy range under consideration. For
stadium billiard it is known that the asymptotic behavior
the classical autocorrelationC(t);1/t, which leads to
S2(E,A);cE21/2 ln$@V(V)/2#E1/2% according to@16#, sets in
rather late. So it would be very interesting to compare
results with those obtained by inserting the numerically co
puted autocorrelation function in the integral in Eq.~34!.

We now return to the question of what type these ad
tional subsequences of eigenfunctions are. As additiona
formation for the model, the counting function for the num
ber of states for which^cn ,xD9

cn&2V(D9)/V(V) is

smaller than2g has been used. For comparison we ha
carried out the same procedure for the observablexD4

that

lies under the quarter circle. As expected, the bouncing-
modes appeared in both subsequences, but additiona
considerable number of other types of eigenfunctions sh
up. In Fig. 11 we show some examples of such eigenfu
tions. They all show a reduced probability density inside
quarter circle, but their structure is essentially different fro
the bouncing-ball modes. Their semiclassical origin a
maybe periodic orbits bouncing up and down between
two perpendicular walls for a long time but then leaving t
neighborhood of the bouncing-ball orbits in phase space
least it seems difficult to associate short unstable perio
orbits with the patterns in the shown states because the
of enhanced probability do not always obey the laws of
flection or they look too irregular.

A further test of the hypothesis that a density zero sub
quence is responsible for the slow rate is provided by va
ing the lengtha of the billiard. Here we used the first 200
eigenfunctions for both thea50.5 and thea54.0 stadium
billiard in addition to the results for thea51.8 stadium
based on 6000 eigenfunctions. We have chosen three di
ent domains for these three systems: domainA lies within
the rectangular part of the billiard, domainB is centered at
x5a, and domainC is located in the quarter circle. Th
results for the rate of quantum ergodicity are shown in Ta
III. For different parameters the quantitiesb(Di) change and
therefore the weights of the different contributions
S1(E,A) in Eq. ~54!. For smallera the relative fraction of
the volume of the rectangular part,V(R)/V(V) becomes
smaller. Therefore, one expects that for smallera the influ-
ence of the non-quantum-ergodic subsequences toS1(E,xD)
becomes stronger in the rectangular part and weaker in

TABLE III. Results for« of the fit of S1
fit(E)5aE21/41« to the

numerically obtainedS1(E,xDi
), for stadium billiards with differ-

ent parametera for three different domainsA, B, andC. DomainA
lies within the rectangular part of the billiard, domainB is centered
at x5a, and domainC is located in the quarter circle.

System DomainA DomainB DomainC

stadium (a50.5) 10.111 10.062 10.056
stadium (a51.8) 10.009 10.033 10.095
stadium (a54.0) 20.008 10.031 10.095
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quarter circle. This is clearly seen in the numerically fou
behavior of the rate for the domainsA andC shown in Table
III.

To summarize our results for the stadium billiard, w
have given numerical evidence for the existence of a la
but density zero, subsequence of eigenfunctions that hav
enhanced probability distribution on the rectangular part
the billiard but a different structure from the bouncing-b
modes. We demonstrated that the observed effects ca
explained with the influence of this subsequence of den
zero. This subsequence shows a different behavior from
majority of quantum-ergodic eigenfunctions for which o
results imply a uniform rate ofE21/4. Clearly, we cannot
decide if this exceptional subsequence will ultimately
non-quantum-ergodic or if it is a quantum-ergodic sub
quence with an exceptional behavior of the rate. We can o
say that on the presently studied energy range up toE
'30 000, i.e., up to the 6000th eigenfunction, they beh
non-quantum-ergodically.

3. Cardioid billiard

The cardioid billiard is probably the most generic one
our three billiards, in the sense that it possesses no t
dimensional family of periodic orbits like the bouncing-ba

FIG. 6. Plot ofS1(E,xDi
) for different domainsDi for the car-

dioid billiard using the first 6000 eigenfunctions; see Fig. 2~a! for
the location of the domainsDi . The inset shows the same curves
a double-logarithmic representation together with a fit ofS1

fit(E)
5aE21/41«, @Eq. ~49!#.

FIG. 7. Plot ofS1(E,xDi
) for two further domainsD8 andD9

~dashed curve! in the cosine billiard using the first 2000 eigenfun
tions. Also shown is the fitS1

model(E,xDi
) @Eq. ~50!#.
e,
an
f

l
be
ty
he

-
ly

e

f
o-

orbits. One might therefore expecta priori a better rate of
quantum ergodicity than for the other billiards.

We have computedS1(E,xDi
) for five small domains@see

Fig. 2~c!# by using the first 6000 eigenfunctions up to ener
E'32 000 and for three larger domains~see Fig. 12! by
using the first 2000 eigenfunctions. The results are displa
in Figs. 6 and 12. To determine the rate a fit ofS1

fit(E)
5aE21/41« has been performed and the resulting values
a and« are listed in Table IV.

We find that domainD3 gives the lowest rate of quantum
ergodicity for the small domainsD1–D5 . This is caused by
a considerable number of eigenfunctions showing an
hanced probability as in Fig. 1~e! along the vertical orbitAB.
For domainsD1 ,D2 we also find a slower rate than for th
other regionsD4 ,D5 ; in this case the slower rate seeming
cannot be attributed to one type of localized eigenfunctio

The larger domains show a slower rate than the sm
domains, but the rate is not monotonically decreasing w
the area of the domain. The rate for the largest domainD8 is
even of the same order of magnitude as the one forD3 ,
especially if one takes the smaller energy range forD8 into
account. This slower rate is probably caused by the existe
of different non-quantum-ergodic subsequences with qu
tum limits mk in different regions of the billiard. For each o
the domains the influence of these subsequences is diffe
and therefore one observes different rates.

A quantitative test in a way similar to that for the oth
billiards using a model forS1(E,A) is very difficult because
the deviations from the conjectured optimal rate is not o

FIG. 8. Domains in thea51.8 stadium billiard used to decid
between the different explanations for the slow rates in the stad
billiard.

FIG. 9. Plot ofS1(E,xD) for large domains~see Fig. 8! for the
a51.8 stadium billiard using the first 2000 eigenfunctions. T
inset shows the same curves in a double-logarithmic represent
together with a fit of Eq.~49!. For the domainsD7 and in particular
for domainD8 a sharp transition from a fast to a slower decay
the rate is visible. This effect is due to the boundary and will
explained in Sec. III A 4.
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57 5439RATE OF QUANTUM ERGODICITY IN EUCLIDEAN BILLIARDS
due to one subsequence. However, the results forD4 andD5
clearly shows that here as well one has a density one su
quence of quantum-ergodic eigenfunctions with r
S18(E,xD);n8(D)E21/4. We hope to return to the problem
of determining the non-quantum-ergodic subsequences
their quantum limits in the future.

The cardioid billiard is the only system we have studied
which the result~33! should be applicable. However, fo
most of the domains the rate is much slower than the p
dicted one. Only the domains 4 and 5 show the expected
Therefore, we have computed for these domains the fa
r(A) in Eq. ~33!. For the computation ofr(A) the variance
of ^xDi

& l2V(Di)/V(V) as a function ofl has been com-

puted using trajectory segments of lengthl of a generic tra-
jectory $q(t)%. The quantity^xDi

& l5(1/l )*0
l xDi

@q(t)#dt is
the relative length of the trajectory segment lying in the d
main Di . By ergodicity we have liml→`^xDi

& l

5V(Di)/V(V). The variance of̂ xDi
& l2V(Di)/V(V) de-

creases liker(A) l 21.
Using the corresponding results in Eq.~33!, we obtain

S2(E,xD4
)50.0062E21/2 and S2(E,xD5

)50.0074E21/2.
These numbers have to be compared with the result of
S2

fit(E,A) to S2(E,xDi
). We obtain S2

fit(E,xD4
)

50.0036E20.47 and S2
fit(E,xD5

)50.0031E20.48. One sees

FIG. 10. Plot ofS2(E,xDi
) for the domainsD1 and D2 in the

stadium billiard. The dashed lines show the fit of the conjectu
behaviorcE21/2 ln$@V(V)/2#E1/2% to S2(E,xDi

). The result of the fit
shows that the numerical data for the first 6000 expectation va
cannot be described with this rate.

FIG. 11. Four examples of the exceptional eigenfunctions sh
ing localization in the rectangular part of the stadium billiard, wh
are not bouncing-ball modes:~a! n51643, ~b! n51652, ~c! n
51797, and~d! n51834.
se-
e

nd

e-
te.
or

-

fit

that the theoretical prediction is too large by a factor of a
proximately 2. This deviation might be related to the factog
in Eq. ~33!, which counts the mean multiplicities in the cla
sical length spectrum. In the cardioid billiard the asympto
valueg52 is reached very late; for the shorter periods o
rather hasg'1, which would lead to a better agreement
Eq. ~33! with the data forD4 andD5 .

For a better understanding it seems necessary to chec
detail whether any of the assumptions leading to Eq.~33! are
not fulfilled for the domains of the cardioid billiard. It would
also be very interesting to investigate if the slower rates
be described using the expression in terms of the class
correlation function. We will leave these questions for
separate study.

4. Influence of the boundary

In all three billiards we observe the phenomenon that
large domainsS1(E,xD) decays faster at low energies tha
at high energies. This can be seen in Fig. 7 for domainD8 in
the cosine billiard, in Fig. 9 for domainsD7 and D8 in the
stadium billiard, and in Fig. 12 for domainsD6 , D7 , andD8
in the cardioid billiard. The other large domains we studi
showed the same behavior. The only exceptions are the
mainsD9 in the cosine billiard and in the stadium billiard
which consist of the whole rectangular part. For these
mains no faster rate at low energies is visible.

Qualitatively this behavior can be understood by the v
ishing of the probability densityucn(q)u2 of the eigenstates

d

es

-

FIG. 12. Plot ofS1(E,xDi
) for larger domains for the cardioid

billiard using the first 2000 eigenfunctions. Also shown are fits
Eq. ~49! for the corresponding energy regions.

TABLE IV. Rate of quantum ergodicity obtained from a fit o
S1

fit(E)5aE21/41« to S1(E,xDi
) for the cardioid billiard with do-

mainsDi as shown in Figs. 2~a! and 12.

Domain Relative area « a

1 0.01722 10.047 0.028
2 0.01722 10.039 0.037
3 0.01722 10.064 0.046
4 0.01722 10.007 0.048
5 0.01722 10.009 0.042
6 0.18674 10.098 0.125
7 0.33104 10.115 0.140
8 0.50930 10.071 0.213
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at the boundary due to the Dirichlet boundary conditio
Because of the normalization ofcn(q), the reduced prob-
ability density at the boundary has to be compensated b
enhancement of the probability density inside the billia
which leads to larger oscillations of the probability dens
near the boundary.

Let us assume that this compensation of the probab
density takes place in a strip along the boundary with a wi
of a few de Broglie wavelengths. Then the integral of t
probability densityucn(q)u2 over a domainD ‘‘feels’’ the
influence of the boundary only up to a certain energy, p
portional to the inverse square of the distance betweenD and
the boundary]V. Furthermore, the boundary influence w
be proportional to the overlap ofD and the strip at the
boundary. This overlap decreases like 1/AEn and therefore
S1(E,xD) should decrease with such a rate at low energ
So the assumption that the compensation takes place
small strip along the boundary leads exactly to the beha
we observe. Moreover, a domain likeD9 that extends to the
boundary]V will not feel any influence because the boun
ary effect is compensated entirely inside this domain.

To justify our assumption on the range of the bound
influence we refer to the following result on the asympto
behavior of the summed probability densities on a tw
dimensional Riemannian manifold with aC` boundary~see
@20#, Theorem 17.5.10!:

(
En<E

ucn~q!u25
1

4p
E2

1

4p

J1@2d~q!AE#

d~q!
AE1R~q,E!,

~55!

whered(q) is the shortest distance of the pointqPV to the
boundary. The remainderR(q,E) satisfies the estimat
uR(q,E)u<CAE. The second term in Eq.~55! describes the
influence of the boundary; ford(q)→0 the term tends to
2E/(4p) and cancels the contribution from the first ter
such that the boundary conditions are fulfilled. In Fig. 13~a!

FIG. 13. In ~a! we show a three-dimensional plot of the su
CE(x,y)5@1/N(E)#(En<Euc(x,y)u2 involving the first 250 eigen-
functions of thea51.8 stadium with odd-odd symmetry. The pi
tures on the right show a cross sectionCE(1,y) for using the first
~b! 250 and~c! 1000 eigenfunctions. The dashed curves in~b! and
~c! display the evaluation using the first two terms in formula~55!.
These results are used to explain the fast rate in the low-en
range for the stadium billiard for large domains.
.

an
,

y
h

-

s.
a
r

y

-

the normalized sum

CE~x,y!5
1

N~E! (
En<E

ucn~x,y!u2, ~56!

is displayed for the stadium billiard, using the first 25
eigenfunctions. One clearly sees how the probability den
is forced to vanish at the boundary and how the compen
tion leads to large oscillations near the boundary. In Fi
13~b! and 13~c! we show two cross sections through th
function ~56! at two different energies and compare it to t
result one gets from the first two terms on the right-hand s
of Eq. ~55!. The agreement is quite impressive, especia
near the boundary~y50 andy51!. So although the stadium
billiard does not have aC` boundary, the result~55! seems
to remain valid. One furthermore observes that with high
energies they range on which the agreement is excelle
increases.

The averaged probability density~56! shows exactly the
behavior we assumed for the individual wave functions
order to explain the fast rate of quantum ergodicity at lo
energies for domains near the boundary. The influence of
Dirichlet boundary condition is concentrated near the bou
ary and it decays at a length scale proportional to the
Broglie wavelength. So with the help of Eq.~55! one gets a
good qualitative understanding of the boundary influence
the rate of quantum ergodicity.

In order to try to get a quantitative understanding we us
Eq. ~55! to derive as in@17# a mean eigenfunction that in
corporates the boundary influence

ucn~q!u2'
1

V~V!2
V~]V!

2AEn

$12J0@2d~q!AEn#%. ~57!

Integrating this expression over a domainD should give for
the expectation values the mean value plus the correct
due to the boundary ofxD . By incorporating this into
S1(E,xD) one obtains an expression, which we compa
with our numerical data. Although Eq.~57! implies a faster
decay rate at low energies, it is not as strong as the num
cally observed one. This deviation must be caused by c
siderable fluctuations of the boundary influence on the in
vidual statescn around the mean influence described by E
~55! and ~57!.

B. Quantum ergodicity in momentum space

Up to here we have investigated the behavior of the w
functions in position space only. Now we turn our attenti
to the rate of quantum ergodicity in momentum space, wh
is studied here numerically.

Quantum ergodicity predicts that the angular distributi
of the momentum probability distributionuĉn(p)u2 tends to
1/2p in the weak sense; see Eq.~28!. Therefore, we study an
observable with symbolxC(u,Du)(p) whose expectation
value gives the probability of finding the particle with mo
mentum direction in the interval ]u2Du/2,u1Du/2@ . Re-
call that xC(u,Du)(p) denotes the characteristic function
the circular sector C(u,Du)5$pPR2uarctan(py /px)P#u

gy
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57 5441RATE OF QUANTUM ERGODICITY IN EUCLIDEAN BILLIARDS
2Du/2,u1Du/2@% and the classical mean value
xC(u,Du)(p) is Du/2p.

Only eigenfunctions of odd parity of the nondesymm
trized systems are considered here due to our metho
computing the Fourier transformation directly from the no
mal derivative un(v) of the eigenfunctioncn(q). From
Green’s theorem one easily finds the formula

ĉn~p!5
1

p22En

1

2p E
]V

e2 iq~v!pun~v!dv, ~58!

whereq(v) denotes a point on the boundary]V. The advan-
tage of this formula is that it allows one to compute t
Fourier transform directly fromun(v), which can be ob-
tained using the boundary integral method. For desym
trized systems, like the ones considered here, one use
appropriate Green’s function that vanishes at the lines
symmetry and therefore removes them from the bound
integral; see, e.g.,@71#. This reduces the computational e
fort, but one does not get the normal derivatives on th
parts of the boundary of the desymmetrized system. Th
fore, our results for the rate of quantum ergodicity in m
mentum space are sufficient to rule out the possibility o
totally different behavior in momentum space than in po
tion space. Since the rate for all eigenfunctions cannot
faster than the one for a subsequence of positive density
get a lower bound for the rate of the full system.

The time-reversal invariance leads, for the Fouri
transformed eigenfunctions, to the symmetryĉn(2p)

5 ĉ̄n(p). Therefore,uĉn(2p)u25uĉn(p)u2 and this reduces
the angle interval we have to study to@0,p@. The additional
reflection symmetries in the considered billiards further
duce the relevant angle interval to@0,p/2@ .

For our numerical computations we have chosen fi
equidistant intervals, centered atu i5( i 21/2)(p/10) with i
51,...,5 of width Du5p/10. As in the case of quantum
ergodicity in coordinate space@see Eq.~47! and Fig. 3#, one
observes large fluctuations of^cn ,xC(u,Du)cn&2Du/(2p)
around 0. Therefore, we again consider the cumulative
sion ~31! of the quantum ergodicity theorem, which reads
this case

S1~E,x̂C~u,Du!!5
1

N~E! (
En<E

U E
C~u,Du!

uĉn~p!u2dp2
Du

2pU
→0 for E→`. ~59!

The results forS1(E,x̂C(u i ,Du)) are shown in Fig. 14 for
the stadium billiard and in Fig. 15 for the cardioid billiard.
each case 2000 eigenfunctions have been used. For the
dioid billiard the inset shows a double-logarithmic repres
tation together with the fits ofS1

fit(E) @Eq. ~49!#. For the
cosine billiard no computations of the rateS1(E,x̂C(u i ,Du))
in momentum space have been performed.

As in position space one expects that the rate is stron
influenced by non-quantum-ergodic subsequences of ei
functions. For the bouncing-ball modes in the stadium b
liard one has
-
of

-

e-
an

of
ry

e
e-
-
a
-
e
e

-

-

e

r-

ar-
-

ly
n-
-

lim
En9→`

E
C~u,Du!

uĉn9~p!u2dp

5H 0, for
p

4
¹]u2Du,u1Du@

1 for
p

4
P]u2Du,u1Du@

~60!

and so the coefficientnBB9 (x̂C(u i ,Du)) in the model~43! for

S1(E,x̂C(u i ,Du)) is given by

nBB9 ~ x̂C~u i ,Du!!5H 1

20
for i 51,...,4

19

20
for i 55.

~61!

The results for the rate of quantum ergodicity, charact
ized by«, are listed in Table V. It turns out that the rate
slower than the rate of quantum ergodicity for the small d
mains in configuration space. Moreover, the agreemen
S1(E,x̂C(u i ,Du)) with the fit is not as good as in the case

S1(E,xD); in particular the fluctuations ofS1(E,x̂C(u i ,Du))
are much larger than in position space.

FIG. 14. Plot ofS1(E,x̂C(u i ,Du)) for u i5( i 21/2)(p/10) with
i 51,...,5 andDu5p/10 for the stadium billiard using the firs
2000 eigenfunctions.

FIG. 15. Plot ofS1(E,x̂C(u i ,Du)) for u i5( i 21/2)(p/10) with
i 51,...,5 andDu5p/10 for the cardioid billiard using the firs
2000 eigenfunctions.
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5442 57A. BÄCKER, R. SCHUBERT, AND P. STIFTER
In the stadium billiard the interval 5, which correspon
the direction of the bouncing ball orbits, shows the slow
rate. However, as we already noted in the discussion of
rate in position space, the bouncing-ball modes alone ca
cause such a slow rate because their counting function
creases only asE3/4. So a considerable number of the add
tional non-quantum-ergodic states that are responsible fo
slow rate in position space must also have an enhanced
mentum density aroundp/2. However, the slow rates for th
other angular intervals indicate that not all non-quantu
ergodic states show this behavior in momentum space.

For both billiards one observes that the order of mag
tude of « in momentum space is the same as for the la
domains in position space. Therefore, the results are com
ible with the results in position space, but the large fluct
tions indicate that one has to go higher in the energy
momentum space than in position space.

C. Fluctuations of expectation values

Another aspect of great interest is how the expecta
values^cn ,Acn& fluctuate around their mean values(A).
Since the mean fluctuations decrease for largen, one has to
consider the distribution of

jn5
^cn ,Acn&2s~A!

AS̃2~En ,A!
. ~62!

Here S̃2(E,A)5JS2(E,A), with J being a correction nec
essary to ensure that the distribution ofjn has unit variance;
see below for an explanation. So the question is wheth
limit distribution P(j) of jn exists in the weak sense, i.e.,

lim
N→`

1

N (
n51

N

g~jn!5E
2`

`

g~j!P~j!dj, ~63!

whereg(j) is a bounded continuous function. It is natural
conjecture that this distribution tends to a Gaussian nor
distribution

TABLE V. Rate of quantum ergodicity obtained from a fit o
S1

fit(E)5aE21/41« to the numerically obtained function
S1(E,x̂C(u i ,Du)) for the different systems and angle secto
C(u i ,Du).

System Domain «

stadium 1 0.15
2 0.12
3 0.15
4 0.09
5 0.18

cardioid 1 0.050
2 0.075
3 0.026
4 0.079
5 0.076
t
e
ot
n-

he
o-

-

i-
e
at-
-
n

n

a

al

P~j!5
1

A2p
exp~2j2/2!, ~64!

as in random matrix theory~see@44#, Sec. VII!. Note that
this is a conjecture for every observable, i.e., the asympt
distribution should be independent of the special observa
under investigation. For hyperbolic surfaces a study ofP(j)
for an observable in position space is contained in@17#,
where good agreement with a Gaussian normal distribu
was observed. In@16# P(j) was studied for the Baker ma
and the hydrogen atom in a strong magnetic field and
agreement with a Gaussian was found.

However, already from the plots ofdi(n) shown in Fig. 3
it is clear that the fluctuations are not symmetrically distr
uted around zero, but have more peaks with large posi
values. The reason is that di(n)5^cn ,xDi

cn&
2V(Di)/V(V) has to satisfy the inequality

2
V~Di !

V~V!
<^cn ,xDi

cn&2
V~Di !

V~V!
<12

V~Di !

V~V!
. ~65!

This already indicates that the approach to an asympt
Gaussian behavior could be rather slow. Therefore, we h
tested additionally for the cardioid billiard the observableA
5xD4

2xD5
where the expectation values fluctuate sy

metrically around zero and one expects a faster approach
Gaussian behavior. In Fig. 16~a! we show the cumulative
distribution

FIG. 16. Cumulative distribution of jn5@^cn ,Acn&
2s(A)#/AS̃2(En ,A) for the stadium billiard for domain 4,A
5xD4

, and for the cardioid billiard with observableA5xD4

2xD5
. In both cases we haven chosennP@2000,6000#. The dashed

curve corresponds to the cumulative normal distribution. The ins
show the distribution ofjn together with the normal distribution
with zero mean and unit variance@Eq. ~64!# ~dashed curve!.
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I N~j!5
1

N (
jn,j

1 ~66!

for domainD4 of the stadium billiard and in Fig. 16~b! I N(j)
is shown for the observableA5xD4

2xD5
in case of the

cardioid billiard. In both cases all values ofjn with n
P@2000,6000# have been taken into account, givingN
54000. For the rateS2(E,xD) we used the result of a fit to
S2

fit(E)5aEa. The insets show the corresponding distrib
tions of jn in comparison with the normal distribution@Eq.
~64!#. Notice that no further fit of the mean or the variance
the Gaussian has been made. Figure 16~a! is the case for
which we have found the worst agreement with a Gauss
~of all the small domains we have tested!. The observable
chosen for Fig. 16~b! gives very good agreement with th
Gaussian distribution. In the case ofxD4

in the stadium bil-

liard there is a significant peak aroundj522, which is due
to the bouncing-ball modes, for whicĥcn9 ,xD4

cn9& is ap-
proximately zero; see Fig. 3. Therefore, one has a lar
fraction with negativejn9 . For the distribution in case of th
observableA5xD4

2xD5
of the cardioid billiard we obtain a

significance level of 23% for the Kolmogorov-Smirnov te
~see, e.g.,@72#! with respect to the cumulative normal distr
bution.

We also studied the distribution ofjn for the observables
a(p,q)5a(p)5xC(u,Du)(p) in momentum space. For th
stadium billiard the computed distributions show in the co
sidered energy range clear deviations from a Gaussian
one already expects from Fig. 14. The best result was
tained for the cardioid billiard for the interval given byi
53 @with u i5( i 21/2)(p/10) and Du5(p/10)# and is
shown in Fig. 17. The agreement is quite good;
Kolmogorov-Smirnow test gives a significant level of 29%

There is one subtle point concerning the variance of
distribution ofjn . SinceS2(E,A) does not represent a loca
variance aroundE, but a global one, it is necessary to ta
this into account to obtain for the fluctuations a variance
unity. If the rate behaves asS2(E,A)5aEa, then the correc-
tion J is given by J5a11, e.g., fora521/2 we have

FIG. 17. Cumulative distribution of jn5@^cn ,Acn&
2s(A)#/AS̃2(En ,A) for the cardioid billiard, for the observabl
xC(u,Du)(p) in momentum space withu55p/20 andDu5p/10.
The dashed curve corresponds to the cumulative normal distr
tion. The inset shows the distribution ofjn together with the norma
distribution with zero mean and unit variance@Eq. ~64!# ~dashed
curve!.
-

f

n

er

-
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b-

e

e

f

J51/2. See@63# for a more detailed discussion on this poi
in the case of the distribution of the normalized mode flu
tuations.

Let us now discuss the influence of non-quantum-ergo
sequences to the possible limit distribution. Assume that
rate for the quantum-ergodic states isS28(E,A);aE2a with
some powera. If we have a subsequence of non-quantu
ergodic states such that the total rate isS2(E,A);a8E2a8,
we can have two different situations, eithera5a8 or a
,a8. In the first case the non-quantum-ergodic states h
no influence on the limit distribution. In the second ca
where the non-quantum-ergodic states dominate the rate
normalization by a rate that is slower than the one of
quantum-ergodic subsequence implies that we haveP(j)
5d(j).

If one instead normalizes the fluctuations with the rate
the quantum-ergodic subsequenceS28(E,A),

j̃ n :5
^cn ,Acn&2s~A!

AS̃28~En ,A!
, ~67!

with S̃28(En ,A)5JS28(E,A), then the limit distribution is
determined only by the quantum-ergodic subsequence, in
pendently of the behavior of the non-quantum-ergodic s
sequence. To see this we split Eq.~63! into the different parts

1

N~E! (
En<E

g~ j̃ n!5
N8~E!

N~E!

1

N8~E! (
En8<E

g~ j̃ n8!

1
N9~E!

N~E!

1

N9~E! (
En9<E

g~ j̃ n9!.

~68!

Since limE→` N8(E)/N(E)51, limE→` N9(E)/N(E)50,
and 1/N9(E)(En9<Eg( j̃ n9)<maxjPRg(j), one gets

lim
E→`

1

N~E! (
En<E

g~ j̃ n!5 lim
E→`

1

N8~E! (
En8<E

g~ j̃ n8!.

~69!

We conjecture that the fluctuations of the quantum-ergo
subsequence is Gaussian and therefore all fluctuations, w
normalized with the rate of the quantum-ergodic sub
quence, are Gaussian.

IV. SUMMARY

The aim of the present paper is to give a detailed study
the rate of quantum ergodicity in Euclidean billiards. W
first have given a short introduction to the quantum ergod
ity theorems in terms of pseudodifferential operators. W
have shown that the quantum ergodicity theorems of Shn
lman, Zelditch, Colin de Verdie´re, and others are equivalen
to a weak form of the semiclassical eigenfunction hypothe
for ergodic systems put forth in@9–12#. That is, the quantum
ergodicity theorem is equivalent to the statement that
ergodic systems the Wigner functionsWn(p,q) fulfill

u-
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Wnj
~p,q!;

1

V~SEnj
!
d„H~p,q!2Enj

… ~70!

for Enj
→` and$nj%,N a subsequence of density one.

Of great importance for the practical applicability of th
quantum ergodicity theorem is the question at which r
quantum-mechanical expectation values^cn ,Acn& tend to
their mean values(A). Different arguments were presente
previously in favor of an expected rate of quantum ergodic
S1(E,A)5O(E21/41«) for all «.0, in the case of strongly
chaotic systems. In Sec. II D we discussed the influence
non-quantum-ergodic subsequences to the rate. If t
counting function increases sufficiently fast, they can do
nate the behavior ofS1(E,A) asymptotically. Together with
results from@46# for the number of bouncing-ball modes
certain billiards, it follows that one can find for arbitraryd
.0 an ergodic billiard for whichS1(E,A)5O(E2d). That
is, the quantum ergodicity theorem gives a sharp bou
which cannot be improved without additional assumptio
on the system.

We furthermore developed a simple model for the beh
ior of S1(E,A) in the presence of non-quantum-ergod
eigenfunctions, whose main ingredient is that the quantu
ergodic eigenfunctions should obey the optimal rateE21/4.
The discussion shows that the total rate of quantum ergo
ity can be strongly influenced by those exceptional sub
quences. Not only can they cause the rate to be much slo
than E21/4, they can lead as well to a grossly different b
havior of S1(E,A) at low, intermediate, and high energies

The numerical investigations are carried out for thr
types of Euclidean billiards: the stadium billiard~with differ-
ent parameters!, the cosine billiard, and the cardioid billiard
The results are based on 2000 eigenfunctions for the co
billiard and up to 6000 eigenfunctions for the stadium a
the cardioid billiard. As observables we have used charac
istic functions of different domains in position space and a
a class of observables in momentum space.

It turns out that the rate of quantum ergodicity in positi
space is in good agreement with a power-law de
S1(E,A);E21/41«. The difference« between the exponen
and 1/4 is found to be small for several domains and s
tems. However, we also find a number of significant e
amples showing a slow rate~i.e., «.0 and not small!. These
are discussed in detail and can be attributed to subseque
of localized eigenfunctions.

For the cosine billiard we find that the rate agrees w
with the expected rate, in particular for the small domai
However, asymptotically the rate has to obeyS1(E,A)
;E21/10 because the counting function of the bouncing-b
modes increases asE9/10. The asymptotic regime for the rat
lies far beyond any presently computable number of ene
levels. By incorporating the knowledge of the counting fun
tion obtained from our previous work, we tested our mo
~43! for the rate for all the considered domains.

For the stadium billiard the situation is more complicate
Here the counting function of the bouncing-ball modes
creases asE3/4 and therefore, as discussed in Sec. II D, ca
not influence the rate. However, we find for the stadium b
liard that the rate is for several domains in position sp
much slower than expected. After discussing and testing
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eral possibilities, our explanation for this observation is th
in the stadium billiard there exists a much larger sub
quence of eigenfunctions that have an enhanced probab
density in the rectangular part of the billiard than just t
bouncing-ball modes. They nevertheless have density z
but their counting function increases more strongly thanE3/4.
Of course, we cannot decide whether this subsequence e
has a quantum limit different from the Liouville measure,
if it is a quantum-ergodic subsequence with an exception
slow rate.

For the cardioid billiard we also have domains for whi
the rate is proportional toE21/4. However, we also find sig-
nificant exceptions; in particular for domainD3 the rate is
much slower, and this can be attributed to a number of eig
states that show localization along the unstable periodic o
AB. For the cardioid billiard we also tested the result fro
@16# @Eq. ~33!# for the domainsD4 and D5 , for which the
rate is closest to the optimal rate. However, the semiclass
result does not agree with our numerical results for the r
It would be interesting to study this in more detail.

From our numerical results we obtain the following ge
eral picture: In the studied systems there is a quantu
ergodic subsequence of density one whose rate isS18(E,A)
5O(E21/41«). If one observes a slower rate ofS1(E,A) by
using all eigenfunctions, this is caused by a subsequenc
density zero, whose counting function increases m
strongly thanE3/4. These exceptional eigenfunctions sho
localization effects and probably they tend to some n
quantum-ergodic limit. However, we cannot rule out the p
sibility that they are quantum ergodic but with a mu
slower rate than the majority of eigenfunctions.

Furthermore, we have found an effect due to the bound
conditions. For domains lying next to the boundary we o
served that the rate may be considerably faster at low e
gies. The qualitative explanation of the phenomenon is t
the probability density of the eigenstates shows enhan
fluctuations near the boundary because of the boundary
ditions.

Using an observable depending only on the momentu
we studied quantum ergodicity in momentum space too.
find that, in general, the rate of quantum ergodicity is of t
same magnitude as for the large domains in position sp
Furthermore, the oscillations ofS1(E,A) are larger in mo-
mentum space, which might indicate that one has to
higher in the energy in momentum space than in posit
space.

We also studied the distribution of the suitably norm
ized fluctuations of̂ cn ,Acn&2s(A) @see Eq.~62!# for op-
erators both in position space and in momentum space.
the observableA5xD4

2xD5
, in the case of the cardioid bil

liard we find very good agreement with a Gaussian norm
distribution and in the case of observables depending only
the momentum good agreement is found. However, for
stadium billiard~and also domainD3 for the cardioid bil-
liard! we clearly find that again subsequences of no
quantum-ergodic states may have a considerable influenc
they dominateS2(E,A), the distribution will tend to ad
function due to the normalization byAS2(E,A). However,
when normalizing instead with the rate of the quantu
ergodic statesS̃28(E,A), we expect a universal Gaussian di
tribution of the fluctuations.
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As possible investigations for the future it seems ve
interesting to study whether the expression given in@16# for
the rate in terms of the classical correlation function c
describe our numerical results. In particular, for the cardi
billiard a more detailed investigation along these lines see
promising as this system is the most generic one of the th
studied systems and we find both the optimal rate and
clear deviations. The present paper also shows that a det
understanding of the phenomenon of scarred eigenfunct
is necessary because these clearly affect the rate of qua
ergodicity.

ACKNOWLEDGMENTS

We would like to thank Dr. R. Aurich, Dr. J. Bolte, T
Hesse, Dr. M. Sieber, and Dr. F. Steiner for useful disc
sions and comments. Furthermore, we are grateful to Dr.
Robnik and Dr. T. Prosen for the kind provision of the e
genvalues of the cardioid billiard. Figure 13~a! has been vi-
sualized usingGEOMVIEW from The Geometry Center of th
University of Minnesota and then rendered usingBLUE MOON

RENDERING TOOLSwritten by L. I. Gritz. A.B. acknowledges
support by the Deutsche Forschungsgemeinschaft u
Contract No. DFG-Ste 241/7-2.

APPENDIX A: KOHN-NIRENBERG QUANTIZATION

In the mathematical literature one often prefers a differ
quantization procedure, sometimes called the Ko
Nirenberg quantization@20,21#, and the literature on quan
tum ergodicity often refers to this quantization procedu
With the symbolaPSm(R23V) one associates the operat

âKN f ~q!:5
1

~2p!2 E
R2

eipqa~p,q! f̂ ~p!dp, ~A1!

where f̂ (p):5*Ve2 iqpf (q)dq is the Fourier transform off .
The principal symbol is defined in the same way as befo
i.e., if a;(k50

` am2k , then the leading termam is called the
principal symbol,sKN(âKN)5am .

The usual quantum ergodicity theorem is now the sa
theorem as we have stated it, but with the Kohn-Nirenb
principal symbolsKN instead of the principal symbol corre
sponding to the Weyl symbol that we have used. Howeve
is well known~see@21,20#! that if aPSm(Rn3Rn), then the
Weyl symbol of the Kohn-Nirenberg operator belongs to
same symbol spaceW@ âKN#PSm(Rn3Rn) and that the prin-
cipal symbol coincides with the Kohn-Nirenberg princip
symbol

s~ âKN!5sKN~ âKN!. ~A2!

Therefore, the two formulations of the quantum ergodic
theorem are equivalent.

APPENDIX B: GENERALIZATIONS OF THE QUANTUM
ERGODICITY THEOREM

Assume we have given a quantum limitmk on S1 , that is,
we have a subsequence of eigenfunctions$cnj

% j PN , such
that
y
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s

ee
so
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-
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e,

e
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lim
j→`

^cnj
,Acnj

&5E
S1

mk~p,q!s~A!~p,q!dm ~B1!

for all APScl
0 (V). We want to discuss the lift ofmk from S1

to the whole phase space.
To this end we express the expectation values for an

erator of arbitrary ordermPR by the expectation values o
an operator of order zero. This can be achieved by using
fact that for everymPR, (2D)m/2 is a pseudodifferentia
operator of orderm with principal symbol s@(2D)m/2#
5@s(2D)#m/25H(p,q)m/2; see@25,26,22#. By multiplying
an operatorAPSm(Rm) of orderm by operator (2D)2m/2,
which is of order 2m, we get an operator (2D)2m/2A
PS0(Rn) of order zero. For the expectation values ofA we
therefore have

^cnj
,Acnj

&5Enj

m/2^cnj
,~2D!2m/2Acnj& ~B2!

and on the right-hand side we have an operator of order z
The principal symbol of (2D)2m/2A is, according to Eq.

~11!, given by s@(2D)2m/2#s(A)5H(p,q)2m/2s(A) and
since by definitionH(p,q)51 on S1 , we obtain from Eqs.
~B1! and ~B2!

lim
j→`

Enj

2m/2^cnj
,Acnj

&5E
S1

mk~p,q!s~A!~p,q!dm.

~B3!

Thus Eq.~B3! provides the extension of the quantum e
godicity theorem to pseudodifferential operators of arbitra
orderm.

APPENDIX C: CONNECTION TO THE SEMICLASSICAL
EIGENFUNCTION HYPOTHESIS

By introducing the definition of the Liouville measurem,
Eq. ~B3! can be written as

^cnj
,Acnj

&;Enj

m/2E E mk~p,q!s~A!~p,q!

3
d„H~p,q!21…

V~S1!
dp dq. ~C1!

If one uses the homogeneity ofs(A), i.e., Enj

m/2s(A)(p,q)

5s(A)(Enj

1/2p,q), and performs a change of the momentu

coordinates fromp to Enj

21/2p one obtains

^cnj
,Acnj

&;E E mk~Enj

21/2p,q!s~A!~p,q!

3
d„H~Enj

21/2p,q!21…

V~S1!
Enj

2n/2dp dq

5E E mk~Enj

21/2p,q!s~A!~p,q!

3
d„H~p,q!2Enj

…

V~S1!Enj

n/221
dp dq, ~C2!

where furthermore the homogeneity properties ofH(p,q)
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and of thed function have been used. In terms of the Wign
functionsWnj

corresponding tocnj
, Eq. ~C2! reads

E E s~A!~p,q!Wnj
~p,q!dp dq

;E E s~A!~p,q!mk~Enj

21/2p,q!

3
d„H~p,q!2Enj

…

V~S1!Enj

n/2-1 dp dq, ~C3!

wheres(A)(p,q) can be any function homogeneous inp of
degreem, for some arbitrarymPR. However, since the se
of all polynomials inp is already dense inC`(R23V) the
set of homogeneous functions inp is dense inC`(R23V)
too. Therefore, one gets
i-

s.

ms

K

,

-

,

n,
r
Wnj

~p,q!;mk~Enj

21/2p,q!
d„H~p,q!2Enj

…

V~S1!Enj

n/2-1 . ~C4!

Note thatV(S1)Enj

n/2-15V(SEnj
) and if we extendmk(p,q)

from S1 to the whole phase space by requiring it
be homogeneous of degree zero,mk(p,q):
5mk„p/AH(p,q),q… for (p,q)¹S1, then we finally can
write

Wnj
~p,q!;mk~p,q!

d„H~p,q!2Enj
…

V~SEnj
!

for j→`

~C5!

for a subsequence$nj%,N of density one. This shows tha
the quantum ergodicity theorem is equivalent to the se
classical eigenfunction hypothesis for ergodic systems fo
subsequence of density one.
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@46# A. Bäcker, R. Schubert, and P. Stifter, J. Phys. A30, 6783

~1997!.
@47# L. A. Bunimovich, Commun. Math. Phys.65, 295 ~1979!.
@48# B. Li, Phys. Rev. E55, 5376~1997!.
@49# F. P. Simonotti, E. Vergini, and M. Saraceno, Phys. Rev. E56,

3859 ~1997!.



.
,

st

A

P.
-

e,

57 5447RATE OF QUANTUM ERGODICITY IN EUCLIDEAN BILLIARDS
@50# P. Stifter, Diploma thesis, Abteilung fu¨r Quantenphysik, Uni-
versität Ulm, 1993~unpublished!.

@51# P. Stifter, Ph.D. thesis, Abteilung fu¨r Quantenphysik, Univer-
sität Ulm, 1996,~unpublished!.

@52# M. Robnik, J. Phys. A16, 3971~1983!.
@53# M. Wojtkowski, Commun. Math. Phys.105, 391 ~1986!.
@54# D. Szász, Commun. Math. Phys.145, 595 ~1992!.
@55# R. Markarian, Nonlinearity6, 819 ~1993!.
@56# C. Liverani and M. P. Wojtkowski, inDynamics Reported

Expositions in Dynamical Systems, edited by C. K. R. T. Jones
U. Kirchgraber, and H. O. Walther, Landolt-Bo¨rnstein, New
Series, Vol. 4~Springer-Verlag, Berlin, 1995!, pp. 130–202.

@57# N. I. Chernov and C. Haskell, Ergodic Theory Dynamical Sy
16, 19 ~1996!.

@58# H. Bruus and N. D. Whelan, Nonlinearity9, 1023~1996!.
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@60# A. Bäcker and N. Chernov, Nonlinearity11, 79 ~1998!.
.

@61# M. Robnik, J. Phys. A17, 1049~1984!.
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