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Abstract

We study the distribution of expectation values and transition amplitudes for
quantised maps on the torus. If the classical map is ergodic then the variance of the
distribution of expectation values will tend to zero in the semiclassical limit by the
quantum ergodicity theorem. Similarly the variance of transition amplitude goes to
zero if the map is weak mixing. In this paper we derive estimates on the rate by
which these variances tend to zero. For a class of hyperbolic maps we derive a rate
which is logarithmic in the semiclassical parameter, and then show that this bound
is sharp for cat maps. For a parabolic map we get an algebraic rate which again is
sharp.

1 Introduction

The behaviour of eigenfunctions and eigenvalues of Schrödinger operators in the
semiclassical limit depends strongly on the dynamical properties of the underlying
classical Hamiltonian system. For a generic chaotic system it is conjectured that
the eigenvalue and eigenfunction statistics behave universally. By the Bohigas Gi-
annoni Schmidt conjecture, [BGS84], the eigenvalue statistics can be modelled by
random matrix theory, and Berry’s random wave model, [Ber77], predicts that the
eigenfunctions behave locally like random superposition of plane waves.

One way of characterising the behaviour of eigenfunctions is by studying expec-
tation values of observables and a fundamental result about them is the quantum er-
godicity theorem. It states that if the underlying classical system is ergodic, then for
sufficiently nice observables and almost all eigenfunction the expectation values tend
to the classical mean value of the observable. This result goes back to Shnirelman,
Zelditch and Colin de Verdière, [Šni74, Zel87, CdV85], for the eigenfunctions of the
Laplacian on compact manifolds, and has since then been generalised to many other
situations.

But the question on the rate by which the expectation values approach the clas-
sical mean has proved to be very difficult. For the eigenfunctions of the Laplacian on
a compact manifold of negative curvature, Zelditch, [Zel94], proved an upper bound
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on the mean behaviour of the expectation values which decays logarithmically in the
semiclassical parameter. This bound has been recently generalised in [Sch06], but
the order could not be improved. It is believed that this bound is far from the opti-
mal one, and this view is supported by conjectures, numerical studies and physical
heuristics, see [FP86, Wil87, RS94, EFK+95, AT98, BSS98]. Only for the case of the
modular surface Luo and Sarnak were recently able to compute the variance of the
matrix elements, [LS04], and so obtained the optimal bound.

Since for Schrödinger operators estimating the rate of quantum ergodicity seems
to be a very hard problem it is interesting to look for simpler classes of system where
this question might be attacked with more hope of success. This is the reason why
we consider quantised maps on the two-dimensional torus in this article. For these
maps we sometimes have better control on the semiclassical approximations, which
will allow us to understand the rate of quantum ergodicity better.

The first class of systems we study are perturbed cat maps. These are hyperbolic
maps and we obtain for their quantisations the same logarithmic upper bound on
the mean rate of quantum ergodicity as in [Zel94, Sch06]. For the unperturbed cat
maps Kurlberg and Rudnick, [KR05], showed that the variance of matrix elements
decays much quicker for a special choice of basis of eigenfunctions, a so called Hecke
eigenbasis. But since the eigenvalues of the cat map can have high multiplicities,
there are many choices of a eigenbases. We will show that there exists an eigenbasis
for which the variance of expectation values is of logarithmic order in the semiclassical
parameter. As will be explained below this is due to very particular properties of cat
maps, and is probably not true for a generic perturbation of the cat-map.

In our methods the hyperbolicity of the classical system is the source of large
error terms in semiclassical approximations of time evolution, so one might wonder if
we get better bounds if the system is ergodic, but not hyperbolic. The second class
of quantised maps we study are exactly of this type. These are parabolic maps whose
quantisations have been studied by Marklov and Rudnick, [MR00], who have derived
sharp bounds on individual eigenfunctions. So they are interesting test cases for us,
and we show that our general method produces sharp results in this case, too.

Quantum ergodicity is a quite general and stable result, it relies only on a few
properties, like the validity of some correspondence principle between quantum and
classical mechanics, and it therefore has been proved in many different situations.
The main general insight to be drawn from the results presented here is that in this
general framework the logarithmic bound from Zelditch [Zel94, Sch06] is sharp, as
we show for the cat map, and in order to improve the bounds one needs additional
assumptions.

This paper is organised as follows. In the first two sections we describe the
general setup. In the first section we recall some notions on ergodic maps on the
torus. In the second section we recall the quantisation of maps on the torus and
state the quantum ergodicity theorems relating variances of expectation values and
transition amplitudes to ergodicity and weak mixing of the classical map. We then
state a general result which relates the variance of expectation values and transition
amplitudes to an average of the classical autocorrelation function, plus semiclassical
error terms. This result shows that the quality of bounds we have on the error terms
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for the semiclassical time evolution determines the rate of quantum ergodicity, and
it will be our main tool in the following sections.

In the last two sections we then study explicit classes of maps and apply the
method of section 3 to them. In the first part of section 4 we obtain a logarithmic
upper bound on the rate for perturbed cat maps. In the second part we show that this
bound is sharp for unperturbed cat maps. In the last section we get a bound on the
rate of quantum ergodicity for parabolic maps, which is algebraic in the semiclassical
parameter. By the results of Marklof and Rudnick, [MR00], this bound is sharp, too.
Notation: We will use the notation e(x) := e2πix and eN (x) := e(x/N). Furthermore
we will write e(∗) for a phase factor, i.e., a number with |e(∗)| = 1, the value of e(∗)
can change from line to line.

2 Maps on the torus

Let T 2 := R2/Z2 be the two-torus and dx the normalised Lebesgue measure on T 2.
We will study some classes of smooth symplectic maps on the torus

Φ : T 2 7→ T 2 . (1)

In this section we will recall ergodic notions we will need later on, see [Wal82] for
more details.

For a ∈ L2(T 2) we define the average

ā :=
∫
T 2

a(x) dx (2)

and the autocorrelation function as

C[a](t) :=
∫
T 2

a∗(x)a(Φt(x)) dx− |ā|2 , (3)

for t ∈ Z. Properties like ergodicity, weak mixing and mixing can be expressed in
terms of the autocorrelation function. The map is ergodic if for every a ∈ L2(T 2)
one has

lim
T→∞

1
T

T−1∑
t=0

C[a](t) = 0 , (4)

it is weak mixing if for every θ ∈ R and a ∈ L2(T 2) one has

lim
T→∞

1
T

T−1∑
t=0

e(θt)C[a](t) = 0 , (5)

and it is mixing if for every a ∈ L2(T 2)

lim
t→∞

C[a](t) = 0 . (6)

The map is called exponentially mixing if there is a γ > 0 such that for any
a ∈ C∞(T 2)

C[a](t) = Oa(e−γ|t|) . (7)
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If a map Φ is mixing and the correlation functions for smooth observables decay at
least like |C[a](t)| = O(t−1−δ) for some δ > 0, then we can define for a ∈ C∞(T 2)
the quantity

V [a] :=
∞∑

t=−∞
C[a](t) . (8)

One can show that under he same condition on the decay of C[a](t) one has

V [a] = lim
T→∞

1
T

∫
T 2

∣∣∣∣ T−1∑
t=0

(
a(Φt(x))− ā

)∣∣∣∣2 dx , (9)

i.e., V [a] is actually the variance of the fluctuations of the time mean around the
space mean. This representation shows as well that V [a] ≥ 0. Since we will only
work with (8) and not with (9) we skip the easy proof of their equivalence.

3 Quantum maps ans quantum ergodicity

Let us first quickly review the setup for quantised maps on the 2-torus T 2 = R2/Z2,
see [DB01, DEG03, MO05] for some recent and more complete treatments, we follow
here the presentation in [BDB96].

The Hilbert space is constructed from generalised functions on the line by requir-
ing periodicity in position and in momentum space. For x = (p, q) ∈ R2 let

T (p, q) := exp
(

i
~

(pQ− qP )
)
, (10)

be the phase space translation operator acting on functions on R, where Qψ(q) :=
qψ(q) and Pψ(q) := ~

i
dψ(q)

dq are the position and momentum operators, respectiveley.
The simultaneous periodicity condition reads

T (1, 0)ψ = e(κ1)ψ , T (0, 1)ψ = e(κ2)ψ , (11)

where two constant phase factors κ = (κ1, κ2) ∈ R2/Z2 are allowed because the
quantum mechanical state represented by a wave function does not depend on an
overall phase. This set of equations has non-trivial solutions only when

1
2π~

= N ∈ N (12)

and then the vector space HN (κ) of solutions has dimension N and consists of dis-
tributions of the form

ψ(q) =
∑
k∈Z

Ψ(k)δ
(
q − (k + κ1)/N

)
, with Ψ(k +N) = e(−κ2)Ψ(k) . (13)

The translation operators

TN (n) := T (n1/N, n2/N) , (14)
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with 2π~ = 1/N and where n = (n1, n1) ∈ Z2, leave the space HN (κ) invariant and
if one equips HN (κ) with the inner product

〈ψ, φ〉 =
1
N

N∑
q=1

Ψ∗(q)Φ(q) , (15)

then the restrictions of TN (n) to HN (κ) become unitary. By slight abuse of notation
we will denote the restrictions of TN (n) to HN (κ) as well by TN (n).

So instead of one fixed Hilbert space, as in quantum mechanics on Rn, the quan-
tisation of the 2-torus leads for each ~ with 1/~ = N ∈ N to a family of Hilbert
spaces HN (κ) depending on an additional parameter κ. But for each class of maps
we study we will fix for each N a particular choice of κ, κN , and therefore we will
most of the time discard it from the notation.

We will need some further properties of the translation operators TN (n), they
satisfy

TN (m)TN (n) = eN (ω(m,n)/2)TN (m+ n) , (16)

where ω(m,n) = m1n2 − m2n1, and T ∗N (n) = TN (−n). Furthermore their trace
satisfies TrTN (n) 6= 0 only if n = 0 mod N , and

1
N

TrT ∗N (n)TN (m) =

{
e(∗) if n = m mod N

0 otherwise
, (17)

and in the particular case that n = m the phase factor is e(∗) = 1.
The quantisation of observables is now defined by a Weyl quantisation prescription

using the translation operators. For a ∈ C∞(T 2) one defines the Weyl quantisation
as

OpN [a] :=
∑
n∈Z2

â(n)TN (n) (18)

with the Fourier coefficients

â(n) =
∫
T 2

a(x)e(−ω(n, x)) dx . (19)

The function a is called the symbol of the operator OpN [a]. This quantisation pre-
scription has natural properties, e.g., real valued symbols correspond to selfadjoint
operators. Note that in particular TN (n) = OpN [e(ω(n, x))].

Traces are related to the phase space average of the symbols, using (18) one finds

Tr OpN [a] =
∫
T 2

a(x) dx+Oa(1/N∞) , (20)

for a ∈ C∞(T 2), where the remainder depends on derivatives of a. One related more
precise result we will need later on is

Lemma 1. Let a, b ∈ C∞(T 2), then for all L ≥ 3 we have

1
N

Tr OpN [a] OpN [b] =
∫
T 2

a(x)b(x) dx+O

(
|a|L|b|3+L

NL

)
. (21)

where |a|L :=
∑
|α|≤L supx∈T 2 |∂αa(x)|.
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Proof. Using the definition (18) and (17) we obtain

1
N

Tr OpN [a] OpN [b] =
∑
n∈Z2

∑
m∈Z2

â(n)b̂(−n+mN)e(∗)

=
∑
n∈Z2

â(n)b̂(−n) +
∑
n∈Z2

∑
m∈Z2\{0}

â(n)b̂(−n+mN)e(∗) .
(22)

Now we have for the first term∫
T 2

a(x)b(x) dx =
∑
n∈Z2

â(n)b̂(−n) (23)

and by partial integration for m 6= 0

|â(n)| ≤ C|a|k(1 + |n|)−k , |b̂(−n+mN)| ≤ C|b|L(1 + |n|)L(N |m|)−L , (24)

so with k = L+3 and L ≥ 3 the remainder term converges and the result follows.

Finally we look at the quantisation of maps. Let Φ : T 2 → T 2 be a symplectic
diffeomorphism on the torus, we say that a sequence of unitary operators {UN}N∈N,
UN : HN → HN , is a quantisation of Φ if for all a ∈ C∞(T 2) we have

lim
N→∞

‖U∗N OpN [a]UN −OpN [a ◦ Φ]‖ = 0 . (25)

This property is a manifestation of the correspondence principle, it means that for
large N the quantum system reproduces the classical system. In the mathematical
literature this is usually referred to as the validity of an Egorov theorem. A more
quantitative version is usually true,

U−tN OpN [a]U tN = OpN [a ◦ Φt] +
1
N
RN (t) . (26)

with ‖RN (t)‖ ≤ C for t in a finite interval. If we let t increase then the available
bounds for ‖RN (t)‖ increase exponentially for generic hyperbolic maps.

The concrete procedure by which the unitary operators UN are constructed de-
pends on the map and we will discuss this for particular classes of examples below.

In case that the classical map is ergodic the Egorov property (25) allows to prove a
quantum ergodicity theorem. We will recall the statements now. In their formulation
we will use the notation

|θ|S1 := min
k∈Z
|θ + k| , (27)

for θ ∈ R.

Theorem 1. Assume the map Φ : T 2 → T 2 is ergodic, and UN is a quantisation of
Φ. Let for every N ∈ N, ψNj , j = 1, · · · , N , be an orthonormal basis of eigenfunctions
with eigenvalues e(θNj ) of UN and let a ∈ C∞(T 2), then we have

lim
N→∞

1
N

N∑
j=1

|〈ψNj ,OpN [a]ψNj 〉 − a|2 = 0 . (28)
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Furthermore, Φ is ergodic if, and only if, for every a ∈ C∞(T 2)

lim
δ→0

lim sup
N→∞

1
N

∑
|θN

i −θN
j |S1≤δ

|〈ψNi ,OpN [a]ψNj 〉 − δija|2 = 0 . (29)

The result (28) was proved in [BDB96], and (29) is a version for maps of a result
in [Zel90], see as well [Sun97]. We will give below a simple proof in order to prepare
for the estimates on the rate later on.

The estimate (28) means that the variance of the distribution of the expectation
values around its mean is going to 0. This implies that almost all of the expectation
values tend to the mean value, which is the usual way in which quantum ergodicity
is stated. The second estimate (29) implies of course the first one, but it is stronger
and implies in addition that almost all of the near diagonal transition amplitudes
have to tend to 0.

Theorem 2. Assume the map Φ : T 2 → T 2 is weak mixing, and UN is a quanti-
sation of Φ. Let for every N ∈ N, ψNj , j = 1, · · · , N , be an orthonormal basis of
eigenfunctions of UN , with eigenvalues e(θNi ), and let a ∈ C∞(T 2), then we have for
any θ ∈ R

lim
δ→0

lim sup
N→∞

1
N

∑
|θN

i −θN
j −θ|S1≤δ

|〈ψNi ,OpN [a]ψNj − δija〉|2 = 0 . (30)

Conversely, if (30) holds for every a ∈ C∞(T 2) and θ ∈ R, then Φ is weak mixing.

The analogue of this result for eigenfunctions of the Laplacian on compact Rie-
mannian manifolds was given in [Zel90, Zel96].

Our main objective in this paper is to obtain bounds on the rate by which the
averages over expectation values and transition amplitudes in Theorems 1 and 2 tend
to zero. Our main tool to do so will be the next proposition. In its statement and in
the following we will fix a function f ∈ S(R) which satisfies

f, f̂ ≥ 0 , f(0) = 1 and supp f̂ ∈ [−1, 1] (31)

and then define for T > 0

f̂T (t) :=
1
T
f̂

(
t

T

)
and FT (θ) :=

∑
n∈Z

f
(
T (θ − n)

)
. (32)

Such a function can be easily constructed by choosing a function g > 0 with support
in [−1/2, 1/2] and taking f̂ = g ∗ g, and then normalising g such that f(0) = 1.

Note that we can always set a = 0 without loss of generality. This will shorten
some formulas.

Proposition 1. Let UN : HN → HN be a quantisation of the map Φ : T 2 → T 2,
and let ψNj , j = 1, · · · , N , be an orthonormal basis of eigenfunctions of UN with
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eigenvalues e(θNj ). Then for every a ∈ C∞(T 2) with a = 0 we have

1
N

N∑
j=1

|〈ψNj ,OpN [a]ψNj 〉|2 ≤
∑
t∈Z

f̂T (t)C[a](t)

+
1
N

∑
t∈Z

f̂T (t)‖RN (t)‖+
Ca,L
NL

∑
t∈Z

f̂T (t)|a ◦ Φt|L

(33)

for T > 0, L ≥ 3, where RN (t) is the remainder term in (26) and f̂T is as in (32).
Furthermore let θ ∈ R then for every δ > 0 there is a C > 0 such that

1
N

∑
|θN

i −θN
j −θ|S1≤δ/T

|〈ψNi ,OpN [a]ψNj 〉|2 ≤C
∑
t∈Z

e(θt)f̂T (t)C[a](t)

+ C
1
N

∑
t∈Z

e(θt)f̂T (t)‖RN (t)‖

+ C
Ca,L
NL

∑
t∈Z

e(θt)f̂T (t)|a ◦ Φt|L .

(34)

This rather technical looking result will be the main tool in following investiga-
tions on the rate of quantum ergodicity. In (33) and (34) we have estimates on the
variances of expectation values and transition amplitudes in terms of three quantities.
The first term on the right hand side of (33) and (34) does not depend on N it is
a purely classical quantity whose behaviour for large T is determined by the ergodic
properties of the map Φ, as was discussed in section 2. The remaining two terms on
the right hand side of (33) and (34) depend on N and T , and they will determine
how we can couple the two limits N → ∞ and T → ∞ in an optimal way. As can
already be seen by the appearance of |a◦Φt|L the behaviour of these terms will differ
sharply between hyperbolic and non-hyperbolic maps.

The proof of Proposition 1 will rely on

Lemma 2. Assume UN satisfy the assumptions of Proposition 1 and f be as in (31),
then for a ∈ C∞(T 2) with ā = 0 and any θ ∈ R

1
N

N∑
i,j=1

FT (θNi − θNj − θ)|〈ψNi ,OpN [a]ψNj 〉|2

=
∑
t∈Z

f̂T (t) e(θt)
1
N

Tr OpN [a]∗U−tN OpN [a]U tN ,

(35)

with f̂T and FT given in (32), and in particular

1
N

N∑
j=1

|〈ψNj ,OpN [a]ψNj 〉|2 ≤
∑
t∈Z

f̂T (t)
1
N

Tr OpN [a]∗U−tN OpN [a]U tN . (36)
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Proof. Let ψNj , e(θNj ), j = 1, . . . , N , be the eigenfunctions and eigenvalues of UN ,
then we have

Tr OpN [a]∗U−tN OpN [a]U tN =
N∑

i,j=1

|〈ψNj ,Op[a]ψNi 〉|2e
(
t(θNj − θNi )

)
. (37)

Now we have by the Poisson summation formula∑
t∈Z

f̂T (t)e
(
t(θNj − θNi − θ)

)
=
∑
n∈Z

f
(
T (θNj − θNi − θ − n)

)
= FT (θNj − θNi − θ) (38)

for any T > 0. So if we multiply (37) with f̂T (t) e(tθ) and sum over t we obtain (35).
If we use then furthermore that FT ≥ 0 and FT (0) ≥ 1 we obtain the estimate (36)
by setting θ = 0, restricting the sum in (35) to the terms i = j and using that the
remaining terms with i 6= j are positive.

Proof of Proposition 1. By Lemma 2 we have to estimate 1
N Tr OpN [a]U−tN OpN [a]U tN .

Using (26) we obtain

1
N

Tr OpN [a]U−tN OpN [a]U tN =
1
N

Tr OpN [a] OpN [a ◦ Φt] +
1
N2

Tr OpN [a]RN (t) ,

(39)
but OpN [a] is bounded and Tr IN = N , so

1
N2
|Tr OpN [a]RN (t)| ≤ ‖OpN [a]‖

N
‖RN (t)‖ . (40)

With lemma 1 we then get

1
N

Tr OpN [a] OpN [a ◦ Φt] = C[a](t) +O

(
|a|L+3

|a ◦ Φt|L
NL

)
(41)

for L ≥ 3, and so we have

1
N

Tr OpN [a]U−tN OpN [a]U tN = C[a](t) +Oa

(
‖RN (t)‖

N

)
+O

(
|a|L+3

|a ◦ Φt|L
NL

)
.

(42)
Together with (36) this gives (33). In order to prove (34) we use (35), since FT is
positive and FT (0) ≥ 1 for any δ > 0 there is a C > 0 such that

1
N

N∑
i,j=1

FT (θNi −θNj −θ)|〈ψNi ,OpN [a]ψNj 〉|2 ≥
1
C

1
N

∑
|θN

i −θN
j −θ|S1≤δ/T

|〈ψNi ,OpN [a]ψNj 〉|2

(43)
and now using (35) and (42) gives (34).

Proof of Theorem 1. Let us first prove (28). Taking the limit N →∞ in (33) gives

lim sup
N→∞

1
N

N∑
j=1

|〈ψNj ,OpN [a]ψNj 〉 − a|2 ≤
∑
t∈Z

f̂T (t)C[a](t) . (44)
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Now we take the limit T → ∞ and by ergodicity, see (4), the right hand side tends
to zero. The proof of (29) follows the same line, but using (34) with θ = 0 instead.
Taking the limit N →∞ gives

lim sup
N→∞

1
N

∑
|θi−θj |S1≤δ/T

|〈ψNi ,OpN [a]ψNj 〉|2 ≤ C
∑
t∈Z

f̂T (t)C[a](t) (45)

and taking T →∞ implies that the right hand side tends to 0. But on the left hand
side T →∞ is equivalent to δ → 0.

To prove the converse part, we use that from the proof of Proposition 1 we have

lim
N→∞

1
N

Tr OpN [a]U−tN OpN [a]U tN = C[a](t) (46)

and so by (35)

lim
N→∞

1
N

N∑
i,j=1

FT (θNi − θNj − θ)|〈ψNi ,OpN [a]ψNj 〉|2 =
∑
t∈Z

f̂T (t) e(θt)C[a](t) . (47)

For θ = 0 this reads

lim
N→∞

1
N

N∑
i,j=1

FT (θNi − θNj )|〈ψNi ,OpN [a]ψNj 〉|2 =
∑
t∈Z

f̂T (t)C[a](t) . (48)

Now if (29) holds, then the left hand side of (48) has to tend to 0 for T → ∞, so
the right hand side has to go to 0, too. This is valid for all a ∈ C∞(T 2) with a = 0
and since C∞(T 2) is dense in L2(T 2) and f̂ ≥ 0 this means the map Φ is ergodic by
(4).

We will skip the proof of Theorem 2, as it follows the same line as the proof of
Theorem 1, one uses (47) for all θ ∈ R and weak mixing, (5), instead of ergodicity.

4 Hyperbolic maps

4.1 Cat maps

A cat map, or a hyperbolic toral automorphism, on the 2-torus T 2 = R2/Z2 is given
by a matrix A ∈ SL(2,Z) with |TrA| > 2 acting on T 2 as(

p
q

)
7→ A

(
p
q

)
mod Z2 .

The condition |TrA| > 2 ensures that the map is hyperbolic. These maps are ergodic
and rapidly mixing, i.e., for a ∈ C∞(T 2) C[a](t) = Ok(e−kγ|t|) for all k > 0, where
γ > 0 is the Liapunov exponent of A.

These maps have been quantised on HN (κ) with κ = (0, 0) in [HB80] for even N
and for odd N if the off-diagonal terms of A are even. The problems for odd N can
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be avoided by choosing HN (κ) with κ = (1/2, 1/2) for these N , [DEGI95, BDB96].
So therefore we will fix our choice of κ in this section from now on, HN = HN ((0, 0))
for even N and HN = HN ((1/2, 1/2)) for odd N . The map A can then be quantised
using the metaplectic representation and the resulting sequence of unitary operators
UN satisfies

U∗N OpN [a]UN = OpN [a ◦A] , (49)

see [BDB96, DB01, KR00, DEG03]. So here the Egorov theorem holds exactly.

4.2 Perturbed cat maps

We will now consider a class of Anosov maps, the perturbed cat maps introduced in
[BdMOdA95]. We will rely mainly on the recent study by Bouclet and De Bièvre
in [BDB05] of these maps. Let A ∈ SL(2,Z) be a cat map and g ∈ C∞(T 2) a real
valued function, and consider the Hamiltonian flow φt : T 2 → T 2 generated by g.
One can define then

Φε := φε ◦A : T 2 → T 2 (50)

which for small ε is a small perturbation of the Anosov map A, and hence by struc-
tural stability Φε will be an Anosov map, too. The quantisation of Φε is now defined
as

Uε,N := e−2πiNεOpN [g]UN , (51)

where UN is the quantisation of A. In [BDB05] it is then shown that there is a
constant Γ > 0 such that for t ∈ Z

‖U−tε,N OpN [a]U tε,N −OpN [a ◦ Φt
ε]‖ ≤ Ca

1
N

eΓ|t| . (52)

In fact the estimates in [BDB05] are more precise, and Γ is estimated quite explicitly,
but the estimate (52) is sufficient for our purpose.

Theorem 3. Let Uε,N be the sequence of quantum maps (51) and ψNj , j = 1, . . . , N
an orthonormal basis of eigenfunctions of Uε,N for every N ∈ N. Then for every
a ∈ C∞(T 2) there is a constant Ca such that

1
N

N∑
j=1

|〈ψNj ,OpN [a]ψNj 〉 − a|2 ≤ Ca
1

lnN
. (53)

The same result has been recently proved for the baker’s map too, see [DENW06].
For cat maps much stronger results are known for a special choice of a basis of
eigenfunctions, due to their arithmetic nature, see [KR00, KR05] and Section 4.3
below.

Proof. We will use (33). The Egorov estimate (52) gives ‖RN (t)‖ ≤ CeΓ|t| and since
the map is hyperbolic there is a constant Γ′ > 0 such that |a ◦ Φt

ε|3 ≤ Ce3Γ′|t|.
Furthermore Φε is exponentially mixing, i.e., C[a](t) ≤ Ce−γ|t|, and so∑

t∈Z
f̂T (t)C[a](t) = O(1/T ) ,

∑
t∈Z

f̂T (t)‖RN (t)‖ = O(eΓT ) (54)
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and ∑
t∈Z

f̂T (t)|a ◦ Φt
ε|3 = O(e3Γ′T ) . (55)

Therefore we obtain

1
N

N∑
j=1

|〈ψNj ,Op[a]ψNj 〉 − a|2 ≤ O(1/T ) +O
(
eΓT /N

)
+O

(
e3Γ′T /N3

)
, (56)

and the right hand side becomes minimal for the choice of T = δ lnN , with δ <
min{Γ,Γ′}, which gives then (53).

By the same methods one can derive an upper bound on the transition amplitudes,
strengthening the estimates (29) and Theorem 2.

Theorem 4. Let Uε,N be the sequence of quantum maps (51) and ψNj , j = 1, . . . , N ,
an orthonormal basis of eigenfunctions of Uε,N for every N ∈ N. Then for any δ > 0
and every a ∈ C∞(T 2) there is a constant Ca such that

1
N

∑
|θN

i −θN
j −θ|S1≤δ/ lnN

|〈ψNi ,OpN [a]ψNj 〉 − δija|2 ≤ Ca
1

lnN
, (57)

for every θ ∈ R.

We skip the proof since it is identical to the one of Theorem 3, only using (34)
instead of (33).

4.3 Cat maps: the logarithmic bound is sharp

In this section we want to show that the upper bound in Theorem 3 is sharp for
unperturbed cat maps. The unperturbed cat map has very special properties, in
particular for certain values of N the quantum map has very large multiplicities of
the eigenvalues. This means that there are many bases of eigenfunctions and quantum
ergodic properties can, and do, depend on the choice of a basis of eigenfunctions. In
this section we will show that for a given observable OpN [a] one can choose the basis
of eigenfunctions such that the upper bound in Theorem 3 becomes sharp.

The special properties of cat maps are due to the fact that they are periodic,
[HB80]. Let A ∈ SL(2,Z) be a cat map and UN : HN → HN its quantisation, the
quantum period P (N) ∈ N is defined to be the smallest positive integer such that
there is a φN ∈ R/Z with

U
P (N)
N = e(φN )IN (58)

with IN the identity operator. The origin of these quantum periods are periods of
the action of A on Z2 modulo N , for a given A ∈ SL(2,Z) one defines T (N) to
be the smallest integer such that AT (N) ≡ I mod N , i.e., such that there exists a
matrix AN with integer entries such that

AT (N) = I +NAN . (59)

12



Then one has either P (N) = 2T (N) or P (N) = T (N), depending on N and A, as
was shown in [HB80]. P (N) is on average of order N , [Kea91], but there exist N
where it is of order lnN . More precisely, there exists a sequence Nk, k ∈ N, such
that

P (Nk) =
2
γ

lnNk +O(1) (60)

where γ is the Liapunov exponent of A, [BDB00, KR01].
Now the relation (58) implies that the eigenvalues of UN are P (N)’th roots of

unity shifted by φN and since the dimension of HN is N , a quantum period much
shorter than N implies large multiplicities of the eigenvalues and therefore there are
many different choices for an orthonormal basis of eigenfunctions of UN .

For an observable a ∈ C∞(T 2) we define the quantum average over one period as

OpN [a]
P

:=
1

P (N)

P (N)−1∑
t=0

U−tN OpN [a]U tN . (61)

Then we have U−1
N OpN [a]

P
UN = OpN [a]

P
and so the averaged operator commutes

with the quantised cat map,

OpN [a]
P
UN = UNOpN [a]

P
. (62)

If a is real valued, then OpN [a] and OpN [a]
P

are selfadjoint, and so by (62) we can
choose an orthonormal basis of joint eigenfunctions of OpN [a]

P
and UN .

We will say that a function a ∈ C∞(T 2) is a trigonometric polynomial of degree
R if

a(x) =
∑

n∈Z2, |n|≤R

â(n) e(ω(n, x)) . (63)

We can now give the main result of this section.

Theorem 5. Let A ∈ SL(2,Z) be hyperbolic and denote its quantisation by UN :
HN → HN . Let Nk, k ∈ N, be a sequence with P (Nk) = 2

γ lnNk+O(1), then for every
R > 0 there exists a KR > 0 such that if a(x) is a real valued trigonometric polynomial
of degree R and ψNk

j , j = 1, . . . Nk, an orthonormal basis of joint eigenfunctions of

OpNk
[a]

P
and UNk

, then we have

1
Nk

Nk∑
j=1

|〈ψNk
j ,OpNk

[a]ψNk
j 〉 − ā|

2 =
1

P (Nk)
V [a] , (64)

for k ≥ KR.

Recall that V [a] = 0 if, and only if, there is a b ∈ C∞(T 2) such that a = b− b◦A,
see, e.g., [Via97, Proposition 4.14]. So there are many function with V [a] > 0,
and therefore the bound from Theorem 3 is sharp. P. Kurlberg has as well obtained
logarithmic lower bounds on the variance of expectation values for cat maps, [Kur05].
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The variance of expectation values depends strongly on the choice of the basis of
eigenfunctions, in [KR05] it is shown that for a different choice than ours, a so called
Hecke basis, the variance of expectation values is of order 1/N . That is the behaviour
which is expected for a generic Anosov system. But there is a point of view from which
the logarithmic decay looks natural. In [EFK+95, dCKR98] it is argued that the
decay of the variance is of order 1/TH(N), where TH(N) is the so called Heisenberg-
time. Now the Heisenberg-time is inversely proportional to the mean level spacing,
and so TH(N) ∼ P (N), if we measure the level spacing without multiplicities, which
means that (64) coincides with the expressions in [EFK+95, dCKR98].

The basic idea we use here, namely the averaging over one quantum period, is
the same that was used in [FNDB03] to prove the existence of scarred eigenstates of
cat maps.

The proof of Theorem 5 proceeds in several steps. We first reduce it to the
computation of a trace. Without loss of generality we will assume in the following
that ā = 0.

Lemma 3. Let ψNj , j = 1, . . . N , be an orthonormal basis of joint eigenfunctions of

OpN [a]
P

and UN , then

1
N

N∑
j=1

|〈ψNj ,OpN [a]ψNj 〉|2 =
1
N

Tr
(

OpN [a]
P

OpN [a]∗
)
. (65)

In general for an arbitrary basis the right hand side of (65) is an upper bound of
the left hand side, so our choice of basis maximises the variance.

Proof. Since ψNj are eigenfunctions of OpN [a]
P

and orthonormal we have

〈ψNj ,OpN [a]
P
ψNk 〉 = 0 if j 6= k. For j = k we use that ψNj are eigenfunctions of UN

to get 〈ψNj ,OpN [a]
P
ψNj 〉 = 〈ψNj ,OpN [a]ψNj 〉. Using these two relations gives

Tr OpN [a]
P

OpN [a]∗
P

=
N∑

j,k=1

|〈ψNj ,OpN [a]
P
ψNk 〉|2

=
N∑
j=1

|〈ψNj ,OpN [a]
P
ψNj 〉|2 =

N∑
j=1

|〈ψNj ,OpN [a]ψNj 〉|2 .

(66)

Furthermore, by using that OpN [a]
P

commutes with UN , we obtain

Tr OpN [a]
P

OpN [a]∗
P

=
1

P (N)

P (N)−1∑
t=0

Tr OpN [a]
P
U−tN OpN [a]∗U tN

= Tr OpN [a]
P

OpN [a]∗ .

(67)
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Now we turn our attention to short periods (60). In the definition of the average
OpN [a]

P
, equation (61), we averaged from t = 0 to t = P (N)− 1, but since UN and

OpN [a]
P

commute we have OpN [a]
P

= UTNOpN [a]
P
U−TN for any T ∈ Z, which means

we can shift the average to t ∈ [−T, P (N)− 1−T ]∩Z for any T , and we will do this
for the choice

T = [P (N)/2] , (68)

which is the integer part of P (N)/2.

Lemma 4. Let Nk, k ∈ N, be a sequence satisfying (60). Then for every R > 0
there exist a KR > 0 such that for k ≥ KR whenever there are two m,n ∈ Z2 with
|m|, |n| ≤ R and

Atn = m mod Nk , (69)

for some t ∈
[
− [P (Nk)/2], P (Nk)− 1− [P (Nk)/2]

]
∩Z, then

Atn = m . (70)

Proof. The relation Atn = m mod Nk means that there is a αk ∈ Z2 such that

Atn−m = Nkαk (71)

and we start by deriving a bound on the size of αk. Since A is hyperbolic and
|t| ≤ P (Nk)/2 = 1

γ lnNk +O(1) we find

|Atn−m| ≤ R(1 + Ceγ|t|) ≤ R(1 + C ′Nk) , (72)

and since by (71) |αk| = |Atn−m|/Nk there is a R̃ > 0, independent of k, such that

|αk| ≤ R̃ . (73)

So the αk can only have finite size, and now we want to show that actually only
αk = 0 can occur for k large enough, that will prove the Lemma. Let Wu/s be the
stable and unstable manifolds of the fixed-point at 0, these are straight lines through
the origin with irrational slopes, see [FNDB03], and by definition they satisfy for
t ≥ 0

d(Wu, A
tn) ≤ Ce−γt , d(Ws, A

−tn) ≤ Ce−γt , (74)

where d(Wu/s, A
±tn) denotes the Euclidean distance between the manifolds Ws/u

and the points A±tn.
On the other hand, since the slopes of Wu/s are irrational and the slopes of the

lines R 3 τ 7→ m + τα, for α 6= 0, α,m ∈ Z2, are rational, the distance between
Wu/s and the points m+Nα grows linearly in N . So for N large enough there is a
constant C depending on R, R̃ such that for all m,α ∈ Z2 with |m| ≤ R, |α| ≤ R̃
and α 6= 0 we have

d(Wu/s,m+Nα) ≥ CN . (75)

But since Atn = m+ αkNk the only way the two inequalities (74) and (75) can hold
simultaniously is if

Nk � e−γ|t| (76)

and so Nk has to be bounded. So the only case remaining allowing an infinite series
of Nk is the case with αk = 0 and hence Atn = m.
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Lemma 5. Let us write n ∼A m if n,m are in the same orbit of A on Z2. Assume
Nk, k ∈ N, is a sequence for which the quantum periods satisfy (60), then for every
R > 0 there exist a KR > 0 such that for m,n ∈ Z2\{0} with |m|, |n| ≤ R and
k ≥ KR, we have

1
Nk

TrTNk
(n)∗TNk

(m)
P

=

{
1

P (Nk) if n ∼A m ,

0 otherwise .
(77)

Proof. Since TN (n) = OpN [e(ω(n, x))] we have by Egorov’s Theorem UNTN (n)U∗N =
OpN [e(ω(n,A−1x))], and becauseA is symplectic ω(n,A−1x) = ω(An, x), so UNTN (n)U∗N =
TN (An). Iterating this result gives

U tNTN (n)U−tN = TN (Atn) , (78)

for all t ∈ Z. Using this and the discussion before Lemma 4 about the average gives

TN (m)
P

=
1

P (N)

P (N)−1−[P (N)/2]∑
t=−[P (N)/2]

U tNTN (m)U−tN

=
1

P (N)

P (N)−1−[P (N)/2]∑
t=−[P (N)/2]

TN (Atm)

(79)

and so

1
Nk

TrTNk
(n)∗TNk

(m)
P

=
1

P (Nk)

P (Nk)−1−[P (Nk)/2]∑
t=−[P (Nk)/2]

1
Nk

TrTNk
(n)∗TNk

(Atm) . (80)

But TrTNk
(n)∗TNk

(Atm) 6= 0 only if n ≡ Atm mod Nk, see (17), and by Lemma 4
this is for the t range we sum over and k ≥ KR only the case if n = Atm, i.e., n ∼A m.
In that case we have TrTNk

(n)∗TNk
(Atm) = Nk and so the result follows.

Proof of Theorem 5 . Let a be a real valued trigonometric polynomial of order R,
then by Lemma 3 we have to compute 1

Nk
Tr OpNk

[a]∗OpNk
[a]

P
. By the definition of

OpN [a] we have

1
Nk

Tr OpNk
[a]∗OpNk

[a]
P

=
∑

n,m∈Z2\{0}

â(n)∗â(m)
1
Nk

TrTNk
(n)∗TNk

(m)
P
, (81)

where we used that â(0) = ā = 0 by assumption, and then Lemma 5 gives

1
Nk

Tr OpNk
[a]∗OpNk

[a]
P

=
1

P (Nk)

∑
n∈Z2

∑
m:m∼An

â(n)∗â(m) (82)

for k ≥ KR. But ∑
m:m∼An

â(n)∗â(m) =
∑
t∈Z

â(n)∗â(Atn) , (83)
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where the sum over t is finite since â(m) = 0 for |m| > R, and so

1
Nk

Tr OpNk
[a]∗OpNk

[a]
P

=
1

P (Nk)

∑
t∈Z

∑
n∈Z2

â(n)∗â(Atn) . (84)

On the other hand side, using a(x) =
∑

n â(n) e(ω(n, x)) one finds

C[a](t) =
∑
n∈Z2

â(n)∗â(Atn) (85)

and therefore

1
Nk

Tr OpNk
[a]∗OpNk

[a]
P

=
1

P (Nk)

∑
t∈Z

C[a](t) =
1

P (Nk)
V [a] . (86)

5 Parabolic maps

In this section we will study quantisations of parabolic maps. The interest in
parabolic maps from our point of view is that they can be ergodic, but are not hy-
perbolic. Since hyperbolicity is the main obstacle in the control of the quantum time
evolution for large times, we expect that for parabolic maps we get much stronger
results. This is indeed the case, and as we will show below one again gets optimal
results in some cases.

Our example will be the parabolic map studied by Marklof and Rudnick in
[MR00], see as well [BDB96, DBDE98]. Let α ∈ R, then the map Ψα : T 2 → T 2 is
defined by

Ψα :
(
p
q

)
7→
(
p+ α
q + 2p

)
mod 1 . (87)

If α is irrational this map is uniquely ergodic but not weak mixing and not hyperbolic.
This map is quantised in [MR00] and it is shown that their quantisation UN satisfies
the Egorov estimate

‖U−tN OpN [a]U tN −OpN [a ◦Ψt
α]‖ ≤ Ca

|t|
N

(88)

for t ∈ Z.
In order to study the rate of quantum ergodicity, we need an estimate on the rate

of classical ergodicity.

Lemma 6. Let a ∈ C∞(T 2) and C[a](t) be the autocorrelation function of the map
(87) and assume that α satisfies a Diophantine condition, i.e., there are C, γ > 0
such that |kα− l| ≥ C/|k|γ for all k, l ∈ Z\{0}. Then we have for f ∈ S(R)∑

t∈Z

1
T
f̂

(
t

T

)
C[a](t) = O

(
1
T

)
, (89)
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where f̂ denotes the Fourier-transform of f . Furthermore, if a(p, q) depends only on
p then ∑

t∈Z

1
T
f̂

(
t

T

)
C[a](t) = OM

(
1
TM

)
, for all M ∈ N . (90)

Proof. We have

Ψt
α :
(
p
q

)
7→
(

p+ tα
q + 2tp+ αt(t− 1)

)
, (91)

and with a(x) =
∑

n∈Z2 â(n)e(nx) (notice that we use here the standard Fourier
series, not the one twisted with ω used in the quantisation procedure) we get

C[a](t) =
∑

n,m∈Z2\{0}

â(n)â(m)
∫
T 2

e(nx)e
(
mΨt

α(x)
)

dx . (92)

Then we find∫
T 2

e(nx)e
(
mΨt

α(x)
)

dx = δ(−n1,m1 + 2tm2)δ(−n2,m2)e(m1αt+m2αt(t− 1)) ,

(93)
where δ(m,n) denotes the Kronecker delta, and therefore

C[a](t) =
∑

(m1,m2)∈Z2\{0}

â(−m1−2tm2,−m2)â(m1,m2)e(m1αt+m2αt(t−1)) . (94)

Now we split C[a](t) into two parts, C[a](t) = C0[a](t) +C1[a](t), such that C0[a](t)
contains only the terms with m2 = 0

C0[a](t) =
∑

m∈Z\{0}

â(−m, 0)â(m, 0)e(mαt) . (95)

The second term satisfies

|C1[a](t)| ≤ CK(1 + |t|)−K (96)

for all K ∈ N since the Fourier-coefficients â(n) are quickly decreasing and therefore∑
t∈Z

1
T
f̂

(
t

T

)
C1[a](t) = O

(
1
T

)
. (97)

For the first term we find∑
t∈Z

1
T
f̂

(
t

T

)
C0[a](t) =

∑
m∈Z\{0}

|â(m, 0)|2
∑
t∈Z

1
T
f̂

(
t

T

)
e(mαt) (98)

and by the Poisson summation formula we obtain∑
t∈Z

1
T
f̂

(
t

T

)
e(mαt) =

∑
n∈Z

f(T (mα− n)) = OM (|m|γMT−M ) (99)
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since f ∈ S(R) and by the Diophantine condition on α. And since the Fourier-
coefficients â(n) are quickly decreasing we find∑

t∈Z

1
T
f̂

(
t

T

)
C0[a](t) = OM (T−M ) (100)

Combining the two estimates for C0[a](t) and C1[a](t) gives the lemma.

Combining the Egorov estimate and this lemma we then obtain from Proposition
1

Theorem 6. Let UN be the quantisation of the map (87) due to [MR00] with a
Diophantine α, and ψNj , j = 1, . . . N , a orthonormal basis of eigenfunctions. Then
we have

1
N

N∑
j=1

|〈ψNj ,Op[a]ψNj 〉 − ā|2 ≤ Ca
1

N1/2
, (101)

and if a(p, q) depends on p only then we have the stronger estimate

1
N

N∑
j=1

|〈ψNj ,Op[a]ψNj 〉 − ā|2 ≤ Ca,ε
1

N1−ε , (102)

for every ε > 0.

Proof. By the Egorov estimate (88) and since |a ◦Ψt
α|k ≤ Ck|t|k,∑

t∈Z
f̂T (t)‖RN‖ = O(T ) ,

∑
t∈Z

f̂T (t)|a ◦Ψt
α|k = O(T k) . (103)

If we use then (89) we obtain by Proposition 1

1
N

N∑
j=1

|〈ψNj ,Op[a]ψNj 〉 − ā|2 = O

(
1
T

)
+O

(
T 3

N3

)
+O

(
T

N

)
, (104)

and so the choice T = N1/2 gives (101). If we have instead the faster decay (90) we
get

1
N

N∑
j=1

|〈ψNj ,Op[a]ψNj 〉 − ā|2 = OM

(
1
TM

)
+O

(
T 3

N3

)
+O

(
T

N

)
, (105)

for every M ∈ N and so by choosing T = N ε′ , with ε′ small enough, and M large
enough we obtain (102).

The results in [MR00] show that the estimate (101) is optimal, so we again ob-
tain a sharp estimate. The analysis in [MR00] is much more detailed and provides
sharp estimates for the rate of quantum ergodicity for individual eigenfunctions. But
Theorem 6 might still be of some interest because the proof is of a more dynamical
nature, and therefore may be easier to extend to other cases.
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One further class of systems where one could apply the same methods is given
by perturbed Kronecker maps, which were recently studied by Rosenzweig, [Ros06].
Here the proof would be very similar to the one of (102), and we would get the same
rate Oε(1/N1−ε). But in [Ros06] a stronger bound on individual eigenfunctions is
given, so our method does not give an optimal result.

The parabolic maps Ψα are not weak mixing, so by Theorem 2 the off-diagonal
matrix elements 〈ψNi ,OpN [a]ψNj 〉 are not going to 0. In fact, using the same methods
as in the proof of Lemma 6, one finds for Ψt

α that for θ = kα, k ∈ Z\{0},∑
t∈Z

1
T
f̂

(
t

T

)
C[a](t)e(θt) = |â(k, 0)|2 +O

(
1
T

)
. (106)

From this result together with the techniques used in the proof of Theorem 6 one
can derive

lim
N→∞

1
N

∑
|θN

i −θN
j −θ/N |S1≤δ/N1/2

|〈ψNi ,OpN [a]ψNj 〉|2 = |â(k, 0)|2 , (107)

for any δ > 0, where ψNi , e(θNi ), i = 1, . . . , N are the eigenvectors and eigenvalues of
UN , and θ = kα.
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[DBDE98] S. De Bièvre and M. Degli Esposti, Egorov theorems and equidistribution
of eigenfunctions for the quantized sawtooth and baker maps, Ann. Inst. H.
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École Norm. Sup. (4) 37 (2004), no. 5, 769–799.

[MO05] J. Marklof and S. O’Keefe, Weyl’s law and quantum ergodicity for maps with
divided phase space, Nonlinearity 18 (2005), no. 1, 277–304, With an appendix
“Converse quantum ergodicity” by Steve Zelditch.

[MR00] J. Marklof and Z. Rudnick, Quantum unique ergodicity for parabolic maps,
Geom. Funct. Anal. 10 (2000), no. 6, 1554–1578.

21



[Ros06] L. Rosenzweig, Quantum unique ergodicity for maps on the torus, Ann. Henri
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