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A variational principle is proposed to derive the governing equations for the problem of8
ocean wave interactions with a floating ice shelf, where the ice shelf is modelled by the full9
linear equations of elasticity and has an Archimedean draught. The variational principle is10
used to form a thin-plate approximation for the ice shelf, which includes water–ice coupling11
at the shelf front and extensional waves in the shelf, in contrast to the benchmark thin-plate12
approximation for ocean wave interactions with an ice shelf. The thin-plate approximation13
is combined with a single-mode approximation in the water, where the vertical motion is14
constrained to the eigenfunction that supports propagating waves. The new terms in the15
approximation are shown to have a major impact on predictions of ice shelf strains for wave16
periods in the swell regime.17

Key words: N/A18

1. Introduction19

Flexural waves are known to propagate through floating ice from classical experimental20
studies (e.g., Press et al. 1951), and it is known from observations that the flexure can be21
forced by ocean waves (e.g., Holdsworth 1969). For over half a century, thin elastic plates22
(Lamb 1916) floating on water have been the benchmark model for ocean wave-induced23
flexural motions of sea ice (Evans & Davies 1968; Wadhams et al. 1988; Meylan & Squire24
1994;Vaughan et al. 2009;Montiel et al. 2016; Pitt et al. 2022) and ice shelves (Holdsworth&25
Glynn 1978; Vinogradov&Holdsworth 1985; Fox& Squire 1991b;Williams& Squire 2007;26
Papathanasiou et al. 2015; Meylan et al. 2021). The benchmark model, which dates back to27
Greenhill (1916), assumes the vertical ice displacements are uniformwith respect to thickness28
(i.e., a thin plate), and the water is a potential-flow fluid. The plate appears in the model29
through flexural and inertial restoring forces at the water surface, which are manifested as30
high-order derivatives in the dynamic surface condition. The high-order boundary condition31
supports so-called flexural-gravity waves, plus wave modes that have no analogue in open32
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water (i.e., where the water surface is in contact with air), which are typically oscillatory-33
decaying waves but can become purely decaying in certain regimes (Williams 2006; Bennetts34
2007), as well as evanescent (exponentially decaying) modes.35
In both sea ice and ice shelf applications, the canonical wave–ice interaction problem36

involves a two-dimensional water domain (one horizontal dimension plus depth), which has37
half of its surface covered by ice, and where motions are excited by an incident wave from38
the open (non-ice covered) water (Evans & Davies 1968; Tkacheva 2001; Linton & Chung39
2003). The incident wave is partially reflected at the ice edge and partially transmitted into40
the ice-covered domain. The model is used to predict, e.g., strains in landfast sea ice (Fox41
& Squire 1991b, 1994) and ice shelves (Fox & Squire 1991a), and is the basis for models42
of wave attenuation in the marginal ice zone (Bennetts & Squire 2012b,a). Although the43
Archimedean draught of ice is ≈ 90% of its thickness, the thinness of sea ice has been used44
to justify the so-called shallow-draught approximation, in which the ice floats at the water45
surface with no submergence. Therefore, the ice edge experiences no loading, and free edge46
conditions are applied (i.e., zero bending moment and shear stress). The water and ice are47
coupled along the underside of the ice only.48
Methods have been developed to accommodate Archimedean ice draught, whilst retaining49

the free edge conditions (Williams & Porter 2009; Montiel et al. 2012; Papathanasiou et al.50
2019). The methods address the geometrical corner created by the partial submergence of the51
ice edge, but not the additional water–ice coupling created by the bending moment applied52
by the water motion on the ice edge and the kinematic coupling between the ice edge and the53
water (equality of the normal water and ice displacements at their interface). Notably, Porter54
& Porter (2004), and subsequently Bennetts et al. (2007), who corrected an error in Porter55
& Porter (2004), derived the incorrect free edge conditions as the natural conditions of a56
variational principle, but where the thinness of the plate was already applied in the underlying57
Lagrangian, i.e., a one dimensional body was partially submerged in a two-dimensional fluid.58
Although ad-hoc, the use of the shallow-draught approximation and/or free edge conditions59

at a sea ice edge seems unlikely to have a major impact on model predictions, as the60
ice thickness (typically tens of centimetres to a few metres) is much smaller than other61
characteristic lengths. Relevant wavelengths are in the swell regime (tens to hundreds of62
metres; wave periods 10–30 s) and wave–sea ice interactions typically occur in the deep63
ocean (> 1 km, i.e., much greater than wavelengths). In contrast, ice shelves are hundreds of64
metres thick, occur on continental shelves and the sub-ice shelf water cavities are typically65
hundreds of metres deep. Ice shelves vibrate in response to ocean waves from long swell66
(wavelengths on the order of hundreds of metres) to infragravity waves (wavelengths on the67
order of kilometres to tens of kilometres; wave periods 50–300 s) and longer (Chen et al.68
2019). Therefore, the jump in water depth created by the ice draught affects model predictions69
(Kalyanaraman et al. 2019).70
For the ice shelf application, water–ice coupling at the submerged portion of the shelf71

front (i.e., the ice edge) appears likely to influence model predictions for incident swell.72
Compelling evidence that swell forced shelf front strains strong enough to trigger runaway73
ice shelf disintegrations makes this missing aspect of the benchmark thin-plate model74
conspicuous (Massom et al. 2018). Abrahams et al. (2023) recently analysed a numerical75
time domain simulation, in which the ice shelf is modelled using the full (linear) equations76
of elasticity. In addition to flexural waves, they identified extensional waves in the shelf that77
are generated by water–ice coupling at the shelf front. There is also observational evidence78
of ocean waves forcing extensional waves in ice shelves (Chen et al. 2018). (See Hunkins79
1960, for observations of extensional waves in sea ice.) Further, Abrahams et al. (2023)80
showed that extensional wave displacement amplitudes exceed those of the flexural waves81
for low frequencies, with the extensional to flexural amplitude ratio tending to infinity as82
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the frequency tends to zero. Kalyanaraman et al. (2020) analysed numerical computations83
in the frequency domain of an ice shelf (of finite length) modelled using the full equations84
of elasticity (although neglecting gravity), but applied free edge conditions at the shelf85
front. They found the flexural displacement profiles were similar to those predicted by the86
benchmark model, at least for two wave periods in the infragravity regime. The finding is87
broadly consistent with the results of studies using the shallow-draught approximation and88
thick plate models (Fox & Squire 1991a; Balmforth & Craster 1999).89
In this article, we outline a variational principle that derives the governing equations of the90

ice shelf problem, where the shelf has an Archimedean draught and is modelled by the full91
equations of elasticity, i.e., no simplifying assumptions are made about the ice displacements.92
We use the variational principle to derive a thin plate approximation by constraining the ice93
displacements to low-order subspaces, with the underlying assumption that the ice thickness94
is small with respect to the wavelengths it supports. The thin plate approximation extends95
the benchmark model by including extensional waves in the shelf and coupling water and96
ice motions at the shelf front. We combine the thin-plate approximation with a single-mode97
approximation in the water, which involves averaging with respect to depth, similar to Porter98
& Porter (2004) and Bennetts et al. (2007). We use the approximations to investigate the99
influence of coupling at the ice edge and extensional waves on ice shelf strains, across the100
swell and infragravity wave regimes.101

2. Preliminaries102

Consider a two-dimensional domain of homogeneous, inviscid and irrotational water, which103
has an (undisturbed) finite depth � and infinite horizontal extent (Fig. 1). An ice shelf of104
finite thickness ℎ and semi-infinite length covers the surface of the right-hand side of the105
water domain. Let the Cartesian coordinate system (G, I) ≡ (G1, G2) define locations in the106
water and ice shelf. The horizontal coordinate, G ∈ R, has its origin set to coincide with107
the shelf front. The vertical coordinate, I, has its origin set to coincide with the undisturbed108
water surface, such that the (flat) bed is located at I = −�.109
The ice shelf is assumed to be a homogenous, isotropic, purely elastic solid without110

gravitational pre-stress (see Appendix A for evidence the gravitational pre-stress has little111
effect on wave propagation). It has an Archimedean draught, such that its (undisturbed) lower112
surface is located at113

I = −3 ≡ − di ℎ
dw

, (2.1)114

where di = 922.5 kgm−3 and dw = 1025 kgm−3 are the ice and water densities, respectively,115
such that di / dw = 0.9. The ice/water domain is partitioned into the ice shelf, the sub-shelf116
water cavity and the open ocean (Fig. 1), respectively,117

Ωsh = {(G, I) : 0 < G < ∞;−3 < I < ℎ − 3} (2.2a)118

Ωca = {(G, I) : 0 < G < ∞;−� < I < −3}, (2.2b)119

and Ωop = {(G, I) : −∞ < G < 0;−� < I < 0}. (2.2c)120121

The sub-domains (2.2) are assumed to be the equilibrium state of the ice/water system, about122
which motions are forced by incident waves.123
Small amplitude (linear) motions of the ice–water system are considered. Let the displace-124

ment field be125

u(G, I, C) = [* (G, I, C);, (G, I, C)] ≡ [*1(G, I, C);*2(G, I, C)] . (2.3)126
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Figure 1: Schematic (not to scale) of the equilibrium geometry.

The displacement in the H-direction (or G3-direction; which points out of the page in Fig. 1)127
is + or*3 ≡ 0. In the ice, the infinitesimal strain tensor, 9(G, I, C), is defined as128

Y8 9 ≡
1
2

(
* 9 ,G8 +*8,G 9

)
for 8, 9 ∈ {1, 2, 3}. (2.4)129

The Cauchy stress tensor, 2(G, I, C) (i.e., the stress tensor under infinitesimal deformation),130
is related to the strain tensor via the standard constitutive relations, such that131

Y8 9 = −
a

�
X8 9

3∑
A=1

fAA +
1 + a
�

f8 9 for 8, 9 ∈ {1, 2, 3}, (2.5)132

where � is Young’s modulus and a is Poisson’s ratio, and � = 11GPa and a = 0.3 are used133
as standard values for ice shelves. Plane strain is assumed in the G-I plane, i.e., Y38 = Y83 = 0134
(for 8 = 1, 2, 3) but f33 is non-zero.135
In the water, which is modelled as inviscid, the stress tensor has components136

f8 9 = −% X8 9 for 8, 9 ∈ {1, 2, 3}, (2.6)137

where %(G, I, C) is the pressure field. Assuming the water undergoes irrotational motions in138
the G-I plane (with no motion in the H-direction), the displacement field is expressed as the139
gradient of a scalar displacement potential, Φ(G, I, C). At this stage, no relation is assumed140
between the pressure and the displacement potental, i.e., the Bernoulli equation is not applied.141
The functions Z•(G, C) denote the vertical displacements of the water–atmosphere, water–ice142
and ice–atmosphere interfaces (• = w–a,w–i, i–a, respectively). They are not yet related to143
the ice displacements (u), or water pressure (%) or displacements (through Φ).144
The relative hydrostatic pressures in the open ocean, ice shelf and sub-shelf water cavity145

are, respectively,146

%op(I) = −dw 6 I, %sh(I) = %0 − di 6 (I + 3) and %ca(I) = %0 − dw 6 (I + 3) = −dw 6 I,
(2.7a,b,c)147

where148

%0 = %sh(−3) = %ca(−3) = %op(−3) = di 6 ℎ = dw 6 3, (2.8)149

and 6 = 9.81ms−2 is the constant gravitational acceleration. Note that %sh(ℎ−3) = %op(0) =150
0, so Eq. (2.7a–c) represent the true hydrostatic pressure minus the constant atmospheric151
pressure, %at, and that the hydrostatic pressure is continuous going from the open ocean into152
the sub-shelf cavity.153

Focus on Fluids articles must not exceed this page length
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3. Variational principle154

3.1. Lagrangian155

The Lagrangian for the ice–water system is156

L{u,Φ, %, ' , 3} = Lsh{u, Zi–a, Zw–i, 3} + Lca{Φ, %, Zw–i, 3} + Lop{Φ, %, Zw–a, 3}, (3.1)157

where Lsh, Lca and Lop are the Lagrangians for the ice shelf, sub-shelf water cavity and158
open ocean, respectively.159
The (linearised) Lagrangian for the ice shelf is expressed asLsh = Tsh−Vsh, where Tsh and160
Vsh are the kinetic and potential energies in the ice shelf, respectively. The kinetic energy is161

Tsh{u} =
di
2

∬
Ωsh

{
*2C +,2C

}
dG dI. (3.2)162

163

The potential energy is the integral of the strain energy density plus the gravitational potential164
over the shelf domain, plus integrals from linearisation of the moving boundaries and normal165
stresses applied to the boundaries (denoted g88; applied shear stress, g8 9 for 8 ≠ 9 , are neglected166
as the surrounding water and air do not support them). The strain energy density is167

Ee(9) =
1
2

2∑
8=1

2∑
9=1
f8 9 Y8 9 , (3.3)168

169

which depends only on the strain since (2.5) can be inverted to write the stress in terms of170
the strain.171
The gravitational potential is calculated relative to the upper surface of the shelf (I = ℎ−3),172

as173

%sh(I −,) = di 6 (, − I + ℎ − 3). (3.4)174175

Therefore, the potential energy in the ice shelf is176

Vsh{u, Zi–a, Zw–i, 3} =
∬
Ωsh

©«12
2∑
8=1

2∑
9=1
f8 9 Y8 9 + di 6 (, − I + ℎ − 3)

ª®¬ dG dI177

+
∫ ∞

0

[
di 6, Zi–a −

1
2
di 6 Z

2
i–a − g22,

]
I=ℎ−3

dG178

−
∫ ∞

0

[
(%0 + di 6,) Zw–i −

1
2
di 6 Z

2
w–i − g22,

]
I=−3

dG179

+
∫ ℎ−3

−3

[
g11*

]
G=0
dI180

−
∫ ℎ−3

−3

[
g11*

]
G→∞

dI. (3.5)181
182

The atmospheric pressure, %at, appears implicitly in (3.5) via the applied stresses183

[g11]G=0,0<I<ℎ−3 = [g22]G>0,I=ℎ−3 ≡ −%at. (3.6)184

The Lagrangian for the sub-shelf water cavity is expressed as Lca = Tca −Vca, where the185
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kinetic energy in the water cavity is186

Tca{Φ} =
dw
2

∬
Ωca

{
Φ2GC +Φ2IC

}
dG dI. (3.7)187

188

For the potential energy, a term that is analogous to the strain energy density in the ice is189

Ee(%,Φ) = −% ∇2Φ, (3.8)190191

and the gravitational potential is relative to the water surface (without the ice shelf; I = 0),192
i.e.,193

%ca(I −ΦI) = di 6 (ΦI − I). (3.9)194195

Therefore, the potential energy is196

Vca{Φ, %, Zw–i, 3} =
∬
Ωca

{
−% ∇2Φ + di 6 (ΦI − I)

}
dG dI197

+
∫ ∞

0

[
(%0 + dw 6ΦI) Zw–i −

1
2
dw 6 Z

2
w–i − g22ΦI

]
I=−3

dG198

−
∫ ∞

0

[
− g22ΦI

]
I=−�

dG199

−
∫ −3

−�

[
g11ΦG

]∞
G=0
dI. (3.10)200

201

Similarly, the linearised Lagrangian for the open ocean is Lop = Top −Vop, in which202

Top{Φ} =
dw
2

∬
Ωop

{
Φ2GC +Φ2IC

}
dG dI (3.11)203

204
205

and Vop{Φ, %, Zw–a, 3} =
∬
Ωop

{
−% ∇2Φ + di 6 (ΦI − I)

}
dG dI206

+
∫ 0

−∞

[
dw 6ΦI Zw–a −

1
2
dw 6 Z

2
w–a − g22ΦI

]
I=0
dG207

−
∫ 0

−∞

[
− g22ΦI

]
I=−�

dG208

+
∫ 0

−�

[
− g11ΦG

]0
G→−∞

dI. (3.12)209
210

Again, the atmospheric pressure appears implicitly, via211

[g22]G<0,I=0 ≡ −%at. (3.13)212

Small variations are applied to all unknowns, such that the Lagrangians become213

Tsh{u + Xu} = Tsh{u} + XTsh{u : Xu} + o(Xu), and so on. (3.14)214

The first variation of the full Lagrangian, XL{u,Φ, %, ' , 3 : Xu, XΦ, X%, X' , X3}, is215

XL = XLsh + XLca + XLop = XTsh − XVsh + XTca − XVca + XTop − XVop. (3.15)216
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3.2. Action217

The action, A, is the integral of the Lagrangian over an arbitrary time interval, C0 < C < C1,218
i.e.,219

A{u,Φ, %, ' , 3} =
∫ C1

C0

L{u,Φ, %, ' , 3} dC. (3.16)220

Its first variation is221

XA{u,Φ, %, ' , 3 : Xu, XΦ, X%, X' , X3} =
∫ C1

C0

XL{u,Φ, %, ' , 3 : Xu, XΦ, X%, X' , X3} dC.

(3.17)222
From Eqs. (3.2–3.11), the first variation is evaluated as223

XA = −
∫ C1

C0

∬
Ωsh

{
X* (di*CC − f11,G − f12,I)224

+ X, (di,CC − f21,G − f22,I + di 6)
}
dG dI dC225

+
∫ C1

C0

∬
Ωca

{
X% ∇2Φ + XΦ∇2%̂

}
dG dI dC226

+
∫ C1

C0

∬
Ωop

{
X% ∇2Φ + XΦ∇2%̂

}
dG dI dC227

−
∫ C1

C0

∫ ∞

0

[
XZi–a di 6 (, − Zi–a)228

+ X, (f22 + di 6 Zi–a + %at) + X* f12
]
I=ℎ−3

dG dC229

+
∫ C1

C0

∫ ℎ−3

0

[
X, f12 + X* (f11 + %at)

]
G=0
dI dC230

+
∫ C1

C0

∫ ∞

0

[
XZw–i {di 6 (, − Zw–i) − dw 6 (ΦI − Zw–i)}231

+ X, (f22 + di 6 Zw–i − (bt) + X* f12232

− XΦ %̂I + XΦI (% − dw 6 Zw–i + (bt) − X(bt (, −ΦI)
]
I=−3

dG dC233

+
∫ C1

C0

∫ 0

−3

[
X, f12 + X* (f11 − (fr) − XΦ %̂G234

+ XΦG (% + (fr) − X(fr (* −ΦG)
]
G=0
dI dC235

+
∫ C1

C0

∫ ∞

−∞

[
XΦ %̂I − XΦI (% + (bd) − X(bdΦI

]
I=−�

dG dC
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−
∫ C1

C0

∫ 0

−∞

[
XZw–a dw 6 (ΦI − Zw–a) + XΦ %̂I236

− XΦI (% − dw 6 Zw–a − %at)
]
I=0
dG dC237

+
∫ C1

C0

∫ −3

−�

[
XΦ %̂G − XΦG

(
% + (fr

) ]0+
G=0−
dI dC238

−
∫ C1

C0

∫ −3

−�

[
X(fr 〈ΦG〉

]
G=0
dI dC. (3.18)239

240

Here, 〈•〉 denotes the jump in the included quantity over G = 0, and the notations241

%̂(G, I, C) ≡ % + dw (ΦCC + 6 I) , (fr(I, C) ≡ [g11]G=0, (3.19a,b)242

(bt(G, C) ≡ [g22]I=−3 and (bd(G, C) ≡ [g22]I=−� , (3.19c,d)243244

have been introduced for convenience, where the subscripts fr, bt and bd indicate stresses on245
the shelf front, shelf bottom and seabed, respectively. Vanishing of the first variations of the246
applied stresses from the atmosphere have been incorporated, as the stresses are known from247
(3.6) and (3.13). All variations are assumed to vanish in the far field G → ±∞.248

3.3. Governing equations249

Enforcing XA = 0 for arbitrary variations, Xu and so on, %̂ must satisfy Laplace’s equation250

∇2%̂ = 0 for (G, I) ∈ Ωop and (G, I) ∈ Ωca, (3.20)251

(from domain integral terms proportional to XΦ in Eq. 3.18), with boundary conditions252

%̂G = 0 for G = 0, −3 < I < 0, %̂I = 0 for −∞ < G < 0, I = 0, (3.21a,b)253

%̂I = 0 for 0 < G < ∞, I = −3 and %̂I = 0 for −∞ < G < ∞, I = −�,
(3.21c,d)

254

255

(from the terms proportional to XΦ in the respective boundary integrals). Eqs. (3.20–3.21)256
for %̂ are uncoupled from the other unknowns, and can be solved to give257

%̂ = �op(C) for (G, I) ∈ Ωop and %̂ = �ca(C) for (G, I) ∈ Ωca, (3.22a,b)258

where �op and �ca are arbitrary functions.259
Water pressures in Ωop and Ωca can be deduced from Eqs. (3.22a,b), respectively. If we260

also set261

�op = �ca ≡ %at, (3.23)262

(implicitly using the freedom of an arbitrary function of time in the potential Φ), the water263
pressure is given by as the sum of the hydrostatic pressure (introduced earlier) and a dynamic264
pressure, such that265

% = %at − dw (ΦCC + 6 I) for (G, I) ∈ Ωop ∪Ωca. (3.24)266

Therefore, Bernoulli’s equation (3.24) appears as a natural condition of the variational267
principle, rather than it being imposed as an essential condition.268
From the remaining conditions given by XA = 0, it is possible to deduce the field equations269

of the full linear problem:270
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di*CC = f11,G + f12,I for (G, I) ∈ Ωsh, (3.25a)

di,CC = f12,G + f22,I − di 6 for (G, I) ∈ Ωsh, (3.25b)

and ∇2Φ = 0 for (G, I) ∈ Ωca ∪Ωop, (3.25c)
271

where the continuities at the ocean–cavity interface 〈Φ〉 = 〈ΦG〉 = 0 have been used.272
Eqs. (3.25a,b) are the full equations of linear elasticity in the ice shelf, and Eq. (3.25c) is273
Laplace’s equation in the water, resulting from the standard assumptions of potential flow274
theory. Further, XA = 0 derives the interfacial equations of the full linear problem:275

, = Zi–a, f12 = 0 and f22 + di 6 Zi–a = −%at for 0 < G < ∞, I = ℎ − 3,
(3.26a,b,c)

f12 = 0 and f11 = −%at for G = 0, 0 < I < ℎ − 3,
(3.26d,e)

, = ΦI = Zw–i, f12 = 0, f22 + di 6 Zw–i = (bt

and % − dw 6 Zw–i = −(bt for 0 < G < ∞, I = −3,
(3.26f,g,h,i)

* = ΦG , f12 = 0 and (fr = −% = f11 for G = 0, −3 < I < 0,
(3.26j,k,l)

ΦI = 0 and (bd = −% for −∞ < G < ∞, I = −�,
(3.26m,n)

ΦI = Zw–a and % − dw 6 Zw–a = %at for G < 0, I = 0. (3.26o,p)
276

Eq. (3.26) contains conditions at the interfaces between (a–e) the ice shelf and the atmosphere,277
(f–l) the ice shelf and the water, (m–n) the water and the seabed, and (o–p) the water and the278
atmosphere. Eqs. (3.26a,f,j,m,o) are kinematic conditions, i.e., matching of displacements at279
common boundaries. Eqs. (3.26b,d,g,k) are continuities of shear stress (only non-zero in the280
ice shelf), and Eqs. (3.26c,e,h,i,l,n,p) are continuities of normal stresses. Eq. (3.26n) is an281
identity for the applied stress at the seabed, which may be evaluated once the other unknowns282
have been calculated from the boundary value problem defined by the field equations (3.25)283
and the remaining interfacial conditions (3.26), plus radiation conditions.284

4. Thin plate approximation285

A thin plate (depth averaged) approximation for the ice shelf displacements, u = (*,,), is286
derived using the ansatzes287

* (G, I, C) ≈ * (G, C) − (I + 3 − ℎ / 2), G (G, C) and , (G, I, C) ≈ , (G, C), (4.1a,b)288

which include a simplified form of extensional motions, via *, as well as flexural motion,289
via, . Eq. (4.1b) and the term proportional to, G in (4.1a) are the standard assumptions of290
flexural waves in thin plates, i.e., points initially normal to the mid-plane (I = ℎ / 2 − 3 in291
equilibrium) remain normal after deformation.292
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The components of the strain tensor (2.5b) reduce to293

Y11 = *G − (I + 3 − ℎ / 2), GG and Y12 = Y21 = Y22 ≡ 0. (4.2a,b)294

Thus, f12 = 0, and assuming f22 = 0 (i.e., plane stress), Eqs. (2.5b) and (4.2b) imply295

f33 = a f11 ⇒ f11 = "ps Y11, (4.3a,b)296297

where "ps = � / (1 − a2) is the plane stress primary wave (P-wave) modulus. As noted by298
Fung (1965), the ansatz (4.1b) is technically inconsistent with the assumption f22 = 0, since299
Y22 = −a (1 + a) f11 / � , i.e., there should be an extension (contraction) in the I-direction300
whenever there is a contraction (extension) in the G-direction. This effect is neglected here,301
in order to follow the standard thin plate approximation.302
Applying (4.1) in the ice shelf Lagrangian, Lsh, the first variation of the associated action,303

Ash =

∫ C1

C0

Lsh dC, (4.4)304

becomes305

XAsh = − ℎ
∫ C1

C0

∫ ∞

0

{
X*

(
d8*C C − "ps*G G

)}
dG dC306

−
∫ C1

C0

∫ ∞

0

{
X,

(
d8 ℎ, C C +

ℎ3 {"ps, G G G G − d8, G G C C }
12

307

+ 6 ℎ d8 + (bt + %at + 6 d8 (Zi–a − Zw–i)
)}

dG dC308

+
∫ C1

C0

∫ ∞

0

{
6 d8 XZw–i

(
, − Zw–i

)
− 6 d8 XZi–a

(
, − Zi–a

)}
dG dC309

−
∫ C1

C0

∫ ∞

0

{
X(bt,

}
dG dC310

+
∫ C1

C0

[
X*

(
ℎ "ps*G −

∫ ℎ−3

−3
(fr dI

)]
G=0

dC311

+
∫ C1

C0

[
X,

( d8 ℎ3
12

, G C C −
ℎ3 "ps, G G G

12

)]
G=0

dC312

+
∫ C1

C0

[
X, G

( ℎ3 "ps

12
, G G +

∫ ℎ−3

−3

(
3 − ℎ
2
+ I

)
(fr dI

)]
G=0

dC313

−
∫ C1

C0

∫ 0

−3

[
X(fr

(
* −

(
3 − ℎ
2
+ I

)
, G −ΦG

) ]
G=0

dI dC. (4.5)314
315

Combining (4.5) with the relevant components of XAca =
∫ C1
C0
XLca dC, the vertical component316

Rapids articles must not exceed this page length



11

of the shelf displacement is coupled to the cavity via the conditions317

, − Zi–a = 0, [ΦI]I=−3 −, = 0, % − dw 6 Zw–i + (bt = 0, (4.6a,b,c)318

6 d8

(
ℎ +, − Zw–i

)
−

(
%0 + dw 6 ( [ΦI]I=−3 − Zw–i)

)
= 0, (4.6d)319

and d8 ℎ, C C +
ℎ3 {"ps, G G G G − d8, G G C C }

12
320

+ 6 ℎ d8 + (bt + %at + 6 d8 (Zi–a − Zw–i) = 0, (4.6e)321322

for G > 0. As %0 = d8 6 ℎ, it follows from (4.6a,b,d) that323

, = Zw–i = Zi–a = [ΦI]I=−3 . (4.7)324

Substituting (4.7) into (4.6c,e), and using the Bernoulli pressure (3.24) and Archimedean325
draft, results in a thin plate equation for the ice shelf flexure, forced by the water motion326
(given below in Eq. 4.8a). In contrast, the thin plate equation for the extensional motion327
(from the first integral in Eq. 4.5) is not coupled to the cavity directly.328
Therefore, the approximate XAsh (in Eq. 4.5) combined with XAca derives the thin plate329

approximation field equations:330

dF

(
[ΦCC ]I=−3 + 6,

)
+ d8 ℎ, C C +

ℎ3 {"ps, G G G G − d8, G G C C }
12

= 0, (4.8a)

and di*C C − "ps*G G = 0, (4.8b)
331

for G > 0. Eq. (4.8a) is similar to the benchmark thin plate equation, i.e., a Kirchoff plate332
with fluid loading, but also contains rotational inertia, as with a Timoshenko-Mindlin plate333
(Fox & Squire 1991a; Balmforth & Craster 1999). Eq. (4.8b) is the standard field equation334
for extensional waves in an elastic plate that travel at the P-wave speed

√
"ps / di, i.e., the335

extensional Lamb wave speed, consistent with Abrahams et al. (2023).336

Coupling Eq. (4.5) with XAop =
∫ C1
C0
XLop dC, derives the shelf front conditions for the337

thin-plate approximation:338

ℎ3 "ps

12
, G G +

∫ ℎ−3

−3

(
3 − ℎ
2
+ I

)
(fr dI = 0, (4.9a)

"ps, G G G − d8, G C C = 0, (4.9b)

ℎ "ps*G −
∫ ℎ−3

−3
(fr dI = 0, (4.9c)

and ΦG −
(
* −

(
3 − ℎ
2
+ I

)
, G

)
= 0 for − 3 < I < 0, (4.9d)

339

for G = 0, where (fr = −[%]G=0 for I ∈ (−3, 0) and (fr = −%at for I ∈ (0, ℎ − 3).340
Eqs. (4.9a–d) represent, respectively, continuity of bending moment, shear stress, normal341
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traction and horizontal displacement. As in the full linear problem, the potential Φ satisfies342
Laplace’s equation in the water domain, the impermeable seabed condition and the free343
surface conditions, i.e., Eq. (3.25c) and Eqs. (3.26m,o,p).344

5. Frequency domain345

5.1. Governing equations and single-mode approximation346

Assume all dynamic components are time-harmonic at some prescribed frequency, l ∈ R+,347
so that the extensional and flexural components of the ice displacements are, respectively,348

* (G, C) = D(G) e−i l C and , (G, C) = F(G) e−i l C , (5.1)349

and the interfacial displacements are350

Z•(G, C) = [•(G) e−i l C for • = w–a,w–i, i–a, (5.2)351

where D, F, [• ∈ C and it is implicitly assumed from here on that only the real parts are352
retained for the time-dependent variables. For the water, prescribe Bernoulli pressure via353

%(G, I, C) = %at − dw {ΦCC + 6 I} for (G, I) ∈ Ωop ∪Ωca ⇒ %̂ = %at, (5.3)354

and constrain the vertical dependence of the potential, such that355

Φ(G, I, C) ≈ 6

l2
i(G) cosh{: (I + �)}

cosh(: �) e−i l C for (G, I) ∈ Ωop, (5.4a)356

Φ(G, I, C) ≈ 6

l2
k(G) cosh{^ (I + �)}

cosh{^ (� − 3)} e
−i l C for (G, I) ∈ Ωca, (5.4b)357

358

for wavenumbers : , ^ ∈ R+ to be defined, i.e. a single-mode approximation (Porter & Porter359
2004; Bennetts et al. 2007), noting that Eqs. (5.4a–b) create a jump in the potential over the360
interface I ∈ (−�,−3) for G = 0. The stresses at the shelf bottom and front are prescribed as361

362

(bt(G) = −[%]I=−3 + dw 6 Zw-i for G > 0 (5.5a)363

and (fr(I) = %at − dw {[ΦCC ]G=0 + 6 I} for − � < I < 0. (5.5b)364365

Applying these constraints to XA in Eq. (3.18), using XAsh in Eq. (4.5), gives366

XA = − ℎ
∫ C1

C0

∫ ∞

0
e−2 i l C XD

{
− d8 l2 D − "ps D

′′
}
dG dC367

−
∫ C1

C0

∫ ∞

0
e−2 i l C XF

{
− d8 ℎ l2 F +

ℎ3 {"ps F
′′′′ + d8 l2 F′′}
12

368

+ 6 dw ([w–i − k) + 6 d8 ([i–a − [w–i)
}
dG dC369

+ dw 6
2

l2

∫ C1

C0

∫ ∞

0
e−2 i l C Xk

{ ∫ −3

−�
(k ′′ + ^2 k) cosh

2{^ (I + �)}
cosh2{^ (� − 3)}

dI370

+
{l2
6
F − ^ tanh{^ (� − 3)} k

}}
dG dC
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+ 6
∫ C1

C0

∫ ∞

0
e−2 i l C X[w-i (di − dw) (F − [w-i) dG dC371

− di 6
∫ C1

C0

∫ ∞

0
e−2 i l C X[i-a (F − [i-a) dG dC372

+ dw 6
2

l2

∫ C1

C0

∫ 0

−∞
e−2 i l C Xi

{ ∫ 0

−�
(i′′ + :2 i) cosh

2{: (I + �)}
cosh2(: �)

dI373

+ tanh(: �) {i − [w-a}
}
dG dC374

− dw 6
2

l2

∫ C1

C0

∫ 0

−∞
e−2 i l C X[w-a

(
: tanh(:�) i − l

2

6
[w-i

)
dG dI375

+ XCop-ca + XCop-sh, (5.6)376377

where XCop-ca and XCop-ca contain contributions on the interfaces between the open water and378
the shelf front and cavity, respectively.379

Setting XA = 0 for arbitrary variations (XD and so on) gives a set of governing equation for380
the unknown functions of the horizontal spatial coordinate in Eqs. (5.1–5.4), which includes381
depth-averaged equations in the open water and cavity. In the open water (G < 0)382

0op (i′′ + :2 i) + tanh(: �) {i − [w-a} = 0 (5.7a)383

where 0op =

∫ 0

−�

cosh2{: (I + �)}
cosh2(: �)

dI, (5.7b)384

: tanh(: �) i − l
2

6
[w-a = 0 and i − [w-a = 0, . (5.7c,d)385

386

Eqs. (5.7c,d) imply387

: tanh(: �) = l
2

6
, (5.7e)388

so that : ∈ R+ used in Eq. (5.4a) satisfies the standard open water dispersion relation (Fig. 2).389
Therefore, XA = 0 derives the field equation of the open water single-mode approximation:390

i′′ + :2 i = 0 for G < 0, (5.8)
391

which has the general solution392

i(G) = �(op) ei : G + � (op) e−i : G , (5.9)393

for as yet unspecified constants �(op) and � (op) .394
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Figure 2: Wavenumbers for the open water (:), flexural-gravity wave (^) and extensional
wave in the shelf (@) versus frequency for shelf thickness ℎ = 200m and water depth
� = 800m, along with the standard parameter values di = 0.9 dw, � = 11GPa, a = 0.3

and 6 = 9.81ms−2.

The depth-averaged equation in the cavity (G > 0) is395

0ca k
′′ + {^2 0ca − ^ tanh{^ (� − 3)}} k +

l2

6
F = 0, (5.10a)396

where 0ca =

∫ −3

−�

cosh2{^ (I + �)}
cosh2{^ (� − 3)}

dI. (5.10b)397
398

The remaining equations in the shelf–cavity involving the flexural shelf displacement are399

− d8 ℎ l2 F +
ℎ3 {"ps F

′′′′ + d8 l2 F′′}
12

+ 6 dw ([w–i − k) + 6 d8 ([i–a − [w–i) = 0 (5.11a)400

401
F = [i-a and (di − dw) (F − [w-i) = 0 ⇒ F = [w-i = [i-a. (5.11b,c,d)402

Therefore, enforcing XA = 0 derives the coupled field equations of the single-mode and403
thin-plate approximations:404

(1 − <l2) F + � F′′′′ + � l2 F′′ − k = 0 (5.12a)

0ca k
′′ + {^2 0ca − ^ tanh{^ (� − 3)}} k +

l2

6
F = 0, (5.12b)

and � D′′ + <l2 D = 0 (5.12c)
405

for G > 0, where406

� ≡
"ps ℎ

3

12 dw 6
, � ≡

ℎ "ps

dw 6
, � ≡ di ℎ

3

12 dw 6
and < ≡ di ℎ

dw 6
. (5.13)407

Eqs. (5.12a,b) are identical to the single-mode approximation of Porter & Porter (2004)408
and Bennetts et al. (2007), except for the appearance of rotational inertia. Therefore, adapting409
Porter & Porter (2004) and Bennetts et al. (2007) to include rotational inertia, the general410



15

solutions are411

k(G) = �(ca) ei ^ G + � (ca) e−i ^ G +
∑
==1,2

{
�
(ca)
−= ei ^−= G + � (ca)−= e−i ^= G

}
(5.14a)412

and F(G) = �(fl) ei ^ G + � (fl) e−i ^ G +
∑
==1,2

{
�
(fl)
−= ei ^−= G + � (fl)−= e−i ^−= G

}
, (5.14b)413

414

for as yet unspecified constants �(ca) , � (ca) , �(fl) and � (fl) , such that415

�(ca) =
l2

6 ^ tanh{^ (� − 3)} �
(fl) (5.15a)416

and �
(ca)
−= = 0−1ca {� (^2 + ^2−=) − � l2} ^ tanh{^ (� − 3)} �

(fl)
−= (= = 1, 2), (5.15b)417418

and similarly for the constants related to the left-going waves. The wavenumber ^ is a root419
of the flexural-gravity wave dispersion equation420

{� ^4 − � l2 ^2 + 1 − <l2} ^ tanh{^ (� − 3)} = l
2

6
. (5.16)421

For low frequencies, the flexural-gravity wavenumber, ^, is similar to the open-water422
wavenumber, : , as restoring due to flexure (and rotational inertia) are negligible, but is423
slightly larger due to the reduced water depth, i.e., � − 3 < � (Fig. 2). For high frequencies,424
flexural restoring dominates and the flexural-gravity wavenumber becomes much smaller425
than the open water wavenumber. The wavenumbers ^−= ∈ R + iR+ (= = 1, 2) are roots of426
the quartic equation427

0ca (� ^4−= − � l2 ^2−= + 1 −<l2) + {� (^2 + ^2−=) − � l2} ^ tanh{^ (� − 3)}} = 0, (5.17)428

which typically satisfy ^−2 = −^∗1, where
∗ denotes the complex conjugate (Williams 2006;429

Bennetts 2007).430

Eq. (5.12c) for the extensional component of the shelf motions has the general solution431

D(G) = �(ex) ei @ G + � (ex) e−i @ G , (5.18)432

for as yet unspecified constants �(ex) and � (ex) . The extensional wavenumber, @, is433

@ = l

√
<

�
, (5.19)434

which is typically much smaller than the flexural-gravity wavenumber (and the open water435
wavenumber; Fig. 2).436
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The contribution to XA on the interface between the open ocean and the cavity is437

XCop-ca = − dw 6
∫ C1

C0

e−2 i l C [Xi]G=0

{ ∫ 0

−�
[i′]G=0

cosh2{: (I + �)}
cosh2(: �)

dI438

−
∫ −3

−�
[k ′]G=0

cosh{: (I + �) cosh{^ (I + �)}
cosh(: �) cosh{^ (� − 3)} dI439

−
∫ 0

−3

l2

6

cosh{: (I + �)}
cosh{^ (� − 3)}

{
D −

(
3 − ℎ
2
+ I

)
F′

}
dI

}
dC440

+
∫ C1

C0

e−2 i l C [Xk ′]G=0

{ ∫ 0

−�
[i]G=0

cosh2{^ (I + �)}
cosh2{^ (� − 3)}

dI441

−
∫ −3

−�
[k ′]G=0

cosh{: (I + �) cosh{^ (I + �)}
cosh(: �) cosh{^ (� − 3)} dI

}
dC. (5.20)442

443

Setting XCop-ca = 0 leads to the interfacial “jump” conditions for single-mode approximation:444

0op-ca i = 0ca k and 0op i
′ = 0op-ca k

′ + l
2

6

{
E0 D − E1 F′

}
(5.21a,b)

445

for G = 0, where446

0op-ca =

∫ −3

−�

cosh{: (I + �)} cosh{^ (I + �)}
cosh(: �) cosh{^ (� − 3)} dI, (5.22)447

E0 =

∫ 0

−3

cosh{: (I + �)}
cosh(: �) dI (5.23)448

and E1 =

∫ 0

−3

cosh{: (I + �)}
cosh(: �)

(
3 − ℎ
2
+ I

)
dI. (5.24)449

450

Eq. (5.21a) is a weak form of continuity of pressure between the open ocean and sub-451
shelf water cavity. Eq. (5.21b) is a weak form of continuity of horizontal water velocity452
between the open ocean and combined water and shelf front. The jump conditions are453
identical to the jump conditions derived by Porter & Porter (2004) and Bennetts et al. (2007)454
(restricted to piecewise constant geometry), except that (i) the integration of the coefficient455
Eop extends to the free surface (I = 0) rather than the ice underside (I = −3), and (ii) the ice456
displacements appear in Eq. (5.21b). For low frequencies, the (normalised) coefficient of the457
cavity water velocity in Eq. (5.21b) is much greater than the (normalised) coefficients of the458
ice displacement/velocity (Fig. 3a), indicating the jump condition is dominated by the depth459
averaged water velocities. The coefficients of the ice displacement/velocity increase with460
frequency, whereas the coefficient of water velocity decreases, such that the former become461
comparable and thenmuch greater than the latter, which indicates the jump condition provides462
strong coupling between the open ocean and shelf.463
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Figure 3: Normalised coefficients of the (a) jump condition Eq. (5.21b) and (b) shelf edge
conditions Eqs. (5.26a,b), which couple the open water to the shelf, versus frequency, for
ice thickness ℎ = 200m (thin dashed curves) and ℎ = 400m (thick solid) and water depth
� = 800m. Coefficients are normalised with respect to the coefficients of the relevant
leading term. Appropriate wavenumbers replace the derivatives and (5.15a) is used to

relate the amplitude of the flexural wave with the displacement potential.

The contribution to XA on the interface between the open ocean and the ice shelf is464

XCop-sh =
∫ C1

C0

[XD]G=0

{
e−2 i l C

(
ℎ "ps [D′]G=0 + dw 6 [i]G=0

∫ 0

−3

cosh{: (I + �)}
cosh(: �) dI

)
465

+ e−i l C
( ∫ 0

−3
%at − dw 6 I dI

∫ 0

−3
%at dI

)}
dC466

+
∫ C1

C0

e−2 i l C [XF]G=0
(−d8 ℎ3 l2

12
[F′]G=0 −

ℎ3 "ps

12
[F′′′]G=0

)
dC467

+
∫ C1

C0

[XF′]G=0

{
e−2 i l C

(
ℎ3 "ps

12
[F′′]G=0468

− dw 6 [i]G=0
∫ 0

−3

(
3 − ℎ
2
+ I

)
cosh{: (I + �)}
cosh(: �) dI

)
469

+ e−i l C
( ∫ 0

−3

(
3 − ℎ
2
+ I

)
(%at − dw 6 I) dI

∫ 0

−3

(
3 − ℎ
2
+ I

)
%at dI

)}
dC.

(5.25)

470

471
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Setting XCop-sh = 0 leads to the (dynamic, l ≠ 0) shelf front conditions:472

� D′ + E0 i = 0, � F′′ + E1 i = 0 and � F′′′ + � l2 F′ = 0 (5.26a,b,c)
473

for G = 0. (The static conditions are given in Appendix B.) Eqs. (5.26a,b) couple the ice and474
open water displacements. The ratios of the coefficients in the coupling conditions (Fig. 3b)475
indicate (i) strong coupling in Eq. (5.26a) at low frequencies (−1 < log10 |E0 / (@ �) | < 0476
for both thicknesses when log10(l / (2 c)) < −1.5) degenerating to uncoupled zero normal477
traction at high frequencies (log10 |E0 / (@ �) | < −2 for log10(l / (2 c)) > −0.6), and478
(ii) Eq. (5.26b) is approximately the bending moment component of the standard (uncoupled)479
free edge conditions over the frequency range considered (log10 |l2 E1 / (6 � ^3 tanh{^ (�−480
3)}) | < −1, except for the thinner shelf over a short interval at low frequencies).481

5.2. Scattering matrix482

The jump conditions (5.21) and shelf front conditions (5.26) are applied to the general483
solutions (5.9) and (5.14) to derive a system of relations between the amplitudes of the waves484
that propagate/decay towards and away from G = 0, �(•) and � (•) , respectively. Restricting485
to propagating waves only, and using Eq. (5.15) to eliminate �(ca) and � (ca) , derives the486
scattering matrix, S, which relates the outgoing amplitudes to the incoming amplitudes,487
such that488

©«
�(op)

�(fl)

�(ex)

ª®¬ = S ©«
�(op)

�(fl)

�(ex)

ª®¬ where S = ©«
R(op→op) T (fl→op) T (ex→op)

T (op→fl) R(fl→fl) R(ex→fl)

T (op→ex) R(fl→ex) R(ex→ex)

ª®¬ , (5.26a,b)489

in which the R• and T • are, respectively, reflection and transmission coefficients to be found490
from the solution of the problem in § 5.1. In general,T (op→ex) ≠ T (ex→op), etc, as T (op→ex)491
is the coefficient of the extensional wave in the ice shelf forced by a unit-amplitude incident492
wave from the open ocean, whereas T (ex→op) denotes the amplitude of a wave transmitted493
into the open ocean by an incident extensional wave from the ice shelf. The latter is typically494
not a physical problem considered in wave–shelf interaction studies. Using standard methods495
(Porter & Porter 2004), it can be deduced that496

S S∗ = I, (5.27)497

where ∗ denotes the conjugate matrix and I is the 3 × 3 identity matrix, from which energy498
balances can be derived (see below).499

6. Results500

Consider the problem in which motions are excited by an ambient incident wave from the501
ocean (�(fl) = �(ex) ≡ 0) at a prescribed period ) = 2 c /l. Without loss of generality, a502
unit incident wave amplitude is set (�(op) = 1m). The primary quantity of interest is the503
spatial component of the (non-zero) strain component504

Ŷ11(G, I : )) = D′ − (I + 3 − ℎ / 2) F′′, (6.1)505

which is such that Y11(G, I, C) = Ŷ11(G, I) e−i l C . Examples of the strain field due to incident506
waves (Fig. 4) indicate that the extensional and flexural motions both contribute to the strain507
for relatively short periods (in the swell regime), as it has nonlinear structure in both spatial508
dimensions, whereas only the flexural motion contributes for longer periods (infragavity509
wave regime and above), indicated by the vertical symmetry about the unstrained mid-plane510
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Figure 4: Wave-induced strain fields up to 5 km from the shelf front, for ice thickness
ℎ = 200m, water depth � = 800m, and wave period (a) ) = 15 s and (b) ) = 50 s.

(I = ℎ / 2 − 3). The shelf front experiences strains comparable to the shelf interior for the511
shorter period and near-zero strain for the longer period, where the latter is ensured by512
the exponentially decaying components of the flexural motion (with wavenumbers ^−= in513
Eq. 5.14b).514
Example wave-induced strain profiles at the lower ice shelf surface (Fig. 5) show the515

influence of the additional terms in the thin-plate approximation. Results from the benchmark516
thin plate model (without water–ice coupling at the shelf front and extensional waves) are517
shown alongside results from an intermediate version of themodel derived in § 5 that includes518
water–ice coupling at the shelf front but no extensional waves, and the full model that includes519
extensional waves. The differences between the intermediatemodel (withwater–ice coupling)520
and the full model (with extensional waves) highlight the influence of the extensional waves521
on the shelf strains. The differences between the benchmark model (in which hydrodynamic522
loads are imposed only at the lower shelf surface) and the two new models highlight the523
influence of hydrodynamic forcing at the shelf front on the shelf strains. In particular, the524
differences between the benchmark and intermediate models isolate the effects of water–ice525
coupling at the shelf front from the coupling at the lower surface on flexural waves. The526
strains are scaled by the shelf thickness, such that strains for different thickness values are527
of the same order of magnitude for the different wave periods. In all four cases (Fig. 5a–d),528
the benchmark model predicts the strain modulus increases from zero at the shelf front to a529
maximum value after several kilometres, followed by a plateau at a slightly smaller value.530
For the shorter wave period (Fig. 5a,b), the addition of water–ice coupling at the shelf531

front (through Eqs. 5.21b and 5.26b) causes a large relative increase in the strain, by factors532
of ≈ 3 for the thinner shelf and ≈ 75 for the thicker shelf at the plateaus (approximately533
G > 3 km). The strain at the shelf front is non-zero and, for the thicker shelf (Fig. 5b), the534
greatest strain occurs at the shelf front, such that the wave–ice coupling causes a qualitative535
change in the strain profile. The effect of wave–ice coupling on the strain profiles is almost536
imperceptible for the longer wave period (Fig. 5c,d), although the strains are one to two537
orders of magnitude larger than for the shorter period (ℎ |Ŷ11 | is up to order 10−3 for ) = 50 s538
versus order 10−5–10−4 for ) = 15 s). Moreover, the change in scale masks the similarity539
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Figure 5: Comparison of scaled wave-induced strain profiles predicted by three thin plate
models: (i) the benchmark model without water–ice coupling at the shelf front and

extensional waves (Porter & Porter 2004; Bennetts et al. 2007); (ii) an intermediate model
in which water–ice coupling occurs at the shelf front through the velocity jump condition

(Eq. 5.21b) and the bending moment condition (Eq. 5.26b); and (iii) the full model
proposed in § 5 including extensional wave motion and water–ice coupling at the shelf

front, for shelf thickness (a,c) ℎ = 200m and (b,d) ℎ = 400m, and bed depth � = 800m,
in response to incident waves with period (a,b) ) = 15 s and (c,d) ) = 50 s.

in the shelf front strain values for the respective thicknesses, as anticipated by the coupling540
coefficient in the bending moment condition (Fig. 3b; yellow curves).541
The addition of extensional waves changes the qualitative behaviour of the strain profiles542

for the shorter wave period (Fig. 5a,b). Notably, the strain does not reach a constant value543
away from the shelf front, due to interference in the underlying wave field between the544
flexural wave (with wavenumber ^) and the extensional wave (@), both of which persist to545
the far-field, G → ∞. The extensional waves have a far smaller effect on the strain profiles546
for the longer wave period (Fig. 5c,d), although their influence for the thicker shelf (Fig. 5d)547
is greater than that of the wave–ice coupling on the flexural waves.548
The proportion of incident wave energy transmitted into the flexural and extensional549

waves is used to assess their relative influence on the ice shelf motion versus wave period.550
The distribution of incident wave energy is derived from Eq. (5.27), which gives the energy551
balance552

R + T (fl) + T (ex) = 1, (6.2)553

where554

R = |R(op→op) |2, T (fl) = |T (fx→op) | |T (op→fl) | and T (ex) = |T (ex→op) | |T (op→ex) |, (6.3)555

are the proportions of the incident energy in the reflected wave (R), and the flexural (T (fl))556
and extensional (T (ex)) waves transmitted into the shelf–cavity region.557
For periods in the majority of the swell regime (here defined as wave periods from 10–558

30 s), the transmitted extensional waves carry more energy than the flexural waves (Fig. 6).559
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Figure 6: Transmitted energy proportions for flexural and extensional waves (blue and red
curves, respectively) versus wave period, for shelf thickness (a) ℎ = 200m and

(b) ℎ = 400m, and bed depth � = 800m.

The difference is approximately an order of magnitude for the shortest periods considered,560
and is greatest for the thinner shelf (Fig. 6a). The proportion of energy in the flexural waves561
increases steeply as wave period transitions from the swell to infragravity regimes, whereas562
the proportion of energy in the extensional waves slightly decreases. This causes the flexural563
wave energy to exceed the extensional wave energy in the infragravity wave regime, with the564
difference approximately two orders of magnitude at the longest wave periods considered565
and greater for the thinner shelf. The wave period at which the energies of the flexural and566
extensional waves are equal is longer for the thicker shelf than the thinner shelf (≈ 30 s vs.567
≈ 23 s).568
For the cases tested with the full approximation outlined in §5, the maximum shelf strains569

due to incident waves are attained at either the upper or lower shelf surface, which is similar570
to the benchmark model, where the maximum strains are attained at both upper and lower571
surfaces due to symmetry about the mid-plane. In the swell regime, the maximum strains572
predicted by the full model far exceed those of the benchmark model (Fig. 7a,b). The573
maximum strains at the upper surfaces slightly exceed those at the lower surface for the574
smallest wave periods considered. For longer periods, the maximum strains at the upper and575
lower surfaces are almost identical, and they tends towards the maximum strain predicted by576
the benchmark model, as the wave period increases, such that they are indistinguishable in577
the infragravity regime.578
For the shortest wave period considered, the strain maxima at the upper surface occur only579

hundreds of metres from the shelf front, and move closer towards the shelf front as wave580
period decreases (Fig. 7c,d). In contrast, the maxima predicted by the benchmark model581
occur more than a kilometre away from the shelf front, and the maxima at the lower surface582
predicted by the full approximation occur even farther away. For shorter periods and the583
thinner shelf, the strain maxima move between distinct regions of large strain at the upper584
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Figure 7: (a,b) Maximum flexural strains due to incident waves at upper (I = ℎ − 3) and
lower (I = −3) shelf surfaces, and (c,d) corresponding locations, for shelf thickness

(a,c) ℎ = 200m and (b,d) ℎ = 400m, and bed depth � = 800m, with results of benchmark
model shown for reference.

and lower surfaces (yellow patches in Fig. 4a), which causes the jumps in the locations of585
maximum strain (Fig. 7c).586

7. Conclusions and discussion587

The governing equations for the canonical problem of incident waves from the open ocean588
forcing motions of a floating ice shelf, in which the ice shelf is modelled by the full equations589
of elasticity and has an Archimedean draught, have been derived from a variational principle.590
The variational principle was used to derive a thin-plate approximation for the ice shelf.591
Previous derivations of the governing equations for ice shelves (or other floating bodies) as592
thin floating elastic plates, including those based on variational principles (Porter & Porter593
2004; Bennetts et al. 2007), have assumed the thin plate approximation from the outset (i.e.,594
depth averaging in the ice), thus resulting in the ice shelf satisfying free edge conditions at595
the shelf front. In contrast, the variational principle presented in this study derives shelf front596
conditions in which the water and ice are coupled. The water–ice coupling allows extensional597
waves to be excited in the shelf, further extending previous thin plate approximations. The598
thin-plate approximation was combined with a single-mode approximation in the water.599
Results have shown that the water–ice coupling at the submerged portion of the shelf front600
and the extensional waves significantly increase wave-induced shelf strains for wave periods601
in the swell regime. In contrast, they have a negligible effect for periods in the infragravity602
wave regime.603
Variational principles are often used to derive approximations for water wave problems,604

dating back to Luke (1967), and with the so-called (modified) mild-slope equations of Miles605
(1991), Chamberlain & Porter (1995) and others of particular relevance to the present study.606
The variational principle presented in § 3 can be viewed as an extension of the variational607
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principle of Porter & Porter (2004) to incorporate the full equations of elasticity for the608
floating ice. However, there are notable differences in the approach used here, which is609
arguably more closely aligned to the ‘unified theory’ of Porter (2020) for open water waves.610
In particular, our use of a displacement potential in the water, for consistency with the611
unknown displacements in the ice, is a major departure from Porter & Porter (2004) and612
others before. Further, we include interfacial stresses in the variational principle, so that all613
matching conditions arise as natural conditions of the variational principle, and essential614
conditions do not have to be imposed.615
There is evidence from studies on cognate problems (without water–ice coupling at the ice616

edge and extensional waves) that the single-mode approximation is accurate (Bennetts et al.617
2007, 2009; Bennetts & Meylan 2021). In particular, Liang et al. (2023) give evidence the618
single-mode approximation is accurate for ice shelf strains across a range of relevant wave619
periods and for realistic geometries. However, in general, the single-mode approximation620
becomes less accurate as frequency increases and the impedance mismatch between the open621
water and the cavity water becomes more pronounced (Fig. 2). Following Bennetts et al.622
(2007), the single-mode approximations (Eq. 5.4) can be extended to include an arbitrary,623
finite number of vertical modes that support evanescent waves, such that continuities between624
the open ocean and sub-shelf water cavity are satisfied to a desired accuracy.625
The primary motivation for present study was to derive a consistent thin plate approx-626

imation, in which the water and ice are coupled at the shelf front. Regimes have been627
found in which the water–ice coupling has a major impact on ice shelf strains. However,628
studies are still needed to test the validity of the thin plate assumptions (Eq. 4.1 or similar),629
particularly for thick shelves and incident swell. The studies could be based on numerical630
solutions, for which the software presented by Kalyanaraman et al. (2021) is available if631
the present model is modified to a finite length shelf and the gravitational acceleration in632
the shelf is removed. Alternatively, similarly to the approach proposed above to extend the633
single-mode approximation in the water, the thin plate ansatzes (Eq. 4.1) could be extended634
with additional terms to improve accuracy. For instance, higher order terms in the ansatz for635
the vertical displacement would remove an inconsistency between the low-order ansatz used636
in this study and the plane stress assumption (Fung 1965). Therefore, the method outlined637
to derive the thin plate approximation provides a framework to obtain the full solution638
(Eqs. 3.25–3.26).639
The approximation derived in this study (§ 5) predicts extensional wave displacements that640

are greater than flexural wave displacements for low frequencies (long periods), and that the641
amplitude ratio becomes unbounded as frequency tends to zero, such that T (op→ex) → ∞642
as l → 0 (not shown), which is consistent with the findings of Abrahams et al. (2023).643
This property is a consequence of the elliptical trajectories of water particles created by the644
incident waves having aspect ratios that increasingly skew towards the horizontal axis as645
wavelengths increase. However, our results show that extensional waves have a negligible646
impact on shelf strains for long periods (e.g., Fig. 5). Further, flexural waves hold greater647
energy than extensional waves for long periods, i.e., T (fl) � T (ex) for ) � 1 (Fig. 6), where648
the small limiting values of T (fl) are due to decreases in T (ex→op) compensating for increases649
in T (op→ex). Intuitively, as incident waves get longer, the impact of the ice cover decreases,650
resulting in ^ ≈ : (Fig. 2) and most of the incident wave transmitting into a flexural-gravity651
wave in the shelf–cavity interval (T (op→ex) ≈ 1).652
The strain magnitudes presented in § 6 are one to two orders of magnitude smaller for wave653

periods in the swell regime than in the infragravity wave regime. However, swell amplitudes654
are typically much greater than infragravity wave amplitudes, such that the benchmark model655
predicts they create strains of comparable magnitude (Bennetts et al. 2022). In particular,656
flexural-gravity waves at periods in the swell regime are amplified by crevasses in ice shelves657
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(Bennetts et al. 2022), and, thus, our findings highlight a potential, additional role of water–658
ice coupling and extensional waves in these amplifications. Further, the thin plate model659
presented could be extended to study whether periodic thickness variations in the ice shelf660
blocks incident ocean wave energy from propagation through the shelf (Freed-Brown et al.661
2012; Nekrasov & MacAyeal 2023).662
The dynamic problem (l ≠ 0) was considered in this study, so that the derived663

approximation could be compared with the benchmark thin plate approximation, in order to664
identify the influence of water–ice coupling at the shelf front and extensional waves. The665
static problem (l = 0) can also be derived from the variational principle (Appendix B). Static666
extensions are forced by traction at the shelf front (B 2c), due to atmospheric pressure and667
static water pressure (B 3). The shelf front condition indicates the extensional contribution668
to the non-zero strain is D′(0) = −?0 /�, which is order 10−5 for ℎ = 200m and 400m. It669
is comparable to the dynamic strains induced by infragravity waves (Fig. 5c,d) and one to670
two orders of magnitude greater than the dynamic strains induced by swell (Fig. 5a,b),671
although these are only for one metre amplitude incident waves and mean daily swell672
amplitudes reaching ice shelves can be up to four–five times larger (Teder et al. 2022).673
However, bounded static extensions require a finite shelf (B 6). In contrast, the semi-674
infinite shelf supports bounded static flexure (B 5) forced by bending at the shelf front675
(B 2a) due to static water pressure (B 3). The flexural contribution to the non-zero strain is676
(I + 3 − ℎ / 2) F′′(0) = (I + 3 − ℎ / 2) ?1 / �, which have maximum values at I = −3 on the677
order of 10−5 for ℎ = 200m and 10−4 for ℎ = 400m. Therefore, the static problem indicates678
the static strains close to the ice edge can be comparable or larger than the dynamics strains679
caused by wave motion. This may motivate future studies to consider interactions between680
the static and dynamic problems, i.e., pre-stress. Pre-stress on the relatively short time scales681
of ocean waves could also result from long time scale viscous creep (e.g., Weertman 1957).682
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Appendix A. Finite deformation of an infinitely long ice shelf686

Consider an infinitely long ice shelf of constant density di in the absence of gravity. Let687
gravity be increased from zero, such that is compresses the ice shelf onto an incompressible688
water base. This induces a finite initial stress (typically called a “pre-stress") to the ice, which689
can modify the properties of waves in the ice.690
In Eulerian coordinates (relative to the ice shelf after being compressed), the strain tensor691

is 9finite, with components692

Yfinite8 9 = Y8 9 −
1
2

3∑
:=1

*:,G8 D:,G 9 (A 1)693

694

(Spencer 2004), where Y8 9 is the linearised strain tensor from (2.4). In order to consider695
infinitesimal waves in the G-I plane, the displacement is split, such that696

*1(G, I, C) = *̂ (G, I, C), *2(G, I, C) = ,hs(I) + ,̂ (G, I, C) and *3 = 0, (A 2a,b,c)697

where the superscript hs indicates hydrostatic displacements and hats indicate dynamic698
displacements due to waves. Substituting (A 2a,b,c) into (A 1), and ignoring second-order699
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terms involving D̂8 , the strain is split into700

9finite(G, I, C) = 9hs(I) + 9̂(G, I, C), (A 3)701

where702

Yhs22 = ,
static
I

(
1 − 1
2
, static
I

)
and 9̂ =

1
2

©«
2*̂G 0 *̂I + W ,̂G

0 0 0
*̂I + W ,̂G 0 2 W ,̂I

ª®¬ , (A 4a,b)703

in which704

W(I) = 1 −,hs
I and Yhs8 9 = 0 if 8 ≠ 2 or 9 ≠ 2 (8, 9 ∈ {1, 2, 3}). (A 5a,b)705

The factor W induces coupling between the static and wave problems. The density after706
compression is di W(I), i.e., it is no longer constant. However, if,hs

I � 1, W ≈ 1, hence the707
coupling between the static and wave problems is removed and the ice has constant density.708
While the finite-deformation problem in this case is tractable, it is simpler and more709

instructive to solve the linear problem and check the size of ,hs
I a posteriori. From (3.25)710

and (3.26), the static problem can be written711

fhs
22,I = di 6, (A 6a)712

fhs
22 = ",hs

I , (A 6b)713

fhs
22 (ℎ − 3) + di 6,

hs(ℎ − 3) = −%at, (A 6c)714

,hs(−3) = 0, (A 6d)715716

where717

" =
� (1 − a)

(1 + a) (1 − 2a) (A 7)718

is the P-wave modulus, which is typically 109–1010 Pa. Hence719

fhs
22 = ",hs

I = di 6 (I + 3) + (hsbt ∈
[
(hsbt , (

hs
bt + di 6 ℎ

]
, (A 8a)720

and ",hs =
1
2
di 6 (I + 3)2 + (hsbt (I + 3), (A 8b)721

722

where (hsbt is the unknown stress at the bottom of the ice.,hs satisfies (A 6d), while (A 6c) is723
satisfied if724

−
(hsbt
"

=
2 %at + di 6 ℎ (2" + di 6 ℎ)

2" (" + di 6 ℎ)
= max

{��,hs
I

�� for I ∈ [−3, ℎ − 3]
}
. (A 9)725

Since the atmospheric pressure %at ≈ 106 Pa, |,hs
I | � 1 if the ice thickness ℎ � "/(di6) ≈726

5 × 105m or 500 km. Hence, for typical ice shelves, gravitational compression should have727
negligible effect on wave propagation.728

Appendix B. Static version of thin plate equations (l = 0)729

The static version (l = 0) of the thin plate equations (5.12a,c) are, respectively,730

� F′′′′ + F = 0 and D′′ = 0 for G > 0. (B 1a,b)731

The corresponding static versions of the shelf front conditions (5.26a–c) are732

� F′′ − ?1 = 0, F′′′ = 0 and � D′ + ?0 = 0 for G = 0, (B 2a,b,c)733
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where734

?0 =
1
dw 6

{ ∫ 0

−3
(%at + dw6 I) dI +

∫ ℎ−3

0
%at dI

}
735

=
%at ℎ

dw 6
− 3

2

2
, (B 3)736

and ?1 =
1
dw 6

{ ∫ 0

−3

(
3 − ℎ
2
+ I

)
(%at + dw6 I) dI +

∫ ℎ−3

0

(
3 − ℎ
2
+ I

)
%at dI

}
737

= −3
2

2

(
3

3
− ℎ
2

)
. (B 4)738

739

The static flexure, F = Fst, satisfying Eqs. (B 1a), has bounded solutions of the form740

Fst(G) = e−V G
(
�+ ei V G + �− e−i V G

)
, (B 5)741

742

where V = (4 �)−1/4 and�± are determined from (B 2a,b). The general solution for the static743
extension, D = Dst, satisfying Eqs. (B 1b) is744

Dst(G) = � G + �. (B 6)745

However, it has no bounded solutions satisfying the shelf front condition (B 2c).746
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