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Abstract

Under the assumptions of classical linearised water wave theory, the time-harmonic
two-dimensional motion of a rigid body floating in the surface of a fluid may be char-
acterised by various coefficients which express components of the hydrodynamic forces
acting on that body. For a single body in isolation, these are relatively simple to
calculate. For bodies placed next to a vertical wall, the corresponding calculations
are often much more complicated. In this paper we use the well-known wide-spacing
approximation to develop approximations to the hydrodynamic coefficients for a body
having a vertical plane of symmetry, but otherwise of arbitrary cross-section, next to a
wall solely in terms of the results for an isolated body. Exact results are compared with
the wide-spacing approximations for semi-immersed circular cylinders and cylinders of
rectangular cross-section. They show that the approximation works remarkably well
over all frequency ranges and even when the cylinders are very close to the wall.

1 Introduction

The hydrodynamic coefficients of added mass, radiation damping and exciting force are key
ingredients in determining the behaviour of a floating body in waves and powerful computer
codes have been developed for estimating them for three-dimensional body shapes of interest
to naval architects and marine engineers. A well-established simplified method of computing
the hydrodynamic forces on such shapes is to use strip theory which involves dividing the
body into sections along its length, solving a two-dimensional problem for each section and
then integrating over the length to obtain the overall effect. See Newmann (1977, chapter
7) for details. For this, only the coefficients of added mass, radiation damping and exciting
force for a section of a cylinder in two dimensions are required, quantities which are much
less computationally expensive to determine.

It is well-known that the behaviour of a floating body in waves is radically affected by
the proximity of a rigid boundary such as a harbour wall, and this effect is manifested in
major changes to the hydrodynamic coefficients due to the presence of the wall. This is
because the isolated portion of free surface between the body and the wall experiences near-
resonant behaviour close to certain frequencies. The lowest of the frequencies is associated
with the so-called ‘Helmholtz’ or ‘pumping-mode’ resonance in which the fluid between the
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body and the wall tends to oscillate as a slug of fluid. At higher frequencies, resonant modal
surface oscillations are excited between the wall and the cylinder. Examples of the results
obtained for bodies oscillating next to walls are given in Wang & Wahab (1971) and Yeung &
Seah (2007) where these resonances are identified with large rapid variations in added mass
and radiation damping coefficients. In each of these examples, the problem for a cylinder
oscillating next to a wall was replaced by the equivalent problem of the original cylinder plus
an image cylinder oscillating in heave (vertically) in tandem.

In this paper we shall study this problem of a cylinder oscillating next to a wall. Specifi-
cally we shall consider an arbitrary two-dimensional symmetrical cylindrical section making
small time harmonic oscillations in either sway, heave or roll, or fixed in an incoming wave-
train, in the presence of a rigid vertical wall a given distance away from it.

In the next section new identities will be derived between the radiation damping coef-
ficients bwjk (j, k = 1, 2, 3) and the exciting force Fw

j (j = 1, 2, 3), and the far field radiated
wave amplitudes Aw

j where j = 1 for sway, j = 2 for heave, and j = 3 for roll. The presence
of the wall greatly increases the complexity of the computation of the hydrodynamic coef-
ficients and so it is shown in section 3 how simpler approximate expressions can be derived
for the added mass and radiation damping coefficients aw

jk and bwjk (j, k = 1, 2, 3) in terms
of similar quantities in the absence of the wall, which are far easier to compute. The basis
of these approximations is the so-called ‘wide-spacing approximation’ which has been used
extensively and to good effect in similar problems. Most closely related to the current prob-
lem in this context is the work of Srokosz & Evans (1979). They were interested in using
a pair of independently oscillating cylinders to harness wave energy. In particular, they
produced numerical and analytical results for pairs of thin barriers making small-amplitude
time-harmonic rolling motions about the vertical. In their paper, they use the wide-spacing
approximation to develop an approximation to various quantites of interest. However, the
hydrodynamic problem Srokosz & Evans (1979) were solving, in which one cylinder is forced
to move in the presence of a second fixed body, is not the same as ours. It should also be
pointed out that Srokosz & Evans (1979) do not develop their approximation into a form
which is easy to implement. In contrast, the expressions developed in this paper are explicit,
straightforward to implement and rely only on the solution to certain key properties of wave
radiation problems. In order to simplify the approximation to the extent that we do here, a
simplifying assumption that the cylinder has a vertical plane of symmetry is made.

As an example of the power of the approximation, a comparison is made with exact
results for the cases of circular and rectangular cylinders in Section 4. We consider all three
independent motions: heave, sway and roll. The case of a semi-immersed circular cylinder
is the simpler of the two examples used as the roll component is zero. The wide-spacing
approximation is expected to work well in the regime Ks ≫ 1, where K = ω2/g and ω is
angular frequency, s is the spacing between the wall and the cylinder and g is gravity, Our
results show that the approximation continues to work remarkably well for values of Ks
much less than unity and for certain quantities happens to give the correct results in the
limit as Ks→ 0.

2 Formulation

A long cylinder of arbitrary, but uniform, cross-section floats on the surface of deep water,
density ρ. The boundary of the cylinder in contact with the water is denoted SB. The origin
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is centred inside the cylinder with y directed downwards from the level of the undisturbed
free surface. The fluid is bounded laterally by a rigid vertical wall at x = −b. The cylinder
can make small time-harmonic oscillations of angular frequency ω in either sway, heave or roll
or be held fixed in an incoming wavetrain of the same frequency from x = ∞. The roll axis
(termed the metacentre in ship design) is assumed to pass through the point (0, c), where c
may be positive or negative. Then on the basis of classical linear water wave theory there
exists harmonic velocity potentials describing the two-dimensional fluid motion for the three
separate radiation and scattering problems from which we can remove the time dependence
by assuming that

Φw
j (x, y, t) = ℜ{φw

j (x, y)e−iωt} (2.1)

Φw
S (x, y, t) = ℜ{φw

S (x, y)e−iωt}. (2.2)

Here j = 1, 2, 3 refers to sway, heave, and roll respectively. The superscript w is used to
denote the presence of the wall. Each of the time-independent potentials φw

j , (j = 1, 2, 3)
and φw

S , when represented by ψ, satisfies ∇2ψ = 0 in the fluid, |∇ψ| → 0 as y → ∞, the
linearised free surface condition,

Kψ +
∂ψ

∂y
= 0, on y = 0 (2.3)

where K = ω2/g is the frequency parameter (g is gravitational acceleration), and the wall
condition,

∂ψ

∂x
= 0, on x = −b. (2.4)

Each potential has its own asymptotic form in the far-field and satisfies different kinematic
boundary conditions on the cylinder. For the scattering potential we write

φw
S (x, y) ∼ (gA/ω)(e−iKx +RweiKx)e−Ky, x→ ∞ (2.5)

where A is the complex amplitude of the incident wave and Rw is the complex reflection
coefficient, with

∂φw
S

∂n
= 0, (x, y) ∈ SB (2.6)

where ∂/∂n represents the derivative in the direction of the normal.
In the far-field, the radiation potentials are represented by outgoing waves of complex

amplitude Aw
j

φw
j (x, y) ∼ Aw

j eiKx−Ky, x→ ∞, (j = 1, 2, 3) (2.7)

with
∂φw

j

∂n
= nj , (x, y) ∈ SB (j = 1, 2, 3). (2.8)

In the case of sway and heave, the nj are the direction cosines in the x (j = 1) and y (j = 2)
directions of the unit normal directed into the cylinder from the fluid. In the case of roll
(j = 3) we have n3 = xn2 + (y − c)n1.

Consider now a hypothetical harmonic potential ψw
j satisfying (2.3), (2.4) and where

ψw
j (x, y) ∼ (Cje

−iKx +Dje
iKx)e−Ky, x→ ∞. (2.9)

3



If we now apply Green’s third identity around the boundary of the fluid region closed by a
vertical line at a (large) distance X where the asymptotic behaviour (2.9) applies, we find
in the limit as X → ∞, that

∫

SB

(

ψw
1

∂ψw
2

∂n
− ψw

2

∂ψw
1

∂n

)

ds+ i(C1D2 − C2D1) = 0. (2.10)

By choosing various combinations of radiation or scattering potentials and using the asymp-
totic results (2.5) and (2.7) in (2.10), we derive the following results. With ψw

1 = φw
S , ψw

2 = φ̄w
S

(where the bar denotes the complex conjugate) we obtain

|Rw| = 1 (2.11)

which simply confirms that all incident wave energy is reflected. With ψw
1 = φw

S , ψw
2 =

φw
j − φ̄w

j , since ∂ψ2/∂n = 0 for (x, y) ∈ SB, we obtain

Rw = −Aw
j /Ā

w
j . (2.12)

This remarkable result shows that the phases of each of the radiated amplitudes, arg{Aw
j } =

θw
j can only differ by a multiple of π. We turn next to the added inertia and damping

coefficients (see, for example, Mei (1983, pp.302/3)). The time-independent restoring force
matrix fw

jk representing the hydrodynamic force in the component k due to a forcing in mode
j, is

fw
jk ≡ −bwjk + iωaw

jk = iρω

∫

SB

φw
j nkds (2.13)

decomposed into added-inertia and radiation damping coefficients aw
jk and bwjk.

If we let ψw
1 = φw

j , ψw
2 = φw

k we obtain from (2.10) fjk = fkj. Again with the same ψw
1

and ψw
2 = φ̄w

k we get
bwjk = 1

2
ρωAw

j Ā
w
k , (j, k = 1, 2, 3) (2.14)

which are all real and it follows that

bwjkb
w
kj = bwjjb

w
kk, (j, k = 1, 2, 3). (2.15)

Finally we consider the wave-induced exciting force on the cylinder in direction j (see Mei
(1983, p.302)) which is

fw
S,j = iρω

∫

SB

φw
Snjds. (2.16)

With ψj = φw
S , ψ2 = φw

j equation (2.10) gives

fw
S,j = ρgAAw

j . (2.17)

3 A wide-spacing approximation to awjk, b
w
jk and Aw

j

We consider the forced sway, heave or roll motion of the cylinder centred at the origin in
the presence of a rigid wall at x = −b on which a Neumann condition is imposed on the
potential. Cylinders having a vertical plane of symmetry only are considered here on grounds
of simplicity. This allows us to simplify the results obtained.
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The wide-spacing approximation is based on the assumption that the wall is far enough
from the cylinder for local evanescent terms to be neglected. A full discussion of the approx-
imation, its applications and limitations can be found in Martin (2006). The effect of the
wall will be to reflect a radiated wave back towards the cylinder to be partially reflected and
transmitted by the cylinder. The reflected part will again be reflected back to the cylinder
and the whole process will continue indefinitely. All these partial waves can be combined
and the overall effect will be equivalent to the radiated wave field travelling away from the
cylinder in the absence of the wall, together with an incident wave of unknown amplitude
from the left being scattered by the (fixed) cylinder, which models the effect of the wall.
Finally the asymptotic wave field of these combined potentials must satisfy the Neumann
condition on x = −b. Thus we have

φw
j = φj +DjφS, j = 1, 2, 3 (3.1)

where the first term on the right-hand-side is the radiation potential for a cylinder making
sway, heave or roll motions at the origin but in the absence of the wall. The second term is
the scattered potential due to a wave incident from x = −∞ on the cylinder held fixed at
the origin, again in the absence of the wall.

Note that in (3.1) and throughout this section of the paper, equals signs will be used to
indicate that the calculations are exact under the assumptions of the wide-spacing approxi-
mation in which interactions of local wave effects are ignored.

We have the far-field expressions for each of the potentials in (3.1) given by

φj ∼

{

(−1)jAje
−iKx−Ky, x→ −∞

Aje
iKx−Ky, x→ +∞

(3.2)

(where left-right symmetry of the cylinder is assumed) and

φS ∼

{

(gA/ω)(eiKx +Re−iKx)e−Ky, x→ −∞

(gA/ω)T eiKx−Ky, x→ +∞
(3.3)

where R and T are the reflection and transmission coefficients for the fixed cylinder, in the
absence of the wall, dependent on frequency and A is the complex incident wave amplitude.

It follows from (3.1) that for large positive x

φw
j ∼ (Aj + (gA/ω)DjT )eiKx−Ky (3.4)

and for large negative x

φw
j ∼

(

(−1)jAj + (gA/ω)DjR
)

e−iKx−Ky + (gA/ω)Dje
iKx−Ky. (3.5)

These asymptotic forms are now assumed to hold near the wall along x = −b, y > 0 where
a Neumann condition is now imposed on the potential φw

j . It follows that

(−1)jAj + (gA/ω)DjR = (gA/ω)Dje
−iλ (3.6)

with λ = 2Kb whence
Dj = (ω/gA)(−1)jAj/(e

−iλ − R). (3.7)
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Substituting (3.7) into (3.4) and comparing with (2.7) gives

Aw
j = δjAj , where δj =

(

R− (−1)jT − e−iλ

R− e−iλ

)

. (3.8)

Note that this implies δ1 = δ3. According to the decomposition made in (3.1), the restoring
force matrix, from (2.13), is approximated under the wide-spacing approximation by

fw
jk ≡ −bwjk + iωaw

jk = fjk +DjfS,k (3.9)

where fS,k is the exciting force on the fixed cylinder in the direction k due to an incident
wave of unit amplitude from x = −∞. Also,

fjk ≡ −bjk + iωajk (3.10)

is the force matrix for a cylinder in the absence of a wall in the direction k due to forced
motion in mode j decomposed into its usual added-inertia and radiation damping coefficients,
which we assume are known. Notice that (3.9) only holds provided j + k is even since if
j + k is odd, then the symmetry of the cylinder implies that the term fjk is identically zero
(for example, a heave motion induces neither sway force nor roll moment on a symmetric
cylinder). On the other hand f11, f22 and f33 are clearly non-zero in general and so is
f13 = f31 since a sway motion will produce a roll moment and a roll motion a sway force.

We make use of reciprocal relations satisfied for a symmetric cylinder oscillating or fixed
in an incident wave train, in the absence of the wall. See, for example, Mei (1983, pp.301/2).
Thus we have

fS,k = ρg(−1)kAAk (3.11)

and
bjk = 1

2
ρω(1 + (−1)j+k)AjĀk (3.12)

(clearly zero if j + k is odd) and, finally, the Newman/Bessho relations (see Mei (1983),
p.328)

R+ (−1)jT = −Aj/Āj = −e2iθj , (3.13)

where θj is the phase of the far-field radiated amplitude in the jth mode; all three relations
hold for j, k = 1, 2, 3. Notice from (3.13) that θ1 = θ3(modπ). Also it follows that

R = −ei(θj+θ2) cos(θj − θ2), (3.14)

T = iei(θj+θ2) sin(θj − θ2) (3.15)

where j = 1 or j = 3 (incidently demonstrating that the energy density flux condition
|R|2 + |T |2 = 1 is satisfied). Furthermore,

χ ≡ −iR/T = cot(θj − θ2) (3.16)

is real.
We first assume j + k is even so that (3.12) simplifies. Then we obtain from (3.9), using

(3.7) and (3.10)–(3.13),
bwjk − iωaw

jk = bjkγk − iωajk (3.17)
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where

γk ≡ αk + iβk =
e−iλ + (−1)kT

e−iλ − R
(3.18)

and we have
bwjk = bjkαk and aw

jk = ajk − βkbjk/ω. (3.19)

When j + k is odd, there is no contribution from fjk in (3.9) and we have

fw
jk = DjfS,k. (3.20)

So from (3.7) and (3.11) we find

bwjk − iωaw
jk =

ρωAjAk

e−iλ −R
. (3.21)

To summarize then, on the basis of the wide-spacing assumption, approximate expres-
sions for the added inertia and radiation damping coefficients aw

jk and bwjk for a symmetric
cylindrical section oscillating next to a wall, are given by (3.17) and (3.18) when j + k is
even and by (3.21) when j + k is odd; the far field complex radiation amplitude Aw

j is given
by (3.8) which also provides an expression for the wave-induced exciting force fw

S,j given by
(2.17).

Now it is clear from (3.12) to (3.15) that R, T , and bjk can all be expressed in terms of
the complex far-field radiated amplitudes Aj . It follows from (3.8), (3.17), (3.18) and (3.21)
that the same is true of Aw

j , bwjk and also aw
jk (except when j + k is even, when it involves

ajk), since these equations involve the complex constants γk and δk, defined in (3.18), (3.8)
which only depend on R and T . These constants may in turn be expressed solely in terms
of the Aj as follows.

First (3.8) can be reduced to

δk =
2ei(θl−Kb) cosµl

e−iλ − R
(3.22)

where µk = θk + Kb and l is either k + 1 or k − 1 provided that number falls in the set
{1, 2, 3}. Also, we can write

γk =
1 − (−1)kR̄T − (R− (−1)kT )eiλ − e−iλR̄ + eiλR

|e−iλ − R|2
(3.23)

and it follows, using (3.16) to give χ|T |2 = iR̄T , that

ℜ{γk} = αk =
2 cos2 µl

|e−iλ −R|2
(3.24)

and, again, l takes the values k − 1 or k + 1 provided that number falls in the set {1, 2, 3}.
A similar manipulation shows that

ℑ{γk} = βk =
1
2
(−1)k sin 2(θl − θ2) − sin 2µk

|e−iλ − R|2
(3.25)

where l is either 1 or 3. A further simplification, using (3.12), is

e−iλ −R = e−iKb(eiθk cosµk + eiθ2 cosµ2) (3.26)
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so that
|e−iλ −R|2 = cos2 µl + cos2 µ2 + 2 cosµl cosµ2 cos(θl − θ2) (3.27)

where l = 1 or 3.
With these simplifications we obtain, for j + k even,

bwjk =
2bjk cos2 µl

|e−iλ −R|2
(3.28)

where µl = θl + Kb, and l is either k + 1 or k − 1 provided that number falls in the set
{1, 2, 3}, and

aw
jk = ajk − (βk/ω)bjk (3.29)

where βk is given by (3.25), whilst for j + k odd, we obtain, from (3.12), and (3.21)

bwjk =
2 cosµj cosµk(bjjbkk)

1

2

|e−iλ −R|2
(3.30)

and

ωaw
jk =

−(bjjbkk)
1

2 sin(µj + µk)

|e−iλ − R|2
. (3.31)

In the next section we examine the accuracy of these approximations in two distinct cases.
Before that we shall verify that our approximations satisfy the exact reciprocal relations
derived in section 2.

We begin with the relation

arg{Aw
j } = arg{Aw

k }(modπ), (j 6= k). (3.32)

For j + k even, the result is trivial if j = k and follows immediately from (3.8), (3.13), for
j 6= k. For j + k odd, we have from (3.8), (3.22)

Aw
j

Aw
k

=
δjAj

δkAk

=
|Aj | cosµk

|Ak| cosµj

, (3.33)

the realness of the right-hand side confirming (3.32).
Next we consider the identity (2.14). For j + k even

bwjk = αkbjk = ρωαkAjĀk = ρωαk

Aw
j Ā

w
k

δj δ̄k
= 1

2
ρωAw

j Ā
w
k (3.34)

where (3.12), (3.8), (3.22) and (3.24) have been used. For j + k odd, we have from (3.21)

bwjk =
2ρω|Aj||Ak| cosµj cosµk

|e−iλ − R|2
. (3.35)

But Aw
j A

w
k = δj δ̄kAjĀk follows from (3.33) and so

bwjk =
4AjĀk cosµj cosµk(e

i(θk−θj))

|e−iλ −R|2
(3.36)

from (3.24). Thus bwjk = 1
2
ρωAw

j Ā
w
k for j + k also.
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4 Comparison with exact results

In this section we consider two simple cylindrical sections oscillating next to a wall, for which
powerful semi-analytical results can be obtained for the various hydrodynamic coefficients
using full linear theory. These are compared with the wide-spacing approximations developed
in the previous section which blend the hydrodynamic coefficients for the corresponding
cylindrical section in the absence of a wall.

The first set of results are for a half-immersed circular cylinder. In the absence of a
wall, the theory was first given by Ursell (1949). The problem was been revisited by Martin
and Dixon (1983) and recently by Porter & Evans (2008b) using the same method which
expands the potential in terms of sources, dipoles, and wave-free potentials. When a half-
immersed circular cylinder is placed next to a wall, the solution method becomes much more
complicated. The effect of the wall can be modelled by including a second identical cylinder
moving in equal and opposite manner in the image of the wall. This problem was considered
by Porter & Evans (2008b).

The second set of results are concerned with the motion of a vertical partially-immersed
rectangular cylinder. The method of solution with and without the wall is similar. In each
rectangular subdomain of the fluid, the potential can be expressed by separation solutions
and matching across common interfaces allow integral equations to be formulated for un-
known functions relating to horizontal fluid velocities. The integral equations are solved by
using a Galerkin scheme in which the unknown functions are approximated by series which
incorporate the anticipated singularity in the velocity field at the corner of the rectangular
cylinder. This scheme provides provides accurate and efficient numerical approximations to
the hydrodynamic coefficients. For cylinders in heave, both in isolation and next to a vertical
wall, the method of solution has been outlined in Porter & Evans (2008a). An alternative
‘mode-matching’ technique which does not take explicit account of singularities in the ve-
locity field which had previously been adopted for the problem of a heaving cylinder next to
a wall by Yeung & Seah (2007).

It is not conceptually difficult to adapt the problems considered by Porter & Evans
(2008a) to consider the additional sway and roll motions, though the details are both tedious
and complicated. For this reason, and since there is no other literature reporting these
calculations, a technical report outlining the method of solution for the full set of independent
motions is provided as an online supplement to the current paper in Porter (2008).

Throughout the results section, we report results on the non-dimensionalised added
masses and radiation damping coefficients, defined by

µw
ij = aw

ij/M, νw
ij = bwij/(Mω), i, j = 1, 2

where M is the mass of the floating cylinder (as we are assuming a freely-floating cylinder,
this is determined by Archimedes’ principle). For i = j = 3, M in the above is replaced by
I, the moment of inertia of the cylinder about the point of roll, whilst when either i = 3 or
j = 3 (but not both) M is replaced by (MI)1/2.

Semi-immersed circular cylinders

Returning to circular cylinders oscillating in the free surface, we show in figures 1 and
2, the comparison between the exact values (lines) and the wide-spacing approximations
(points) of the non-dimensional added mass and radiation damping for a cylinders next to
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wide-spacing approximation exact (ǫ = a/b ≪ 1)
µw

11 1 1 + 1
2
ǫ2 + 1

8
ǫ4 + 3

16
ǫ6 + . . .

µw
12 0 −(4/π)(1

2
ǫ+ 1

24
ǫ3 + 3

40
ǫ5 + . . .)

µw
22 (−8/π2)(log(4Ka) + γ − 3

2
) (−8/π2)(log(8K2ab) + 2γ − 3

2
− 1

3
ǫ2 + . . .)

νw
11 0 0
νw

12 0 0
νw

22 16/π 16/π

Table 1: The analytically-derived asymptotic behaviour of the hydrodynamic coefficients as
Ka → 0 for a circular cylinder next to a wall, using (i) the wide-spacing approximation
and (ii) the exact calculations (the added-mass asymptotics are derived on the additional
assumption that a/b≪ 1).

a wall. Since there is no roll component to the motion of a circular cylinder, there are just
three sets of curves to present. Moreover, there are just two independent parameters in this
problem, namely the non-dimensional frequency parameter Ka and the wall to cylinder ratio
a/b.

Thus for a/b = 1
2

the inside edge of the cylinder is just half a diameter from the wall, and
the wide-spacing approximation shows close agreement to the exact results over the range
of frequencies shown (see figure 1a,b). The wide-spacing approximation is designed to work
when the wavelength, λ, is much smaller than the spacing, s = b− a, between the cylinder
and the wall. We have λ/s = 2π(a/b)/(Ka(1−a/b)) which equates to 2π/Ka in figure 1 (and
8π/Ka in figure 2 where a/b = 4

5
). In both figures 1 and 2 the wavelength is significantly

greater than the spacing over all values of Ka shown and therefore well outside the range of
values over which the wide-spacing approximation is designed to be effective. Remarkably,
the approximation works well in the prediction of radiation damping as Ka→ 0. This limit
is now investigated further.

For a single circular cylinder, the following results are known (Ursell 1949, 1976) in the
limit as Ka→ 0

µ11 ∼ 1, ν11 ∼ 0, and µ22 ∼ −
8

π2
(log(Ka) + γ − 3

2
+ log 4), ν22 ∼

8

π
(4.1)

where γ = 0.5772 . . . is Euler’s constant. These asymptotic results are straightforward to
derive by taking the limit as Ka → 0 in the infinite system of equations that define the
solution to the heaving and swaying problems constructed by the use of sources, dipoles and
wave-free potentials. See the technical report of Porter (2008a) for details of this process.

The low frequency asymptotics (4.1) for cylinders in isolation can be used in the wide-
spacing expressions of section 3 to derive explicit low-frequency results based on the wide-
spacing approximations to the added-mass and radiation damping coefficients. These are
given in the middle column of table 1. In deriving these expressions, we have also had to
use the results R ∼ −2iKa, T ∼ 1 − 2iKa and θ1 → 0, θ2 → −1

2
π as Ka→ 0. Again, these

are readily established from the infinite systems of equations for cylinders in isolation.
We have attempted to extend Ursell’s low frequency results (4.1) to a cylinder in motion

next to a wall. The addition of the wall complicates the systems of equations that arise in
the limit of Ka → 0 and prohibits the same sort of progress being made. However, we are
able to determine the exact leading order behaviour of the radiation damping coefficients as
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ǫ ≡ a/b µw
11 µw

12 µw
22

1
4

9.8 × 10−7 8.3 × 10−6 5.6 × 10−6

1
2

2.6 × 10−4 6.0 × 10−4 1.1 × 10−4

3
4

8.0 × 10−3 8.7 × 10−3 6.0 × 10−4

Table 2: The relative error between the ‘exact’ computed numerical results and analytically-
derived asymptotics given in the right-hand column of table 1 extrapolated back to Ka = 0.
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Figure 1: Variation of non-dimensional (a) added mass and (b) radiation damping coefficients
for a circular cylinder, radius a, whose centre is a distance b = 2a from a wall as a function
of Ka. Solid lines are exact results, points represent corresponding results from the wide-
spacing approximation.

Ka → 0 which are independent of a/b. Additionally, by making the assumption a/b ≪ 1,
we have derived explicit expressions to the exact low frequency behaviour of the added-mass
coefficients. These results are derived in Porter (2008a) and reported in the final column of
table 1.

The accuracy of the three approximate added-mass formulae in table 1 is demonstrated
in table 2 where they where exact numerical computations for small decreasing values of
Ka are compared to results of using the expressions in table 2 and extrapolated back to
Ka = 0. The results show how the small-a/b approximation improves as a/b decreases and
is particularly effective for µw

11 and µw
22 even when a/b is relatively large.

It is not the purpose of the paper to dwell on these asymptotics. Table 1 is provided to
show that, whilst the wide-spacing approximation does not predict the exact low-frequency
behaviour of the added mass coefficients (nor should it be expected to do so), remarkably it
does predict the exact value of radiation damping as Ka → 0. This behaviour can be seen
clearly in figures 1b and 2b. The fact that the approximation to the radiation damping is
correct for both small and large values of Ka means that the approximation works better
than might otherwise be expected over intermediate values of Ka, as seen in both figures 1b
and 2b.

In figure 2a,b we repeat the calculations described above but with a/b = 4
5
, so that there
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Figure 2: Variation of non-dimensional (a) added mass and (b) radiation damping coefficients
for a circular cylinder, radius a, whose centre is a distance b = 5

4
a from a wall as a function

of Ka. Solid lines are exact results, points represent corresponding results from the wide-
spacing approximation. The line- and point-styles correspond to those in figure 1.

is now just one eighth of a cylinder diameter of free surface between the wall and the cylinder.
Over most of the range of values of Ka, the agreement between the wide-spacing results and
the exact results is excellent, with the only significant discrepancy occurring over the range
of values of Ka at which the resonant “Helmholtz” or pumping-mode operates.

Surface-piercing cylinders of rectangular cross-section

In the next set of results presented, we compare the performance of the wide-spacing
approximation against exact results for rectangular cylinders in motion next to walls. There
are differences between this geometry and the previous one. First, the fluid is of constant
finite depth h (as opposed to infinite depth in the circular cylinder examples) which is
essential to the method of solution. This changes none of the theory, outlined in the body
of the paper, except that the infinite depth wavenumber K = ω2/g should be replaced
everywhere by k, the wavenumber in fluid of depth h, where K = k tanh kh. Note also, that
the depth variation of propagating modes is no longer e−Ky, but this is not important in the
derivation of the results of the paper.

Second, the rectangular cylinder can assume all three modes of motion including roll.
We assume the cylinder rolls about the depth y = c in the midplane of the cylinder. The
value of the roll point c is arbitrary and can be both negative or positive. The cylinder is
assumed to have a width 2a and a draft d and its midplane is a distance b from the wall so
that s = b− a is the separation between the wall and the cylinder as before.

We have chosen the point of roll to satisfy c/d = 1
2
− 1

3
(a/d)2, which defines the natural

point of roll (termed the metacentre in ship hydrodynamics) for the rectangular cylinder.
For the purposes of non-dimensionalisation we have also defined the moment of inertia as

I =
M

3

(

(d− c)3 − (l − c)3

(d− l)
+ a2

)
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which allows for the cylinder of infinitely thin massless sidewalls to be filled between the
depths l and d with a medium of uniform density different to the surrounding fluid. Thus,
when l = 0, that density will in fact be the same as the fluid as dictated by Archmedes’
principle. When l > 0, the medium is more dense than the fluid and when l < 0, it is less
dense.

In both sets of numerical results presented here, we have chosen a/d = 1
2

(so that c/d = 5
12

and the submerged section is square), d/h = 1
5
, l/d = − 1

10
(so that the mass of the cylinder

above mean waterline is one tenth the submerged mass).
In figures 3 and 4 we have plotted the results of the wide-spacing approximation as points

against the exact results computed for cylinders next to walls. Here, there are six independent
results for both added mass and radiation damping, allowing for the roll component in
addition to heave and sway. The particular spacings chosen in figures 3 and 4 are b/a = 4
and b/a = 2. In the latter case, the distance between the cylinder and the wall is half the
width of the cylinder. In the first set of figures (figures 3a,b,c,d), the Helmholtz mode is
excited aroundKa = 0.4, whilst a higher order near-resonant sloshing mode is excited around
Ka = 2.1. The agreement between wide-spacing and exact results is excellent and the peaks
and spikes in the added mass and damping are accurately picked out by the approximation.

In the second set of figures (figures 4a,b,c,d) where the spacing between the cylinder and
the wall is closer, the wide-spacing results lose accuracy as the non-dimensional wavenumber
kd tends to zero. However, this loss of accuracy less prominent in the results for the radiation
damping. As for the circular cylinder, numerically it appears that the limiting values of
radiation damping as kd→ 0 (all zero apart from νw

22) are accurately captured by the wide-
spacing approximation.

A low-frequency analysis of the integral equations used to calculate the solutions for
rectangular cylinders which is contained within the technical report of Porter (2008b) shows
that, for an isolated cylinder, ν22 ∼ a/(khd) as kd → 0 with other geometric parameters
fixed. According to the approximation (3.28) in which we used the asymptotic formulae
R → 0 and θ1 → 0 as kd → 0 (exactly as for circular cylinders), the wide-spacing formula
predicts that νw

22 ∼ 2a/(khd). (In fact, (3.28) will always give the result νw
22 ∼ 2ν22 as

the wavenumber tends to zero, irrespective of the cylinder cross-section). Again, in Porter
(2008b), it was possible to show that the exact low frequency asymptotics for a rectangular
cylinder next to a wall is given by the exactly same formula, νw

22 ∼ 2a/(khd).
The fact that the wide-spacing approximation has been shown to capture the low-

frequency asymptotic behaviour of the radiation damping for two completely different cylin-
der sections is intriguing and it is tempting to speculate that it might apply universally to
cylinders of arbitrary symmetric cross-section.

5 Conclusions

In this paper the following new results have been obtained. First, various well-known re-
ciprocal results for an arbitrary two-dimensional cylinder oscillating at a given frequency
next to a rigid wall, or fixed in an incident plane wave, described for example in Mei (1983,
pp.302/3), have been extended to include the presence of a fixed rigid vertical wall. These
include an extension of the Haskind relation (equation (2.17)), and expressions for the radi-
ation damping coefficients (equation (2.14)) and the reflection coefficient (equation (2.12)),
both expressed in terms of the far field wave-making coefficients due to forced motion of the
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Figure 3: Variation of non-dimensional (a,b) added-mass and (c,d) radiation damping co-
efficients for a rectangular cylinder of width 2a, submerged to a depth d and centreline a
distance b from a wall in water of finite depth h as a function of dimensionless wavenumber kd
for d/h = 0.2, a/d = 1

2
, a/b = 1

4
. Solid lines are exact results, points represent corresponding

results from the wide-spacing approximation.
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Figure 4: Variation of non-dimensional (a,b) added-mass and (c,d) radiation damping co-
efficients for a rectangular cylinder of width 2a, submerged to a depth d and centreline a
distance b from a wall in water of finite depth h as a function of dimensionless wavenumber kd
for d/h = 0.2, a/d = 1
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. Solid lines are exact results, points represent corresponding
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cylinder in the presence of the wall.
Next, a wide-spacing approximation has been used to derive explicit expressions for the

hydrodynamic coefficients of added mass or inertia, radiation damping, and wave- making
coefficients for a symmetric but otherwise arbitrary cylinder next to a wall, in terms of the
hydrodynamic coefficients for such a cylinder in the absence of the wall, which in turn are
then expressed solely in terms of the far-field radiated amplitudes or wave- making coefficients
in the absence of the wall. These are given in equations (3.24) through (3.31).

In order to check the accuracy of these approximations two simple cylindrical sections
oscillating next to a wall were chosen for which powerful semi-analytical results can be de-
rived. These were a half-immersed circular cylinder in deep water and a rectangular cylinder
in finite water depth. In both cases a comparison of added mass or inertia, and radiation
damping coefficients, based on the new expressions derived using the wide-spacing approx-
imation, with computations based on the exact linear theory, showed excellent agreement
even when the cylinders were close to the wall and the assumptions of wide spacing were
clearly not valid. It was also shown analytically, that for the circular cylinder, the radiation
damping coefficients for Ka small are identical on both exact and approximate theories and
independent of distance from the wall. The same appears to be true from the computations
for the rectangular cylinder.

From these test cases it would appear reasonable to assume that computations of the
hydrodynamic coefficients for more realistic cylindrical ship sections close to a wall based
on the approximations provided here which only involve the wave-making coefficients in the
absence of the wall, will prove to be accurate over a wide range of parameters.
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