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This paper presents and compares two different approaches to solving the problem7

of wave propagation across a large finite periodic array of surface-piercing vertical8

barriers. Both approaches are formulated in terms of a pair of integral equations,9

one exact and based on a spacing δ > 0 between adjacent barriers and the10

other approximate and based on a continuum model formally developed by using11

homogenisation methods for small δ. It is shown that the approximate method12

is simpler to evaluate than the exact method which requires eigenvalues and13

eigenmodes related to propagation in an equivalent infinite periodic array of14

barriers. In both methods, the numerical effort required to solve problems is15

independent of the size of the array. The comparison between the two methods16

allows us to draw important conclusions about the validity of homogenisation17

models of plate array metamaterial devices.18

The practical interest in this problem stems from the result that for an array19

of barriers there exists a critical value of radian frequency, ωc, dependent on δ,20

below which waves propagate through the array and above which it results in21

wave decay. When δ → 0, the critical frequency is given by ωc =
√
g/d where d is22

the plate submergence and g is the acceleration due to gravity, which relates to23

the resonance in narrow channels and is an example of local resonance, studied24

extensively in metamaterials. The results have implications on proposed schemes25

to harness energy from ocean waves and other problems related to rainbow26

trapping and rainbow reflection.27

1. Introduction28

Problems involving the reflection and transmission of waves by thin vertical29

surface-piercing barriers under classical linearised theory have been the subject of30

research over many decades. For a fluid of infinite depth, Ursell (1947) obtained31

an explicit solution for monochromatic waves normally-incident upon a single32

barrier. When the fluid has a constant finite depth, Porter & Evans (1995) showed33

how to obtain accurate numerical solutions which provide upper and lower bounds34

on reflected and transmitted amplitudes by formulating complementary integral35
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equations. They also produced numerical results for a pair of identical surface-36

piercing barriers, reproducing and extending results of Evans & Morris (1972),37

Newman (1974) and McIver (1985). Notably, Newman (1974) had shown, using38

matched asymptotic methods, that a pair of closely-spaced barriers can totally39

transmit or reflect incoming wave energy at angular frequencies in the vicinity of40

a critical value of ωc =
√
g/d related to the vertical fluid resonance in the narrow41

column between the two vertical plates, where d is the depth of submergence of42

the plates and g is the acceleration due to gravity. Evans (1978) later used this43

idea to model the operation of a narrow oscillating water column wave energy44

device. Non-identical barriers and arrays of more than two barriers have been45

considered by a number of authors including Evans & Porter (1997) and Roy46

et al. (2019).47

More recently, Wilks et al. (2022) have considered larger arrays of closely-48

spaced barriers whose submergence increases gradually in the direction of the49

incident wave, i.e. so-called “graded array”. The graded array is a specific type50

of metamaterial that refers to a material designed to have specific properties51

not found in naturally occurring materials and typically consists of repeating52

sub-wavelength structures. The graded array in Wilks et al. (2022) is designed53

to be resonant at multiple frequencies associated with the variable fluid column54

lengths across the array such that high reflection is sustained across a broad range55

of frequencies, known as rainbow reflection. Similar ideas based on local internal56

resonance provided by the displacement of the surface have been implemented57

in water waves using C-ring cylinders in channels, rather than vertical barriers,58

by Dupont et al. (2017), Bennetts et al. (2018), Archer et al. (2020), etc. Large59

arrays of floating buoys which resonate on the surface of the fluid with elements60

that either possess constant properties or vary in space have been considered61

for wave energy harvesting applications by, for example, Garnaud & Mei (2009)62

and Porter (2021), as well as by Wilks et al. (2022). Arrays of resonators have63

been used to produce similar rainbow reflection on acoustic wave transmission in64

waveguides in the form of cavities attached to sidewalls (e.g. Tang 2012; Jiménez65

et al. 2017; Jan & Porter 2018) and on surface wave propagation in elasticity (e.g.66

Colquitt et al. 2017) in the form of mechanical oscillators attached to the surface67

of an elastic half space.68

In this paper, we return to consider large periodic arrays of surface-piercing69

vertical barriers which are equally spaced and submerged to the same constant70

depth, being simpler than the graded array problem. Part of the motivation for71

looking at this problem is to characterise the effects of resonance on models72

which are based on low frequency homogenisation of plate array structures.73

This approximation replaces the discrete structure of the array by a continuous74

effective medium under an assumed contrast in scales between the wavelength and75

the spacing between plates. This approximation allows problems of a large array76

of closely-spaced plates to be solved more easily and has been used to consider77

the interaction of waves with metamaterial structures (e.g. Jan & Porter 2018;78

Liu et al. 2018; Zheng et al. 2020). Away from resonant conditions, results from79

homogenisation of plate array structures compare favourably to those derived80

from the application of direct numerical methods for discrete arrays (e.g. Zheng81

et al. 2020; Porter et al. 2022, where comparison is made with boundary integral82

methods). However, low frequency homogenisation fails when undamped fluid83

motion in narrow channels is resonant, occurring at the critical frequency ωc84
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indicated above. This is an example of the well-known phenomenon of local85

resonance in metamaterials (e.g. Ma & Sheng 2016).86

By assuming a periodic array with barriers having an equal depth of submer-87

gence, d, we allow ourselves the opportunity of making an analytic comparison be-88

tween a direct solution of the discrete array ofN+1 plates separated by a non-zero89

distance δ and homogenisation methods based on δ/d≪ 1 in order to understand90

issues relating to resonance. In particular, periodicity allows us to exploit Bloch-91

Floquet methods which are associated with the corresponding infinite periodic92

arrays. When considering the scattering by a finite number of identical elements93

arranged periodically in an array, a naive approach is to apply direct multiple94

scattering methods, which leads to a large coupled system (examples are given in95

Linton & McIver 2001). For quasi-one dimensional scattering systems, such as the96

one we consider here, transfer and scattering matrices are often used to reduce97

the computational effort, in which wave information is propagated left and right98

(see Porter & Porter 2003; Wilks et al. 2022). For the transfer matrix method,99

reflection and transmission across the array are expressed as products of matrices100

which encode the scattering characteristics of a single element by converting101

incoming modes consisting of both propagating and a truncated set of evanescent102

waves into outgoing modes. This becomes impractical when considering closely-103

spaced arrays since the size of the matrix must increase to capture a greater104

number of mode interactions as the value of δ/d is decreased. Results showed105

that for an infinite periodic array there exist ranges of frequencies for which wave106

propagation through the structure is prohibited. For the constrained mass system107

in Wilks et al. (2022), they argued that they must replace scattering matrices in108

favour of a formulation involving a system of integral equations which link certain109

functions at the nth barrier to corresponding functions at the (n± 1)th barriers110

since the wave scattering problem and the equations of motion are needed to be111

solved simultaneously.112

The frequency ranges indicated above for which wave propagation through the113

periodic structures is absolutely forbidden are well known as stop bands and114

the corresponding structure is called the band-gap structure. It is shown that115

the existence of stop bands is possible for one-dimensional periodically varying116

topography (e.g. Porter & Porter 2003; An & Ye 2004). Further, Chen et al. (2004)117

and Yang et al. (2006) investigated the band-gap structures of liquid surface118

waves propagating through an infinite two-dimensional periodic topography of119

circle and square hollows, respectively. McIver (2000) and Linton (2011) also120

established the existence of a band-gap structure associated with water waves121

propagating over infinite periodic arrays of submerged vertical and horizontal122

cylinders. If an incident wave is subjected to a finite section of this infinite array123

at a certain frequency within such a stop band, most of energy is expected to be124

reflected.125

In this paper we take a new approach to determining the scattering by periodic126

arrays of finite extent and develop concepts introduced in the work of Porter127

& Porter (2003) who highlighted connections between finite and infinite array128

problems. Specifically, they showed that the transfer matrices referred to above129

could be expressed in terms of generalised eigenvalues and eigenfunctions of the130

corresponding periodic Bloch-Floquet problem representing both propagating131

and decaying modes. After specifying the infinite periodic array problem in132

Section 2 we introduce a novel orthogonality relation satisfied by the Bloch133

eigenfunctions, which is key to developing a solution in the interior of the array.134
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Then we present two different forms of solution for the Bloch-Floquet problem135

by expanding the velocity potential with different orthogonal functions, each of136

which has its own advantages in numerical calculation. Information is now able137

to propagate from the left to the right of the array of N +1 barriers via a simple138

product of Bloch wavenumbers/eigenvalues; this is described in Section 4 of the139

paper.140

In Section 3 we formally develop the homogenisation approximation for a141

continuum model, which relies on a separation of horizontal length scales based142

on the wavelength and the array separation, δ. It turns out this assumption is143

violated as the resonance of fluid in the narrow channels is approached since144

solutions are predicted with a propagating wavelength which tends to zero. The145

wave scattering problem of this continuum model is solved in Section 5. Numerical146

results are produced to show the comparison between the exact description of147

the finite array and the approximation based on homogenisation in order to148

demonstrate how the Bloch-Floquet solution produces accurate and efficient149

results and to demonstrate when homogenisation is a reliable approach to take.150

The work is summarised in Section 6.151

It is worth pointing out that as the spacing between plates tends to zero, viscous152

effects become important in the physical setting. Since our primary interest is to153

understand the resonance occurring in metamaterial structure and to evaluate154

the validity of homogenisation, the effect of viscosity is not taken into account155

in the present paper. The consideration for the viscous effects can be referred156

to Mei et al. (2005), whose idea has been implemented to consider the energy157

dissipation in the metamaterial (see Zheng et al. 2020).158

2. The periodic barrier problem159

Consider an infinite periodic array of thin barriers with the equal spacing δ, which160

extend vertically downwards to a depth d below the free surface of the fluid with161

constant depth h. Two-dimensional Cartesian coordinates are defined with the162

origin O in the mean free surface and z directed vertically upwards, such that163

barriers occupy {x = xn = nδ (n ∈ Z),−d < z < 0}.164

Under the assumption of an incompressible and inviscid fluid and irrotational
flow, the fluid motion of a single frequency ω can be described by Re{ϕ(x, z)e−iωt}
(in which t is time), where the spatial velocity potential ϕ(x, z) satisfies

∇2ϕ = 0, in the fluid. (2.1)

On the free surface, the combined linearised kinematic and dynamic boundary
conditions result in

Kϕ− ϕz = 0, on z = 0, (2.2)

where K = ω2/g. No-flow conditions apply on fixed rigid boundaries meaning

ϕx = 0, on x = nδ± (n ∈ Z) for − d < z < 0, (2.3)

where the positive and negative signs denote two sides of the plate, and

ϕz = 0, on z = −h. (2.4)

Besides, the analysis of the flow close to the edge of the barrier reveals that
the fluid velocity should possess inverse square root behaviour. Finally, since the
geometry is periodic we may invoke the Bloch-Floquet theory which allows us to

Focus on Fluids articles must not exceed this page length
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consider just one periodic element of the array (here we choose D = {0 < x <
δ,−h < z < 0}) provided we introduce quasi-periodic boundary conditions on
those fluid interfaces which connect one cell to the next. For our choice of D, we
require

ϕ(δ, z) = eiβδϕ(0, z)

ϕx(δ, z) = eiβδϕx(0, z)

}
for − h < z < −d, (2.5)

where β is the Bloch wavenumber needed to be determined.165

Momentarily it helps to imagine that λ replaces eiβδ in (2.5). Since the problem166

is unchanged by the mapping x → δ − x, if λ is an eigenvalue then λ−1 is167

another eigenvalue. Also, if ϕ is a solution corresponding to λ then ϕ, the complex168

conjugate of ϕ, is also a solution with eigenvalue λ̄. This implies that eigenvalues λ169

must lie either on the real axis in reciprocal pairs or on the unit circle in complex170

conjugate pairs. Returning to β, this implies that β is a real number or can be171

expressed as nπ/δ+iγn (where n ∈ Z and γ ∈ R) and that for every β it is paired172

with −β.173

When β is real, it represents a wavenumber which encodes the phase shift of the174

fluid motion as waves propagate across one cell of the infinite periodic array. We175

note that we need only consider real values of β ∈ (0, π/δ] since β′ = β + 2πm/δ176

for m ∈ Z leaves the problem unchanged and β′ = 2π/δ − β results in the same177

problem with x mapped to δ − x. That is to say, it reverses the wave direction,178

but not the solution. When β becomes a complex number, for similar reasons we179

only need to consider the case of β being nπ/δ + iγn (n = 0, 1 and γn ∈ R+).180

These values represent a solution with local wave decay from one cell to the next181

(i.e. evanescent waves) although the extension to the infinite periodic array is182

unphysical.183

It can be shown that there is only one real value of β which exists below one184

certain frequency and one complex value of β = π/δ + iγ1 that exists above185

the certain frequency, which means they will not appear at the same frequency.186

Meanwhile, there exist a number of pure imaginary values of β = iγ
(k)
0 (k =187

1, 2, · · · ) over the whole frequency range. Thus, we can label different values of188

β as β = ±β(k) (k = 0, 1, 2, · · · ), where k = 0 is reserved for either an eigenvalue189

on the positive real axis or in the complex plane and k = 1, 2, · · · are used for190

the pure imaginary values which are ordered with increasing magnitude along the191

imaginary axes.192

The boundary-value problem described above is homogeneous (that is, free of
forcing) and we can think of β as playing the part of the eigenvalue and ϕ ̸= 0
the corresponding eigenfunction. Thus, each eigenvalue ±β(k) will be associated
with a corresponding eigenfunction which is labelled as ϕ = ϕ(±k)(x, z) such that

ϕ(−k)(x, z) = ϕ(+k)(δ − x, z), (2.6)

resulting in that ϕ(−0)(x, z) is different from ϕ(+0)(x, z). In particular, this implies
that

ϕ(−k)(0, z) = eiβ
(k)δϕ(+k)(0, z), (2.7)

and

ϕ(−k)
x (0, z) = −eiβ

(k)δϕ(+k)
x (0, z), (2.8)

which will be used extensively later.193
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2.1. An orthogonality relation194

Before we set about solving the eigenproblem, we introduce a useful orthogonality
relation. Consider two eigenfunctions ϕ(+k)(x, z) and ϕ(±j)(x, z) satisfying all of
the conditions of the problem described above. Then from Green’s identity we
have

0 =

∫∫
D

[
ϕ(+k)∇2ϕ(+j) − ϕ(+j)∇2ϕ(+k)

]
dxdz

=

∫
S

[
ϕ(+k)∂ϕ

(+j)

∂n
− ϕ(+j)∂ϕ

(+k)

∂n

]
ds

=
[
ei(β

(k)+β(j))δ − 1
] ∫ −d

−h

[
ϕ(+k)∂ϕ

(+j)

∂x
− ϕ(+j)∂ϕ

(+k)

∂x

]
x=0

dz, (2.9)

and

0 =

∫∫
D

[
ϕ(+k)∇2ϕ(−j) − ϕ(−j)∇2ϕ(+k)

]
dxdz

=

∫
S

[
ϕ(+k)∂ϕ

(−j)

∂n
− ϕ(−j)∂ϕ

(+k)

∂n

]
ds

=
[
ei(β

(k)−β(j))δ − 1
] ∫ −d

−h

[
ϕ(+k)∂ϕ

(−j)

∂x
− ϕ(−j)∂ϕ

(+k)

∂x

]
x=0

dz, (2.10)

after using the conditions on the boundary, S, of D having elemental arclength
ds and outward normal derivative ∂/∂n. The factor in front of the integral in
(2.10) is zero if β(k) = β(j), while the factor in front of the integral in (2.9) cannot
be zero except for β(k) = β(j) = π/δ where k = j = 0. Assuming for now that the
eigenvalues β(k) are distinct and β(0) ̸= π/δ, it follows the following orthogonality
relation∫ −d

−h

[
ϕ(+k)(0, z)

∂ϕ(+j)

∂x
(0, z)− ϕ(+j)(0, z)

∂ϕ(+k)

∂x
(0, z)

]
dz = 0, (2.11a)∫ −d

−h

[
ϕ(+k)(0, z)

∂ϕ(−j)

∂x
(0, z)− ϕ(−j)(0, z)

∂ϕ(+k)

∂x
(0, z)

]
dz = E(+k)δkj, (2.11b)

where E(+k) is a scaling factor defined by

E(+k) =

∫ −d

−h

[
ϕ(+k)(0, z)

∂ϕ(−k)

∂x
(0, z)− ϕ(−k)(0, z)

∂ϕ(+k)

∂x
(0, z)

]
dz

= −2

∫ −d

−h

ϕ(−k)(0, z)
∂ϕ(+k)

∂x
(0, z)dz = −E(−k), (2.12)

after using (2.7) and (2.8).195

The special case β(0) = π/δ relates to standing waves in the cell and (2.6) no
longer defines an independent second function since ϕ(0)(x, z) = ϕ(+0)(x, z) =
ϕ(−0)(x, z). Instead, we define ϕ(0)(x, z) satisfying (2.5) by imposing supplemen-
tary constraints that

ϕ(0)(0, z) = ϕ(0)(δ, z) = 0, (2.13)

or

ϕ(0)
x (0, z) = ϕ(0)

x (δ, z) = 0, (2.14)
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for −h < z < −d. It follows that ϕ(0)
x (δ/2, z) = 0 or ϕ(0)(δ/2, z) = 0 and the196

solutions here relate to sloshing modes in closed rectangular domains of width δ197

either with or without a vertical baffle along the centreline. For the latter case,198

it can be deduced that it happens at K = (nπ/δ) tanh(nπh/δ) for n = 1, 2, . . .199

(see Mei et al. 2005). Sloshing modes of similar character, but more complex200

geometry, were shown to emerge in Porter & Porter (2003). Besides, it should be201

noted that the orthogonality relation (2.11) no longer applies for β(0) = π/δ.202

2.2. Solution of two independent forms203

There are many different approaches one could adopt to develop solutions to the204

single cell problem which partly depend upon how the fundamental cell is defined.205

Since our choice of the fundamental cell, D, is rectangular with conditions on the206

boundary of D it makes sense to use separation of variables. In the following, we207

will describe two different forms of solution for the Bloch-Floquet problem given208

above.209

In the first form, the cell is divided into two subdomains which are above and
below the level z = −d, and the solution is expanded by eigenfunctions in x. In
−d < z < 0, we write the general solution satisfying (2.1), (2.2), and (2.3) as

ϕ(x, z) = a1,0(1 +Kz) +
∞∑

n=1

a1,n cos(nπx/δ)ζn(z), (2.15)

where

ζn(z) =
cosh(nπz/δ) + (Kδ/nπ) sinh(nπz/δ)

cosh(nπd/δ)
, n ⩾ 1, (2.16)

and a1,n for n = 0, 1, · · · are coefficients to be determined. In −h < z < −d, the
general solution of (2.1) satisfying (2.4) and (2.5) is

ϕ(x, z) =
∞∑

n=−∞

b1,n
coshβn(h+ z)

coshβn(h− d)
eiβnx, (2.17)

where

βn = β + 2nπ/δ, (2.18)

and b1,n for n ∈ Z are also undetermined coefficients.210

The pressure and vertical component of velocity must coincide across the
common fluid interface z = −d for 0 < x < δ. We first define

w(x) = ϕz(x,−d), 0 < x < δ, (2.19)

which represents the vertical velocity across z = −d. From (2.15) and the
orthogonality of the cosine functions over 0 < x < δ, continuity of velocity allows
us to write

a1,n =


1

Kδ

∫ δ

0

w(x)dx, n = 0,

2

nπ[Kδ − nπ tanh(nπd/δ)]

∫ δ

0

w(x) cos(nπx/δ)dx, n ⩾ 1.
(2.20)

Also, from (2.17) we have, using orthogonality of the functions eiβnx over 0 < x <
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δ,

b1,n =
1

βnδ tanhβn(h− d)

∫ δ

0

w(x)e−iβnxdx, n ∈ Z. (2.21)

We now match pressure at z = −d and substitute (2.19) and (2.20) for a1,n and
b1,n to give the scalar homogeneous integral equation∫ δ

0

w(x′)L(x, x′)dx′ = 0, 0 < x < δ, (2.22)

where

L(x, x′) =
Kd− 1

Kδ
+2

∞∑
n=1

Dn cos(nπx/δ) cos(nπx
′/δ)+

∞∑
n=−∞

eiβn(x−x′)

βnδ tanhβn(h− d)
,

(2.23)
and

Dn =

(
1

nπ

)
(Kδ/nπ) tanh(nπd/δ)− 1

(Kδ/nπ)− tanh(nπd/δ)
∼ 1

nπ
, (2.24)

as n→ ∞ (or as δ/d→ 0).211

The second form is to use eigenfunctions in the depth coordinate to expand the
solution which is a natural approach to solving water wave problems (Linton &
McIver 2001). This leads to the solution being posed in terms of integral equations
over finite intervals of x = 0: either for the unknown ϕx(0, z) between −h <
z < −d or for the unknown ϕ(δ−, z) − eiβδϕ(0+, z) between −d < z < 0. Given
the relation derived in Section 2.1, the first of these two options is particularly
attractive. Thus, the velocity potential is first written as

ϕ(x, z) =
∞∑

n=0

(
a2,ne

knx + b2,ne
−knx

)
ψn(z). (2.25)

Here kn are the roots of the dispersion equation

ω2/g = −kn tan knh, (2.26)

where kn (n ⩾ 1) is real and positive while k0 = −ik and k is the real positive
wavenumber, and

ψn(z) = N−1/2
n

cos kn(z + h)

cos knh
, (2.27)

with

Nn =
1

2 cos2 knh

(
1 +

sin 2knh

2knh

)
, (2.28)

which satisfy the orthogonality relation

1

h

∫ 0

−h

ψn(z)ψm(z)dz = δmn. (2.29)

We now define

u(z) = ϕx(0, z), −h < z < −d, (2.30)

which represents the horizontal velocity across x = 0. From the velocity periodic
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condition in (2.5) and the orthogonality relation in (2.29), we have

a2,n =
eiβδ − e−knδ

2knh sinh knδ

∫ −d

−h

u(z)ψn(z)dz, (2.31)

and

b2,n =
eiβδ − eknδ

2knh sinh knδ

∫ −d

−h

u(z)ψn(z)dz. (2.32)

Applying the pressure periodic condition in (2.5) with (2.31) and (2.32) results
in another scalar homogeneous integral equation∫ −d

−h

u(z′)K(z, z′)dz′ = 0, −h < z < −d, (2.33)

where

K(z, z′) =
∞∑

n=0

cosβδ − cosh knδ

knh sinh knδ
ψn(z)ψn(z

′). (2.34)

2.3. Numerical approximation212

The numerical approximation of the integral equations is based on methods
described in Porter & Evans (1995) in which it is recognised that the end points,
(0,−d) and (δ,−d), of the intervals involved in the integral equations coincide
with the sharp edges of the barriers and the fluid velocity behaves the inverse
square root of distance to the edge. Thus, for the first form given in the last
section we choose

w(x) ≈
M1∑
m=0

α1,mwm(x), (2.35)

where

wm(x) =
Tm(2x/δ − 1)

π
√
(δ/2)2 − (x− δ/2)2

, (2.36)

in which Tm(·) is a Chebyshev polynomial and M1 is the designated truncation
parameter. In what follows we use the results, which follow from, for example,
Erdélyi et al. (1954)∫ δ

0

wm(x) cos(nπx/δ) dx = cos[(m+ n)π/2]Jm(nπ/2), (2.37)

and ∫ δ

0

wm(x)e
−iβnx dx = e−iβnδ/2e−imπ/2Jm(βnδ/2), (2.38)

where Jm(·) is the mth order Bessel functions of the first kind. Substituting the
approximation (2.35) into (2.22), multiplying through by wn(x) and integrating
over 0 < x < δ result in the following system of equations for the expansion
coefficients α1,n:

M1∑
n=0

α1,nLmn = 0, m = 0, 1, · · · ,M1, (2.39)
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where

Lmn =
Kd− 1

Kδ
δm0δn0 + 2

∞∑
r=1

Dr cos[
1
2
(m+ r)π] cos[ 1

2
(n+ r)π]Jm(

1
2
rπ)Jn(

1
2
rπ)

+ e−i(m−n)π/2
∞∑

r=−∞

Jm(
1
2
βrδ)Jn(

1
2
βrδ)

βrδ tanhβr(h− d)
. (2.40)

Similarly, for the second form we expand the unknown horizontal velocity u(z)
as

u(z) ≈
M2∑
m=0

α2,mum(z), (2.41)

in a series of M2 + 1 prescribed functions

um(z) =
2(−1)mT2m[(h+ z)/(h− d)]

π
√
(h− d)2 − (h+ z)2

, (2.42)

which satisfy the condition (2.4) on the sea bed. Substituting the approximation
(2.41) into (2.33), multiplying through by un(z) and integrating over −h < z <
−d lead to the following system of equations for the expansion coefficients α2,n:

M2∑
n=0

α2,nKmn = 0, m = 0, 1, · · · ,M2, (2.43)

where

Kmn =
∞∑
r=0

(cosβδ − cosh krδ)

krh sinh krδ
FmrFnr, (2.44)

in which we have defined

Fmr =

∫ −d

−h

um(z)ψr(z)dz = N−1/2
r J2m[kr(h− d)]. (2.45)

Numerically we fix Kd and look for real values of β ∈ (0, π/δ], γ1 > 0 with213

β = π/δ+iγ and γ
(k)
0 > 0 with β = iγ

(k)
0 for which the system of equations (2.39)214

or (2.43) have non-trivial solutions. When β is real the matrix formed by Lmn215

is Hermitian and when β is complex the matrix is real, while the matrix formed216

by Kmn is a real matrix no matter whether β is real or complex. These result in217

that the determinants of the two matrices are always real, so zero eigenvalue of218

the corresponding matrix can be found numerically using standard root finding219

methods. Specially, when β becomes a pure imaginary number, from the last220

term in (2.40) we can see that when γ0(h − d) passes across kπ each element221

in Lmn will tend to positive or negative infinity. Thus, it can be deduced that222

the overall behavior of Lmn is similar to that of the function cot γ0(h − d) and223

γ
(k)
0 (h− d) ∈ ((k− 1)π, kπ) though the same conclusion is not easily drawn from224

Kmn. Furthermore, all of the series in Lmn andKmn are convergent as the order of225

O(1/r2). In order to accelerate the numerical computation, an effective treatment226

is performed for these series (see Appendix A for detail).227

As is shown later, either of the two methods of solution presented above can be228

used to find accurate values of eigenvalues, β. However, accurately determining229

the eigenfunctions ϕ(x, z) is more problematic. Even though both methods use230

Rapids articles must not exceed this page length
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functions which accurately capture the inverse square root singularity at the lower231

edges of the barriers as part of the solution method, the expressions for ϕ are232

formed by separation solutions which do not explicitly include these singularities.233

Consequently, the expansion coefficients associated with the separation solutions234

are slowly convergent for both methods (like O(1/n3/2)). In order to produce235

plots of the eigenfunctions so that they may be compared with the results of236

homogenisation (in Section 3.1) we nevertheless find that the first method works237

well. This is because when δ/d is small, which is the primary interest of the238

present study, only one or two terms are required in the expansion of the unknown239

velocity across the level z = −d to obtain very accurate solutions whilst these240

separation solutions are well suited to close spacing with the first term in the241

expansion above and below z = −d being dominant. This is not true, however,242

for the second method since evanescent modes play an important role when δ/d is243

small. Thus it is hard to plot eigenfunctions across the whole domain accurately244

by using the second method for δ/d small.245

Also later, when we consider scattering by finite arrays using a discrete barrier246

method we are required to compute integrals over the intervals −h < z < −d247

beneath the barriers involving the eigenfunctions and their derivative with respect248

to x. Although separation solutions for determining ϕ from the first method249

can do this accurately, the series in which derivatives are taken term-by-term250

are no longer convergent, with terms decreasing like O(1/n1/2). For this reason,251

the second method is useful since the solution method provides highly accurate252

representations for the derivative which explicitly include the singularity at z =253

−d as shown in (2.30) and (2.41).254

2.4. Small δ/d and βδ255

We now assume that ϵ = δ/d ≪ 1 and βδ ≪ 1, that is to say, βd ≪ 1/ϵ. Based
on the solution in the first form presented in the last section, the dominant entry
in (2.40) is

L00 ≈
Kd− 1

Kδ
+

1

βδ tanhβ(h− d)
, (2.46)

after using Jm(βδ/2) ≈ δm0 and assuming that Kδ/|Kd− 1| has the same order
with βδ, i.e. Kδ/|Kd− 1| ≪ 1. Thus, the leading order approximation to values
of β for small δ/d is determined from solving L00 = 0, or

β tanhβ(h− d) =
K

1−Kd
, (2.47)

provided |1−Kd|/Kd ≫ ϵ which implies that |1−Kd| ≫ ϵ. As for the velocity
potential, if we normalise αn by setting α0 = Kδ/(1−Kd), after using (2.47) the
velocity potential can be written as

ϕ(x, z) ≈
{

(1 +Kz)/(1−Kd), −d < z < 0,

eiβx coshβ(h+ z)/ coshβ(h− d), −h < z < −d.
(2.48)

From (2.48), we can see that when δ/d ≪ 1 and βδ ≪ 1, the expressions only256

including the first term (n = 0) in (2.15) and (2.17) are good at simulating the flat257

oscillation in the cell. Besides, (2.47) is similar to the dispersion equation (2.26)258

with n = 0. It can be proved that here β only can be real or pure imaginary but259

could not be a complex number and the real value exists only when Kd < 1.260



12 J. Huang, R. Porter

3. A continuum model261

In this section, we develop an approximation to wave propagation through the
infinite periodic array by directly applying asymptotic methods to the underlying
boundary-value problem. The principal assumption is that ϵ = δ/d ≪ 1 (close
spacing between adjacent barriers), which is the same as Section 2.4. In −d <
z < 0, we make a multiple scales approximation, i.e. x → dx̂ + δX, where x̂ is
the macroscale variable and X operates on the scale of a single cell. We also scale
z → dẑ and write

ϕ(x, z) ≈ ϕ(0)(x̂, X, ẑ) + ϵϕ(1)(x̂, X, ẑ) + ϵ2ϕ(2)(x̂, X, ẑ) + · · · . (3.1)

In 0 < X < 1 and −1 < ẑ < 0, from (2.1) we have[
∂2

∂X2
+ 2ϵ

∂

∂x̂∂X
+ ϵ2

(
∂2

∂x̂2
+

∂2

∂ẑ2

)](
ϕ(0) + ϵϕ(1) + ϵ2ϕ(2) + · · ·

)
= 0, (3.2)

with (
∂

∂X
+ ϵ

∂

∂x̂

)(
ϕ(0) + ϵϕ(1) + ϵ2ϕ(2) + · · ·

)
= 0, on X = 0, 1, (3.3)

and (
∂

∂ẑ
−Kd

)(
ϕ(0) + ϵϕ(1) + ϵ2ϕ(2) + · · ·

)
= 0, on ẑ = 0. (3.4)

Using (3.2) with (3.3) for the zero order gives

ϕ(0)(x̂, X, ẑ) ≡ ϕ(0)(x̂, ẑ), (3.5)

which is independent of X. At the first order, (3.2) is

∂2ϕ(1)

∂X2
= −2

∂2ϕ(0)

∂x̂∂X
= 0, (3.6)

where (3.5) has been applied. Integrating (3.6) over 0 < X < 1 and using the
boundary conditions implied by (3.3) for ϕ(1) on X = 0, 1 give

ϕ(1) = −∂ϕ
(0)

∂x̂
X + f(x̂, ẑ), (3.7)

where f(x̂, ẑ) is a function independent of microscale variable X. Further, if we
consider the second order term in (3.2) and (3.3), we can obtain

∂2

∂X2
ϕ(2) + 2

∂2

∂x̂∂X
ϕ(1) +

(
∂2

∂x̂2
+

∂2

∂ẑ2

)
ϕ(0) = 0, (3.8)

with
∂ϕ(2)

∂X
+
∂ϕ(1)

∂x̂
= 0, on X = 0, 1. (3.9)

Again, after integrating (3.8) over 0 < X < 1 and applying (3.5), (3.7) and (3.9),
it results

∂2ϕ(0)

∂ẑ2
= 0, (3.10)

as the leading order governing equation, with (3.4) applying at zeroth order.
The general solution, satisfying (3.10), is ϕ(0) = X(x̂)(1 +Kdẑ) for an arbitrary



Wave propagation through arrays of barriers 13

function X(x̂). Since we are concerned with wave propagation, we write

ϕ(0)(x̂, ẑ) = Aeiµdx̂(1 +Kdẑ), (3.11)

where µ is a coefficient to be determined and the assumption is that µd ≪ 1/ϵ262

otherwise the horizontal variation is not on the macroscale.263

In −h < z < −d, since the fluid is not bounded by barriers, we can drop the
microscale, resulting in that we rescale with x→ dx̂ and z → dẑ. After expanding
the velocity potential with respect to ϵ, we can find that ϕ(0)(x̂, ẑ) still satisfies
Laplace’s equation (

∂2

∂x̂2
+

∂2

∂ẑ2

)
ϕ(0) = 0. (3.12)

After applying the separation of variables, the solution of (3.12) satisfying the
zeroth order condition on the sea bed is

ϕ(0)(x, z) = Beiµ
′dx̂ coshµ′d(ẑ + h/d), (3.13)

where µ′ is also an undetermined coefficient.264

Applying the continuity of pressure and vertical component of velocity for (3.11)
and (3.13) on the common fluid interface ẑ = −1 results in

µ = µ′, (3.14)

B coshµ(h− d) = A(1−Kd), (3.15)

and

Bµ sinhµ(h− d) = AK. (3.16)

That is, µ satisfies

µ tanhµ(h− d) = K/(1−Kd), (3.17)

and the corresponding mode, written in terms of the original coordinates, is

ϕ(x, z) = eiµx
{

(1 +Kz)/(1−Kd), −d < z < 0,

coshµ(h+ z)/ coshµ(h− d), −h < z < −d.
(3.18)

When Kd → 1 we can see from (3.17) that µd → ∞ and thus the assumption265

made in (3.11) that µd≪ 1/ϵ is violated.266

In this section we have implemented a “low frequency homogenisation” and267

it can be expected to be valid if |1 − Kd| ≫ ϵ which is also aligned with the268

assumption made in Section 2.4. The result (3.17) and (3.18) shows that the269

homogenisation of the boundary-value problem coincides with the small δ/d limit270

(2.47) and (2.48) of the discrete barrier array problem with the association that271

β → µ as δ/d → 0. Also, it can be proved that there exists one real value of272

µ0 and a number of pure imaginary values of µn = iµ̂n (where n = 1, 2, · · · and273

µ̂n ∈ ((n− 1)π, nπ)) satisfying (3.17).274

It should be possible to perform a “high frequency homogenisation” (see Craster275

et al. 2010) by expanding about the state βδ = π where a local standing mode276

exists and gives rise to the critical value of Kc below which wave propagation277

exists and above which wave propagation is prohibited.278

3.1. Results279

First, we determine the accuracy of the numerical scheme of Section 2 by varying280

the truncation parameter, Mk (k = 1, 2), to assess the convergence of the two281
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δ/d = 0.05 δ/d = 0.5

Kd = 0.2 Kd = 0.6 Kd = 1.0 Kd = 0.2 Kd = 0.6 Kd = 1.0

0 0.015009 0.075510 π+1.4309i 0.15097 0.75208 π+1.4309i
2 0.014955 0.073792 π+2.1145i 0.14596 0.64601 π+2.1145i

M1 4 0.014955 0.073782 π+2.1643i 0.14594 0.64534 π+2.1643i
6 0.014955 0.073781 π+2.1683i 0.14594 0.64527 π+2.1683i
8 0.014955 0.073781 π+2.1690i 0.14594 0.64526 π+2.1690i

0 0.018245 − − 0.15574 − −
2 0.015035 0.079583 − 0.14597 0.64793 π+3.9638i
4 0.014962 0.074119 − 0.14594 0.64528 π+2.2017i

M2 6 0.014956 0.073820 − 0.14594 0.64528 π+2.1702i
8 0.014955 0.073790 π+4.1211i 0.14594 0.64528 π+2.1698i
10 0.014955 0.073786 π+2.6190i 0.14594 0.64528 π+2.1698i
12 0.014955 0.073786 π+2.3200i 0.14594 0.64528 π+2.1698i

Table 1: The convergence of first nondimensional Bloch wavenumber β(0)δ
against the truncation parameter, Mk, for two schemes given in Section 2.2

with d/h = 0.2.

− Cannot determine a value β that makes the determinant zero.

schemes given in Section 2.2. Fundamental cells with the same submergence d/h =282

0.2 but different spacings are considered in Tabs. 1 and 2 which catalogue the283

numerical estimates of the first β(0) and second β(1) Bloch wavenumbers by solving284

each scheme. For the first Bloch wavenumber, when K exceeds a value of Kc285

corresponding to the critical frequency ωc (where Kcd < 1), there no longer exists286

a real-valued Bloch wavenumber. Instead, following the system introduced in287

Section 2, β(0) records a complex Bloch wavenumber and represents decay rather288

than wave propagation through the array. For the real value of β(0), whenMk = 6289

the non-dimensional wavenumber β(0)δ is determined to have nearly five decimal290

place accuracy except for the second scheme at relatively high frequencies. When291

the frequency exceeds the critical frequency, the larger truncation parameters are292

required for obtaining the first Bloch wavenumber with the same precision. As293

for the second Bloch wavenumber, the convergent results can be reached with294

very few terms. Generally, the first scheme tends to converge faster for small δ/d295

and the second scheme does better when δ/d takes larger values, the reason for296

which has been outlined earlier.297

Next, we compare Bloch wavenumber β(k) obtained by (2.39) or (2.43) with298

numerical roots µk in the homogenisation method obtained by (3.17). Fig. 1(a)299

shows the variation of the first value (k = 0) against the nondimensional300

wavenumber Kd for submergence d/h = 0.2. As mentioned in Section 2, real301

β are determined in the range of β ∈ (0, π/δ] and for the other ranges the302

problem is unchanged. Thus, in sub-plot (a) the curves describing real Bloch303

wavenumbers terminate at β = π/δ and the value of Kcd corresponding to304

the critical frequencies in the figure shown are, respectively, 0.9891, 0.9477 and305

0.9006. Above these critical frequencies, a complex value of β = π/δ+iγ1 emerges306

from the real axis, the imaginary part of which is also shown in sub-plot (a).307

Thus, it can be inferred that when the frequency exceeds the critical frequency,308

the real Bloch-Floquet wavenumber will move off the real axis and go along the309
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δ/d = 0.05 δ/d = 0.5

Kd = 0.2 Kd = 0.6 Kd = 1.0 Kd = 0.2 Kd = 0.6 Kd = 1.0

0 0.034974i 0.023387i 0.019611i 0.34854i 0.23080i 0.19394i
1 0.034878i 0.023380i 0.019611i 0.33926i 0.23021i 0.19394i

M1 2 0.034883i 0.023411i 0.019634i 0.34040i 0.23336i 0.19630i
3 0.034883i 0.023411i 0.019634i 0.34040i 0.23335i 0.19630i
4 0.034884i 0.023411i 0.019635i 0.34041i 0.23341i 0.19635i

0 − − 0.037744i − − 0.32364i
1 − 0.024607i 0.019887i 0.39190i 0.24020i 0.19820i

M2 2 0.034939i 0.023424i 0.019635i 0.34055i 0.23342i 0.19636i
3 0.034932i 0.023416i 0.019635i 0.34042i 0.23342i 0.19636i
4 0.034899i 0.023413i 0.019635i 0.34042i 0.23342i 0.19635i

Table 2: The convergence of second nondimensional Bloch wavenumber β(1)δ
against the truncation parameter, Mk, for two schemes given in Section 2.2

with d/h = 0.2.

− Cannot determine a value β that makes the determinant zero.

semi-infinite line β = π/δ + iγ1 for γ1 = [0,∞). Besides, we can see that for310

small spacing, the complex solution increases extremely fast with the frequency.311

Since the propagating mode no longer exists, we also can conclude that the312

first stop band during which wave propagation is prohibited is the interval313

Kd ∈ (Kcd, (πd/δ) tanh(πh/δ)). The end points of this interval both correspond314

to βδ = π and standing waves occurring in the cell; the lower value corresponds315

to the case which is equivalent to a vertical baffle placed along the centreline of316

the cell, i.e. the solution of (2.13), while the upper value corresponds the case317

in which barriers extend through the depth, i.e. the solution of (2.14). The real318

root, µ0, of the dispersion equation (3.17) tends to infinity as Kd → 1. The319

stop band under the homogenisation approximation is Kd ∈ (1,∞), i.e. the320

critical frequency ωc =
√
g/d coinciding with Newman (1974) and representing321

resonance in narrow channels. Fig. 1(b) plots the variation of the first five pure322

imaginary values. Generally, as the dimensionless spacing, δ/d, decreases β tends323

to µ as we have anticipated.324

In Fig. 2, the velocity potential fields have been plotted in the range 0 <325

x/h < 0.3 for a barrier submergence d/h = 0.2 at a nondimensional wavenumber326

Kd = 0.8. In sub-plots (a)-(c), the results correspond to β(0) and the barrier327

spacings are reduced from δ/d = 0.5, to 0.25 and then to 0.05 so that we see 3,328

6 and 30 cells respectively. It can be seen that oscillation within each channel is329

dominated by vertical fluid motion and as the channels decrease in width, the330

results tend towards the potential field obtained under homogenisation, shown in331

sub-plot (d). Only the real part of the velocity potential is shown, but there is a332

similar agreement for the imaginary part.333

In Fig. 3, we plot the fields of the velocity potential at Kd = 0.9891 where334

β(0)δ = π for the case of δ/d = 0.05 (the smallest spacing used in the previous335

plot). This is the case in which standing waves occur in the cell and the imaginary336

part of the velocity potential vanishes according to the Bloch-Floquet theory. The337

potentials are not normalised giving rise to large values in the plots. Unlike in338

Fig. 2, there is no longer good agreement between the Bloch-Floquet approach339
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Figure 1: The variation of the roots µk from homogenisation and the
Bloch-Floquet wavenumbers β(k) against the nondimensional wavenumber Kd
for a submergence d/h = 0.2: (a) the first value (k = 0); (b) the imaginary part

of the first five pure imaginary values.

shown in sub-plot (a) and homogenisation (the real and imaginary parts of which340

are shown in sub-plots (b) and (c)). This illustrates how homogenisation breaks341

down as an approximation to closely-spaced discrete arrays as standing wave342

resonance is approached.343

4. Scattering of incident waves by a finite periodic array of barriers344

In this section, we will consider the problem of N + 1 identical barriers each
submerged to the same depth d and located at xn = nδ for n = 0, 1, · · · , N as
shown in Fig. 4, which is a finite section of the assumed infinite array given in
Section 2. Thus, the general solution in (n − 1)δ < x < nδ can be expressed as
a combination of the eigenfunctions ϕ(±k) of the periodic Bloch-Floquet problem
associated with β = ±β(k):

ϕn(x, z) =
∞∑
k=0

[
c(k)n ϕ(+k)(x− (n− 1)δ, z) + d(k)n ϕ(−k)(x− (n− 1)δ, z)

]
, (4.1)

for n = 1, 2, · · · , N . This representation of the solution was established in Porter345

& Porter (2003). It should be noted that since the local wave with a slow decay346

should be given priority for considering the oscillation in the barrier array, in347

this section a new labelling rule for β(k) is applied that k = 0 is prepared for348

the real eigenvalue if exists otherwise the complex eigenvalues of β = nπ/δ + iγn349

(n = 0, 1) are ordered with increasing their imaginary parts, which is different350

from the labelling rule in Section 2.351

Continuity of pressure and velocity across the fluid interface under the barrier
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Figure 2: The fields of the real part of the velocity potential in the cell with the
submergence d/h = 0.2 at Kd = 0.8: (a) δ/d = 0.50; (b) δ/d = 0.25; (c)

δ/d = 0.05; (d) homogenisation.
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Figure 4: An illustration of scattering by a finite periodic array of N + 1
identical surface-piercing barriers.

along x = nδ requires

ϕn+1(nδ, z) = ϕn(nδ, z), and
∂ϕn+1

∂x
(nδ, z) =

∂ϕn

∂x
(nδ, z), (4.2)

for −h < z < −d and n = 1, 2, · · · , N −1. Using the orthogonality relation (2.11)
derived earlier in Section 2.1, we find that

c
(j)
n+1E

(+j) =

∫ d

−h

[
ϕn+1(nδ, z)

∂ϕ(−j)

∂x
(0, z)− ϕ(−j)(0, z)

∂ϕn+1

∂x
(nδ, z)

]
dz, (4.3)

and

d
(j)
n+1E

(−j) =

∫ d

−h

[
ϕn+1(nδ, z)

∂ϕ(+j)

∂x
(0, z)− ϕ(+j)(0, z)

∂ϕn+1

∂x
(nδ, z)

]
dz. (4.4)

Using the matching conditions (4.2) and the definition (4.3) gives

c
(j)
n+1E

(+j) =

∫ d

−h

[
ϕn(nδ, z)

∂ϕ(−j)

∂x
(0, z)− ϕ(−j)(0, z)

∂ϕn

∂x
(nδ, z)

]
x=0

dz

= c(j)n E(+j)e+iβ(j)δ, (4.5)

after using the phase relations (2.5) for the jth eigenfunction to transfer infor-
mation from x = δ to x = 0 and the orthogonality relation (2.11) again. We do
the same for d(j)n allowing us to deduce that

c
(j)
n+1 = e+iβ(j)δc(j)n , and d

(j)
n+1 = e−iβ(j)δd(j)n . (4.6)

That is, there is no coupling between eigenmodes as waves propagate through
the periodic array having the consequence that

c
(j)
N = eiβ

(j)(N−1)δc
(j)
1 , and d

(j)
N = e−iβ(j)(N−1)δd

(j)
1 . (4.7)

In other words, if the solution in 0 < x < δ is expressed as

ϕ1(x, z) =
∞∑
k=0

[
c
(k)
1 ϕ(+k)(x, z) + d

(k)
1 ϕ(−k)(x, z)

]
, (4.8)

then the general solution across the whole barrier array domain 0 < x < Nδ
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is represented in terms of just one set of expansion coefficients, c
(k)
1 and d

(k)
1 . In

particular, the solution in (N − 1)δ < x < Nδ is

ϕN(x, z) =
∞∑
k=0

[
c
(k)
1 eiβ

(k)(N−1)δϕ(+k)(x− (N − 1)δ, z)

+ d
(k)
1 e−iβ(k)(N−1)δϕ(−k)(x− (N − 1)δ, z)

]
. (4.9)

The scattering problem involves waves incident from and reflected into the
domain {x < 0, −h < z < 0} in which the general solution is represented by the
standard expansion (e.g. Linton & McIver 2001)

ϕ0(x, z) = (eikx +RNe
−ikx)ψ0(z) +

∞∑
n=1

ane
knxψn(z), (4.10)

where RN is the reflection coefficent, an (and, later, bn) are expansion coefficients,
and ψn(z) is the vertical eigenfunction which has been given in (2.27). It helps
to write (4.10) as

ϕ0(x, z) = 2 cos kxψ0(z) +
∞∑

n=0

ane
knxψn(z), (4.11)

where RN = 1 + a0. In x > Nδ, waves are transmitted and the general solution
is represented by

ϕN+1(x, z) =
∞∑

n=0

bne
−kn(x−Nδ)ψn(z), (4.12)

with transmission coefficient TN = b0e
−ikNδ.352

With (4.8) holding in the region adjoining x = 0 and (4.9) holding in the region
adjoining x = Nδ, the remaining conditions that need to be enforced in order to

determine the values of an, bn for n = 0, 1, · · · and c
(k)
1 , d

(k)
1 for k = 0, 1, · · · are

∂ϕ0

∂x
(0, z) = 0, and

∂ϕN+1

∂x
(Nδ, z) = 0, (4.13)

for −d < z < 0, and

ϕ0(0, z) = ϕ1(0, z), and ϕN(Nδ, z) = ϕN+1(Nδ, z), (4.14)

∂ϕ0

∂x
(0, z) =

∂ϕ1

∂x
(0, z) ≡ U(z), and

∂ϕN

∂x
(Nδ, z) =

∂ϕN+1

∂x
(Nδ, z) ≡ V (z),

(4.15)
for −h < z < −d. Applying the condition (4.15) to (4.11) and (4.12) and the
orthogonality of the vertical eigenfunctions (2.29) results in

ϕ0(x, z) = 2 cos kxψ0(z) +
∞∑

n=0

ψn(z)e
knx

knh

∫ −d

−h

U(z′)ψn(z
′)dz′, (4.16)

in x < 0 and

ϕN+1(x, z) = −
∞∑

n=0

ψn(z)e
−kn(x−Nδ)

knh

∫ −d

−h

V (z′)ψn(z
′)dz′, (4.17)
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in x > Nδ. It also follows that

RN = 1 +
i

kh

∫ −d

−h

U(z)ψ0(z)dz, and TN = − ie−ikNδ

kh

∫ −d

−h

V (z)ψ0(z)dz.

(4.18)
The matching across x = 0 and x = Nδ requires some work since the represen-
tation of the solution in x < 0 and x > Nδ in terms of eigenfunctions in z is
fundamentally different from the representation of the solution in 0 < x < Nδ
which is based on Bloch-Floquet eigenmodes. We start by using (4.3) and (4.4)
with n = 0 to give

c
(j)
1 E(+j) =

∫ −d

−h

[
ϕ1(0, z)

∂ϕ(−j)

∂x
(0, z)− ϕ(−j)(0, z)

∂ϕ1

∂x
(0, z)

]
dz

=

∫ −d

−h

[
ϕ0(0, z)

∂ϕ(−j)

∂x
(0, z)− ϕ(−j)(0, z)U(z)

]
dz, (4.19)

and

d
(j)
1 E(−j) =

∫ −d

−h

[
ϕ1(0, z)

∂ϕ(+j)

∂x
(0, z)− ϕ(+j)(0, z)

∂ϕ1

∂x
(0, z)

]
dz

=

∫ −d

−h

[
ϕ0(0, z)

∂ϕ(+j)

∂x
(0, z)− ϕ(+j)(0, z)U(z)

]
dz, (4.20)

where the matching conditions (4.14) and (4.15) have been applied. On account
of the relations (2.7) and (2.8) and using (4.16), we can rewrite (4.19) and (4.20)
as

c
(j)
1 e−iβ(j)δE(+j) = −2Hj0 −

∞∑
n=0

Hjn

knh

∫ −d

−h

U(z′)ψn(z
′)dz′ −

∫ −d

−h

ϕ(+j)(0, z)U(z)dz,

(4.21)
and

d
(j)
1 E(−j) = 2Hj0 +

∞∑
n=0

Hjn

knh

∫ −d

−h

U(z′)ψn(z
′)dz′ −

∫ −d

−h

ϕ(+j)(0, z)U(z)dz, (4.22)

where

Hjn =

∫ −d

−h

∂ϕ(+j)

∂x
(0, z)ψn(z)dz. (4.23)

Using (4.5) with n = N and following the same procedure give

c
(j)
1 eiβ

(j)(N−1)δE(+j) =
∞∑

n=0

Hjn

knh

∫ −d

−h

V (z′)ψn(z
′)dz′ −

∫ −d

−h

ϕ(+j)(0, z)V (z)dz,

(4.24)
and

d
(j)
1 e−iβ(j)NδE(−j) = −

∞∑
n=0

Hjn

knh

∫ −d

−h

V (z′)ψn(z
′)dz′ −

∫ −d

−h

ϕ(+j)(0, z)V (z)dz.

(4.25)

The algebraic manipulations above allow us to express the coefficients c
(j)
1 and353

d
(j)
1 , and hence the solutions ϕ1 and ϕN in 0 < x < δ and (N − 1)δ < x <354
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Nδ (respectively) are in terms of the unknown functions U(z) and V (z). This355

replicates what we had already achieved in (4.16) and (4.17) for ϕ0 and ϕN+1 in356

x < 0 and x > Nδ.357

Eliminating c
(j)
1 in (4.21) and (4.24) eventually results in∫ −d

−h

U(z)K(1)
j (z)dz +

∫ −d

−h

V (z)K(2)
j (z)dz = −2eiβ

(j)NδHj0, (4.26)

where

K(1)
j (z) = eiβ

(j)Nδ

[
∞∑

n=0

Hjn

knh
ψn(z) + ϕ(+j)(0, z)

]
, (4.27)

and

K(2)
j (z) =

∞∑
n=0

Hjn

knh
ψn(z)− ϕ(+j)(0, z). (4.28)

Also eliminating d
(j)
1 in (4.22) and (4.25) gives∫ −d

−h

U(z)K(2)
j (z)dz +

∫ −d

−h

V (z)K(1)
j (z)dz = −2Hj0. (4.29)

We note that if we write

U s(z) = U(z) + V (z), and Ua(z) = U(z)− V (z), (4.30)

then (4.26) and (4.29) decouple into a pair of scalar integral equations∫ −d

−h

U s,a(z)Ks,a
j (z)dz = −2Hj0, (4.31)

where

Ks
j(z) =

1

eiβ(j)Nδ + 1

[
K(1)

j (z) +K(2)
j (z)

]
=

∞∑
n=0

Hjn

knh
ψn(z) + i tan

(
β(j)Nδ/2

)
ϕ(+j)(0, z), (4.32)

and

Ka
j (z) =

1

eiβ(j)Nδ − 1

[
K(1)

j (z)−K(2)
j (z)

]
=

∞∑
n=0

Hjn

knh
ψn(z)− i cot

(
β(j)Nδ/2

)
ϕ(+j)(0, z). (4.33)

The use of superscripts s and a indicates that the two integral equations can358

be thought of as representing the components of the scattering by the barrier359

array which are symmetric and antisymmetric about the mid-plane, x = Nδ/2,360

of geometric symmetry.361

4.1. Numerical approximation362

The pair of integral equations (4.31) is approximated numerically using the
identical method in Section 2.3. Thus the two functions U s(z) and Ua(z) have
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the same form as (2.41)

U s,a(z) ≈
M∑
n=0

αs,a
n un(z), (4.34)

where un(z) are defined in (2.42).363

After substituting (4.34) into (4.31) we can obtain the following systems of
equations

M∑
n=0

αs,a
n Ks,a

mn = −2Hm0, (4.35)

for m = 0, 1, · · · ,M , where

Ks
mn =

∞∑
r=0

HmrFnr

krh
+ i tan

(
β(m)Nδ/2

)
Gmn, (4.36)

and

Ka
mn =

∞∑
r=0

HmrFnr

krh
− i cot

(
β(m)Nδ/2

)
Gmn, (4.37)

in which Fmr have already been defined in (2.45) and

Gmn =

∫ −d

−h

un(z)ϕ
(+m)(0, z)dz. (4.38)

The system of equations (4.35) has been truncated with the parameter M which364

need not be the same asMk in Section 2.3. From (4.34) we can see thatM denotes365

the number of the vertical eigenfunctions used to approximate the horizontal366

velocity on the interface; on the other hand, from (4.36), (4.37) and (4.38) we367

can see that M also represents the number of the evanescent modes applied to368

simulate the oscillation in the barrier array.369

In the Bloch-Floquet problem, two solutions of ϕ(+m)(0, z) in different forms
are presented in Section 2 such that the eigenfunctions can be approximated by
either (2.17) or (2.25) resulting in that Gmn can be written as

Gmn =
∞∑

l=−∞

(−1)nb
(m)
1,l

coshβ
(m)
l (h− d)

I2m
[
β
(m)
l (h− d)

]
, (4.39)

or

Gmn =
∞∑
l=0

(
a
(m)
2,l + b

(m)
2,l

)
Fnl. (4.40)

The series in Gmn decays like O(1/l2) as l tends to infinity, which can be treated
with the same procedure shown in Appendix A. However, for Hmr in (4.23) we
find that either solution will produce a slowly convergent series decreasing like
O(1/l3/2) if the expressions of ϕ(+m)(0, z) are applied directly. In order to calculate
Hmr efficiently, we use the approximation in (2.30) which is based on the second
form in Section 2. Then, Hmr can be written as

Hmr =
M2∑
k=0

α
(m)
2,k Fkr. (4.41)
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after using (2.41), where α
(m)
2,k are eigenvectors corresponding to the eigenvalue370

β(m). Now a slowly convergent infinite series is replaced with a truncated series371

such that the series in (4.36) and (4.37) decaying like O(1/r2) also can be372

computed efficiently if the method in Appendix A is used.373

Once αs,a
n have been determined from (4.35), we can recover the reflection and

transmission coefficients from the use of (4.30) in (4.18) with (4.34) and (2.45)
to give

RN = 1+
i

2kh

M∑
n=0

(αs
n+α

a
n)Fm0, and TN = − ie−ikNδ

2kh

M∑
n=0

(αs
n−αa

n)Fm0. (4.42)

Combined with the description in Section 2.3, it can be seen that the two374

different forms of eigenfunction ϕ(±m)(x, z) have their own advantages. The375

first form is better for approximating solutions to the Bloch-Floquet problem,376

especially for closely-spaced barriers and the explicit limit of vanishing spacing377

can be taken. On the other hand, with the help of the second form, the slowly378

convergent series appearing in the scattering problem for a finite periodic array379

can be treated efficiently. In addition, from (4.36) and (4.37) we also can see that380

the present method has the same advantages as the recursive transfer matrix381

method (e.g. Porter & Porter 2003) in that the dimension of the equation system382

is independent of the size of the array.383

Furthermore, it should be noted that the reflection and transmission coefficients384

(4.42) cannot be applied for the case of the critical frequency (i.e. β(0) = π/δ)385

since the eigenfunctions ϕ(±0) no longer satisfy the orthogonality relation (2.11)386

which has been widely used in the above derivation.387

5. Scattering using the continuum model388

Consider that the region 0 < x < Nδ is governed by the continuum model
described in Section 3, so that the potential in this region may be written as

ϕh(x, z) =
∞∑

n=0

(
cne

iµnx + dne
iµn(Nδ−x)

)
Zn(z), (5.1)

where

Zn(z) = ε−1/2
n

{
(1 +Kz)/(1−Kd), −d < z < 0,

coshµn(h+ z)/ coshµn(h− d), −h < z < −d,
(5.2)

and µn are the roots of (3.17). Also, in this section a new labelling rule is used
for µn that the real value takes precedence over increasing pure imaginary values
and if there does not exist the real value the smallest value on the imaginary axis
takes µ(0). In (5.2), εn are normalisation factors given by

εn =
1

2 cosh2 µn(h− d)

[
1 +

sinh 2µn(h− d)

2µn(h− d)

]
, (5.3)

so that

1

h− d

∫ −d

−h

Zn(z)Zm(z)dz = δmn. (5.4)
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This orthogonality relation for the functions Zn(z) follows since µn are distinct
and

(µ2
n − µ2

m)

∫ −d

−h

Zn(z)Zm(z)dz =

∫ −d

−h

[Z ′′
n(z)Zm(z)− Zn(z)Z

′′
m(z)] dz

= [Z ′
n(z)Zm(z)− Zn(z)Z

′
m(z)]

−d

−h = 0, (5.5)

where the dispersion relation (3.17) have been used.389

The matching conditions shown in (4.13), (4.14) and (4.15) still hold but ϕh

will replace ϕ1 and ϕN . Continuity of the horizontal velocity at x = 0 and x = Nδ
results in

cn − dne
iµnNδ =

1

iµn(h− d)

∫ −d

−h

U(z)Zn(z)dz, (5.6)

and

cne
iµnNδ − dn =

1

iµn(h− d)

∫ −d

−h

V (z)Zn(z)dz. (5.7)

This gives

cn =
1

2µn(h− d) sinµnNδ

∫ −d

−h

[
U(z)e−iµnNδ − V (z)

]
Zn(z)dz, (5.8)

and

dn =
1

2µn(h− d) sinµnNδ

∫ −d

−h

[
U(z)− V (z)e−iµnNδ

]
Zn(z)dz. (5.9)

Matching (5.1) to (4.16) across x = 0 give∫ −d

−h

U(z′)L(1)(z, z′)dz′ +

∫ −d

−h

V (z′)L(2)(z, z′)dz′ = −2ψ0(z) (5.10)

and to (4.17) across x = Nδ give∫ −d

−h

U(z′)L(2)(z, z′)dz′ +

∫ −d

−h

V (z′)L(1)(z, z′)dz′ = 0, (5.11)

where

L(1)(z, z′) =
∞∑

n=0

[
ψn(z)ψn(z

′)

knh
− Zn(z)Zn(z

′)

µn(h− d) tan(µnNδ)

]
, (5.12)

and

L(2)(z, z′) =
∞∑

n=0

Zn(z)Zn(z
′)

µn(h− d) sin(µnNδ)
. (5.13)

For (5.10) and (5.11), we also can decouple the pair of integral equations into
their symmetric and antisymmetric components like (4.30) which satisfy∫ −d

−h

U s,a(z′)L(s,a)(z, z′)dz′ = −2ψ0(z), (5.14)
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where

L(s)(z, z′) = L(1)(z, z′) + L(2)(z, z′)

=
∞∑

n=0

[
ψn(z)ψn(z

′)

knh
+

tan(µnNδ/2)

µn(h− d)
Zn(z)Zn(z

′)

]
, (5.15)

and

L(a)(z, z′) = L(1)(z, z′)− L(2)(z, z′)

=
∞∑

n=0

[
ψn(z)ψn(z

′)

knh
− cot(µnNδ/2)

µn(h− d)
Zn(z)Zn(z

′)

]
. (5.16)

These are the equations that would be derived had the original problem been390

decomposed into the sum of problems symmetric and antisymmetric about the391

mid-plane x = Nδ/2.392

5.1. Numerical approximation393

The approximation (4.34) will be used again. We substitute (4.34) into (5.12),
multiply through by um(z) and integrate over −h < z < −d, a process which
characterises the Galerkin method and results in the following systems of equa-
tions

M∑
n=0

αs,a
n Ls,a

mn = −2Fm0, (5.17)

for m = 0, 1, · · · ,M , where

Ls
mn =

∞∑
r=0

FmrFnr

krh
+

∞∑
r=0

tan(µrNδ/2)

µr(h− d)
PmrPnr, (5.18)

and

La
mn =

∞∑
r=0

FmrFnr

krh
−

∞∑
r=0

cot(µrNδ/2)

µr(h− d)
PmrPnr, (5.19)

in which

Pmr =

∫ −d

−h

um(z)Zr(z)dz = ε−1/2
m (−1)mI2m[µr(h− d)]. (5.20)

All of the series in (5.18) and (5.19) have the order of O(1/r2) when r → ∞,394

so the treatment shown in Appendix A can be applied to accelerate the series395

convergence. After the systems of equations are solved numerically, the reflection396

and transmission coefficients can be determined also by (4.42).397

It can be seen that the derivation for the reflection and transmission coefficients398

between the discrete model and the continuum model is different. For the discrete399

model, the number of the truncated evanescent modeM is equal to the dimension400

of the equation system (see (4.35)). As shown later, M = 12 is usually sufficient401

to obtain convergent results. For the continuum model, the evanescent mode is402

included in the series shown in (5.18) and (5.19). We generally need to consider403

roughly 1000 terms to guarantee the accuracy of the series calculation. Actually,404

for the continuum model, we also can develop a system of equations similar to405

(4.35). However, we find that this would present a troublesome series when close406

to the critical frequency.407
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δ/d = 0.05 δ/d = 0.5 Homogenisation

M Kd = 0.2 Kd = 0.6 Kd = 1.0 Kd = 0.2 Kd = 0.6 Kd = 1.0 Kd = 0.2 Kd = 0.6

0 0.20255 0.43354 0.99999 0.18198 0.57391 0.99998 0.22246 0.59119
4 0.19816 0.62013 1.00000 0.17969 0.64652 1.00000 0.19975 0.58320
8 0.19802 0.61743 1.00000 0.17969 0.64648 1.00000 0.19980 0.58450
12 0.19801 0.61711 1.00000 0.17969 0.64647 1.00000 0.19980 0.58467
16 0.19800 0.61694 1.00000 0.17969 0.64647 1.00000 0.19980 0.58471

Table 3: The convergence of the modulus of reflection coefficient |RN |
computed using the discrete model and the continuum model against the

truncation parameter, M , in the case of d/h = 0.2 and Nδ = h.

5.2. Results408

We first examine the convergence of the scheme for the discrete model and the409

continuum model. In both settings, the barriers are submerged to the depth410

d/h = 0.2 and the total distribution length of barriers is Nδ = h. Tab. 3411

shows how the modulus of the reflection coefficient, |RN |, converges with the412

truncation parameter, M . At low frequencies, results can be seen to converge413

quickly requiring only a small system of equations, but when the frequency414

approaches the critical frequency results tend to converge slowly with M since415

the amplitude of the fluid oscillation in the barrier array structure becomes416

increasingly severe. When the frequency is in the stop band, the wave motion417

decays through the array and there is practically no transmission. As mentioned418

at the end of Section 4.1, the second method in Section 2, which tends to converge419

fastest when δ/d is larger, is used in this scattering problem for determining the420

slowly convergent series. Thus, for the discrete model, the convergent results for421

distribution with large spacing can be obtained by a small truncation parameter422

used. In general, M = 12 is sufficient to produce results with the accuracy of423

roughly four significant figures although computations are more demanding when424

close to the critical frequency.425

Next, some cases have been chosen to allow the comparison between the discrete426

model based on an expansion in terms of Bloch-Floquet eigenfunctions with427

existing results. A pair of barriers (N = 1) with the submergence d/h = 0.2428

is first examined for which Porter & Evans (1995) previously provided accurate429

computations using the Galerkin approximation method. As shown in Fig. 5,430

the results of the discrete model compare favourably with these existing results,431

accurately replicating total reflection and transmission. Notice that the heavily432

suppressed transmission beyond Kd ≈ 1 can now be understood as being asso-433

ciated with the stop band for the periodic barrier array despite there only being434

two barriers and one cell in the present example.435

When the number of barriers N + 1 is large, direct solution methods such436

as those used by Porter & Evans (1995) are algebraically cumbersome and lead437

to N + 1 coupled equations in terms of N + 1 unknown functions eventually438

implying that numerical computations are O(N3). To mitigate against this,439

previous authors (e.g. Porter & Porter 2003) have used transfer matrices in440

which the scattering by N + 1 elements of the array is accounted for by the441

multiplication of N +1 matrices whose size depends on the number of evanescent442

wave interactions retained in the exchange of information between adjacent443
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Figure 5: Comparison of the modulus of the reflection coefficient |R1| for the
discrete model with the existing results (Porter & Evans 1995) for the case of

N = 1 and d/h = 0.2: (a) δ/d = 0.50; (b) δ/d = 0.05.

elements in the array. Superficially the computational effort is O(N). In Fig. 6, we444

fix the number of barriers N = 10 and the submergence d/h = 0.2 and compare445

the modulus of the reflection coefficient |R10| computed using the present Bloch-446

Floquet discrete model (which does not scale with N) with those computed using447

transfer matrices. The results agree well, apart from being very close to the448

critical frequency where resonance occurs and when N is large. On account of449

the high frequency oscillations in |RN | close to the critical frequency, even small450

errors in either the transfer matrix method or the present approach can lead to451

large changes in |RN | and it is not easy to determine which is more accurate. In452

particular, as the spacing decreases an increasing number of evanescent modes is453

required to maintain accurate computations resulting in larger transfer matrices454

and, in turn, this leads to numerical instability caused by rounding errors even455

though a treatment for avoiding these rounding errors devised by Porter & Porter456

(2003) has been applied. Thus, for the case of δ/d = 0.05, the calculation by the457

method of the transfer matrix fails and sub-plot (c) only includes the results from458

the present discrete model. During the review of this paper, one of the reviewers459

pointed out that the method devised by Ko & Sambles (1988) may be used to460

overcome the numerical instability issues caused by using transfer matrices.461

As mentioned in Introduction, one aim of the present study is to assess the462

validity of homogenisation method for wave interaction with plate array struc-463

tures. We first investigate the validity of homogenisation method by varying the464
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Figure 6: Comparison of the modulus of the reflection coefficient |R10| for the
discrete model with the scattering matrix for the case of N = 10 and d/h = 0.2:

(a) δ/d = 0.50; (b) δ/d = 0.25; (c) δ/d = 0.05.

number of barriers (or the total length of the barrier array). In Fig. 7, the case465

of δ/d = 0.05 and d/h = 0.2 is investigated with N = 1, N = 5 and N = 10466

and results from the exact discrete model are plotted against the results from the467

homogenisation approximation. We recall that homogenisation is not expected to468

work for Kd sufficiently close to a value of Kcd = 1 corresponding to the critical469

frequency and curves will oscillate infinitely quickly as Kd = 1 is approached. On470

the other hand, the curves of |RN | computed under the discrete model oscillate471

and the total transmission will happen N times before the critical frequency is472
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Figure 7: The variation of the modulus of reflection coefficient |RN | for the
discrete model and the continuum model against the non-dimensional frequency
Kd for the case of δ/d = 0.05 and d/h = 0.2: (a) N = 1; (b) N = 5; (c) N = 10.

reached. Thus, we see in Fig. 7 overall good agreement between the exact and473

approximate models apart from being close to Kd = 1.474

In Fig. 8 we present the modulus of the reflection coefficient |RN | for the discrete475

model and the continuum model. The total length of the barrier array is fixed (i.e.476

Nδ = h), but the spacing in different arrays varies. This plot allows us to see how477

scattering computed from the discrete model converges to the results predicted478

from homogenisation. Again the submergence is d/h = 0.2 (the depth of the fluid479

is relatively unimportant to the effects we are observing). The spacing δ/d = 0.5480

corresponds to N = 10 whilst δ/d = 0.05 corresponds to N = 50. The two curves481
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Figure 8: The variation of the modulus of reflection coefficient |RN | for the
discrete model and the continuum model against the nondimensional

wavenumber Kd for the case of Nδ = h and d/h = 0.2.
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Figure 9: The fields of the real part of the velocity potential for the continuum
model with d/h = 0.2 and Nδ = h: (a) Kd = 0.8; (b) Kd = 1.2.

corresponding to these two cases hit the horizontal axis (i.e. |RN | = 0) 10 and482

50 times respectively (although this cannot be captured by the resolution in the483

plots). We can see the agreement is good for low frequencies and gets better as484

δ/d decreases, although the rapid oscillations in |RN |, which occur as the critical485

frequency is approached, mean that the models diverge for Kd sufficiently close486

to one. The continuum model serves as a good approximation for the spacing487

δ/d < 0.05 when Kd ≲ 0.7 or δ/d < 0.5 when Kd ≲ 0.4.488

Finally, in Fig. 9 we plot the velocity potential field for two cases of scattering of489

incident waves by a barrier array computed using the continuum model for d/h =490

0.2 and Nδ = h at Kd = 0.8 and Kd = 1.2, that is above and below the critical491

frequency respectively. In the first case, we can see wave propagation through the492

barrier array leading to transmission beyond the array. In the second case, we493

see rapid decay of the wave field through the array and near perfect reflection494

of incident waves. We have been unable to show a field plot from the direct495

numerical approach since the solution to the scattering problem requires that we496

used the second method presented in Section 2 to determine eigenfunctions. As497

explained at the end of Section 2.3, this method is poor at producing convergent498

representations for the field.499



Wave propagation through arrays of barriers 31

6. Conclusions500

The main focus of this paper has been on describing and comparing two ap-501

proaches to solving the problem of two-dimensional wave propagation through502

periodic arrays of surface-piercing barriers with a particular focus on the small503

spacing between adjacent barriers. A continuum model is described which is504

derived formally for small barrier spacing using homogenisation methods. This505

model is shown to be valid away from resonance occurring at ω =
√
g/d; the506

propagating wavelength is predicted to become vanishingly small as resonance507

is approached, signalling a breakdown in the multiple-scale assumption under-508

pinning homogenisation. This conclusion sheds light on previously unexplained509

ill-posed behaviour associated with the use of a continuum description for wave510

interaction with resonance in plate arrays in problems encountered by, for exam-511

ple, Jan & Porter (2018) and Zheng et al. (2020). A more complicated approach512

is based on an exact description of the barrier array for non-zero spacing, δ. First,513

by considering propagation in infinite periodic barrier arrays we have been able514

to show that there is a critical frequency ωc which lies below
√
g/d and acts515

to divide wave propagation from wave decay. At the critical frequency, standing516

waves exist between the barriers in the array and carry no energy. As δ → 0,517

this model tends to the continuum model provided frequencies are sufficiently far518

away from resonance. The approach shows that, for a non-zero spacing, there is519

a well-behaved transition from passing to stopping associated with wavelengths520

on the scale of the separation δ.521

The exact description in terms of non-zero δ for a finite number of N + 1522

barriers is also considered. Use is made of an orthogonality relation which applies523

to eigenmodes derived from the infinite periodic array to express the solution524

through the entire finite barrier array region in terms of the solution in just one525

period. The results show that the limit of the discrete problem is the continuum526

problem provided resonance is avoided.527

Although this problem has been developed for a simple geometry where ex-528

tensive use of separation of variables has been made to develop a semi-analytical529

approach to the problem in terms of solutions to a pair of scalar integral equations,530

it is clear that there will be other problems in water waves, linearised acoustics, etc531

involving scattering by finite periodic arrays which can be analysed by the same532

method. In particular, the orthogonality condition satisfied by the eigenfunctions533

for the periodic Bloch problem is key to connecting solutions from one edge of a534

periodic array to the other. Its construction is in Section 2.1 of the paper, which535

is not dependent on the geometry of the structure and can be applied to fields536

governed by the Helmholtz equation, for example.537

Following this work, it would be interesting to consider wave propagation538

through an array of barriers in which the barrier length is a slowly-varying539

function of space. For example, the methods described by Porter (2020) could540

be used to transform the scattering process into an ordinary differential equation541

in the continuum limit δ → 0 as a means of qualitatively understanding the onset542

of resonance/rainbow reflection in graded arrays such as those described by Wilks543

et al. (2022).544
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Appendix A. Numerical treatment for the slowly convergent series in547

Lmn and Kmn548

In Section 2.3, the matrices formed by Lmn andKmn are presented for determining
the Bloch-Floquet wavenumber β. It can be found that all of the series in Lmn

and Kmn are convergent as the order of O(1/r2). In order to speed up the series
convergence, the last term in (2.40) (taken as an example) can be written as

∞∑
r=−∞

lmn,r = lmn,0 +
[1 + (−1)m+n]

2

24π

+
∞∑
r=1

[
lmn,r −

cos[ 1
2
(m− n)π] + sin[βδ − 1

2
(m+ n)π]

2r2π3

]
(A 1)

+
−1∑

r=−∞

[
lmn,r − (−1)m+n cos[

1
2
(m− n)π]− sin[βδ + 1

2
(m+ n)π]

2r2π3

]
,

with

lmn,r =
Jm(

1
2
βrδ)Jn(

1
2
βrδ)

βrδ tanhβr(h− d)
, (A 2)

where the asymptotic form of Bessel function has been used, i.e. Jn(z) ∼549 √
2/(πz) cos(z − nπ/2 − π/4) when |z| → ∞ and | arg z| < π (see Abramowitz550

& Stegun 1972). The infinite series in (A 2) now decay like O(1/r4) such that551

results can be efficiently computed to high accuracy (we aim for an error of less552

than 10−8). For other slowly convergent series, we apply the same treatment.553
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