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Abstract

The transmission of acoustic waves along a two-dimensional waveguide which
is coupled through an opening in its wall to a rectangular cavity resonator
is considered. The resonator acts as a classical band-stop filter, significantly
reducing acoustic transmission across a range of frequencies. Assuming wave
frequencies below the first waveguide cut-off, the solution for the reflected
and transmitted wave amplitudes is formulated exactly within the frame-
work of inviscid linear acoustics. The main aim of the paper is to develop an
approximation in closed form for reflected and transmitted amplitudes when
the gap in the thin wall separating the waveguide and the cavity resonator
is assumed to be small. This approximation is shown to accurately capture
the effect of all cavities resonances, not just the fundamental Helmholtz res-
onance. It is envisaged this formula (and more generally the mathematical
approach adopted) could be used in the development of acoustic metamate-
rial devices containing resonator arrays.

Keywords: Cavity resonator, acoustic waveguide, integral equations,
small-gap approximation

1. Introduction

The Helmholtz resonator is a well-known acoustical device in which a
volume of air inside a rigid vessel is made to resonate by exciting acoustic
oscillations at its mouth. The original formula for the fundamental resonant
frequency ωh due to Helmholtz was later generalised by Rayleigh [1] and can
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be expressed as

ωh ≈ cs

√

S

V L′
(1.1)

where cs is the wave speed in the acoustic medium, S is the area of the mouth
which is assumed to be attached to the resonator body of volume V through
a neck of length L. Here L′ = L+ l is an effective neck length which takes
account of added inertia effects and is dependent on the geometry of the neck
(often determined semi-empirically and proportional to S1/2). The formula
above (also see Kinsler et al. [2, §10.8] or Chanaud [3]) is approximate,
based on the long-wavelength assumption: λ ≫ (L′, S1/2, V 1/3). It assumes
the mass of air in the neck acts mechanically as an incompressible piston
connecting the oscillatory pressure at the mouth to the compressible volume
of trapped air in the vessel, which in turn acts as a spring.

When a Helmholtz resonator is connected to the wall of a pipe along
which acoustic waves are propagating the combined effect can be to dras-
tically alter the acoustic output from total to zero acoustic transmission.
This effect is well known and has been exploited, for example, by the au-
tomotive industry in engine exhaust systems to suppress noise or improve
engine performance. For example, Kinsler et al. [2, §10.11] and Chen et

al. [4] derive the following formula for the coefficient of transmitted power,
|T |2, for a wave of frequency ω propagating along a pipe of cross sectional
area A ≪ λ attached to a Helmholtz resonator:

|T |2 ≈ 1

1 +

(

cs/2A

ωL′/S − c2s/ωV

)2 . (1.2)

(This formula is also derived on a long wavelength assumption, ignoring the
diffractive effect of the relatively small mouth of the resonator.) It shows
that there is a significant reduction in acoustic transmission over a broad
range of frequencies around ω = ωh where |T | = 0. On account of the
analogy with mechanical systems used to develop (1.2), there also exists an
analogy with electronic circuitry where the effect of Helmholtz resonators
can be reproduced with inductors and capacitors to form a band-stop filter
(e.g. Montgomery et al. [5]).

Helmholtz resonators are used in many applications beyond those al-
ready mentioned above, for example in quantum, microwave and optical
waveguides (e.g. Shao et al. [6], Xu et al. [7] and Scharstein [8]). In the
theory of water waves, flat-bottomed harbours with small entrances form
Helmholtz resonators. This gives rise to the so-called “harbour paradox”
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– see Mei [9] who considered a rectangular harbour connected to a semi-
infinite ocean through a small gap in a thin wall – in which the smaller the
entrance to the harbour the stronger the resonant effect within it.

More recently, Helmholtz resonators have been used extensively in the
development of so-called metamaterials and metasurfaces. Thus arrays of
sub-wavelength cavities can produce surprising effects upon the macroscopic
wave field that are not manifested in naturally-occuring materials. For ex-
amples, see Richoux and Pagneaux [10], Fang et al. [11], Wang et al. [12],
Seo et al. [13] and Faure et al. [14].

The formulae produced in (1.1) and (1.2) above are approximate and are
presumably sufficiently accurate for many applications. However, as high-
lighted by Chanaud [3], they are only appropriate under a long-wavelength
assumption and neglect the effects of higher resonant frequencies. The work
in this paper – set in the context of two-dimensional acoustics – is aimed at
producing an accurate prediction of the transmitted acoustic wave energy
in closed form based upon the solutions of the exact equations of linearised
acoustics and without making a long-wavelength assumption from the out-
set. The need to such resolve higher resonant frequencies and accurately
encode their effects in scattering coefficients has recently been highlighted in
an sound absorption applications of Romero-Garćıa et al. [15] and Jiménez
et al. [16].

In the particular problem considered here an incident acoustic wave prop-
agates along a uniform waveguide and interacts with a rectangular cavity
through an opening in the waveguide wall. The wall between the waveguide
and the cavity is assumed thin so there is no length L assigned to the neck of
the resonator. In Section 2 the solution to the problem posed is formulated
in terms of integral equations. Solutions are expressed in terms of a series of
prescribed functions as a practical means of determining numerical solutions
to the integral equations. This forms the basis of the approximate solution
for a small gap which is described in Section 3 and relies on some compli-
cated technical details contained in Appendices A and B. The approach here
has some similarities with recent work of the authors (see Evans & Porter
[17]) in a related problem involving approximating the effect of small gaps
on waves. It also shares similarities with the approach taken by Scharstein
[8]) in a related problem in which the cavity is excited by plane waves from
a semi-infinite domain. An alternative approach here could have been to use
the method of matched asymptotic expansions as in Mei [9] by connecting
solutions to an inner problem in the vicinity of the gap to an outer solution
in which the gap acts as a point source. The outcome of the two approaches
have much in common although our central positioning of the gap within
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the cavity introduces difficulties avoided by Mei [9] who considered only off-
centre gaps. Recent unpublished work (Prof. David Abrahams, personal
communication) has followed this approach.

By using our new approximation for small gaps in the long wavelength
limit we shall also be able to derive an explicit expression for L′ (or l)
in (1.1) for the geometry under consideration. The result is not a simple
linear scaling with gap size as is commonly assumed. In addition to making
the connection with the Helmholtz resonance, Section 4 describes the effect
that higher-order cavity resonances have on |T |. In Section 5 we present
numerical results which test the new approximation against computations
based on the exact formulation. Finally in Section 6 we summarise the paper
and suggest how this work could be used elsewhere.

2. Exact treatment of the problem

y

x

T e−ikx e−ikx

Reikx
1

2a
c

2b

Figure 1: Sketch of channel and connection to cavity via a gap in the channel wall. Waves
come from +∞.

2.1. Formulation

An infinitely-long waveguide has parallel acoustically-hard walls along
y = 0 and y = 1 for −∞ < x < ∞. A small gap in the wall y = 1 extends
from x = −a to x = a and connects the waveguide symmetrically to a rect-
angular basin or cavity of width 2b and height c (see Figure 1). All lengths
are considered dimensionless, having being scaled by the channel width. The
acoustic pressure is written ℜ{φ(x, y)e−iωt} having angular frequency ω and
φ(x, y) satisfies the wave equation

(∇2 + k2)φ = 0 (2.1)
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where k = ω/c, c being the wave speed, and we assume k < π throughout
so that the frequency is below the first waveguide cut-off. That is, only one
propagating wave mode is allowed in the channel.

On all of the acoustically-hard walls, the derivative of φ normal to the
walls must vanish.

An incident wave of unit amplitude is assumed to have propagated from
x = +∞. Thus the far field form of φ can be written

φ(x, y) ≈
{

e−ikx +Reikx, x → ∞,
T e−ikx, x → −∞ (2.2)

where R and T represent the complex reflection and transmission coefficients
satisfying the energy relation |R|2+ |T |2 = 1 as no dissipation is included in
the problem.

On account of the symmetry about x = 0 in the geometry, we are able
to write

φ = 1
2 (φ

s + φa) (2.3)

where φs(x, y) = φs(−x, y) and φa(x, y) = −φa(−x, y). The functions φs,a

now only need to be found in x > 0 when supplemented with the boundary
conditions

φs
x(0, y) = φa(0, y) = 0. (2.4)

If we assume
φs,a(x, y) ≈ e−ikx +Rs,aeikx (2.5)

as x → ∞ it must follow that |Rs,a| = 1 and that

R = 1
2(R

s +Ra), T = 1
2(R

s −Ra). (2.6)

2.2. Solution of the symmetric problem

We consider the solution for the function φs(x, y) first. Within the
waveguide 0 < y < 1 we define the Fourier cosine transform

Φs(α, y) =

∫ ∞

0
(φs(x, y)− 2 cos kx) cosαxdx (2.7)

(the function φs(x, y) − 2 cos kx is even and is outgoing as x → ∞). If
us(x) ≡ φs

y(x, 1) over the gap 0 < x < a and we define

U s(α) =

∫ a

0
us(ξ) cosαξ dξ (2.8)
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then the solution in terms of transform variables is easily found to be

Φs(α, y) =
U s(α) cosh γy

γ sinh γ
(2.9)

where γ =
√
α2 − k2 ≡ −i

√
k2 − α2.

Inverting the transform gives

φs(x, y) = 2 cos kx+
2

π

∫ ∞

0

cosh γy cosαx

γ sinh γ

∫ a

0
us(ξ) cosαξ dξ dα (2.10)

and the contour of integration is defined to pass under the pole α = k on
the real axis. Writing

cosαx cosαξ = 1
4 (e

iα(x+ξ) + e−iα(x+ξ) + eiα(x−ξ) + e−iα(x−ξ)) (2.11)

and letting x → ∞ we find, by deforming contours into the upper and lower
half-planes where appropriate and collecting residues for those contours de-
formed upwards, that

φs(x, y) ≈ 2 cos kx+
i

k
eikx

∫ a

0
us(ξ) cos kξ dξ (2.12)

and comparing with (2.5), we have

Rs = 1 +
i

k

∫ a

0
us(ξ) cos kξ dξ. (2.13)

We can return to (2.10) and re-write it as a real principal-value integral plus
the contribution from a small semi-circular contour deformed around the
pole which is related to (2.13) so that we eventually obtain

φs(x, y) = (1 +Rs) cos kx+
2

π

∫ ∞

0
− cosh γy cosαx

γ sinh γ

∫ a

0
us(ξ) cosαξ dξ dα.

(2.14)
Next we turn our attention to the cavity and express a general solution

in terms of a separable series as

φs(x, y) = −
∞
∑

n=0

bsn
cosh γsn(1 + c− y)

γsn sinh γ
s
nc

cosαs
nx

for 0 < x < b, 1 < y < 1 + c where αs
n = nπ/b and γsn =

√

αs
n
2 − k2 =

−i
√

k2 − αs
n
2. Then

φs
y(x, 1) =

∞
∑

n=0

bsn cosα
s
nx =

{

0, a < x < b,
us(x), 0 < x < a
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and so

bsn =
ǫn
b

∫ a

0
us(ξ) cosαs

nξ dξ

where ǫ0 = 1, ǫn = 2 for n ≥ 1. Thus

φs(x, y) = −
∞
∑

n=0

ǫn cosh γ
s
n(1 + c− y)

γsnb sinh γ
s
nc

cosαs
nx

∫ a

0
us(ξ) cosαs

nξ dξ. (2.15)

The final part of the solution is to match φs(x, y) along the opening between
the waveguide and the cavity, y = 1 for 0 < x < a from above and below.
This results in the integral equation

∫ a

0
us(ξ)Ls(x, ξ) dξ = −(1 +Rs) cos kx, 0 < x < a

where we have defined the real-valued kernel

Ls(x, ξ) =
2

π

∫ ∞

0
− coth γ

γ
cos(αx) cos(αξ) dα

+

∞
∑

n=0

ǫn coth γ
s
nc

γsnb
cos(αs

nx) cos(α
s
nξ). (2.16)

Now we write us(x) = −(1 +Rs)vs(x) so that
∫ a

0
vs(ξ)Ls(x, ξ) dξ = cos kx, 0 < x < a (2.17)

and vs(x) is therefore real. Returning to (2.13) with the rescaling of us we
find

Rs − 1 = − i

k
(Rs + 1)Cs, where Cs =

∫ a

0
vs(x) cos kxdx (2.18)

is real so that

Rs =
(1− iCs/k)

(1 + iCs/k)
(2.19)

and |Rs| = 1 as required.

2.3. Numerical solution for the symmetric problem

The numerical approximation of Rs in (2.19) is achieved by first substi-
tuting the series solution

vs(x) ≈ ṽs(x) =

P
∑

p=0

aspv2p(x/a), v2p(s) =
2(−1)pT2p(s)

π
√
1− s2

(2.20)
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into the integral equation (2.17), then multiplying through by v2q(x/a),
q = 0, 1, . . . , P and integrating over 0 < x < a, a process characteristic of
the Galerkin method. Here Tn are Chebychev polynomials. The inverse
square-root incorporated into the functions v2p(s) ensure the behaviour of
the field variable local to the end of the barrier is satisfied automatically.
The result is the system of equations

P
∑

p=0

aspL
s
pq = J2q(ka), q = 0, 1, . . . , P (2.21)

where

Ls
pq =

2

π

∫ ∞

0
− coth γ

γ
J2p(αa)J2q(αa) dα+

∞
∑

n=0

ǫn coth γ
s
nc

γsnb
J2p(α

s
na)J2q(α

s
na)

(2.22)
which has used the identity (Gradshteyn and Ryzhik [18, §7.355(1)])

J2p(l) =

∫ 1

0
v2p(ξ) cos(lξ) dξ (2.23)

and Jn is a Bessel function. Finally, using (2.20) in (2.18) gives

Cs ≈
P
∑

p=0

aspJ2p(ka). (2.24)

2.4. Solution of the antisymmetric problem

Next we briefly consider the antisymmetric problem. For 0 < y < 1 we
define

Φa(α, y) =

∫ ∞

0
(φa(x, y) + 2i sin kx) sinαxdα

since φa(x, y) + 2i sin kx is outgoing at infinity and find

Φa(α, y) =
Ua(α) cosh γy

γ sinh γ

as before where

Ua(α) =

∫ a

0
ua(x) sinαxdx

in terms of ua(x) ≡ φa
y(x, 1) across 0 < x < a. Following the methods

outlined in the symmetric case leads to the representation

φa(x, y) = −i(1−Ra) sin kx+
2

π

∫ ∞

0
− cosh γy sinαx

γ sinh γ

∫ a

0
ua(ξ) sinαξ dξ dα.

(2.25)
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Also in a similar manner to before, the solution in the cavity is found to be

φa(x, y) = −2

∞
∑

n=0

cosh γan(1 + c− y)

γanb sinh γ
a
nc

sinαa
nx

∫ a

0
ua(ξ) sinαa

nξ dξ (2.26)

where αa
n = (n+ 1

2)π/b and γan =
√

αa
n
2 − k2 = −i

√

k2 − αa
n
2.

Matching potentials (2.25), (2.26) across the gap y = 1 leads to
∫ a

0
ua(ξ)La(x, ξ) dξ = i(1 −Ra) sin kx, 0 < x < a

where

La(x, ξ) =
2

π

∫ ∞

0
− coth γd

γ
sin(αx) sin(αξ) dα

+2

∞
∑

n=0

coth γanc

γanb
sin(αa

nx) sin(α
a
nξ). (2.27)

We write ua(x) = i(1−Ra)va(x) so that (2.27) becomes
∫ a

0
va(ξ)La(x, ξ) dξ = sin kx, 0 < x < a (2.28)

and consequently va(x) is real. We also find

Ra + 1 =
i

k
(1−Ra)Ca, Ca =

∫ 1

0
va(x) sin kxdx (2.29)

so that

Ra = −(1− iCa/k)

(1 + iCa/k)
(2.30)

and so |Ra| = 1 as required.
The numerical approximation to Ra is achieved by substituting the series

solution

va(x) ≈ ṽa(x) =

P
∑

p=0

aapv2p+1(x/a), v2p+1(s) =
2(−1)pT2p+1(s)

π
√
1− s2

(2.31)

into the integral equation (2.28), then multiplying through by v2q+1(x/a),
q = 0, 1, . . . , P and integrating over 0 < x < a to give

P
∑

p=0

aapL
a
pq = J2q+1(ka), q = 0, 1, . . . , P (2.32)
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where

La
pq =

2

π

∫ ∞

0
− coth γ

γ
J2p+1(αa)J2q+1(αa) dα

+2
∞
∑

n=0

coth γanc

γanb
J2p+1(α

a
na)J2q+1(α

a
na) (2.33)

which uses the identity (Gradshteyn and Ryzhik [18, §7.355(2)])

J2p+1(l) =

∫ 1

0
v2p+1(ξ) sin(lξ) dξ (2.34)

whilst (2.31) in (2.29) gives

Ca ≈
P
∑

p=0

aapJ2p+1(ka). (2.35)

2.5. Accelerating convergence of the integrals

For numerical purposes, it helps to accelerate the convergence of the
integrals in the definitions (2.22), (2.33) used in the algebraic systems of
equations. For p, q not both equal to zero, we may write

2

π

∫ ∞

0
−

(

coth γ

γ
− 1

α

)

Jp(αa)Jq(αa) dα +
1

π

δpq
p

(2.36)

whilst for p = q = 0 we can write

2

π

∫ ∞

0
−

(

coth γ

γ
− α

α2 + l2

)

J2
0 (αa) dα +

2

π
I0(la)K0(la) (2.37)

(for any l); see Gradshteyn and Ryzhik [18, §6.538(2), §6.541(1)]).
In each case the rate of decay of the integrand with α is increased from

O(α−2) to O(α−3). These formulae may be used in the first kind system of
equations (2.21) and (2.32) to convert them into 2nd kind equations. The
process of removing the leading order term to accelerate the convergence of
the integral resulting in the transformation from first kind to second kind is
indicative of removing the dominant logarithmic behaviour which reside in
the kernels Ls and La.
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3. A small-gap approximation

The remainder of the paper focusses on developing an approximation
to the solution based on the assumption a ≪ 1. The purpose is two-fold:
(i) to provide simplified explicit expressions which accurately capture the
behaviour of the reflection coefficient; and (ii) to help explain the qualitative
features of the results.

As a → 0 the solution is increasingly dominated by the first term in the
series used in the Galerkin approximation and we truncate at P = 0 as a
leading-order approximation to the solution when a ≪ 1. It follows that

Cs ≈ J2
0 (ka)/L

s
00 ≈ 1/Ls

00 (3.1)

using J0(ka) ≈ 1 +O(a2) for a ≪ 1 where

Ls
00 =

2

π

∫ ∞

0
− coth γ

γ
J2
0 (αa) dα − cot kc

kb
+ 2

∞
∑

n=1

coth γsnc

γsnb
J2
0 (α

s
na). (3.2)

Similarly, using a P = 0 truncation to approximate the small-gap solution
to the antisymmetric problem we have

Ca ≈ J2
1 (ka)/L

a
00 ≈ 1

4k
2a2/La

00 (3.3)

where

La
00 =

2

π

∫ ∞

0
− coth γ

γ
J2
1 (αa) dα + 2

∞
∑

n=0

coth γanc

γanb
J2
1 (α

a
na). (3.4)

It is tempting to set Ca ≈ 0 (and hence Ra ≈ −1) to be consistent with
the neglect of O(a2) terms in the symmetric problem. However, Ca can be
significant if La

00 is at least as small as O(a2), a situation which cannot be
disregarded as we shall see.

To be consistent with approximating the numerators of (3.1) and (3.3)
under the assumption a ≪ 1, we also consider the a ≪ 1 approximation to
Ls
00 and La

00. Thus, using the relation (2.23) we have

Ls
00 =

4

π2

∫ 1

0

ds√
1− s2

∫ 1

0

dt√
1− t2

Ls(as, at). (3.5)

The approximation to Ls(as, at) for a ≪ 1 is derived in Appendix A and
results in

Ls(as, at) ≈ − 2

π
ln |s2 − t2|+As (3.6)
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up to terms of O(a2) where As is given in (A.10). Substituting (3.6) into
(3.5) and using n = 0 in the following general result involving Chebychev
polynomials

∫ 1

−1

Tn(t) ln |s− t|√
1− t2

dt =

{

−π ln(2), n = 0
−πTn(s)/n, n ≥ 1

(3.7)

(Gradshteyn and Ryzhik [18, §4.292(1), §7.344(1)]) to perform the integra-
tion required, results in

Ls
00 ≈

4

π
ln(2) +As. (3.8)

Thus, according to (3.1) we have

Cs ≈ 1

As + (4/π) ln(2)
≡ 1

Qs
(3.9)

such that

Qs = − 2

π
ln

(

π2a2

4b

)

− cot kc

kb
+ 2

∞
∑

n=1

(

coth γsnc

γsnb
+

1

kn
− 2

nπ

)

. (3.10)

Turning to the antisymmetric problem, in a similar manner we can use
(2.34) to express (3.4) as

La
00 =

4

π2

∫ 1

0

s ds√
1− s2

∫ 1

0

t dt√
1− t2

La(as, at). (3.11)

In Appendix B it is shown that

La(as, at) ≈ − 2

π
ln

( |s − t|
|s + t|

)

+ a2G(s, t) (3.12)

for a ≪ 1 where G is defined by (B.12). Subsituting (3.12) into (3.11) with
(B.12) and, noting the definitions of the first few Chebychev polynomials
T0(x) = 1, T1(x) = x, T2(x) = 2x2 − 1 and T3(x) = 4x3 − 3x, we have

La
00 ≈ 4

π2

∫ 1

0

s√
1− s2

[

− 2

π

∫ 1

−1

T1(t) ln |s− t|√
1− t2

dt+ sAaa2
π

4

+
k2a2

2π
s2
∫ 1

−1

T1(t) ln |s− t|√
1− t2

dt+
k2a2

2π

∫ 1

−1

(14T3(t) +
3
4T1(t)) ln |s− t|√
1− t2

dt

−k2a2

π
s

∫ 1

−1

(12T2(t) +
1
2T0(t)) ln |s− t|√
1− t2

dt

]

ds
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after using the odd and evenness of functions to extend the range of inte-
gration to the interval (−1, 1).

Using the result (3.7) gives

La
00 ≈ 4

π2

∫ 1

0

s√
1− s2

[

2T1(s) +
1
4T1(s)A

aa2π − k2a2(18T3(s) +
3
8T1(s))

−k2a2
(

1
24T3(s) +

3
8T1(s))

)

+ k2a2(12(2s
3 − s) + 1

2s ln(2))
]

ds

=
2

π
+

Aaa2

4
− k2a2

2π
(1− ln(2))

after first converting powers of s into Chebychev polynomials and then using
the orthogonality of the Chebychev polynomials. Thus (3.3) gives,

Ca ≈
1
8πk

2a2

1 + 1
8πk

2a2Qa
(3.13)

where

Qa =
Aa

k2
− 2

π
(1− ln(2)) =

1

π
− 1

π
ln

(

π2a2

16b

)

+
π

12k2b2
+

π

6k2

+
2

k2

∞
∑

n=0

(

αa
n
2 coth γanc

γanb
− αa

n

b
− k2

2αa
nb

)

.(3.14)

4. Analysis of cavity resonances

First we make the connection to the approximate formula presented in
(1.2) for the Helmholtz resonance. For the geometry assumed in this problem
we have A = 1, S = 2a, V = 2bc whilst k = ω/cs and so (1.2) is re-expressed
as

|T |2 ≈ 1

1 +
1

k2(L′/a− 1/(k2bc))2

(4.1)

where L′ = l and l is an “effective neck length” which is undetermined.
Using the small-gap approximation developed in §3 we find that

|T |2 = 1

1 +
1

k2

(

Qs + 1
8πa

2(1 + k2QaQs)

1 + 1
8πa

2k2(Qa −Qs)

)2

(4.2)
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Comparing (4.1) to (4.2) provides an explicit expression for the effective
neck length under the small-gap approximation. However, this expression
depends upon frequency and it helps to go further and impose assumptions
made in determining both (4.1) and (4.2) that k ≪ 1 and a ≪ 1. Then from
(3.10),

Qs ≈ 2

π
log

(

4b

π2a2

)

− 1

k2bc
(4.3)

using cot kc ≈ 1/kc for kc ≪ 1 and assuming c is large enough that coth πc ≈
1 to justifying the neglect of the final summation in (3.10). Comparison of
(4.2) with (4.1) now shows that the long wavelength approximation to the
effective neck length for an opening of width 2a into a cavity of width 2b
through a thin wall into a waveguide of width 1 is

L′ = l ≈ 2a

π
log

(

4b

π2a2

)

. (4.4)

It follows from (1.1) that the approximate wavenumber kh = ωh/cs at which
the Helmholtz resonance occurs is

kh ≈
√

√

√

√

π

2bclog

(

4b

π2a2

) . (4.5)

We can also describe the effect of the higher-order resonances on charac-
teristics of acoustic transmission. Thus, we can re-write expressions for Qs

and Qa using the following result

coth z

z
=

∞
∑

m=0

ǫm
m2π2 + z2

(e.g. Gradshteyn and Ryzhik [18, §1.421(4)]). Thus (3.10) may be written,

Qs = − 2

π
ln

(

π2a2

4b

)

− cot kc

kb
+ 2

∞
∑

n=1

(

1

kn
− 2

nπ
+

1

bc

∞
∑

m=0

ǫm
(ksm,n)

2 − k2

)

(4.6)
after using the definition of γsn, where

ksm,n = π
√

m2/c2 + n2/b2, (4.7)

(m,n positive integers, not both zero) are the eigenfrequencies corresponding
to natural oscillations, symmetric about x = 0, of the closed cavity. Likewise
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(3.14) may be written

Qa =
1

π
− 1

π
ln

(

π2a2

16b

)

+
π

12k2b2
+

π

6k2

− 2

k2

∞
∑

n=0

(

αa
n

b
+

k2

2αa
nb

− αa
n
2

bc

∞
∑

m=0

ǫm
(kam,n)

2 − k2

)

where

kam,n = π
√

m2/c2 + (n+ 1
2)

2/b2, m, n ≥ 0. (4.8)

Thus expressions for Qs and Qa regarded as functions of k are singular at
k = ksm,n and kam,n respectively. This behaviour is important in analysing
the effect of cavity resonances on the reflection and transmission oefficients.

From (4.2) zero transmission under the small-gap approximation requires
Qs(1 + 1

8πk
2a2Qa) = −1

8πa
2. Assuming a ≪ 1 this will be satisfied if either

Qs ≈ −πa2

8
, or Qa ≈ − 8

πk2a2
− 1

k2Qs
.

On the other hand total transmission under the small-gap approximation
requires, from (4.2) that Qa−Qs = −8/(πa2k2) and, again assuming a ≪ 1
we either have

Qs ≈ 8

πk2a2
+Qa. or Qa ≈ − 8

πk2a2
+Qs

In each cases above, conditions are derived from a single condition supposes
that only one of Qs(k) or Qa(k) varies rapidly as a function of k which we
have previously established as behaviour associated with resonances.

Based on the a ≪ 1 assumption, there is therefore strong evidence that
total transmission and reflection will occur at values of k close to reso-
nant frequencies where Qs(k) and Qa(k) undergo rapid variations to ±∞.
Moreover those frequencies at which zeros of R and T associated with the
antisymmetric resonances occur will be much closer together than those as-
sociated with symmetric resonances. These features will be observed in the
numerical results presented shortly.

5. Results

We first take a relatively small cavity with the choice b = 1
2 and c = 1,

so that the cavity is square with each side the same length as the channel
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Figure 2: The modulus of the reflection coefficient against k for b = 1

2
, c = 1 and (a)

a = 0.001, 0.01 0.1 (from left to right) and (b) a = 0.5. Curves are exact results, + (and
�) are full (and symmetric only) asymptotic results for small a.

width. In the numerical scheme, the exact results accurate to at least 5
decimal places are computed using a truncation parameter P = 3.

In Figure 2 the four solid curves each represent the exact |R| against k for
a different gap ratio a from 0.001 up to 0.5 when the gap in the side wall is
the same as the width of the cavity. Alongside each set of curves, the symbols
show the results from two versions of small-gap approximation: the crosses
showing the full approximation to both Cs and Ca and the boxes when
Ca is set to zero (only shown on curves where there is a visible difference).
Agreement between the exact results and the small-gap approximation is
excellent certainly up to gaps occupying 20% of the width of the cavity.
Indeed, they are still impressive for a gap the same width of the cavity, well
beyond the range of values where they are expected to work.

As expected, the curves shown in Figure 2 each demonstrate frequencies
at which total reflection occurs and correspond to the Helmholtz resonance.
We see that total reflection persists when a is reduced to 0.001 and as a is
reduced even further it persists with the peak to unity in |R| moving towards
k = 0 logarithmically slowly. This can be deduced from the formula (4.2)
when Qs = 0 and Qs is given by (4.3) deduced under the long wavelength
(k ≪ 1) assumption.

The values of k at which total reflection occurs in Figure 2 are gven by
0.489, 0.601, 0.866, 1.372 corresponding to the values a = 0.001, 0.01, 0.1,
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0.5 whilst the values kh predicted by the formula (4.2) being equivalent to
(1.1), are 0.507, 0.642, 1.022 and fails to predict a value for a = 0.5. This
confirms that (4.2) works in the long wavelength (k ≪ 1) limit but also
highlights that its accuracy and range of applicability is somewhat limited.

In Figure 3 we increase the size of the cavity to b = 1.2 and c = 1.6
(these values have no particular significance). In the three sub-figures we
increase the gap size from a = 0.01 in (a) through a = 0.1 in (b) to a =
0.4 in (c). Again, curves represent the exact numerical computations and
the crosses use the approximate formula for a small gap whilst the boxes
show the effect of using the approximate formula, but setting Ca = 0. As
before, the full approximate formula applies well in each case despite the
increased complexity of the behaviour of |R|. Thus the first broadbanded
peak present in Figure 3 is associated with the fundamental Helmholtz mode
already discussed. Now there are additional frequencies at which |R| = 1 and
corresponding frequencies nearby at which R = 0 where total transmission
occurs. Increasingly evident as a increases is a second set of even more
rapid variations in |R| which interlace the first set. As previously discussed
in §3.1, these features are manifested by the onset of higher-order resonances
in the rectangular cavity. For the example in Figure 3 these occur at ka1,0 ≈
1.31, ks0,1 ≈ 1.96, ka1,1 ≈ 2.36, ks2,0 ≈ 2.62. The small-gap approximation
illustrated by boxes in Figure 3 in which we set Ca = 0 not only fails
to capture the antisymmetric resonances but leads to a significant loss in
accuracy across a wide range of values of k. Finally in Figure 4 we show the
effect of shrinking the cavity by considering a square cavity with 2b = c = 0.5
down to 0.0625 with a fixed gap size of a = 0.01. The sequence of curves
illustrate that total reflection due to the Helmholtz mode persists as the size
of the cavity tends to zero although it becomes an effect which is squeezed
closer to the first channel cut-off frequency k = π.

6. Conclusions

The principal aim of this paper has been to present a closed form ap-
proximation which accurately captures all of the effects that a rectangular
cavity resonator connected by a small gap to an acoustic waveguide has on
the reflection and transmission coefficients. These coefficients are given by
(2.6) with Rs and Ra expressed by (2.19) and (2.30), Cs and Ca being given
by (3.9) and (3.13) in terms of Qs given by (3.10) and Qa given by (3.14).
The results presented here illustrate that the approximation does indeed
accurately represent the solution for gap sizes well above 20% of the size of
the resonator.
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Figure 3: The modulus of the reflection coefficient against k for b = 1.2, c = 1.6 and: (a)
a = 0.01; a = 0.1; a = 0.4. Curves are exact results, + (and �) are full (and symmetric
only) asymptotic results for small a.
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Figure 4: The modulus of the reflection coefficient against k for a = 0.01 and a square
cavity with dimensions c = 0.5, 0.25, 0.125 and 0.0625. (from left to right).

We have also shown how this approximation relates to the long wave-
length approximation (1.1) to the Helmholtz resonator and provided an
explicit expression (4.4) for the effective neck length. It has also been shown
how the effects of higher-order resonances in the cavity are manifested in
the behavour of the reflection and transmission coefficients.

The expressions for reflection and transmission coefficients could be used
to determine accurate predictions for scattering of acoustic signals by sound
absorbing or metamaterial arrays of Helmholtz resonators, as considered in
papers cited in the Introduction. The approach taken in the approximation
of integral equations for small gaps in cavities could be extended to circular
resonators, for example. The inclusion of damping into the dynamics could
be also be made. Finally, there is the intriguing possibility that periodic lin-
ear arrays of cavity resonators with small gaps embedded in a plane surface
bounding a semi-infinite domain could support surface waves.

Appendix A: a ≪ 1 approximation to the kernel Ls

Starting with the definition (2.16) we write

Ls(as, at) = Is(as, at) + Ss(ax, at) (A.1)
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where

Is(as, at) =
2

π

∫ ∞

0
− coth γ

γ
cos(αas) cos(αat) dα = ℜ{I(a(s−t))+I(a(s+t))}

(A.2)
with

I(X) =
1

π

∫ ∞

0
− coth γ

γ
eiαX dα (A.3)

and

Ss(as, at) =

∞
∑

n=0

ǫn coth γ
s
nc

γsnb
cos(αs

nas) cos(α
s
nat). (A.4)

We start by considering the leading order contribution from the integral
Is(as, at) for small a. For X > 0 we write the integral I(X) as a contour
deformed over the pole α = k plus half its residue and then we deform the
contour onto the positive imaginary axis where we pick up half residues from
the sequence of purely imaginary poles α = ikn where kn =

√
n2π2 − k2. For

X < 0 a similar procedure applies by going into the lower half plane. The
combined result is

I(X) =
ieik|X|

2k
+

∞
∑

n=1

e−kn|X|

kn
(A.5)

and we can write

ℜ{I(X)} = −sin(k|X|)
2k

+

∞
∑

n=1

(

e−kn|X|

kn
− e−nπ|X|

nπ

)

− 1

π
ln(2 sinh(12π|X|)) + 1

2 |X| (A.6)

after using the MacLaurin expansion for the logarithm to sum the second
infinite series explicitly.

Assuming a ≪ 1 and retaining terms up to a constant in (A.6), we have
from (A.2)

Is(as, at) ≈ − 1

π
ln |s2 − t2| − 2

π
ln(πa) + 2

∞
∑

n=1

(

1

kn
− 1

nπ

)

. (A.7)

In a similar manner we consider the series Ss(as, at) in (A.4) as a → 0. This
is written

Ss(as, at) = −cot kc

kb
+ 2

∞
∑

n=1

(

coth γsnc

γsnb
− 1

nπ

)

cos(αs
nas) cos(α

s
nat)

− 1

π
ln (2| cos(aπs/b)− cos(aπt/b)|)
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using, for example, Jones (1966, p.250) to explicitly sum the second series.
So with a ≪ 1 we have

Ss(as, at) ≈ − 1

π
ln |s2 − t2| − 2

π
ln
(πa

b

)

− cot kc

kb
+ 2

∞
∑

n=1

(

coth γsnc

γsnb
− 1

nπ

)

(A.8)
retaining terms up to a constant and neglecting terms O(a2). Bringing the
two results (A.7), (A.8) together,

Ls(as, at) ≈ − 2

π
ln |s2 − t2|+As (A.9)

for a ≪ 1 where

As = − 2

π
ln

(

π2a2

b

)

+2

∞
∑

n=1

(

1

kn
− 1

nπ

)

− cot kc

kb
+2

∞
∑

n=1

(

coth γsnc

γsnb
− 1

nπ

)

.

(A.10)

Appendix B: a ≪ 1 approximation to the kernel La

We can repeat similar arguments to those used in Appendix A to ap-
proximate the La(as, at) defined by (2.27) under the assumption a ≪ 1.
Decomposing into integrals and series as in (A.1) with La = Ia + Sa, we
have

Ia(as, at) = ℜ{I(a(s − t))− I(a(s + t))} (B.1)

where I is defined in (A.3) and its real part taken in (A.6). We now retain
terms up to O(a2). Thus, using ln(sinh |x|) ∼ ln |x|+ 1

6x
2 +O(x4)

ℜ{I(X)} ≈ − 1

π
ln (π|X|) − πX2

24

+
∞
∑

n=1

(

e−kn|X|

kn
− e−nπ|X|

nπ
− k2

2(nπ)3
cos(nπX)

)

+
k2

2π3
V (πX)

where we have subtracted and added terms in the series

V (πX) =

∞
∑

n=1

cos(nπX)

n3
≈ ζ(3)− 3

4
π2X2 +

1

2
π2X2 ln(π|X|) + . . . (B.2)

as X → 0 where ζ is the zeta function. This can be deduced from integrating
twice the result

−
∞
∑

n=1

cosnπX

n
=

1

2
ln(2(1 − cos πX)) ∼ ln(π|X|) +O(X2)
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as X → 0 (Gradshteyn and Ryzhik [18, §1.441(2)]). Thus we find

ℜ{I(X)} ≈ C1 −
1

π
ln(π|X|) − πX2

24
− 3k2X2

8π
+

k2

4π
X2 ln(π|X|) (B.3)

where C1 is a constant which includes both the constant in (B.2) and the
series in (B.2) evaluated at X = 0.

Using (B.3) in (B.1) finally gives

Ia(as, at) ≈ − 1

π
log

( |s− t|
|s+ t|

)

+
πa2st

6
+

3k2a2st

2π

+
k2a2

4π

(

(s2 + t2) log

( |s− t|
|s+ t|

)

− 2st log
(

π2a2|s2 − t2|
)

)

(B.4)

as a → 0. Next we turn to the expression for Sa which we write as

Sa(as, at) = Sa
1 (as, at) + Sa

2 (as, at)

where

Sa
1 (as, at) = 2

∞
∑

n=0

(

coth γanc

γanb
− 1

αa
nb

)

sin(αa
nas) sin(α

a
nat)

and

Sa
2 (as, at) = 2

∞
∑

n=0

sin(αa
nas) sin(α

a
nat)

αa
nb

.

Using the definition of αa
n, this can be arranged as

Sa
2 (as, at) =

2

π

∞
∑

n=1

cos(2n − 1)(12πa|s− t|/b)− cos(2n− 1)(12πa|s+ t|/b)
(2n− 1)

.

(B.5)
We note (e.g. Gradshteyn and Ryzhik [18, §1.442(2), §1.518(3)]) that

∞
∑

n=0

cos(2n − 1)X

(2n − 1)
≈ −1

2
log(tan(|X|/2)) ≈ −1

2
log(|X|/2) − X2

24
(B.6)

for small |X| and it follows that

Sa
2 (as, at) ≈ − 1

π
log(|s − t|/|s+ t|) + πa2st

12b2
(B.7)

as a → 0. Returning to Sa
1 we write

Sa
1 (as, at) = Sa

11(as, at) + Sa
12(as, at)
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where

Sa
11(as, at) = 2

∞
∑

n=0

(

coth γanc

γanb
− 1

αa
nb

−
1
2(kb)

2

(αa
nb)

3

)

sin(αa
nas) sin(α

a
nat) (B.8)

and

Sa
12(as, at) =

4(kb)2

π3
[W (12πa(s− t)/b)−W (12πa(s+ t)/b)] (B.9)

in which

W (X) =

∞
∑

n=1

cos(2n− 1)X

(2n − 1)3
.

Now we only need to determine the behaviour of W (X) for small X and we
note that integrating (B.6) twice respect to X gives

W (X) ≈ 7

8
ζ(3) +

1

4
X2 ln(|X|/2) − 3

8
X2.

Thus we have from (B.9)

Sa
12(as, at) ≈ 3k2a2

2π
st

+
k2a2

4π

(

(s2 + t2) ln

( |s− t|
|s+ t|

)

− 2st ln

(

π2a2|s2 − t2|
16b2

))

(B.10)

as a → 0.
Bringing all the results (B.4), (B.7), (B.10) above together with (B.8)

which can be expanded to O(a2) we find that

La(as, at) ≈ − 2

π
ln(|s − t|/|s+ t|) + a2G(s, t) (B.11)

where

G(s, t) = Aast+
k2

2π

(

(s2 + t2) ln

( |s− t|
|s+ t|

)

− 2st ln |s2 − t2|
)

(B.12)

with

Aa =
3k2

π
− k2

π
ln

(

π2a2

4b

)

+
π

12b2
+

π

6

+
2

b2

∞
∑

n=0

(

(αa
nb)

2 coth γanc

γanb
− αa

nb−
(kb)2

2αa
nb

)

. (B.13)
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