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In this article a range of problems and theories will be introduced which will build
towards a new wave energy converter (WEC) concept with the acronym ‘ROTA’
standing for Resonant Over-Topping Absorber. First, classical results for wave
power absorption for WECs constrained to operate in a single degree of freedom will
be reviewed and the role of resonance in their operation highlighted. Emphasis will
then be placed on how the introduction of further resonances can improve power
take-off characteristics by extending the range of frequencies over which the effi-
ciency is close to a theoretical maximum. Methods for doing this in different types of
WECs will be demonstrated. Coupled resonant absorbers achieve this by connecting
a WEC device equipped with its own resonance (determined from a hydrodynamic
analysis) to a new system having separate mass/spring/damper characteristics. It
is shown that a coupled resonant effect can be realised by inserting a water tank
into a WEC and this idea forms the basis of the ROTA device. In essence the idea is
to exploit the coupling between the natural sloshing frequencies of the water in the
internal tank and the natural resonance of a submerged buoyant circular cylinder
device which is tethered to the sea floor allowing a rotary motion about its axis of
attachment.
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1. Introduction

The quadrupling of the price of oil in the mid-1970s led the UK government to
initiate a major research and development programme aimed at establishing the
feasibility of extracting useful electrical energy from ocean waves and to estimate
the cost of this energy if used on a large-scale to supply UK needs. This was quickly
followed by smaller programmes in Japan, Scandinavia, Portugal and the USA. The
programme ran from 1974 to 1983 and a large number of ideas for capturing wave
energy were considered. The most promising of these were tested at small scale in
wave tanks with three devices being tested in sea conditions at one-tenth scale.
Towards the end of the programme eight device teams drawn from universities,
government research establishments and industry in the UK had produced and
costed reference designs for a 2GW wave power station located off NW Scotland.
In 1982 the Department of Energy concluded that the overall economic prospects for
wave energy looked poor when compared with other electricity-producing renewable
energy technologies and the programme was terminated apart from some small-scale
generic research.
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More recently, concerns over global warming have prompted a revival of interest
in wave energy with the UK taking a leading role. Thus there have been signifi-
cant investments from the UK government through Research Councils and other
initiatives such as the SUPERGEN marine energy consortium led by Edinburgh
University, the Marine Renewables Proving Fund (MRPF), the Energy Technolo-
gies Institute (ETI) and the Technology Strategy Board (TSB) to fund industry and
University partnerships in developing commercially-viable wave energy converters
(WECs). Examples of WECs developed under these schemes include the Pelamis
WEC and the Oyster 2.

Much of the early theoretical work on WECs concentrated on estimating the
maximum power a particular device could absorb using classical linear water wave
theory. Despite the limitations of this theory many interesting and useful results
were derived and confirmed by small scale tank tests. Although some background
theoretical work continues, much of the current focus of WEC development has
been on numerical modelling using software such as WAMIT, ANSYS/CFX and
SPH-based code together with experimental wave tank tests leading to, in a small
number of cases, the testing of prototypes in open waters. Excellent reviews of the
current state of theoretical, numerical and experimental modelling of WECs can be
found in Falnes (2002), Cruz (2008) and Falcão (2010).

Many WECs utilise resonance of one kind or another to achieve high levels of
power absorption and for a generic WEC in the form of a rigid body operating in
a single degree of freedom the theory is well-known. Less is known about multi-
resonant devices where the possibility of widening the bandwidth of the power
absorption curve as a function of frequency exists. It is such devices on which the
present paper is focussed.

We begin in the next section by summarizing the existing theory for WECs
operating in a single mode of motion in the case of a rigid body motion moving
against a fixed reference and show how power output is maximised by impedance
matching; that is, by simultaneously balancing the inertia and restoring forces so
that the system is in resonance, whilst matching the radiation damping of the
WEC with the externally imposed damping. We also consider a simple example
of an oscillating water column (OWC) device and derive similar expressions for
the power absorbed in which the exciting force and velocity in the rigid body
case are simply replaced by the mean volume flux across, and the surface pressure
on, the internal free surface of the OWC respectively. We point out important
differences between the two types of devices in terms of the resonances which can
arise. The main section of the paper is §3 where we consider examples of coupled
resonant systems. We begin with a simple double-body device in which the rigid
body exposed to the waves moves against another body either internal or external
to the first which is also free to move, with power being taken off through the
relative motion between them. The second example is of an axisymmetric doubly-
resonant OWC in which there are two water columns each with its own resonant
properties. A third example relates to devices with projecting side-walls where an
additional resonance is created which can enhance the wave amplitude reaching the
device. A novel example follows in which we consider the coupling of the motion of
a rigid body WEC to the sloshing motion of an internal body of water. Expressions
are obtained for the power absorbed through a turbine positioned in the enclosed
air space above the internal free surface. In a final section a description is given of
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the ROTA, standing for Resonant Over-Topping Absorber, a practical device based
on the previous idea but where the power take off involves the overtopping of the
internal fluid into an inner reservoir which then feeds a low-head turbine.

2. A brief review of wave energy theory

(a) A single mode rigid body motion

We consider for clarity and simplicity a simple WEC oscillating in regular waves
of frequency ω/2π in a single degree of freedom. Examples include an axisymmetric
buoy constrained to oscillate in heave and subject to its natural hydrostatic restor-
ing force or a truncated buoyant closed circular cylinder, totally submerged with
its axis horizontal, and tethered to the sea bed by inextensible mooring lines from
each end, which oscillates in pitch in response to the component of the tension in
the moorings due to the its buoyancy. This device could also span a narrow wave
tank in which case the problem may be regarded as two-dimensional with quanti-
ties referring to unit length across of the tank. For additional clarity throughout
the paper we shall use expressions based on the assumption of infinite water depth.
The modifications required in places for finite depth involve a factor given by Falnes
(2002, p.69, eqn 4.80) and Newman (1976, eq.18) which is close to unity in all the
illustrative examples involving finite depth.

In considering the equations of motion, it is convenient to extract the time
dependence so that a quantity F is understood to mean the time independent form
of f=Re{F e−iωt}.

In what follows the terms force, velocity and mass should be interpreted as
couple, angular velocity and moment of inertia according to the example to which
it applies. Thus we have as the equation of motion of the WEC,

Xe +Xw − iω−1CU = −iωMU. (2.1)

Here, Xe is the external force acting on the device (this could by provided through
a mechanism for power absorption, for example), Xw is the external force on the
device due to the waves, C is a constant arising from any restoring force, hydrostatic
or otherwise, assumed to be proportional to and opposed to the device displacement
iω−1U , where U is the velocity of the device, −iωU its acceleration, and M is its
mass. It is traditional to decompose Xw as

Xw = (iωA−B)U +Xs, (2.2)

where the first term on the right-hand side is the force induced on the device due
to its own motion and proportional to its velocity, U , expressed in terms of A,
B, the added mass and radiation damping coefficients (respectively) for the device,
each dependent on frequency. The second term, Xs, is the exciting force due to the
waves on the device, when assumed fixed, also a function of frequency. It follows
from equations (2.1), (2.2), that

UZ = Xs +Xe, (2.3)

where
Z ≡ B − iω(M +A− ω−2C). (2.4)
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The mean power, W , generated by the wave forces on the device is the time average
over a period, 2π/ω, of the product of those waves forces and the device velocity
which reduces to

W = 1
2 Re{XwU} = 1

2 Re{XsU} − 1
2B|U |2, (2.5)

(the overbar denoting complex conjugation) from (2.2), which can be re-arranged
as

W =
1

8

|Xs|
2

B
−

1

2
B

∣

∣

∣

∣

U −
Xs

2B

∣

∣

∣

∣

2

, (2.6)

provided B 6= 0. It follows that the maximum mean power achievable is given by

Wmax =
1

8

|Xs|
2

B
, (2.7)

and occurs when the velocity, U , equals Xs/2B. Notice from (2.6) that no mean
power is absorbed if either U = 0 (obviously) or U = Xs/B (less obviously). Notice
also that in both cases U is in phase with the exciting force. So, regardless of the
precise form of the external force on the device we have determined the maximum
available mean power. In two dimensions (e.g. a device of constant cross-section
spanning a wave tank under normally-incident waves from x = −∞) the quantities
Xs and B are connected by the formula (see, for example, Newman (1976))

|Xs|
2/B = 8Wincγ, (2.8)

where Winc is the mean power incident per unit crest length, and

γ = |A−|
2/(|A+|

2 + |A−|
2), (2.9)

where A+, A− are the complex wave amplitudes of the waves generated towards
x = +∞ and x = −∞ (respectively) by the forced motion of the device in the
absence of incident waves. Thus, in two dimensions, we may define an efficiency of
absorption E ≡ W/Winc having a maximum defined as

Emax = Wmax/Winc ≡ γ, (2.10)

a result first obtained independently by Mei (1976), Evans (1976) and Newman
(1976). This formula helps to explain the high efficiency of the Salter duck (Salter,
1974) whose shape is such that |A+| ≪ |A−|.

For a three dimensional device we define a capture width l by

l ≡ W/Winc, (2.11)

which represents the equivalent length of incident wave from which all power is
taken. For an axisymmetric device oscillating in heave it is known (Newman 1976)
that

2π|Xs|
2 = 8BLWinc, (2.12)

where L represents the incident wavelength henceforth, so that it follows from (2.7)
that

lmax = Wmax/Winc = L/2π, (2.13)

a result first proved independently by Budal & Falnes (1975), Evans (1976) and
Newman (1976). Remarkably, this result demonstrates that the maximum theoreti-
cal capture width is independent of the physical dimensions of the device, provided
the incident wave amplitude is below a certain value.
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(b) Motion against a fixed reference

In the usual theory for wave energy devices, it is assumed that the device moves
against a fixed reference providing a mechanism for power take-off and that

Xe = −λU, (2.14)

where, in general, λ = d + iω−1κ with d a positive damping constant and κ is a
spring constant, which could be zero. It follows from (2.3), (2.14) that

U(λ+ Z) = Xs. (2.15)

Now the mean power absorbed by the device is calculated by

W = − 1
2 Re{XeU} = 1

2d|U |2, (2.16)

using (2.14) so that, in the two-dimensional case, the efficiency is defined as

E ≡ W/Winc =
4dBγ

|λ+ Z|2
, (2.17)

from (2.8), (2.15). A short calculation shows that

2d

|λ+ Z|2
=

λ+ λ

|λ+ Z|2
≡

1

2Re{Z}

(

1−
|λ− Z|2

|λ+ Z|2

)

, (2.18)

so that

E = γ

(

1−
|λ− Z|2

|λ+ Z|2

)

. (2.19)

It follows that
Emax = γ, (2.20)

in agreement with (2.10). This maximum efficiency is achieved when λ = Z implying
that

d = B(ω), and κ/ω2 = M +A(ω)− C/ω2, (2.21)

must be satisfied simultaneously for a given value of ω. In practice λ is often real
in which case we return to (2.17) and use the identity

λ

|λ+ Z|2
=

(

1−
(λ− |Z|)2

|λ+ Z|2

)

1

2(|Z|+Re{Z})
, (2.22)

from which it follows that

Emax =

(

2B

|Z|+B

)

γ, (2.23)

achieved when λ = |Z|.
The corresponding result for the axisymmetric device in heave is obtained by

using (2.11), (2.12), (2.15) and (2.16) to obtain the capture width

l =
2dBL

π|λ+ Z|2
, (2.24)
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so that

lmax = L/2π, (2.25)

achieved when λ = Z in agreement with (2.13), and

lmax =

(

2B

|Z|+B

)

L/2π, (2.26)

when λ = |Z| and is real.
Consider the results (2.23) and (2.26) with λ assumed real. Then it is clear that

the maximum mean power arises when |Z| is a minimum or when D ≡ Im{Z} =
M + A − C/ω2 = 0 which corresponds to resonance of the system. In general, for
a single heaving rigid body, A(ω) and B(ω) vary smoothly with increasing ω with
A having a single maximum and B monotonically decreasing. Thus D = 0 for just
one value of ω and the system has a single resonant frequency.

(i) An illustrative example

We consider power absorption from a two-dimensional WEC device consisting
of a semi-submerged horizontal circular cylinder of radius a which is free to move in
heave in response to the incident waves. The power take-off is effected by a piston
driven by vertical rod connected to the cylinder. Thus, in this example, λ = d
and the spring constant κ = 0 whilst the fore-aft symmetry of the cylinder implies
A− = A+ and hence γ = 1

2 . That is, the efficiency, E, given by (2.20), of this
device can never exceed 1

2 . Since λ is real, the maximum efficiency, Emax is given

by (2.23) and Emax = 1
2 only when λ = Z or, equivalently, when d = B and

M +A(ω)− C/ω2 = 0.
In this example, C = 2aρg, represents the hydrostatic restoring force on the

cylinder where ρ is the density of the fluid, M = 1
2ρπa

2 is the mass (by Archimedes’
principle), whilst A(ω), B(ω) are the heave added mass and radiation damping
coefficients, computed using the methods outlined in Martin & Dixon (1983), for
example. Non-dimensional coefficients µ = A/M and ν = B/(Mω) are defined,

whilst a non-dimensional damping constant is defined with d̂ = d(a/g)1/2/M such

that λ/(Mω) = d̂/(Ka)1/2 where Ka ≡ ω2a/g
In figure 1 the dashed curve shows the variation of Emax with Ka, peaking at 1

2
when M +A(ω)−C/ω2 = 0 (or 1 + µ− 4/(πKa) = 0 in terms of non-dimensional
quantities). The solid curves show how different choices of fixed damping constant,

d̂, affect the efficiency across a range of frequencies, each curve never able to exceed
the curve of Emax. Figure 2 shows the associated variation of µ and ν with Ka
as well as the variation of D, which crosses zero at just one frequency given by
Ka ≈ 0.797 where ν ≈ 0.523. Thus, to achieve the maximum efficiency of 1

2 here,

d̂ = ν(Ka)1/2 ≈ 0.467. The curve of d̂ = 1
2 is close to this value and hence the high

peak efficiency associated with d̂ = 1
2 in figure 2. We observe that for d̂ < 0.467, E

never obtains its maximum Emax, whilst for d̂ > 0.467, E equals Emax (where it is
required that λ = |Z|) at two separate frequencies. Beyond Ka = 2, the curves all
tend to zero with no further peaks.
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Figure 1. Curves showing efficiency, E, against Ka for a heaving semi-immersed horizontal
cylindrical buoy WEC, radius a, with fixed dimensionless damping constants, d̂ (shown
against curves), from 1

8
to 2. The thick dashed curve is E = Emax.
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Figure 2. Dimensionless added mass µ and radiation damping ν and D against
Ka ≡ ω2a/g.

(c) Oscillating water column devices

The simplest example of an oscillating water column (OWC) device is a fixed
vertical partially-immersed thin-walled circular cylindrical tube open at its lower
end and constricted at its upper end above the internal free surface by an opening
housing an air-turbine. The oscillatory pressure at the lower end due to the incident
waves causes the column of water inside the tube to oscillate and force the air above
the internal free surface through a bi-directional air turbine (the Well’s turbine
being most commonly used). It is a simple matter to show that for tubes that are
narrow (relative to L, the incident wavelength and ℓ, the draft of the tube) the
column of water of length ℓ inside the tube will behave like a rigid body and will
resonate at a radian frequency given by (g/ℓ)1/2. The theory of the last section
can easily be adapted to estimate the power absorbed by such a system when
the external structure has an arbitrary shape. As in the previous section, a time-
dependence has been factored from quantities of interest. Thus the total volume
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flux across the internal free surface due to the incident waves can be written

Qw = Qs + (iωD −B)P, (2.27)

where P is the dynamic air pressure (relative to atmospheric pressure) on the
internal free surface, Qs is the volume flux across the internal free surface when P
is taken to be zero, corresponding to an internal free surface open to the atmosphere,
and the second term on the right-hand-side is the volume flux across the free surface
due to the induced pressure, P , acting upon it. Here D and B are coefficients
dependent only on ω termed the radiation susceptance and radiation conductance
respectively by Falnes (2002, p.229). They play a role in OWC devices similar to
the added mass and radiation damping terms for the rigid body theory of §2 b but
we shall see there is a fundamental difference in their dependence on ω.

Now the mean power absorbed is by this system is

W = 1
2 Re{QwP} = 1

2 Re{QsP} − 1
2B|P |2, (2.28)

from (2.27), which can be re-arranged as

W =
1

8

|Qs|
2

B
−

1

2
B

∣

∣

∣

∣

P −
Qs

2B

∣

∣

∣

∣

2

, (2.29)

provided B 6= 0. It follows that the maximum mean power achievable is given by

Wmax =
1

8

|Qs|
2

B
. (2.30)

Notice the similarity with the rigid body case with force and velocity being replaced
by volume flux and free surface pressure respectively. The flow through the turbine
can be modelled by a linear relation between the volume flux and the pressure.
Thus we assume

Qw = λP, (2.31)

where λ = d + iω−1κ with d a positive damping coefficient and κ models the air
compressibility. It follows from (2.27), (2.31) that

P (λ+ Z) = Qs, (2.32)

where the previous definition of Z used in §2 b is replaced here with

Z ≡ B − iωD. (2.33)

Now the mean power developed by the turbine is,

W = 1
2 Re{QwP} = 1

2d|P |2, (2.34)

so that

W =
|Qs|

2d

2|λ+ Z|2
, (2.35)

from (2.32). We now proceed as for the rigid body case to obtain the result (2.30),
achieved when λ = Z or d = B and κ/ω2 = D.
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If we neglect compressibility (as is often done) and assume λ is real then as in
the rigid body case we obtain

Wmax =
|Qs|

2

4(|Z|+B)
, (2.36)

achieved when λ = |Z|. It can be shown, (Evans 1982) that in two dimensions the
quantities Qs and B are connected by the formula

|Qs|
2/B = 8Wincγ, (2.37)

and for a three-dimensional axisymmetric device absorbing in heave that

2π|Qs|
2 = 8BLWinc. (2.38)

It follows that equations (2.20), (2.26) derived from rigid body motions are valid
for OWCs also with the new definitions of Z and B.

It is clear that the theories for rigid body and OWC devices are similar with the
radiation damping B being replaced by the radiation conductance B and the inertia
terms D ≡ M + A − C/ω2 involving the added mass A and hydrostatic restoring
force C being replaced by the radiation susceptance D. In both cases when λ is real
then maximum power requires D = 0 as the resonance condition. As we have seen
in the case of a rigid body WEC this condition is generally satisfied by a single value
of frequency, say, ω0 so that the power absorbed peaks at this frequency and falls
off on either side. See for example Evans et al. (1979) where both theoretical and
experimental results for the efficiency of power absorption by the Bristol Cylinder
device are presented. This is not the case with the radiation susceptance as is
illustrated in figure 3 below (where µ is the non-dimensional equivalent of D) for
a generic three-dimensional OWC device. Also see figure 2 from Evans & Porter
(1995) for similar curves in a two-dimensional OWC device. Thus the susceptance
is seen to have a number of zeros which can affect the performance of the device
by increasing the peaks in power output as reference to the formula

lmax =

(

2B

|Z|+B

)

L/2π, (2.39)

shows since at a zero |Z| = B. Also see Falnes (2002, p.231).

(i) An illustrative example

We consider the problem of a three-dimensional OWC device consisting of an
open-ended thin-walled tube immersed to a depth ℓ in water of finite depth h.
The radius of the tube is given by b. Air is pumped through a turbine connect-
ing the air-space above the internal water surface with the atmosphere. Effects
of compressibility are ignored and so we take λ = d, where d is the turbine
damping coefficient through which power is extracted. As in the previous section,
some non-dimensionalisation is required and here we define dimensionless quantities
µ = ρgD/(πb2) and ν = ρgB/(ωπb2). In addition, we define d̂ = d(g/ℓ)1/2/(πb2) as

a dimensionless damping coefficient so that λ/(ωπb2) ≡ d̂/(Kℓ)1/2.
Figure 3 illustrates the variation of the two key coefficients µ and ν with Kb ≡

ω2b/g. In this example, where b/ℓ = 8 and the diameter of the OWC is large
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Figure 3. Dimensionless radiation conductance, µ, and radiation susceptance ν against
Kℓ ≡ ω2ℓ/g for the configuration in figure 4.

compared to its immersion depth; for smaller b/l, the variation of the coefficients
around resonant frequencies (connected to zeros of Bessel functions) is much more
pronounced and the first ‘pumping mode’ resonance can be more clearly identified
and would be located much closer to its approximate value Kℓ ≈ 1, an asymptotic
result based on b/ℓ ≪ 1, as described earlier.

In figure 4, we sketch out how the dimensionless capture width l̂ = l/(L/2π),
which cannot exceed unity according to this definition, varies with Kℓ for three
different values of damping constant, d̂. The dashed line in figure 3 represents
the dimensionless maximum capture width, l̂max ≡ lmax/(L/2π), given by (2.39),
derived under the assumption λ real. The principal difference between the curves
in figure 4 and figure 1 is that there are several peaks at which the maximum
theoretical power can be absorbed and this is, as described in the previous section,
directly associated with the multiple zeros of the susceptance, D. Thus each peak
of l̂max = 1 occurs at the value of Kb at which D = 0 (µ = 0).

The constant d̂ which attains the capture width of l̂ = 1 at the first peak is given
by matching d = B at the frequency at which D = 0. This is Kb ≈ 1.84 where
ν ≈ 2.18 and then d̂ = (Kℓ)1/2ν ≈ 1.05, which is close to the value of d̂ = 1 used

for one of the curves in figure 4. Interestingly, this value of d̂ also appears to peak
close to l̂ = 1 at subsequent frequencies, and this is related to the balance between
the slow decay in the ν with the slow increase in (Kℓ)1/2 as Kb increases. Hence,

the value of d̂ needed to attain l̂ = 1 at the second peak is found to be d̂ ≈ 1.04
and at the third peak d̂ ≈ 1.24.

Otherwise, the curves of capture width in figure 4 show similar characteristics
to those seen in figure 1 for the rigid-body motion in that for d̂ greater much larger
than the ‘optimal value’, l̂max is never attained whilst, for d̂ much less than this
critical value, l̂ = l̂max multiple times.

3. Examples of coupled resonant systems

The OWC example shows that it may be possible to exploit the intrinsic resonances
to good advantage since the position of the zeros of the radiation susceptance varies
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Figure 4. Curves showing the dimensionless capture width l̂ = 2πl/L against Kℓ ≡ ω2ℓ/g
for a three-dimensional open-ended circular OWC device of radius-to-immersion depth
b/ℓ = 8 in water of finite depth, h where ℓ/h = 1

8
for three dimensionless damping

constants, d̂ (shown against curves). The dashed curve shows the maximum capture width
l̂ = l̂max.

for example with the depth of submergence. In this section we look at a variety of
WECs where we actively create coupled resonances.

(a) Example: The Sperboy WEC device

An interesting example of a WEC which exploits both rigid body resonance
and oscillating water column resonances, as described in the previous section is
the Sperboy WEC being developed by Embley Energy. This WEC is represented
in its simplest form by a freely-floating thick-walled axi-symmetric cylinder with
a hollow thin-walled tube extending to its lower open end below the cylinder and
the upper end above the internal free surface connected in the usual way through
a bi-directional air turbine.

Thus there are two resonances for this device configuration, one associated with
the usual OWC resonance approximated by ω ≈ ω1 = (g/ℓ)1/2 where ℓ is the depth
of the tube and the other associated with rigid-body motion at ω ≈ ω2 such that
M + A(ω2) − C/ω2

2 = 0. In both resonances, there is differential motion between
the internal free surface and the WEC structure resulting in power. The arguments
above are based on ω1 and ω2 being spaced far enough apart that the resonances
are essentially independent. In practice, they are coupled and the coupling effects
can give rise to interesting power characteristics. The mathematical analysis of this
device is complicated and not included here. Work by one of the authors for Embley
Energy has shown that a broadbanded response can be achieved by suitably tuning
the device geometry and turbine characteristics.

(b) A coupled mass/spring/damper system

As the first and simplest example we revisit the single mode rigid body motion
case and instead of the device moving against a fixed reference, we shall assume
that it drives a mass M0, internal to the device, imparting a velocity U0 to it. For
example the heaving axisymmetric buoy or the pitching buoyant tethered cylinder
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12 D.V. Evans & R. Porter

described in §2 may each contain the mass M0. This case arises in the theory for
the WEC PS Frog developed by Professor French and his colleagues at Lancaster
University (French & Bracewell 1985).

The theory is similar to that for vibration dampers used to reduce large resonant
oscillations of structures such as tall buildings. The idea is to the tune the new
mass/spring system to the resonant frequency of the original mass thereby reducing
large amplitudes of the latter. The method works but at the cost of introducing
two new resonant frequencies either side of the original. Here we shall adapt the
theory to a WEC device.

The external force on the device is now

Xe = −λ(U − U0) (3.1)

with λ = d + iω−1κ as before, with d and κ positive spring and damping con-
stants associated with the connection between the internal mass and the WEC.
The equation of motion of the internal mass is

−iωM0U0 = λ(U − U0)(= −Xe), (3.2)

which we may re-write as

U0 =
λ(U − U0)

−iωM0
. (3.3)

It follows from (2.3), and (3.1) that

Xs = λ(U − U0) + UZ = (U − U0)(λ + Z) + U0Z, (3.4)

and substitution from (3.3) gives

(U − U0)(λ(1 − Z/(iωM0)) + Z) = Xs, (3.5)

or
(Z/Z1)(U − U0)(λ+ Z1) = Xs, (3.6)

where

Z1 =
Z

1− Z/(iωM0)
. (3.7)

Now the mean power absorbed is

W = − 1
2 Re{Xe(U − U0)} = 1

4 (λ+ λ)|U − U0|
2, (3.8)

which, using (3.6) becomes

W =
|Xs|

2

4|Z/Z1|2
λ+ λ

|λ+ Z1|2
. (3.9)

Combining the relation (2.18) with Z1 replacing Z, with |Z/Z1|
2 Re{Z1} = Re{Z} =

B and using in (3.9) it follows that

W =
|Xs|

2

8B

(

1−
|λ− Z1|

2

|λ+ Z1|2

)

, (3.10)
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Figure 5. Curves showing maximum efficiency, Emax, against Ka for a semi-immersed
horizontal cylindrical heaving buoy WEC, radius a, containing an internal mass M0,
zero spring restoring force and fixed dimensionless damping constants, d̂ = 1. The dif-
ferent curves show the proportional of mass assigned to the internal mass M0/Mw where
Mw = 1

2
ρπa2, varying from 0.25 to 0.85.

and again

Wmax =
|Xs|

2

8B
, (3.11)

achieved when λ = Z1, in agreement with (2.7). Efficiency (in two dimensions) or
capture width (in three dimensions) can be calculated using (2.8) or (2.12).

It can be shown that the condition λ = Z1 for maximum power is the same as
derived by Bracewell (1990) for the PS Frog WEC.

If λ is real then it can be shown, using (2.22), that

Wmax = |Xs|
2/4(B + |Z|2/|Z1|), (3.12)

although this result is of no practical use in this example where a non-zero spring
restoring force is required for the internal mass.

(i) A first illustrative example

In figure 5 we return to the model of a two-dimensional semi-immersed cylin-
der constrained to move in heave only described in §2 b, but now taking power
off through an internal mass/spring/damper mechanism. Curves show Emax, cal-
culated via (3.12), for a system with zero spring constant when λ is real. This
is physically unrealistic here, as a restoring force would be required for a mass
contained internal to the cylinder. However, it provides a good illustration of the
power absorption characteristics of such a device. The different curves all take a
non-dimensional damping coefficient of d̂ = 1 and vary M0/Mw where Mw = 1

2ρπa
2

is the total mass of the cylinder including the internal mass and M + M0 = Mw

through Archimedes’ principle. The results illustrate that for values of M0/Mw less
than 0.5, the maximum limit of E = 1

2 is not attained at any frequency, but that as
M0/Mw is increased, Emax first peaks at 1

2 before splitting into two distinct peaks
separated by a broad plateau across which Emax maintains a high value.

In figure 6 we now take a fixed M0/Mw = 3
4 and d̂ = 1

2 and vary the non-
dimensional spring constant κ̂ ≡ κ(a/g)/M0. When κ̂ = 0, the curve of efficiency
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Figure 6. Curves efficiency, E, against Ka for a semi-immersed horizontal cylindrical heav-
ing buoy WEC, radius a, containing an internal mass M0, with internal mass M0/Mw = 3

4

and damping d̂ = 1

2
fixed. The different curves represent different fixed values of spring

constant κ̂ (shown against curves). The maximum efficieny Emax for κ̂ = 0 is represented
by the dashed curve.

calculated using (3.10) is contained under the curve of E = Emax, shown by the
dashed curve. As κ̂ is increased, results show how the efficiency varies as a function
of Ka, by first plateauing with a high efficiency broad-banded response across a
wide range of frequencies (κ̂ = 1

2 ), then peaking (κ̂ = 1) and then falling away in
efficiency as κ̂ is increased further (e.g. κ̂ = 2). This latter behaviour is expected,
since a stiff spring produces little relative motion between the cylinder and the
internal mass, limiting the power absorption.

(ii) A second illustrative example

We now consider a two-dimensional problem of waves normally-incident on a
submerged buoyant circular cylinder, which is tethered to the sea bed by inexten-
sible mooring lines allowing free rotation of the cylinder axis about those mooring
points on the sea bed. As the waves pass over the cylinder, it is forced into horizon-
tal sway motion (under small-amplitude linearised theory) about the mean vertical
position with the horizontal component of tension in the mooring lines providing a
linear spring restoring force, C. Before setting up the coupled mass/spring/damper
model, we return briefly to the simpler power absorption method described in §2 b
by imagining that the cylinder is connected externally to a spring/damper system
whose other end is attached to a fixed frame of reference. Then we may use all
of the machinery developed in §2 b to determine the efficiency, using added mass
and radiation damping coefficients for a submerged cylinder in sway in finite depth
(see Evans & Porter (2007)) and with C = Mw(1 − s)g/ℓ where Mw is the mass
of the displaced water, s = M/Mw is the ratio of the mass of the cylinder to that
of the displaced water (i.e. the specific gravity) and ℓ is the length of the mooring
line. As before, let us take κ = 0, so there is only a damper connection and sketch
the results of maximum efficiency, Emax, see figure 7(a). In dimensionless form, Z
equals ν − i(s+µ− (1− s)/Kl) and we recall that the maximum efficiency limit of
1
2 for a symmetric cylinder is reached when Im{Z} = D = (s+µ− (1−s)/Kl) = 0.
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Figure 7. Various properties of a submerged buoyant cylindrical WEC of specific gravity
s = 3

4
, tethered to the sea floor with ℓ/a = 3, taking off power through a damper opposing

sway motion. In (a), Emax for values of cylinder radius to submergence ratio a/f (shown
against curves); (b) the corresponding variation in added mass; (c) the corresponding
variation in D; (d) for a/f = 0.8, power extracted for different damping coefficients d̂
(shown against solid curves) constrained by the maximum power Emax (dashed curve).

In the example considered in §2 b (i), D was zero only once. For this example, the
situation is different and dependent on the ratio a/f where a is the cylinder radius
and f the submergence of the cylinder axis below the surface. As shown in Evans &
Porter (2007) the added mass, µ, drops below zero for a/f close to unity (a cylinder
close to the surface) for small range of frequencies around Ka = 1, see figure 7(b).
This phenomenon (explained by McIver & Falnes (1985)) allows D to approach
zero again near Ka = 0.6 (see figure 7(c)) and two further zeros of D can occur for
certain choices of a/f , s and ℓ/a.

The impact of these extra resonances (or near resonances) associated withD = 0
(or D close to zero) on the potential for power absorption is demonstrated in figure
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Figure 8. Curves of efficiency, E, against Ka for a submerged swaying tethered cylinder
WEC, radius a, of mass M containing an internal mass M0: M/Mw = 0.15, M0/Mw = 0.6,
a/f = 0.8 and ℓ/a = 3. The spring constant is fixed at κ̂ = 1

2
and different values of d̂ are

shown against curves. The dashed curve shows maximum efficiency in absence of a spring.

7(a) where, for a/f = 0.95, an additional high plateau in maximum efficiency, Emax

close to the maximum of 1
2 , exists across a broad range of frequencies.

In figure 7(d) we take a less extreme value of a/f = 0.8, and show curves of

power absorbed for three fixed damper values, d̂, defined by d̂ = d(a/g)1/2/Mw. It

can be seen that the value of d̂ = 1 is optimal here.
In this section we are really interested in the effect of coupling structural reso-

nances to an additional oscillating system. Thus, we now take the swaying cylinder
example described above, remove the external damper and and insert an internal
mass, M0, inside the cylinder and connected to the cylinder by a spring and a
damper, via which power is assumed to be absorbed. Now s = (M0 + M)/Mw is
the specific gravity and we proceed as before, defining non-dimensional damping
and spring constants with d̂ = d(a/g)1/2/M0, κ̂ = κ(a/g)/M0 and using (3.10) with
(3.7) and Z given by (2.4) to calculate the power and defining E = W/Winc as the
efficiency, using (2.8).

In figure 8 we choose a set of parameters which mirror the curves shown in figure
7(d). That is, we choose ℓ/a = 3 and a/f = 0.8 and, by setting M/Mw = 0.15 and
M0/Mw = 0.6, we retain the specific gravity of s = 3

4 . To illustrate the effectiveness
of such a device, we have chosen a value of κ̂ = 1

2 and varied the damping coefficient

d̂. It can be seen that the efficiency attains high values over a broad range of
frequencies with d̂ = 1

4 providing the best performance.

(c) A WEC with projecting sidewalls

The idea of building side-walls out from a WEC in order to create an additional
resonance with the incident wave field was first proposed by Ambli et al. (1982)
The aim is to first amplify the wave reaching the device through the organ pipe
resonance created by the side walls. A simple approximate theory can be derived for
the maximum power output which makes use of the two-dimensional performance
of the device. Thus a wave of (complex) amplitude A travelling down the ‘harbour’
formed by the side-walls towards the device will be reflected as a wave of amplitude
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Ar and re-reflected back down the harbour with amplitude ArR where r, R are
the reflection coefficients of the device at the open end respectively. This process,
when repeated indefinitely, ultimately gives rise to a wave of amplitude A/(1− rR)
travelling towards the device and Ar/(1−rR) travelling away from it. It follows that
the capture width ratio based on the distance 2b between the side-walls for incident
waves travelling parallel to the side-walls, is the difference between incoming and
outgoing wave energy, namely

l/2b = (1 − |r|2)/|1− rR|2, (3.13)

which may be written

l/2b =
1

1− |R|2

(

1−
|r −R|2

|1− rR|2

)

, (3.14)

so that when r = R,

lmax/2b =
1

1− |R|2
. (3.15)

If we now take |R| = e−kb (Noble 1958), where K = k tanhkh and h is the depth
of the fluid, being the result for plane waves travelling towards the open end of a
semi-infinite duct, we see that

lmax/2b = (1− e−2kb)−1 (3.16)

as the maximum capture width of an isolated device with projecting side-walls. Here
k = 2π/L where L is the wavelength. Notice that in long waves, lmax ∼ k−1 = L/2π
as kb → 0, the result for a point absorber, whilst in short waves, lmax ∼ 2b.

If the WEC is positioned the middle of a narrow wave tank of width 2a, the
reflection coefficientR for waves travelling along and towards the open end of a semi-
infinite duct of width 2b (b < a) is needed. Thus it can be shown that |R| = 1− b/a
so that the maximum efficiency of a device with side-walls of width 2b operating in
the middle of a wave tank of width 2a is simply

Emax = (2− b/a)−1. (3.17)

It follows that Emax → 1
2 as b/a → 0 in agreement with Srokosz (1980) for point

absorbers in channels, whereas Emax → 1 as b/a → 1 since in this case the device
spans the entire width of the tank.

The same multiple-reflection arguments can be used to derive an expression for
the capture width ratio in terms of λ the power take-off characteristic, Z, the two-
dimensional impedance term given by (2.4), and r0, the two-dimensional reflection
coefficient for the device assumed to be fixed at the end of a semi-infinite duct.
Thus

l

2b
=

|λ+ Z|2 − |λ− Z|2

|(λ+ Z)− r0R(λ− Z)|2
(3.18)

obtained by using the relation

Zh =
Z + r0RZ

1− r0R
(3.19)
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Figure 9. Curves of non-dimensional maximum capture width l̂max against kb for piston
absorber a distance ℓ along a duct of width 2b, when operating with real λ, for different
different values of ℓ/b (shown against curves).

This can be re-arranged into the form

l

2b
=

1

1− |R|2

(

1−
|λ− Zh|2

|λ+ Zh|2

)

(3.20)

confirming the result (3.15) when λ = Zh. If λ is restricted to be real then we
obtain

lmax

2b
=

1

(1− |R|2)

2Bh

|Zh|+Bh
(3.21)

where Bh = Re{Zh} ≡ B(1 − |R|2)/|1 − r0R|2. Results can be found in Count &
Evans (1984) where it is shown (figure 7 of that paper) that as the length of the side-
walls increases the performance is improved markedly over a range of frequencies.

(i) Illustrative results

As already demonstrated, with reference to (3.15), (3.16), the maximum the-
oretical capture width for a device without sidewalls can be amplified by adding
sidewalls. For the purposes of presentation, we define a scaled dimensionless capture
width l̂ = (1 − |R|2)l/2b so that l̂ cannot exceed unity. We return to the example
considered by Count & Evans (1984), of a piston wave absorber of width 2b and
height h operating between parallel walls separated by 2b and at a distance a along
the duct from the opening. Here, r0 = 1, the reflection coefficient from a vertical
fixed wall. The depth of the water is h. There is no natural restoring force for such
a wave absorber and so C = 0 and Z = B − iω(M + A), where B and A are the
added mass and damping for the piston wave absorber in motion in a semi-infinite
duct and M = 2ρbhd is the mass of the wave absorber where d is the depth of the
absorber. Thus, the non-dimensional Z is ν− i(d/h+µ) where ν = B/(2ρbh2ω) and
µ = A/(2ρbh2). In figure 9 we show the effect of varying the length of the duct, ℓ/b,
when d/h = 0.1, b/h = 1 are fixed, as a function of kb, where K = k tanhkh. Curves
in figure 9 show the maximum dimensionless capture width in the case of real λ (i.e.
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Figure 10. Curves of non-dimensional capture width l̂ against kb for piston absorber a
distance ℓ along a duct of width 2b, when operating with fixed damper and spring constants
d̂ = 1, κ̂ = 1

2
. Values of ℓ/b shown against curves.

no spring force attached to the absorber), and demonstrate an increasing number
of peaks to the maximum value of unity as the length of the duct is increased,
associated with ‘duct resonances’. In practice for such a WEC, a spring is required
to provide a restoring force. Thus, in figure 10 we show curves of dimensionless
capture width for fixed damper and spring constants, d̂ = 1 and κ̂ = 1, defined by
d̂ ≡ d/(2ρh2(bg)1/2) and κ̂ = κ/(2ρh2g) for the same parameters as shown in figure
9.

(d) A WEC containing an internal water tank

In this section we assume the WEC is of the type described by the second ex-
ample in the rigid body part of §2. Specifically it is a totally submerged, buoyant
cylinder tethered to the sea-bed by inextensible mooring lines with its axis hori-
zontal, and making small oscillations in pitch due to the horizontal component of
the tension in the moorings due to its buoyancy. Furthermore the WEC is assumed
to be symmetric about a vertical plane through its centre, and encloses a body of
water with a free surface so that it is free to move in response to the motion of the
WEC. The use of a water tank to reduce unwanted motions of structures is well-
known and an extensive theory exists for what are termed tuned liquid dampers.
See for example Ibrahim (2009). Here we shall consider their role in the context of
WECs and coupled resonances.

In the absence of any damping of the enclosed water the effect of the tank is
simply to exert an external force on the WEC in the form of

Xe = iωAuU (3.22)

where Au is the added mass of the enclosed water, dependent on frequency. This
clearly cannot contribute to any power absorption by the WEC but can affect the
motion appreciably if the lowest sloshing frequency coincides with the resonant
frequency of the WEC.

In order to extract power from the system we have to introduce damping. One
way of doing this is as follows. For simplicity we assume the incident wave crests
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are parallel to the generatrices of the cylinder so that all motions take place in
an (x, y)-plane and are antisymmetric about x = 0. We assume the free surface of
the enclosed water to occupy −c < x < c and that the air trapped above the free
surface in 0 < x < c is forced by the antisymmetric motion to pass into the region
−c < x < 0 above the free surface by way of a turbine contained in a thin rigid
baffle extending from the roof of the tank to just below the free surface. Thus the
pressure on the free surface, in excess of atmospheric will be P and −P in 0 < x < c
and −c < x < 0 respectively.

On the basis of linear water wave theory, there exists a velocity potential gov-
erning the sloshing of fluid in the tank contained in the WEC given by Φ which is
harmonic and satisfies

Φ(x, y) = −Φ(−x, y) (3.23)

so that we need only consider 0 < x < c provided we ensure that

Φ(0, y) = 0. (3.24)

We also require
Φn = Unx, (3.25)

on S, the internal surface of the WEC bounding the enclosed water in x > 0, where
nx is the horizontal component of the normal to S and the subscript n denotes the
normal derivative to S. On the free surface, y = 0, (see for example, Evans (1982)),
it can be shown that we have

KΦ− Φy = −iωP/ρg, 0 < x < c. (3.26)

It is convenient to write
Φ = Uφ(u) + Pφ(p), (3.27)

where φ(u) satisfies (3.24), and (3.25) with U = 1, and (3.26) with P = 0, whilst
φ(p) satisfies (3.24), (3.25) with U = 0, and (3.26) with P = 1. It follows that φ(u)

is real and φ(p) is pure imaginary. The external force is now

Xe = 2iωρ

∫

S

Φ(x, y)nxds ≡ Ufu + Pfp, (3.28)

where

fu,p = 2iωρ

∫

S

φ(u,p)(x, y)nxds, (3.29)

and the factor of 2 arises since φ(u) is odd in x and S accounts for only one half of
the total symmetrical tank wetted surface.

Thus fp is real and fu is pure imaginary so that we write fu = iωAu, with Au

real. The volume flux (per unit length) across the free surface in (0, c) is

Q =

∫ c

0

Φy(x, 0)dx = (Uqu + Pqp), (3.30)

where we define

qu,p =

∫ c

0

φ(u,p)
y (x, 0)dx. (3.31)
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Hence qu is real and qp is pure imaginary so that we write qp = iωAp, with Ap real.
The air turbine characteristics are modelled by a constant λ linking the volume
flux through the air turbine to the pressure across it via a linear damping law, as
described in §2 c. Thus we assume

Q = 2λP, (3.32)

the factor of two arising since the difference in pressure across the air turbine
equates to 2P here. It follows from (2.3) and (3.28) that

Z1U = Pfp +Xs, where Z1 = Z − iωAu, (3.33)

whilst from (3.30) and (3.32),

Uqu = (2λ− iωAp)P. (3.34)

It follows from (3.34) that we may write (3.34) as

2Z1

qu
(λ+ Z2)P = Xs, (3.35)

where
Z2 = q2u/Z1 −

1
2 iωAp, (3.36)

and we have used the result
fp = −2qu, (3.37)

which can be proved by a simple application of Green’s second identity to φ(u) and
φ(p) in the domain x ≥ 0 occupied by the fluid.

Now the mean power absorbed for this system is

W = Re{QP} = (λ+ λ)|P |2, (3.38)

where, for the moment, we have assumed that λ is complex so that, from (3.35),

W =
1

4

(λ+ λ)q2u|Xs|
2

|Z1|2|λ+ Z2|2
. (3.39)

Using the result (2.18) with Z2 replacing Z and the relation |Z1|
2 Re{Z2} = q2uB

allows us to express the power as

W =
|Xs|

2

8B

(

1−
|λ− Z2|

2

|λ+ Z2|2

)

(3.40)

and the maximum power, achieved when λ = Z2, is in agreement with (2.7). How-
ever, if air compressibility is neglected, then λ is real in which case we return to
(3.39) and use the identity (2.22) with Z2 replacing Z. Now, for real λ,

Wmax =
1

4

q2u|Xs|
2

|Z2
1 |(|Z2|+Re{Z2})

(3.41)

which may be written

Wmax =
1

4

|Xs|
2

(B + |Z1||1−
1
2 iωApZ1/q2u|)

(3.42)

and is achieved when λ = |Z2|.
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(i) An example: a tank of rectangular cross-section

We consider solving for the potentials φ(u) and φ(p) in the special case of a
WEC encasing a tank of rectangular cross-section containing water in −d < y <
0,−c < x < c. We first consider the possible modes of oscillation of the water in
the WEC when it is at rest. Separation of variables gives two sets of modes, odd
and even about the centreline x = 0. For the odd modes, which are the only ones
which concern us here, separation solutions are given by

sin pnx cosh pn(y + d), pn = (n− 1
2 )π/c, n = 1, 2, . . . (3.43)

where the eigenfrequencies ω = ωn are determined by application of the homoge-
neous free surface condition as

pn tanh pnd ≡ ω2
n/g. (3.44)

When the WEC is in motion, the potential is split according to (3.27). We require
φ(u,p) to be harmonic in 0 < x < c, −d < y < 0 and satisfy

φ(u,p)(0, y) = 0, −d < y < 0, (3.45)

φ(u,p)
y (x, d) = 0, 0 < x < c, (3.46)

φ(u,p)
x (c, y) = (1, 0), −d < y < 0, (3.47)

Kφ(u,p)(x, 0)− φ(u,p)
y (x, 0) = (0,−iω/ρg), 0 < x < c, (3.48)

where K = ω2/g as usual. If we let

φ(u) = x+ φ(0), (3.49)

then φ(0) satisfies all the above conditions on φ(u) except on the free surface where

Kφ(0)(x, 0)− φ(0)
y (x, 0) = −Kx, 0 < x < c. (3.50)

We may Fourier-expand both φ(0) and φ(p) in terms of the modes defined in (3.43)

φ(0,p)(x, y) =
∞
∑

n=1

B
(0,p)
n cosh pn(y + d) sin pnx

(pn sinh pnd−K cosh pnd)
, (3.51)

which satisfies all conditions except on the free surface, requiring

∞
∑

n=1

B(0,p)
n sin pnx = (Kx, iω/ρg), 0 < x < c. (3.52)

Thus we find that

B(0,p)
n =

(

−2K(−1)n/(p2nc), 2iω/(gρpnc)
)

. (3.53)

It follows from (3.29) that

fu,p = 2iωρ

∫ 0

−d

φ(u,p)(c, y)dy = 2iωρ

(

cd(1, 0)−
∞
∑

n=1

B
(0,p)
n (−1)nω2

n

p2n(ω
2
n − ω2)

)

(3.54)
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where the identity

sinh pnd

pn sinh pnd−K cosh pnd
=

ω2
n

pn(ω2
n − ω2)

(3.55)

has been used. Thus fu = iωAu where Au, the added mass of the sloshing water is

Au = Mt

(

1 +
2ω2c2

gd

∞
∑

n=1

ω2
n

(pnc)4(ω2
n − ω2)

)

(3.56)

where Mt = 2ρcd is the mass of water per unit length in the WEC. Thus, the added
mass tends to the mass of the water when the frequency tends to zero as expected.
We also have, from (3.31),

qu,p =

∫ c

0

φ(u,p)
y (x, 0)dx =

∫ c

0

φ(0,p)
y (x, 0)dx =

∞
∑

n=1

B
(0,p)
n ω2

n

pn(ω2
n − ω2)

. (3.57)

It follows from (3.53), (3.54) that

fp = 4Kc2
∞
∑

n=1

(−1)nω2
n

(pnc)3(ω2
n − ω2)

= −2qu, (3.58)

as predicted in (3.37). We also have, from (3.53), (3.57) with qp = iωAp,

Ap =
2c

ρg

∞
∑

n=1

ω2
n

(pnc)2(ω2
n − ω2)

. (3.59)

(ii) Results

We return to the configuration used earlier in §3 b (ii), of a buoyant tethered
circular cylinder WEC, which is now assumed to incorporate an internal water tank
of rectangular cross-section, as described above. Power is taken off through a bi-
directional turbine placed in a barrier dividing the airspace above the internal free
surface into two equal halves. When in motion, incident waves force the submerged
cylinder to pitch about the fixed axis of rotation on the sea floor and this drives
the motion in the internal water tank which drives the air through the turbine. The
idea is to couple the resonant motion of the WEC with the resonant motion of the
internal sloshing modes (of which the fundamental mode is the most important).

We stick to the main parameters used to illustrate the internal spring/mass/damper
system used in §3 b (ii). That is, the cylinder radius, a is related to the depth of sub-
mergence of the cylinder by a/f = 0.8; the length of the tether ℓ is fixed at ℓ/a = 3;
the mass of the cylinder (excluding internal water) is M/Mw ≡ M/(12ρπa

2) = 0.15.
Initially, we aim to show results for an internal tank of realistic physical dimen-

sions, that is, the tank fits within the WEC. In figure 11, curves show c/d = 4, 3, 2
and fix c/a = 0.99, 0.986, 0.942 (respectively) to ensure the fit. By increasing as-
pect ratio c/d and allowing c/a to be as large as possible, we are able to lower the
natural frequencies of oscillation of the internal water tank, in the cases described
to the equivalent of Ka = 0.59, 0.76 1.09 (respectively). The effect of these nat-
ural frequencies is apparent in the results of figure 11. In the left-hand panel of
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Figure 11. Curves of efficency against Ka for a submerged swaying tethered cylinder WEC,
radius a, with an internal water tank. Here, a/f = 0.8, M/Mw = 0.15 and ℓ/a = 3 whilst
curves show: (i) c/d = 4, c/a = 0.99; (ii) c/d = 3, c/a = 0.984; (iii) c/d = 2, c/a = 0.942.
In (a), Emax is shown for optimal real λ and, in (b), E is shown for a fixed real λ (λ̂ = 10).

figure 11, we sketch curves of Emax, the maximum efficiency for real power-take of
parameter, λ, as given by (3.42), with Emax = Wmax/Winc and Winc defined by
(2.8). In the right-hand panel is shown corresponding curves for fixed real λ, with

λ̂ = 10 and λ̂ = λMwg
1/2/c5/2. Thus, curves in figure 11(b) are bounded above

by the corresponding curves in figure 11(a). We observe the characteristics of cou-
pled resonances in that single peaks in efficiency are replaced by more complicated
plateau-type behaviour with peaks related to the fundamental sloshing frequencies
in the internal tank. In the case of c/d = 3 with c/a = 0.984 we see efficiency close
to the limit of 1

2 over a broad range of frequencies.
In the example covered here, we have assumed a rather simple configuration for

the internal water tank. In particular, the mechanisms for controlling the natural
frequencies of oscillation have been restricted by the tank geometry. Introducing a
more complicated tank configuration will allow us to alter those natural frequencies
more readily and we might expect other interesting effects to be observed. As an
indication of these effects, we now include an ‘artificial’ tank which cannot be
physically confined within the circular WEC device.

In figure 12 we show a cylinder configuration from before but with c/d = 1.5 and
c/a = 3 in the left-hand panel and c/d = 3 with c/a = 5 in the right-hand panel.
The figures show both the optimal Emax for λ real and E for a fixed value of λ, set
at λ̂ = 1.5 and 0.15 in the two figures. In the left-hand panel, we observe that the
plateau has been broadened and shifted to lower values of Ka as the fundamental
sloshing frequency in the tank is lowered to Ka = 0.5. In the right-hand panel,
the curve of Emax now contains a number of peaks close to the maximum value of
1/2. Here, the tank is wide and shallow and the fundamental sloshing frequency is
located at an even lower value of Ka = 0.23, whilst the effect of the second-order
sloshing mode is now apparent occurring at Ka = 1.73.
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Figure 12. Curves of efficency for fixed λ (solid) and maximum efficiency for λ real (dashed)
against Ka for a submerged swaying tethered cylinder WEC, radius a, with an internal
water tank with the same parameters as in figure 11, apart from: (a) c/d = 3, c/a = 1.5;
(b) c/d = 5, c/a = 2.

4. A new concept: the ROTA WEC

We develop the theme introduced at the end of the previous section and outline
a new concept for a WEC based on coupled resonant systems. Instead of taking
power out of an internal water tank by driving air above two separate air chambers
through a bi-directional turbine, a much simpler, more efficient and robust power
take off mechanism is considered. Thus, we envisage an internal tank which is free
to develop lateral sloshing motions in response to wave forcing. At resonance, which
is determined by a fully coupled model, the predicted large amplitude response in
the motion of water in the internal tank will feed water via shaped walls into an
internal reservoir whose purpose is to control the storage of a head of water and
release this water back into the main tank of water via a low-head turbine from
which electricity is generated. The WEC concept is called ROTA and is an acronym
for Resonant Over-Topping Absorber and its proposed design is shown in figure 13.

Current thinking envisages the ROTA to consist of a submerged buoyant circular
cylinder having a length roughly four times its diameter of between 10 and 15 metres
(eventual shape and dimensions will be decided on the basis of information gained
during any subsequent research and any further tank or field tests). The cylinder is
held under tension with its axis horizontal and at right angles to the predominant
direction of the incident wave field, by inextensible mooring lines (A) attached at
each end and connected to the seabed. Adjustments to buoyancy (F), the length of
the mooring lines, the shape of the tank walls and the depth of submergence of the
cylinder determine conditions for resonance. In turn, the predominant sway motion
of the cylinder creates a sloshing motion in the enclosed water in the chamber
causing it to run up the internal sides of the chamber which are shaped to assist
overtopping of the water through the air space (G) into the inner reservoir (D)
which extends along the length of the chamber (in practice, it would be separated
by baffles into separate chambers to mitigate against transverse sloshing). The inner
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Figure 13. Schematic drawing of the proposed ROTA WEC device.

reservoir extends above the equilibrium position of the enclosed water (B) so that a
differential head of water is built up and maintained by controlling its release into
the main body of the water in the chamber through the low-head turbine (C) from
which electricity is generated.

Although there are some aspects of the ROTA which are not advantageous to
the device operation (tidal variation, exposure to currents, maintenance) there are
also key advantages of the ROTA over some other existing WEC designs. These
include:

(i) Because the device is totally submerged, it is protected from the effect of
severe seas and corresponding wave forces.

(ii) Securing the structure to the sea bed provides a fixed frame of reference
against which it can operate whilst allowing it to move with the waves, again
reducing excessive wave forces.

(iii) A careful choice of design parameters to achieve resonance ensures an optimal
transfer of energy from the waves first to the sides of the structure and then
into the inner reservoir.

(iv) Theory suggests (Evans 1980) and experiments confirm that a submerged
device absorbing energy through a horizontal motion in the direction of the
incident waves has the potential for absorbing more energy than a device
absorbing energy from moving vertically.

(v) The device has few moving mechanical parts and uses a well-established power
take-off technology.
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(vi) The mooring system permits rotatory motion only thus avoiding the end-stop
problem associated with linear translatory motions such as heave.

The success in creating a broad-band high power absorption response in the
final example of §3, which is closely related to the ROTA WEC provides a good
indication of the potential for success of this concept. Such a WEC, which relies
on large amplitude motions to generate overtopping for successful operation will
require small-scale testing and numerical simulations to fully realise its potential.

5. Conclusion

In this paper we have described a range of different wave energy absorbers and the
mathematical theories that underpin them. Classical linearised water wave theory is
used in each setting to develop expressions for the power absorption for a particular
power take-off mechanism, and the maximum theoretical power absorption.

We start with a review of established results for power take-off from rigid bodies
and oscillating water columns constrained to operate in a single degree of freedom
and illustrate typical results for efficiency and capture width of such devices. The
role that resonance plays in optimising power absorption is highlighted in the ex-
amples that are give. The focus thereafter is on introducing systems which display
multiple resonances and, in each example given in the paper, this is shown to assist
in broadening the range of frequencies over which significant power can be absorbed.
Such multiple resonances can be built into a system in two ways. A WEC may be
designed to exhibit resonance through a single mode of operation but at more than
one frequency, as in the examples of OWC devices or devices with sidewalls. Alter-
natively it can be manufactured by coupling systems each with their own resonant
frequencies in such a way that the overall performance is enhanced. Currently de-
vices such as the Sperboy WEC and the PS Frog are designed with coupled systems
in place, and systems closely related to the PS Frog operation are investigated in
§ b of the paper in which a rigid body motion, forced by incident waves, is coupled
to an internal mass/spring/damper system.

Finally, we look at creating a coupled resonant system capable of taking power
from the waves when an internal water tank is placed inside a WEC device. Specif-
ically, we focus results on a submerged buoyant tethered circular cylinder which
incorporates a rectangular tank of water whose sloshing motion is used to generate
power via an air turbine placed above the internal free surface of the tank. Here,
we are able to show some promising initial results which demonstrate that a signifi-
cant power can be absorbed over a range of realistic wave frequencies via a suitable
tuning of various parameters.

The results from last part of section 3 leads us to speculate that a new device
called the ROTA could emerge as having the potential to be a successful WEC.
Not only is its design built on a strong theoretical footing, but the concept has
considered carefully many of the engineering challenges that confront wave energy
production.
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