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1 Introduction

This manuscript describes the mathematical approach taken for the problem considered in the
main paper by the authors when no a priori assumptions or approximations are made. In
addition to considering fields antisymmetric about the geometric centreline of the problem,
solutions that are symmetric will also be sought. This allows the full solution of the scattering
of an obliquely-incident plane wave to be reconstructed from the solutions described herein.

In the various finite rectangular domains under consideration, solutions are expanded in
separation series defined by boundary conditions imposed on opposing parallel surfaces. In the
semi-infinite rectangular domain half range Fourier transforms are employed. This allows solu-
tions to the symmetric and antisymmetric problems to be formulated, without approximation,
in terms of integral equations for unknown functions. In the symmetric problem we derive a
single scalar integral equation to solve for a single function representing the normal derivative
of the field at the opening of the rectangular cavity. In the antisymmetric problem the solu-
tion is represented by a pair of integral equations involving an additional unknown function
representing the normal derivative across a lateral boundary at the partition inside the cavity.

Numerically, solutions are sought by expanding these unknown functions in a series of pre-
scribed functions which incorporate the anticipated singular behaviour in the unknown func-
tions at end points of the intervals over which they are defined. This approximation procedure,
characterised by Galerkin’s method, reduces the integral equations to finite systems of equa-
tions for the expansion coefficients and it is typical of this widely-used approach (e.g. Porter &
Evans (1995), Evans & Fernyhough (1995)) that numerical solutions converge rapidly and with
high precision as the number of terms in the series increases. For example, in computations
performed here, no more than 6 terms were found necessary.

The work described below was performed simultaneously with the analysis in the main
paper but, over time, it became necessary to change the notation used in the main paper. We
have decided to retain the original notation used for the preparation of this manuscript since it
is aligned to the numerical code developed alongside this work1 However this manuscript is self
contained and a full description of the geometry and non-dimensionalisation used in the present
document is described at the beginning of the next section. It is also relatively straightforward

1see http://people.maths.bris.ac.uk/~marp/abstracts/dslit.html

1



to translate between the set of dimensionless variables used here (left) and those used in the
scattering section 4 of the main paper (right):

`←→ l

1 + l
, ε←→ ε

1 + l
, k ←→ κ(1 + l), θ0 ←→ α. (1)

(noting that k was also used in the main paper to represent the complex eigenvalue.) Addi-
tionally, the axes in the two accounts are rotated through 90 degrees and the angles here are
measured using θ from the centreline of the channel as opposed to φ measured anticlockwise
from the wall in the main paper.

In what follows we describe the problem of scattering of plane waves having real dimen-
sionless wavenumber k. The determination of eigenvalues of the unforced problem described
in the main paper is acheived by allowing our wavenumber, k, to become complex and seeking
non-trivial solutions of the corresponding homogeneous problem. For this, a Newton-Rhapson
iteration for complex numbers is used. We must take that the correct branch of the square root
function is selected by the numerical scheme when applying it to complex k in order to satisfy
the required outgoing condition in the far field. The determination of the coefficient of the
resonant dipole strength in the scattering problem involves using the real part of the complex
eigenvalue, k, as the input to the scattering problem.

2 Description of the problem

We work in the (x, y) plane with two-dimensional plane acoustic waves incident from x = ∞,
making an angle θ0 with respect to the positive x-axis. These are reflected by acoustically-hard
walls along x = 0 for |y| > a and scattered as circular waves by a rectangular cavity embedded
in the wall in −d < x < 0, |y| < a. The cavity is divided into two half-width cavities along its
centreline y = 0, from −d < y < −b where b ≥ 0.

The spatial coordinates are non-dimensionalised by d, the depth of the cavity so that, in
dimensionless variables, the walls extend along x = 0, |y| > ε where ε = a/d and the partition
along y = 0 extends from −1 < x < −` where ` = b/d ≤ 1.

The governing equation in the acoustic medium with phase speed c is

(∇2 + k2)φ(x, y) = 0 (2)

where k = ωd/c is the dimensionless wavenumber. Neumann conditions are placed on φ upon
all walls.

We can write
φ(x, y) = φi,r(x, y) + φs(x, y) (3)

where
φi,r(x, y) = 2 cos(α0x)e−iβ0y (4)

and α0 = k cos θ0, β0 = k sin θ0 represents the incident wave and a plane wave reflected by a
wall without a cavity; φs(x, y) therefore takes account of the scattering by the cavity.

Advantage can be taken of the symmetry in the geometry about y = 0 to write

φ(x, y) = φs(x, y) + φa(x, y) (5)

where
φs(x, y) = φs(x,−y), φa(x, y) = −φa(x,−y). (6)
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Consequently
∂φs(x, 0)

∂y
= φa(x, 0) = 0, −` < x, (7)

in addition to ∂φs,a(x, 0)/∂y = 0 for −1 < x < −`. Then

φsi,r(x, y) = 2 cosα0x cos β0y, φai,r(x, y) = −2i cosα0x sin β0y. (8)

3 The symmetric problem

The domain over which (2) holds is divided into x > 0, y > 0 and −1 < x < 0, 0 < y < ε in
which general solutions of (2) satisfying the boundary conditions will be formulated and then
matched across their common interface x = 0, 0 < y < ε.

Thus, in −1 < x < 0, 0 < y < ε we express the general solution as

φs(x, y) = bs0 cos k(x+ 1) +
∞∑
n=1

bsn cos pny coshαn(x+ 1) (9)

where pn = nπ/ε, αn =
√
p2n − k2 ≡ −i

√
k2 − p2n. Note that if kε < π only the n = 0 mode is

propagating in the channel.
In x > 0, y < 0 we let

Φs(x, β) =

∫ ∞
0

(φs(x, y)− φsi,r(x, y)) cos βy dy (10)

be the Fourier cosine transform of the scattered wave component of the solution. It follows
that (2) is transformed to (

d2

dx2
+ γ2

)
Φs(x, β) = 0 (11)

where γ =
√
β2 − k2 ≡ −i

√
k2 − β2 (if k > |β| are both real) where the sign is fixed by the

radiation condition. Thus
Φs(x, β) = C(β)e−γx. (12)

Now we let φsx(0, y) = U s(y) for 0 < y < ε and since φsx(0, y) = 0 for y > ε and φsi,r satisfies a
Neumann condition over all y at x = 0, we have

∂Φs

∂x

∣∣∣∣
x=0

= −γC(β) =

∫ ε

0

U s(y′) cos βy′ dy′. (13)

From the inverse transform it follows that

φs(x, y) = φsi,r(x, y)− 2

π

∫ ∞
0

e−γx cos βy

γ

∫ ε

0

U s(y′) cos βy′ dy′ dβ. (14)

Returning to (9), the functions cos pny are orthogonal over 0 < y < ε via

1

ε

∫ ε

0

cos pny cos pmy dy =


1, m = n = 0,
1
2
, m = n 6= 0,

0, otherwise.
(15)
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It follows from taking an x-derivative of (9) and using (15) that

−kbs0 sin k =
1

ε

∫ ε

0

U s(y) dy, bsnαn sinhαn =
2

ε

∫ ε

0

U s(y) cos pny dy, (n ≥ 1) (16)

and so

φs(x, y) = −cos k(x+ 1)

kε sin k

∫ ε

0

U s(y) dy +
∞∑
n=1

2 coshαn(x+ 1) cos pny

αnε sinhαn

∫ ε

0

U s(y′) cos pny
′ dy′.

(17)
An integral equation for the unknown function U s(y) is now formulated by matching (17) with
(14) over x = 0, 0 < y < ε:

2

π

∫ ∞
0

cos βy

γ

∫ ε

0

U s(y′) cos βy′ dy′ dβ − cot k

kε

∫ ε

0

U s(y) dy

+
∞∑
n=1

2 cos pny

αnε tanhαn

∫ ε

0

U s(y′) cos pny
′ dy′ = 2 cos β0y (18)

after using (8).

3.1 Numerical approximation

We approximate the solution to the integral equation using a Galerkin method in which the
unknown function U s(y) is approximated by an expansion in a finite set of basis functions

U s(y) ≈ 1

ε

P∑
p=0

aspu
s
p(y/ε) (19)

where we have chosen

usp(t) =
(−1)p(2p)!Γ(1

6
)21/6

πΓ(2p+ 1
6
)(1− t2)1/3

C
(1/6)
2p (t), p = 0, 1, . . . (20)

and C
(ν)
n (·) are Gegenbauer polynomials and Γ(·) is the Gamma function. The choice (20)

incorporates the known inverse cubic-root behaviour in the gradient of the field variable at the
sharp corner of the opening of the rectangular cavity and even polynomials are used to reflect
the Neumann condition on y = 0. The remaining multiplicative factors are used to simplify
subsequent algebra.

In particular, it is known (see Evans & Fernyhough (1995) for example) that

1

ε

∫ ε

0

usp(y/ε) cos pny dy =


J2p+1/6(nπ)

(nπ)1/6
n ≥ 1,

6/(21/6Γ(1
6
))δp0, n = 0.

(21)

Similarly,

1

ε

∫ ε

0

usp(y/ε) cos βy dy =


J2p+1/6(βε)

(βε)1/6
, β 6= 0,

6/(21/6Γ(1
6
))δp0, β0 = 0.

(22)
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Using (19) in (18) and multiplying through by usq(y/ε)/ε, for q = 0, 1, . . . , P and integrating over
0 < y < ε characterises the Galerkin method and results in the system of algebraic equations

P∑
p=0

aspK
s
p,q = F s

q , q = 0, 1, . . . P (23)

where

Ks
p,q =

2

π

∫ ∞
0

J2p+1/6(βε)J2q+1/6(βε)

γ(βε)1/3
dβ −

(
6

21/6Γ(1
6
)

)2
cot k

kε
δp0δq0

+
∞∑
n=1

2 cothαn
αnε

J2p+1/6(nπ)J2q+1/6(nπ)

(nπ)1/3
(24)

and

F s
q =

 2
J2q+1/6(β0ε)

(β0ε)1/6
, β0 6= 0,

12/(21/6Γ(1
6
))δp0, β0 = 0.

(25)

For numerical purposes we write the integral in (24) as the sum of three separate integrals,
defined by changes of integration variables, as

2i

π

∫ π/2

0

J2p+1/6(kε sinu)J2q+1/6(kε sinu)

(kε sinu)1/3
du+

2

π

∫ cosh−1(2)

0

J2p+1/6(kε cosh v)J2q+1/6(kε cosh v)

(kε cosh v)1/3
dv +

2

π

∫ ∞
2kε

J2p+1/6(t)J2q+1/6(t)

t1/3
√
t2 − (kε)2

dt. (26)

The remaining infinite integral can be treated by removing the large-t asymptotics from the
integrand and adding back on a term that can be evaluated explicitly using special functions.

3.2 Properties of the solution

One of the key outputs from the problem is the strength of the scattered waves from the mouth
of the cavity. Starting with (14), written as

φs(x, y)− φsi,r(x, y) =
1

π

∫ ∞
0

e−γx

γ
(eiβy + e−iβy)

∫ ε

0

U s(y′) cos βy′ dy′ dβ (27)

and we consider kr = k
√
x2 + y2 →∞ by letting x = r cos θ, y = r sin θ (0 < θ < π/2) and by

letting β = k sinu for 0 < β < k – the range of values of β which give rise to propagating, as
opposed to evanescent, waves – gives us

φs(x, y)− φsi,r(x, y) ∼ i

π

∫ π/2

0

(
eikr cos(θ−u) + eikr cos(θ+u)

) ∫ ε

0

U s(y′) cos(ky′ sinu) dy′ du. (28)

Since this is being assessed in the limit kr →∞ we pick out the dominant behaviour using the
method of stationary phase so that

φs(x, y)− φsi,r(x, y) ∼ eikr−iπ/4
(

2

πkr

)1/2

As(θ) (29)
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where the diffraction coefficient As(θ) is defined to be

As(θ) = i

∫ ε

0

U s(y′) cos(ky′ sin θ) dy′. (30)

Under the approximation (19) and using the result (22) we find

As(θ) ≈ i
P∑
p=0

asp
J2p+1/6(kε sin θ)

(kε sin θ)1/6
(31)

with a suitable adjustment for θ = 0. To determine the strength of the monopole contribution
to As(θ) and can expand the Bessel function in (31) in its power series and then find that

As(θ) =
∞∑
n=0

(−1)nAsn cos 2nθ. (32)

where the first coefficient in (32) representing the monopole strength is given, after significant
algebra, by

As0 =
i

21/6

P∑
p=0

asp

∞∑
m=0

(−1)m(kε/4)2m+2p(2m+ 2p)!

m!4m[(m+ p)!]2Γ(m+ 2p+ 7
6
)

(33)

and which requires use of the result∫ π/2

−π/2
(sin θ)2n dθ =

π(2n)!

22n(n!)2
. (34)

For kε� 1 we have

As0 ≈
6i

21/6Γ(1
6
)
as0 +O((kε)2). (35)

On account of the form of the far field assumed in (29), the coefficient in (33) matches the coef-

ficient of multiplying the first-kind Hankel function H
(1)
0 (kr) in a Fourier-Bessel series solution

of the far field.
Apart from the monopole strength, we will be interested in the amplitude of the response

in the cavity and, provided kε < π (as we anticipate) this is characterised by bs0, which from
(16) can be computed with

bs0 = − π

kε sin k

6

21/6Γ(1
6
)
as0. (36)

3.3 Remark

A separate asymptotic analysis conducted for a narrow channel shows that, as ε→ 0 and when
resonant conditions hold,

φs(x, y)− φsi,r(x, y) ∼ −2H
(1)
0 (kr); (37)

this implies that we expect As0 ≈ −2 at symmetric resonance. This information is useful in
validating numerical results.
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4 The antisymmetric problem

There is some overlap with the method of solution for the symmetric problem, but this com-
ponent of the solution is complicated by the boundary condition switching from Dirichlet to
Neumann at x = −` part of the way along the cavity.

Following the symmetric problem we have, in −1 < x < −`,

φa(x, y) = − cos k(x+ 1)

kε sin k(1− `)

∫ ε

0

V a(y) dy +
∞∑
n=1

2 coshαn(x+ 1) cos pny

αnε sinhαn(1− `)

∫ ε

0

V a(y′) cos pny
′ dy′

(38)
where we have introduced

V a(y) = φax(−`, y), 0 < y < ε (39)

as the unknown horizontal velocity across x = −`, distinct from Ua(y) which will be used to
represent φax(0, y) over 0 < y < ε.

In x > 0 we can also follow the approach in the symmetric problem by taking Fourier sine
transforms in y rather than cosine transforms. This leads directly to

φa(x, y) = φai,r(x, y)− 2

π

∫ ∞
0

e−γx sin βy

γ

∫ ε

0

Ua(y′) sin βy′ dy′ dβ (40)

as the analogue of (10).
The final part of the solution relates to the domain −` < x < 0, 0 < y < ε which connects

the solutions (38) and (40) at x = −1 and x = 0. On y = 0, φa(x, 0) = 0, and so the general
solution is written

φa(x, y) =
∞∑
n=1

(cane−κn(x+`) + daneκnx) sin qny (41)

where qn = (n − 1
2
)π/ε and κn =

√
q2n − k2 ≡ −i

√
k2 − q2n if k > qn. The values of κn are

all real provided kε < π/2 implying no propagating modes in −` < x < 0 for low enough
frequencies. The eigenfunctions sin qny are orthogonal across 0 < y < ε:

2

ε

∫ ε

0

sin qny sin qmy dy = δm,n, m, n = 1, 2, . . . (42)

and it follows from (39) that

dan − cane−κn` =
2

κnε

∫ ε

0

Ua(y) sin qny dy (43)

and

dane−κn` − can =
2

κnε

∫ ε

0

V a(y) sin qny dy. (44)

We can find can and dan by eliminating between these two equations and subsequently it can be
shown that

φa(0, y) =
∞∑
n=1

2 sin qny

κnε

{
cothκn`

∫ ε

0

Ua(y′) sin qny
′ dy′ − cosechκn`

∫ ε

0

V a(y′) sin qny
′ dy′

}
(45)

7



and

φa(−`, y) =
∞∑
n=1

2 sin qny

κnε

{
cosechκn`

∫ ε

0

Ua(y′) sin qny
′ dy′ − cothκn`

∫ ε

0

V a(y′) sin qny
′ dy′

}
.

(46)
We can now match (45) with (40) on x = 0 to get

2

π

∫ ∞
0

sin βy

γ

∫ ε

0

Ua(y′) sin βy′ dy′ dβ

+
∞∑
n=1

2 sin qny

κnε

{
cothκn`

∫ ε

0

Ua(y′) sin qny
′ dy′ − cosechκn`

∫ ε

0

V a(y′) sin qny
′ dy′

}
= −2i sin β0y

(47)

and with (38) on x = −` to get

cot k(1− `)
kε

∫ ε

0

V a(y′) cos pny
′ dy′ −

∞∑
n=1

2 cothαn(1− `) cos pny

αnε

∫ ε

0

V a(y′) cos pny
′ dy′

+
∞∑
n=1

2 sin qny

κnε

{
cosechκn`

∫ ε

0

Ua(y′) sin qny
′ dy′ − cothκn`

∫ ε

0

V a(y′) sin qny
′ dy′

}
= 0 (48)

both for 0 < y < ε.

4.1 Numerical approximation

We have a coupled pair of integral equations to solve for the two functions V a(y) and Ua(y).
Whilst this is more algebraically demanding, the method used in the simpler symmetric problem
is unchanged. That is we expand each unknown in a finite basis and apply the Galerkin method
to determine a (coupled) system of algebraic equations for the expansion coefficients. Thus, we
write

Ua(y) ≈ 1

ε

P∑
p=0

aa2p+1u
a
2p+1(y/ε), V a(y) ≈ 1

ε

P∑
p=0

aa2pu
a
2p(y/ε), (49)

where

ua2p+1(t) =
(−1)p(2p+ 1)!Γ(1

6
)21/6

πΓ(2p+ 4
3
)(1− t2)1/3

C
(1/6)
2p+1(t) (50)

serves the same purpose of incorporating the anticipated inverse cube-root behaviour of the
solution at the corner of the mouth, whilst now being zero on t = 0 to satisfy the Dirichlet
condition on the centreline of the cavity. Also,

ua2p(t) =
2(−1)p

π
√
t(2− t)

T2p(1− t) (51)

where T2p(·) is a Chebychev polynomial and the order being even ensures the Neumann condi-
tion on the wall y = ε of the cavity is satisfied. Additionally, the basis functions incorportate
the anticipated inverse square-root singularity in the solution at the end of the dividing barrer
on the channel centreline.
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Again, using Evans & Fernyhough (1995) (for example), we have that that

1

ε

∫ ε

0

ua2p+1(y/ε) sin qny dy =
J2p+7/6((n− 1

2
)π)

((n− 1
2
)π)1/6

(52)

for n ≥ 1. Similarly,
1

ε

∫ ε

0

ua2p+1(y/ε) sin βy dy =
J2p+7/6(βε)

(βε)1/6
(53)

which tends to 0 as β → 0.
Also, we find, after the substitution v = 1− t and use of Erdélyi et al. (1954, 10.1.2), that

1

ε

∫ ε

0

ua2p(y/ε) sin qny dy = (−1)n−1J2p((n− 1
2
)π) (54)

for n = 1, 2, . . . and

1

ε

∫ ε

0

ua2p(y/ε) cos pny dy =

{
(−1)nJ2p(nπ), n 6= 0,
δp0, n = 0.

(55)

The result of applying the Galerkin approximation to the coupled integral equations is the
coupled system of equations given by

P∑
p=0

aa2p+1K
a
2p+1,2q+1 + aa2pK

a
2p,2q+1 = F a

2q+1 (56)

and
P∑
p=0

aa2p+1K
a
2p+1,2q + aa2pK

a
2p,2q = 0 (57)

for q = 0, . . . , P , where

Ka
2p+1,2q+1 =

2

π

∫ ∞
0

J2p+7/6(βε)J2q+7/6(βε)

γ(βε)1/3
dβ

+
∞∑
n=1

2 cothκn`

κnε

J2p+7/6((n− 1
2
)π)J2q+7/6((n− 1

2
)π)

((n− 1
2
)π)1/3

(58)

and

Ka
2p,2q+1 =

∞∑
n=1

2(−1)ncosechκn`

κnε

J2p((n− 1
2
)π)J2q+7/6((n− 1

2
)π)

((n− 1
2
)π)1/6

(59)

with

Ka
2p+1,2q =

∞∑
n=1

2(−1)ncosechκn`

κnε

J2p+7/6((n− 1
2
)π)J2q((n− 1

2
)π)

((n− 1
2
)π)1/6

(60)

Ka
2p,2q = −

∞∑
n=1

2 cothκn`

κnε
J2p((n− 1

2
)π)J2q((n− 1

2
)π) +

cot k(1− `)
kε

δp0δq0

−
∞∑
n=1

2 cothαn(1− `)
αnε

J2p(nπ)J2q(nπ) (61)
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and
F a
2q+1 = −2iJ2q+7/6(β0ε)/(β0ε)

1/6 (62)

provided β0 6= 0 with F a
2q+1 = 0 in the case that β0 = 0. Obviously in this case there is no

forcing in the system of equations and the solution is zero everywhere. This just reaffirms that
normal incidence generates no antisymmetry in the response.

4.2 Properties of the solution

We can follow the analysis of the symmetric far field diffraction coefficient and quickly get to

Aa(θ) = −
∫ ε

0

Ua(y′) sin(ky′ sin θ) dy′ (63)

from which (40) gives us

Aa(θ) = −
P∑
p=0

aa2p+1

J2p+7/6(kε sin θ)

(kε sin θ)1/6
. (64)

As in the symmetric case, we can use the power series expansion of the Bessel function to
express (64) as

Aa(θ) =
∞∑
n=0

(−i)2n+1Aan sin(2n+ 1)θ (65)

and find, using (34), that the dipole coefficient in this expansion is

Aa0 = i
kε

213/6

P∑
p=0

aa2p+1

∞∑
m=0

(−1)m(kε/4)2m+2p(2m+ 2p+ 2)!

m!4m[(m+ p+ 1)!]2Γ(m+ 2p+ 13
6

)
. (66)

Assuming kε� 1 we have

Aa0 ∼ i
kε

27/6Γ(13
6

)
aa1 +O((kε)3). (67)

That is, Aa0 is the coefficient associated with the term H
(1)
1 (kr) sin θ in the Fourier-Bessel ex-

pansion of the field in x > 0.
The amplitude of the dominant mode in the channel −1 < x < −` is

− aa0
kε sin k(1− `)

. (68)

4.3 Remark

According to result quoted in the main paper, the scattered field at resonance in the antisym-
metric problem for small openings is approximately

−4i sin θ0H
(1)
1 (kr) sin θ (69)

implying a resonant dipole strength of −4i sin θ0 which can be used for numerical comparison
with the result (66) derived above as kε→ 0.
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5 Trapped modes in an infinite waveguide with a divid-

ing plate

There are several different methods one can used to determine the frequencies at which trapped
modes occur. Evans, Linton & Ursell (1993) used a modified residue calculus approach, based
on eigenfunction expansions to determine a wide spacing approximation

k(1− `) = (n+ 1/2)π − kε

π
ln 4 + χ (70)

where

χ =
∞∑
n=1

(
2 sin−1(kε/nπ)− sin−1(2kε/nπ)

)
(71)

which is O((kε)3).
Numerically, we can use the method described in §4 but assuming just two regions in the

waveguide and, in the expansion (41), letting dan = 0. This way, we determine trapped modes
as the vanishing of the real determinant of the matrix with elements

Kp,q = −
∞∑
n=1

2

κnε
J2p((n− 1

2
)π)J2q((n− 1

2
)π) +

cot k(1− `)
kε

δp0δq0

−
∞∑
n=1

2 cothαn(1− `)
αnε

J2p(nπ)J2q(nπ) (72)

which is just Ka
2p,2q defined by (61) with the cothκn` term set to unity. There are other methods

that can be used, including taking Fourier transforms in the direction of the guide.

References

1 Porter, R. & Evans, D.V. (1995) Complementary approximations to wave scattering by
vertical barriers. J. Fluid Mech. 294, 155-180.

2 Evans, D.V. & Fernyhough, M. (1995) Edge waves along periodic coastlines. Part 2. J.
Fluid Mech. 297, 307-325.
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