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Abstract

This paper describes the operation of a new design of wave energy converter.
The design consists of a buoyant tethered submerged circular cylinder which is
allowed to pitch freely about an axis below its centre. Within the body of the
cylinder a fluid half fills an annular tank whose shaped inner walls allow the
fundamental sloshing mode of the fluid be to tuned to any period of interest.
The pitching motion of the cylinder in waves induces a sloshing motion inside
the annular tank which in turns drives an air turbine connecting air chambers
above the two isolated internal free surfaces. The concept behind this design is
to couple resonances of the pitching cylinder with natural sloshing resonances
of the internal water tank and thus achieve a broadbanded power response over
a wide range of physically-relevant wave periods. Mathematically, the problem
introduces new techniques to solve the series of complex internal forced sloshing
problems that arise and to efficiently determine key hydrodynamic coefficients
needed for the calculation of the power from the device. The results show that
practical configurations can be found in which the efficiency of a two-dimensional
cylindrical device is close to its maximum theoretical limit over the target range
of periods from 5 to 11 seconds.

Keywords: Wave energy converter, submerged cylinder, coupled resonance,
sloshing, broadbanded power.

1. Introduction

Converting the energy of ocean waves into a usable form remains a formidable
challenge. This is despite several decades of research and development into dif-
ferent design concepts during which many designs of wave energy converter have
been deployed and tested at full-scale. To date there is no clear convergence
towards a single design philosophy. Indeed, many of the generic concepts de-
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veloped during the early years of wave energy research in the 1970’s and early
1980’s continue to be reinvented in one form or another.

A successful wave energy converter (WEC) has to be able to address and
balance many and varied challenges. Practically, the WEC must be robust
enough to survive the harsh marine environment and it must be easy to install
and maintain. But the WEC must also be economically viable and fundamen-
tally this requires it to be an efficient converter of wave energy. Balancing these
two demands is crucial since no current design is able to boast that it can do
both independently better than any other design. Thus, at one end of the scale,
theoretical WEC concepts developed to maximise energy capture such as the
Salter Duck (Salter [15]) or the Bristol Cylinder (e.g. Clare et al. [5]), have
been mainly overlooked because of complex engineering design difficulties. In
contrast, many simpler devices have been developed which have low capacity
for energy conversion and are thus economically flawed. The Pelamis and Oys-
ter WECs are promising recent examples whose design philosophies set out to
balance these two demands. Even so, they have encountered many difficulties
which are yet to be fully overcome.

Recently Crowley et al. [3] described a new theoretical concept for a wave
energy converter. Although it is based on theoretical ideas of multiple and
coupled resonances, previously advocated in Evans and Porter [10], the design
also tried to address some of the main practical challenges facing WECs. In
particular, the device, being comprised of a cylinder submerged beneath the
waves, is protected from the most severe wave forces on the surface of the
ocean. In addition, the cylinder’s mooring acts as a passive component in the
conversion of wave energy – developing a frame of reference against which to
take-off power is a key challenge in a converter design. Finally, the confinement
of the power take-off mechanism, consisting of a mechanical system of large
heavy pendulums connected to dampers, within the body of the cylinder has
some desirable practical advantages in terms of maintenance and survivability.
Designs based on a similar concept include SEAREV – see Babarit et al. [1]. In
constraining the cylinder to move in a predominantly surge motion with respect
to incident waves, its two-dimensional theoretical maximum efficiency is limited
to 50%; in contrast the Salter Duck or the Bristol Cylinder are theoretically
capable of up to 100% maximum efficiency (see, for example, Cruz [6]). In spite
of this theoretical compromise made in the design of the device described in
Crowley et al. [3], results have suggested that it is capable of operating close
to its maximum efficiency over a broad range of (roughly 5-11s) wave periods.
Preliminary results for a three-dimensional finite-length cylinder device also
suggest capture factors, based on model sea states, of close to one (implying
that almost all of the wave energy incident on the length of the cylinder is
absorbed). This is significantly higher than the capture factors of roughly 0.55
reported for the nearshore Oyster device and far in excess of the majority of
most WECs which typically have a capture factor of below 0.3 – see Babarit et
al. [2].

One potential practical disadvantage of the proposed design of Crowley et
al. [3] is that the internal pendulums that form the components of the internal
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power-take system have to be very big. Thus, in this paper we have considered
a different internal power take-off system based on the resonant sloshing motion
of a large reservoir of fluid contained within the cylinder. The immediate advan-
tage of this system is that the inertia-effect provided by the heavy pendulums
is now replaced by water. Now the incident waves force the cylinder to pitch
via its own mooring about an axis below its centre and this then drives the
motion of the fluid contained within the internal tank This has shaped inner
walls and two isolated internal free surfaces designed so that the internal fluid
is resonant at frequencies of interest. In turn, the sloshing motion of the fluid
drives air through an electricity-producing Wells-type turbine connecting air
chambers above each of the free surfaces. The idea behind the device described
above is to couple natural resonances of the pitching cylinder in waves to in-
ternal sloshing resonances by selecting particular cylinder geometries, mooring
systems and internal tank configurations. The generic idea of coupling wave
induced oscillations of floating bodies with internal fluid motions is not new:
see, for example, the desalination plant described in Cruz and Salter [7] and in
other marine applications in Faltinsen and Timokha [13].

Mathematically, the problem is considered using linearised wave theory and
though most of the general wave power theory presented, in Sections 2 and
4, is applicable to devices working in both two-dimensions (practically realised
by a cylinder spanning a narrow wave tank) and three-dimensions, results are
only presented here for two-dimensional cylinders. The inclusion of an internal
water tank increases the complexity of the system considered in Crowley et al.
[3] though it is shown in Section 4 that familiar-looking expressions (see, for
example, Evans and Porter [10]) for the wave power can be derived. More novel
mathematical ideas are developed in Section 5 of the paper which concentrates
on the method of solution for certain potentials relating to the forced motion
of the internal wave tank which are defined earlier in Section 3. Here, a non-
trivial internal tank shape acts as a mechanism for tuning the resonant sloshing
frequency and the resulting boundary-value problems are treated analytically
using a combination of mathematical techniques. First, the fluid domain is
mapped conformally to a composite rectangular domain. Conformal mappings
have seen considerable use in analysing sloshing problems in non-trivial domains;
see, for example, Fox and Kuttler [14]. The particular geometry chosen allows
an eigenfunction expansion matching to be used to develop integral equations
for unknown functions relating to the fluid velocity across a line segment in
the fluid. This latter part of the solution method is reminiscent of Evans and
Fernyhough [12] though the non-trivial mapping of the free surface condition
here introduces additional mathematical complexity. It is shown towards the
end of Section 5 how each of the hydrodynamic coefficients, representing forces,
moments and fluxes, that are needed in the calculation of the power generated
by the device are expressed in terms of fundamental properties related to the
solution of the integral equations.

The main sets of results are shown in Section 6 and the paper concludes in
Section 7.
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Figure 1: Various mooring configurations applied to the submerged horizontal cylin-
der above the sea bed.

2. Description of the device and its operation

In its most general form, the wave energy converter being considered here
is a buoyant cylinder of constant cross section and finite length, which is held
submerged below the surface of the fluid by a configuration of tensioned moor-
ing lines which connect it to the sea bed. Figure 1(b) illustrates a cross-section
(internal details of the cylinder shown later) through a circular cylinder and the
simplest mooring system to be adopted. Thus, the point P represents one of a
number (two or more) pivots distributed along the length the cylinder which is
assumed to be raised some distance above the bed but held fixed with respect
to the bed, perhaps by a number of splayed cables. The tensioned lines which
attach P to the cylinder allow the cylinder to pitch about P . Assuming small
angles of pitch, Θ(t), the motion can be decomposed into coupled motions of
surge and roll of the cylinder with respect to its local axis, O. Applying simple
geometric arguments to figure 1(b) the roll angle is Θ(t) and the surge displace-
ment is LΘ(t) where L is the vertical distance OP . The heave displacement is
second-order in Θ and neglected.

In a second, more general, version of the mooring system examples of which
are shown in figures 1(a),(c), the cylinder is again allowed to pitch via a pair
of cables pivoted about two fixed points P1 and P2 held fixed at the same level
above the sea bed. This system again induces a coupled surge/roll motion of
the cylinder about its local axis, O, and, whilst the surge displacement remains
LΘ(t) (where L is now the vertical distance from the midpoint of P1 and P2

to O) the pitch-induced roll angle is δΘ(t) where δ is a parameter dictated by
the mooring connections of the cables from P1 and P2 to the cylinder. If P1

and P2 coincide, we return to the first case illustrated in figure 1(b) so that
δ = 1. If P1 and P2 connect to points on the cylinder directly above P2 and
P1 (respectively) so that the mooring lines cross each other half way between
cylinder and mooring point, then δ = 2, as in figure 1(c). If P1 and P2 connect
to points on the cylinder directly above P1 and P2 (respectively) so that mooring
lines are parallel then δ = 0 and there is no pitch-induced roll of the cylinder as
in figure 1(a).

Inside the cylinder, an inner cylindrical section of constant cross section runs
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along the length of the cylinder and water half fills the annular region between
the outer and inner cylindrical sections – see figure 2(a). The operation of this
part of the device has already been described in the Introduction. We note that,
in practice, the cylinder would be divided along its length into sections and/or
contain baffles to mitigate against three-dimensional cross-tank effects.

For reasons of clarity we will initially denote the pitch and roll motions of
the cylinder by the variables Θ(t) and Ψ(t) as though they were independent
although these will eventually be coupled as described above via the relation
Θ = δΨ.

Cartesian coordinates are used with the origin in the free surface, and z
pointing vertically upwards with the central axis of the cylinder, radius b, located
along y = 0 and z = −f . The fluid is of finite depth h.

The forces that act on the cylinder include Fw(t), the wave forces from the
external fluid, Ft(t), the forces from the fluid motion in the internal water tank,
in addition to hydrostatic restoring forces due to the mooring and buoyancy of
the cylinder. Similarly, moments due to waves outside the cylinder are denoted
by Dw(t) and due to internal fluid motions by Dt(t). The latter will include,
indirectly, the effect of the air turbine in taking energy out of the system.

Assuming small amplitude motions and adopting linearised theory, waves of
single frequency ω incident upon the submerged cylinder, induce a response with
the same frequency. Writing the forces and moments as (Fw,t(t), Dw,t(t)) =
Re{(Xw,t(ω), Tw,t(ω))e−iωt} and the surge displacement of O and roll angle
about O as (LΘ(t),Ψ(t)) = Re{(−iω)−1(U(ω),Ω(ω))e−iωt} the equations of
motion are given by

−iωMU = Xt +Xw − i

ω
CsU, (1)

−iωIΩ = Tt + Tw − i

ω
CrΩ, (2)

where M is the mass of the cylinder and I its moment of inertia about O. The
hydrostatic restoring coefficients Cs and Cr are given by,

Cs = (Mw − (M +Mt))
g

L
and Cr = M(zB − zG)g. (3)

where g is gravitational acceleration, Mw is the mass of water displaced by the
cylinder and Mt is the mass of water in the internal tank. Also in (3) zB = −f
is the centre of buoyancy and zG is the centre of gravity which is computed for
the particular configuration considered in Appendix A.

When coupled by the relation Ω = δU/L (1) and (2) can be combined to
give

−iωM
(

1 + δ2(K/L)2
)

U =

(

Xt +
δ

L
Tt

)

+

(

Xw +
δ

L
Tw

)

− i

ω

(

Cs +
δ2

L2
Cr

)

U

(4)
and we have also written I = MK2 in terms of K, the radius of gyration of the
cylinder about O.
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3. Definition of the hydrodynamic problems

The equations of motion (1), (2) rely upon hydrodynamic forces and mo-
ments from both the external and internal fluid motion and these will first be
define in terms of the related hydrodynamic problems before coupling (4) to the
power-take off element of the device in Section 4.

3.1. The external wave problem

In the exterior of the cylinder we define a velocity potential satisfying

∇2Φ = 0, in the fluid, (5)

∂Φ

∂z
+KΦ = 0, on z = 0 with K = ω2/g, (6)

∂Φ

∂z
= 0, on z = −h, (7)

where the free surface and the sea bed are located at z = 0 and z = −h, plus

n.∇Φ ≡ ∂Φ

∂n
= Un.i + Ω(r × n).j, for r ∈ Sw (8)

where r = (x, y, z) = xi + yj + (z + f)k is measured relative to the axis of
rotation O is located along x = 0, z = −f , and n is the unit normal outward
to the fluid to the outer cylinder surface Sw.

Here, we shall be assuming that Sw is a circular cylinder so (r × n).j = 0
for r ∈ Sw so the final term in (8) vanishes.

Plane waves are obliquely incident from x = ∞ and represented by the
potential Φinc. Then Φ − Φinc must represent outgoing waves at infinity.

We decompose Φ into components

Φ = Φd + UΦs (9)

where Φd, Φs represent, respectively, the diffraction of waves by a fixed cylinder
and the radiation of waves by a surging cylinder satisfying (5)–(7),

∂Φd

∂n
= 0 and

∂Φs

∂n
= n.i, for r ∈ Sw (10)

and Φd −Φinc and Φs represent outgoing waves at infinity. The total surge wave
force Xw on the cylinder is decomposed in line with (9) as Xw = Xd + UXs

where

Xd,s = −iωρ

∫

Sw

Φd,sn.i ds. (11)

It is conventional to decompose the surge-induced wave force due to forced surge
motion, Xs, into real and imaginary components as Xs = iωAss − Bss where
Ass(ω) and Bss(ω) are real added mass and radiation damping coefficients for
the cylinder in waves.
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Figure 2: (a) Configuration of the internal tank with a wedge-shaped wall protru-
sion from the inner core; (b) The right-hand side of the fluid domain in transformed
coordinates.

In two-dimensions (i.e. an infinitely long cylinder under normal wave inci-
dence) analytic methods based on multipole expansions can be used to compute
Xd, Ass and Bss. For circular cylinders of finite length this has to be done
numerically, typically with a panel-based boundary element method such as
WAMIT1.

In summary, the total wave force is written

Xw = Xd + U(iωAss − Bss) (12)

and Tw = 0.

3.2. The internal water tank problem

Re-using Φ for the internal tank problem, we have

∇2Φ = 0, in the fluid, (13)

∂Φ

∂z
+KΦ = ∓ iω

ρg
P, on z = 0, x ∈ F± (14)

where F± represent the two isolated portions of the free surface to the right and
left of the origin and the dynamic air pressures above F± are Re{±P e−iωt}. On
St, the inner walls of the cylinder in contact with the fluid,

n.∇Φ ≡ ∂Φ

∂n
= Un.i + Ω(r × n).j, for r ∈ St. (15)

Within the tank, the fluid motion is assumed to be two-dimensional so Φ =
Φ(x, z). Here we will assume boundaries St for which (r × n).j is not always

1www.wamit.com
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zero and thus we decompose Φ into three components φ(s,r,p)(r, θ) by writing

Φ = U(φ(s) + r sin θ) + Ωφ(r) +
iωP

ρg
φ(p). (16)

Polar coordinates are located on O the centre of the cylinder, x = r sin θ, z+f =
−r cos θ, so that n.i = r sin θ. The superscripts indicate association with forced
surge, roll and free surface pressure motions. Now φ(s,r,p)(r, θ) satisfy (13), with

∂φ(s,r,p)

∂n
= (0, (r × n).j, 0), on r ∈ St (17)

and

Kφ(s,r,p) − 1

r

∂φ(s,r,p)

∂θ
= −(Kr, 0, 1), on θ = 1

2π, or F+ (18)

with
φ(s,r,p) = 0, on θ = 0. (19)

This last equation expresses antisymmetry of the potentials about the centreline
of the cylinder; this is on account of the symmetry of St about x = 0 and the
assumed time-harmonicity. Once potentials are determined in θ > 0 they may be
extended into θ < 0 using φ(s,r,p)(r, θ) = −φ(s,r,p)(r,−θ). Note that φ(s,r,p)(r, θ)
are real potentials, being defined by real boundary-value problems.

Once solutions to the boundary value problems for φ(s,r,p) are found then
we may compute the associated forces and moments from the internal water
motion. First, by integrating pressures over the surfaces of the fluid we obtain
the force on the cylinder as

Xt = iωρ

∫

St

Φ n.i ds ≡ Ufs + Ωfr + Pfp (20)

where

fs,r,p = iωρ

∫

St

(

φ(s) + r sin θ, φ(r),
iω

ρg
φ(p)

)

n.i ds. (21)

Note that the pressure forces on the free surface do not contribute to the surge
force on the cylinder. Note also that fp is real whilst fs and fr are both
imaginary. Consequently we write fs,r = iωAss,rs where Ass and Ars are now
real and represent the surge-induced added mass of the internal fluid due to
forced surge and roll motion of the cylinder.

Next, the moment on the cylinder due to the internal fluid motion is given
by

Tt = iωρ

∫

St

Φ(r × n).j ds+ 2P

∫

F +

(r × n).j ds ≡ Uts + Ωtr + Ptp (22)

where

ts,r,p = iωρ

∫

St

(

φ(s) + r sin θ, φ(r),
iω

ρg
φ(p)

)

n.i ds− (0, 0, 2)

∫

F +

r dr (23)
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which now includes the net moment from pressure forces acting on the free
surface. Note here that, as before, tp is real whilst ts,r are imaginary. Thus, we
write ts,r = iωAsr,rr where Asr and Arr are real and represent the roll-inertia
of the internal fluid due to forced surge and roll motion of the cylinder.

For the purposes of subsequent power calculations, a final hydrodynamic
quantity is required from the internal tank problem, namely the integrated
flux of air through the turbine which is calculated as the flux of fluid through
the portion of the free surface F+ (which is just minus that across F− by
antisymmetry and conservation of mass) minus the flux due to the cylinder
rotation. In other words it is defined by

Q =

∫

F +

(

1

r
Φθ(r, 1

2π) + Ωr

)

dr ≡ Uqs + Ωqr + Pqp (24)

where

q(s,r,p) =

∫

F +

(

1

r
φ

(s)
θ ,

1

r
φ

(r)
θ + r,

iω

ρg

1

r
φ

(p)
θ

)

dr. (25)

We note that here qs and qr are real whereas qp is imaginary and, accordingly,
write qp = iωAp where Ap is now real.

3.3. Reciprocal relations

For readers familiar with hydrodynamic properties of fluid forces in multiple
modes of motion, it will come of no surprise that

Asr = Ars, (26)

an identity established by application of Green’s second identity to the potentials
φ(s) and φ(r). Further applications of Green’s identity with other combinations
of potentials, namely φ(p) with φ(s) and φ(r) lead to the following key results:

fp = −2qs, and tp = −2qr. (27)

For details see Appendix A of Crowley [4].

4. Calculation of power

The mean power generated by the cylinder can be calculated from either

W = Re{QP} or W = − 1
2 Re{XtU + TtΩ} = 1

2 Re{XwU + TwΩ} (28)

where the overbar denotes complex conjugate, noting that the pressure differ-
ence across the turbine is 2P . For the circular cylinder Tw = 0 as already
discussed and so the right-hand expression simplifies. The equivalence of the
two expressions, one measuring the power taken off at the turbine and the
other the power generated by the work done moving the cylinder, can be shown
through an application of Green’s identity to Φ and its complex conjugate inside
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the tank. The final step in (28) is made by substituting from the equations of
motion (1) and (2). See Appendix A of Crowley [4] for details.

We aim to develop expressions for W in terms of the fundamental hydro-
dynamic coefficients described in Section 3. Throughout this section, we adopt
the coupling Ω = (δ/L)U to eliminate Ω in favour of U .

First, from the equation of motion (4) with Tw = 0 and (12), we have

UZ =

(

Xt +
δ

L
Tt

)

+Xd, (29)

where,

Z = Bss − iω

(

M
(

1 + δ2(K/L)2
)

+ Ass − 1

ω2

(

Cs +
δ2

L2
Cr

))

. (30)

From (20)–(23) and the discussion that follows each pair of equations, we can
write
(

Xt +
δ

L
Tt

)

= iω

(

Ass +
δ

L
Ars +

δ

L
Asr +

δ2

L2
Arr

)

U +

(

fp +
δ

L
tp

)

P, (31)

where the hydrodynamic coefficients fp, tp and Ass etc... are assumed known.
Thus we have

UZ1 = Xd +

(

fp +
δ

L
tp

)

P, (32)

where,

Z1 = Z − iω

(

Ass +
2δ

L
Ars +

δ2

L2
Arr

)

. (33)

after using (26).
We model the effect of the air turbine using a linear relationship between

flow rate and pressure difference across the air turbine

Q = 2λP, (34)

where the turbine parameter, λ, may be real or complex if air compressibility
is included (e.g. Sarmento and Falcão [16]).

Using (24), (25) we can write (34) as

U

(

qs +
δ

L
qr

)

= P (2λ− iωAp). (35)

and the relation qp = iωAp, Ap real, has also been used.
Eliminating U between (32) and (35) and rearranging gives

2PZ1
(

qs +
δ

L
qr

) (λ+ Z2) = Xd, (36)
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where,

Z2 = − 1
2 iωAp +

(

qs +
δ

L
qr

)2

/Z1, (37)

in which we have used the relations (27).
Using the first expression in (28) to calculate the mean power absorbed by

the device, we first use (34) to write

W = (λ+ λ)|P |2, (38)

(assuming complex λ for the moment). Substituting in (36) for P gives

W =
|Xd|2

4

(λ + λ)
(

qs + δ
Lqr

)2

|λ+ Z2|2|Z1|2 . (39)

The identity 2Re{Z2}(λ+λ) = (|λ+Z2|2 − |λ−Z2|2), can now be used, noting
from the definitions of Z1 and Z2 in (33) and (37) that

|Z1|2Re{Z2} =

(

qs +
δ

L
qr

)2

Bss, (40)

to express the power in the form

W =
|Xd|2
8Bss

(

1 − |λ− Z2|2
|λ+ Z2|2

)

. (41)

It is evident that
Wmax = |Xd|2/(8Bss), (42)

coinciding with a well-known result (see, for example, Evans [9]). This maximum
power occurs when λ = Z2 is satisfied, a condition that, in general, requires λ
to be complex.

In practice the imaginary part of λ is small and it is often the case theoreti-
cally that λ is taken to be real. Then a different route to calculating the power
can be taken which results in the expression

W =
|Xd|2

4

(

qs + δ
Lqr

)2

|Z1|2 (|Z2| + Re{Z2})

(

1 − (λ− |Z2|)2

|λ+ Z2|2
)

, (43)

This reduces further to

W = Wmax
2

(1 + |Z2|/Re{Z2})

(

1 − (λ− |Z2|)2

|λ+ Z2|2
)

, (44)

once (42) and (40) have been used. Now the maximum power attainable for λ
real – we call this the optimum power – is given by

Wopt =
2Wmax

(1 + |Z2|/Re{Z2})
(45)
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which is satisfied when λ = |Z2|. If Im{Z2} = 0 and λ = Re{Z2}, then Wopt =
Wmax.

In both cases of λ complex and real it has been shown that the calculation
of power has been reduced to expressions which depend only on the calculation
of the key hydrodynamic coefficients identified in Section 3. The next section
outlines how these coefficients are computed.

5. Calculation of the internal tank potentials

5.1. Tank configuration

Figure 2(a) shows the configuration of the internal water tank. The outer
surface is circular and of radius b and the inner surface comprises a wedge of
angle 2σ < π and radius c protruding symmetrically about the vertical from
a circular inner core of radius a. This configuration is chosen to provide the
flexibility to tune the natural fundamental sloshing frequency of the internal
fluid to values which coincide with periods of interest. This is justified initially
by the following arguments. A simple application of Bernoulli’s equation applied
to a slender U-tube of length L and slowly varying cross section A(s), 0 < s < L
reveals the natural frequencies to be determined by the relation (see Faltinsen
and Timokha [13, §3.6.4])

ω2 ≈ 2g

(

A(0)

∫ L

0

ds

A(s)

)−1

. (46)

If the U-tube has constant cross section then ω2 ≈ 2g/L and, maximising
L within the cylinder with L ≈ πb, the lowest periods are approximately
√

2π3b/g ≈ 2.5
√
b. For example, a sloshing period of 10s requires a cylin-

der radius of the order of 16m; such a size is considered impractical. Instead,
(46) shows that the sloshing frequency can be reduced without increasing the
size of the cylinder by choosing A(0) to be larger than A(s) along the length of
the U-tube. In this way the denominator of (46) is larger than L.

The particular way in which this narrowing of the channel along its length
is adopted here, by introducing a step change in the inner wall radius, allows
semi-analytic techniques to be used to solve the boundary-value problems of
interest for the harmonic potentials φ(s,r,p)(r, θ). Thus, in addition to (18) and
(19), the boundary condition (17) is now written explicitly for the particular
geometry St as

φ(s,r,p)
r = 0, on S1, and

1

r
φ

(s,r,p)
θ = −(0, r, 0), on S2 (47)

where S1 represents the union of the circular inner and outer circular wall sec-
tions in θ > 0 and S2 is the flat face of the wedge along the line θ = σ connecting
the two inner circular sections.
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5.2. Solution method

In order to solve the three forcing problems in the tank and extract the rel-
evant hydrodynamic coefficients from the solution, we first employ a conformal
mapping, −(z + f) + ix ≡ reiθ = eζ where ζ = ξ + iη to the region 0 < θ < 1

2π.
Under this transformation, most simply written r = eξ, θ = η, the internal
water tank domain is mapped to the composite rectangular domain shown in
figure 2(b). Thus S1 is mapped to vertical line segments aligned with ξ = ln a,
ξ = ln c and ξ = ln b and S2 to a horizontal boundary along η = σ. The down-
ward vertical is now the coordinate line η = 0 and the free surface is mapped
to η = 1

2π. Under the transformation, φ(s,r,p)(r, θ) = ψ(s,r,p)(ξ, η) a function
satisfying transformed versions of (47), (18) and (19). Specifically, we have

∇2ψ(α) = 0, throughout the fluid, (48)

ψ(α) = 0, on η = 0, (49)

ψ
(α)
ξ = 0, on:







ξ = ln a, σ < η < 1
2π;

ξ = ln c, 0 < η < σ;
ξ = ln b, 0 < η < 1

2π,
(50)

ψ(α)
η = −(0, e2ξ, 0), on η = σ, ln a < ξ < ln c, (51)

Keξψ(α) − ψ(α)
η = −(Ke2ξ, 0, eξ), on η = 1

2π, ln a < ξ < ln b, (52)

α = s, r, p, relating to the individual surge, roll and pressure problems.
The next step is to exploit the homogeneous wall conditions (50) to write

down separation solutions in the two domains above and below the line η = σ,
ln c < ξ < ln b which we shall denote by Γ. Hence, for η > σ we can write

ψ(α)(ξ, η) =

(

a
(α)
0

η − σ
1
2π − σ

+ b
(α)
0

)

ψI
0(ξ)

+

∞
∑

n=1

(

a(α)
n

sinh pn(η − σ)

sinh pn(1
2π − σ)

+ b(α)
n

cosh pn(η − σ)

cosh pn(1
2π − σ)

)

ψI
n(ξ) (53)

and for η < σ we have

ψ(α)(ξ, η) = c
(α)
0 ηψII

0 (ξ) +

∞
∑

n=1

c(α)
n

sinh qnη

qn cosh qnσ
ψII

n (ξ). (54)

In the above, α = s, r, p and a
(α)
n , b

(α)
n and c

(α)
n for n ≥ 0 are expansion coeffi-

cients to be determined. Eigenfunctions in ξ are defined as

ψI
n(ξ) = ǫ−1/2

n cos pn(ln b− ξ) and ψII
n (ξ) = δ−1/2

n cos qn(ln b− ξ), (55)

where
pn =

nπ

ln(b/a)
, and qn =

nπ

ln(b/c)
. (56)

and with

ǫn = 1
2ǫ0, ǫ0 = ln(b/a) and δn = 1

2δ0, δ0 = ln(b/c) (57)
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for n = 1, 2, . . ., such that that two sets of eigenfunctions are orthonormal over
their respective intervals:

∫ ln b

ln a

ψI
n(ξ)ψI

m(ξ) dξ = δmn, and

∫ ln b

ln c

ψII
n (ξ)ψII

m(ξ) dξ = δmn. (58)

The expansions for the potentials expressed in (53) and (54) satisfy (48), (49)
and (50). Applying the free surface condition (52) to (53), then multiplying by,
first, ψI

0(ξ), and then ψI
m(ξ) for m ≥ 1 before integrating over ln a < ξ < ln b

gives

a
(α)
0

1
2π − σ

−
∞
∑

n=1

(a(α)
n + b(α)

n )C0n = d
(α)
0 + (a

(α)
0 + b

(α)
0 )C00 (59)

and

a
(α)
m pm

tanh pm(1
2π − σ)

+ b(α)
m pm tanh pm(1

2π − σ) −
∞
∑

n=1

(a(α)
n + b(α)

n )Cmn

= d(α)
m + (a

(α)
0 + b

(α)
0 )Cm0, (60)

for m ≥ 1, and α = s, r, p where we have defined

Cmn =

∫ ln b

ln a

KeξψI
n(ξ)ψI

m(ξ) dξ

=
K

2
(ǫmǫn)−1/2(b − (−1)m+na)

(

1

1 + (pn + pm)2
+

1

1 + (pn − pm)2

)

,

(61)

for m,n ≥ 0 and

d(s,r,p)
m =

∫ ln b

ln a

(Ke2ξ, 0, eξ)ψI
m(ξ) dξ

= ǫ−1/2
m

(

2K
(b2 − (−1)ma2)

4 + p2
m

, 0,
(b − (−1)ma)

1 + p2
m

)

, (62)

for m ≥ 0. We write (60) in matrix/vector form (practically, this requires
truncating the infinite system of algebraic equations at m,n = N) as

(A − C)a(α) + (B − C)b(α) = d(α) + (a
(α)
0 + b

(α)
0 )C0, (63)

where the elements of the matrix C and the vector and the d(α) are defined in
(61) and (62) and the vectors a(α), b(α) contain the unknown coefficients a

(α)
n

and b
(α)
n . Finally, the elements of C0 are C0n for n ≥ 1 and A and B are diagonal

matrices with entries

Amm = pm coth pm(1
2π − σ), and Bmm = pm tanh pm(1

2π − σ), (64)
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for m ≥ 1. Notice at this stage that (59) has not been used. Making b(α) the
subject of (63) gives

b(α) = −a(α) + PG a(α) + P d(α) + (a
(α)
0 + b

(α)
0 )PC0 (65)

where
P = (B − C)

−1
, and G = (B − A) , (66)

such that P is symmetric and G is diagonal with elements

Gmm =
−2pm

sinh 2pm(1
2π − σ)

. (67)

We have to assume that P is invertible in order for it to be evaluated numerically
though practically this poses no difficulties.

Finally, we are required to match the potential and its derivatives defined by
(53), (54) in the two regions above and below η = σ along the common interface
Γ. In other words, we are to impose the conditions

ψ(α)(ξ, σ+) = ψ(α)(ξ, σ−) and ψ(α)
η (ξ, σ+) = ψ(α)

η (ξ, σ−) (68)

for ln c < ξ < ln b, α = s, r, p. We must also apply the condition (51) on the
potential in η > σ.

We let V (α)(ξ) denote the unknown value of ψ
(α)
η (ξ, σ) on Γ (i.e. for ln c <

ξ < ln b). It follows from (53) that

∫

Γ

V (α)(ξ)ψI
0(ξ) dξ − e

(α)
0 =

a
(α)
0

1
2π − σ

, (69)

∫

Γ

V (α)(ξ)ψI
m(ξ) dξ − e(α)

m =
a

(α)
m pm

sinh pm(1
2π − σ)

, (70)

after using (51) and the orthogonality conditions (58) for the set of eigenfunc-
tions in η > σ. Here,

e(α)
m ≡

∫ ln c

ln a

(0, e2ξ, 0)ψI
m(ξ) dξ =

(

0, 2ǫ−1/2
m

(c2 − (−1)ma2)

4 + p2
m

, 0

)

. (71)

Similarly, taking the η-derivative of (54), multiplying the result by ψII
m(ξ) for

m = 0, 1, 2, . . . and integrating over (ln c, ln b) gives

∫

Γ

V (α)(ξ)ψII
m(ξ) dξ = c(α)

m , for m ≥ 0. (72)

Next, we apply the first of the conditions (68) to (53) and (54), resulting in

∞
∑

n=1

c
(α)
n ψII

n (ξ)

qn coth qnσ
−

∞
∑

n=1

b
(α)
n ψI

n(ξ)

cosh pn(1
2π − σ)

= b
(α)
0 ǫ

−1/2
0 − c

(α)
0 δ

−1/2
0 σ (73)
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for ξ ∈ Γ. Using (65) to eliminate b
(α)
n we can rewrite this condition as

∞
∑

n=1

a
(α)
n ψI

n(ξ)

cosh pn(1
2π − σ)

−
∞
∑

n=1

∞
∑

j=1

PnjGjja
(α)
j ψI

n(ξ)

cosh pn(1
2π − σ)

+

∞
∑

n=1

c
(α)
n ψII

n (ξ)

qn coth qnσ

=

∞
∑

n=1

∞
∑

j=1

Pnjψ
I
n(ξ)

cosh pn(1
2π − σ)

(

d
(α)
j + (a

(α)
0 + b

(α)
0 )Cj0

)

+b
(α)
0 ǫ

−1/2
0 −c(α)

0 δ
−1/2
0 σ,

(74)

for ξ ∈ Γ. It follows from substituting for a
(α)
n and c

(α)
n for n ≥ 1 from (70) and

(72) that

∫

Γ

V (α)(t)K(t, ξ) dt = A
(α)
1 f1(ξ) +A

(α)
2 f2(ξ) + fα(ξ), ξ ∈ Γ (75)

for α = s, r, p. The kernel of the integral operator, K(t, ξ), is real and symmetric
and given by,

K(t, ξ) =

∞
∑

n=1

∞
∑

j=1

Pnjψ
I
n(ξ)ψI

j (t)

cosh pn(1
2π − σ) cosh pj(1

2π − σ)
+

∞
∑

n=1

ψI
n(ξ)ψI

n(t)

pn coth pn(1
2π − σ)

+

∞
∑

n=1

ψII
n (ξ)ψII

n (t)

qn coth qnσ
, (76)

where the definition of the matrix elements Gjj in (67) have been used. Also in
(75)

A
(α)
1 = b

(α)
0 ǫ

−1/2
0 − c

(α)
0 δ

−1/2
0 σ, and A

(α)
2 = a

(α)
0 + b

(α)
0 , (77)

involve unknown coefficients whilst

f1(ξ) = 1, f2(ξ) =

∞
∑

n=1

∞
∑

j=1

PnjCj0ψ
I
n(ξ)

cosh pn(1
2π − σ)

, (78)

and

fα(ξ) =

∞
∑

n=1

∞
∑

j=1

Pnjd
(α)
j ψI

n(ξ)

cosh pn(1
2π − σ)

+

∞
∑

n=1

e
(α)
n ψI

n(ξ)

pn coth pn(1
2π − σ)

+

∞
∑

n=1

∞
∑

j=1

Pnje
(α)
j ψI

n(ξ)

cosh pn(1
2π − σ) cosh pj(1

2π − σ)
, (79)

with α = s, r, p are known real functions. Since d
(α)
n = 0 when e

(α)
n 6= 0 and vice

versa, (79) appears more complicated than it really is.
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It follows that if we define five unknowns Vi(t), i = 1, 2, s, r, p as solutions to

∫

Γ

Vi(t)K(t, ξ) dt = fi(ξ), ξ ∈ Γ (80)

then
V (α)(t) = A

(α)
1 V1(t) +A

(α)
2 V2(t) + Vα(t) (81)

will satisfy (75). In principle, Vi(t) are determined as solutions of (80) but the

coefficients A
(α)
1 and A

(α)
2 remain undetermined and we return to earlier unused

equations to determine these.
At this point it is useful to define the 5 × 5 real matrix T of inner products

of Vi(t) with the right-hand side functions fj(t) defined in (78) and (79). That
is,

Tij =

∫

Γ

Vi(t)fj(t) dt, for i, j = 1, 2, s, r, p. (82)

Using the fact that K(t, ξ) is real and symmetric it can easily be shown that
Tij = Tji.

Using this definition (69) and (72) for m = 0 can now be written

(

a
(α)
0

1
2π − σ

+ e
(α)
0

)

ǫ
1/2
0 = c

(α)
0 δ

1/2
0 =

∫

Γ

V (α)(ξ)f1(ξ) dξ = A
(α)
1 T11+A

(α)
2 T21+Tα1

(83)

for α = s, r, p. Recalling the definition of A
(α)
1 and A

(α)
2 from (77) we see that

the left- and right-hand sides of (83) provide a relation between two unknown

coefficients a
(α)
0 and b

(α)
0 . A second relation is formed from (59) which first

requires some attention to deal with the sum over n. Thus, using (65), (70) and
subsequently (78) we find that

∞
∑

n=1

(a(α)
n + b(α)

n )C0n = −
∫

Γ

V (α)(ξ)f2(ξ) dξ +

∞
∑

n=1

∞
∑

j=1

Pnjd
(α)
j C0n

+

∞
∑

n=1

∞
∑

j=1

Pnje
(α)
j C0n

cosh pj(1
2π − σ)

+ (a
(α)
0 + b

(α)
0 )

∞
∑

n=1

∞
∑

j=1

PnjCj0Cn0. (84)

This can now be used in (59) to give

a
(α)
0

1
2π − σ

+A
(α)
1 T12 +A

(α)
2 T22 + Tα2 − S

(α)
1 −A

(α)
2 S2 = d

(α)
0 +A

(α)
2 C00 (85)

for α = s, r, p where

S
(s,r,p)
1 =

∞
∑

n=1

∞
∑

j=1

Pnj

(

d
(s)
j ,

e
(r)
j

cosh pj(1
2π − σ)

, d
(p)
j

)

C0n (86)
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and

S2 =
∞
∑

n=1

∞
∑

j=1

PnjCj0Cn0. (87)

Now (84) represents the second relation between a
(α)
0 and b

(α)
0 . In fact it is

both easier and sufficient to express these relations in terms of A
(α)
1 and A

(α)
2

by noting first that

a
(α)
0

1
2π − σ

= γ0

(

A
(α)
2 − ǫ

1/2
0 A

(α)
1 − ǫ0

δ0
σe

(α)
0

)

, where γ0 = 1/(1
2π − σ + σǫ0/δ0).

(88)
Then (83), (85) and (88) may be combined to form the matrix equation for the
two unknowns

(

T11 + γ0ǫ0 T21 − γ0ǫ
1/2
0

T12 − γ0ǫ
1/2
0 T22 − S2 − C00 + γ0

)(

A
(α)
1

A
(α)
2

)

=

(

−Tα1 + e
(α)
0 γ0ǫ

1/2
0 (1

2π − σ)

−Tα2 + S
(α)
1 + d

(α)
0 + e

(α)
0 σγ0ǫ0/δ0

)

. (89)

Let us summarise the method of solution. One must solve the integral equations
(80) for each Vi(ξ), use those solutions to calculate the matrix of inner products

Tij from (82) and use the results to solve (89) for A
(α)
1 and A

(α)
2 . As will be

shown below this is all that is needed in order to calculate the key properties
of the solution. The numerical approximation to the solution of the integral
equations is given later.

5.3. Natural sloshing frequencies

We note that the left-hand side 2 × 2 matrix in (89) is real and symmetric
and independent of α. In contrast, each term on the right-hand side of (89)
depends on α. If the forcing is turned off in any one mode then (89) reduces
to the same homogeneous equation whose non-trivial solutions, determined by
the vanishing of the real determinant of the 2 × 2 matrix, represents the natural
sloshing frequencies of the fluid in the tank.

Figures 3(a,b) plot the sloshing frequency parameter Kb ≡ ω2b/g against
the channel width ratio (b− c)/(b− a) which varies between 0 (when the wedge
cuts off the channel) and 1 (when the the wedge has shrunk to zero leaving a
uniform annular tank). The two figures show contrasting ratios of inner core
radius to outer tank wall radius, a/b, and within each plot different wedge angles
2σ/π are shown by each of the three curves. It can be seen that increasing a/b
towards a narrow U-tube for a uniform annular tank (channel width ratio equal
to 1) reduces the fundamental sloshing frequencies to, when a/b = 0.9, a value
of Kb ≈ 0.66 close to the value of 0.63 predicted by the slender U-tube formula
(46). Values computed for the annular tank have been verified against other
methods of solution (see Crowley [4] for details).
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Figure 3: The sloshing frequencies of a fluid in a tank of design in Figure 1. In each
plot the variation of Kb ≡ ω2b/g is shown against the channel width ratio (b−c)/(b−a),
for wedge angles of 2σ/π = 0.2, 0.4, 0.8.

We see from figure 3 that increasing the size of the wedge lowers the sloshing
frequency parameter Kb. Thus, with b fixed, the sloshing frequency can be made
as low as is required. Indeed, this provides us with many different families of
tank configuration which can be tuned to any particular frequency. For example,
a sloshing frequency of Kb = 0.2 can be realised by all six sets of parameters
used in figure 3.

5.4. Forces, moments and fluxes

We start with the simplest of the three sets of quantities needed, the free
surface fluxes defined by (25). Conservation of mass implies that the integrated
flux across the free surface, F+, is the same as the integrated flux across the
line η = σ, ln a < ξ < ln b in the transformed plane. In other words, we may
write

(qs, qr, ρgAp) =

∫

Γ

ψ(α)
η (ξ, σ) dξ +

∫ ln b

ln c

(0, e2ξ, 0) dξ, (90)

where qp = iωAp and (51) has been used. Using V (α)(ξ) ≡ ψ
(α)
η (ξ, σ) and the

decomposition in (81) we have

(qs, qr, ρgAp) =

∫

Γ

V (α)(ξ)f1(ξ) dξ + (0, 1
2 (b2 − c2), 0)

= A
(α)
1 T11 +A

(α)
2 T21 + Tα1 + (0, 1

2 (b2 − c2), 0). (91)

Next, we consider the forces given by (21). The aim is to express the relevant

quantities, Ass, Ars and fp in terms of A
(α)
1 , A

(α)
2 and the matrix elements Tij

as achieved in (91) above. This turns out to be an elongated procedure in which
the first step is to note that we can write

n.i ≡ ∂

∂n
(r sin θ) ≡ ∂

∂n
(eξ sin η) (92)
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where the normal derivatives apply in the (r, θ)-plane and then the (ξ, η)-plane.
Now eξ sin η is harmonic and so we may use Green’s Identity on the domain D
occupied by the fluid (see figure 2(b)) to write

0 =

∫

∂D

ψ(α) ∂

∂n
(eξ sin η) − eξ sin η

∂

∂n
ψ(α) ds, (93)

where ∂D is the boundary of D. Then conditions (49)–(52) can be used to write

0 =

∫

∂D

ψ(α) ∂

∂n
(eξ sin η) ds−

∫ ln c

ln a

eξ sin σ(0, e2ξ, 0) dξ

−
∫ ln b

ln a

eξ
(

Keξψ(α)(ξ, 1
2π) + (Ke2ξ, 0, eξ)

)

dξ. (94)

Also, in transformed coordinates, (21) may be written

(

Ass

2ρ
,
Ars

2ρ
,
fp

−2K

)

=

∫

∂D

ψ(α) ∂

∂n
(eξ sin η) ds+(1, 0, 0)

∫

∂D

eξ sin η
∂

∂n
(eξ sin η) ds,

(95)
and the second integral evaluates to the half the water area in the tank, that is
Mt/(2ρ). Substituting in from (93) and evaluating integrals that arise we find

(

Ass −Mt

2ρ
,
Ars

2ρ
,
fp

−2K

)

=
(

1
3K(b3 − a3), 1

3 (c3 − a3) sinσ, 1
2 (b2 − a2)

)

+

∫ ln b

ln a

Ke2ξψ(α)(ξ, 1
2π) dξ. (96)

In (96) we have been able to express the components of the forces due to surge,
roll and pressure in terms of integrals of the potential φ(α) on the transformed
free surface, η = 1

2π. However, we would like to be able to express it in terms of

the velocities V (α) ≡ ψ
(α)
η across Γ, thereby allowing us to exploit the definitions

of the matrix T. To do this we introduce an auxiliary potential, g(ξ, η), defined
by the artificial problem below, in the upper rectangular region of D (see figure
2):

∇2g = 0, in − ln a < ξ < ln b, σ < η < 1
2π; (97)

gη = 0, on η = σ, − ln a < ξ < ln b; (98)

gξ = 0, on ξ = ln a, ln b, σ < η < 1
2π; (99)

gη −Keξg = Ke2ξ, on η = 1
2π, − ln a < ξ < ln b. (100)

The solution of this problem is easy to find using separation of variables and
gives a general solution

g(ξ, η) = β0ψ
I
0(ξ) +

∞
∑

n=1

βn
cosh pn(η − σ)

cosh pn(1
2π − σ)

ψI
n(ξ), (101)
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satisfying (97)–(99). Application of (100) results in the combined infinite sys-
tems of equations for the unknown coefficients βn

−CT
0 β = d

(s)
0 + β0C00, (102)

(B − C)β = d(s) + β0C0, (103)

where β is the vector of coefficients βn for n ≥ 1 and C, d(s), d
(s)
0 , C0 and B are

all defined previously following (63). It follows that

β = P (d(s) + β0C0) (104)

where P is defined by (66) and then

β0 = −CT
0 P d(s) + d

(s)
0

CT
0 P C0 + C00

≡ −S
(s)
1 + d

(s)
0

S2 + C00
. (105)

The coefficients in (101) are therefore determined in terms of quantities which
have already been calculated as part of the solution to the problems described
in Section 5.2.

We now apply Green’s identity to the potential ψ(α) and g(ξ, η) over the
rectangle σ < η < 1

2π, ln a < ξ < ln b and employ all the conditions satisfied by
these two functions on the boundary of this rectangle to obtain the relation

0 =

∫ ln b

ln a

Ke2ξψ(α)(ξ, 1
2π) dξ −

∫ ln b

ln a

(Ke2ξ, 0, eξ)g(ξ, 1
2π) dξ

+

∫

Γ

g(ξ, σ)V (α)(ξ) dξ −
∫ ln c

ln a

(0, e2ξ, 0)g(ξ, σ) dξ. (106)

This allows (96) to finally be written

(

Ass −Mt

2ρ
,
Ars

2ρ
,
fp

−2K

)

=

∞
∑

n=0

βn

(

d(s)
n ,

e
(r)
n

cosh pn(1
2π − σ)

, d(p)
n

)

− β0ǫ
−1/2
0

∫

Γ

V (α)(ξ)f1(ξ) dξ − β0

∫

Γ

V (α)(ξ)f2(ξ) dξ −
∫

Γ

V (α)(ξ)fs(ξ) dξ

+
(

1
3K(b3 − a3), 1

3 (c3 − a3) sinσ, 1
2 (b2 − a2)

)

, (107)

after using (101) and (104) to expand g(ξ, σ) and g(ξ, 1
2π). Remarkably we see

that a combination of the functions fi(ξ), defined in (78) and (79), emerge from
this process and hence we are able to write

(

Ass −Mt

2ρ
,
Ars

2ρ
,
fp

−2K

)

= β0(d
(α)
0 + e

(α)
0 ) + βT(d(α) + G e(α))

− β0ǫ
−1/2
0 (A

(α)
1 T11 +A

(α)
2 T21 + T1α) − β0(A

(α)
1 T21 +A

(α)
2 T22 + T2α)

− (A
(α)
1 Ts1 +A

(α)
2 Ts2 + Tsα) +

(

1
3K(b3 − a3), 1

3 (c3 − a3) sinσ, 1
2 (b2 − a2)

)

(108)
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where elements of e(α) are defined as −e(α)
n sinh pn(1

2π−σ)/pn, n ≥ 1. This step
has involved a lot of algebra but the result is an expression which is straightfor-
ward to compute and simpler than using (21) directly.

The last part of the section is to calculate similar efficient expressions for
the moments, ts,r,p, defined by (23), or their proxies Asr, Asr. We are required
to go through a similar procedure as above for the forces and thus only the final
result of this calculation (see Crowley [4] for details). Thus

(

Asr

2ρ
,
Arr

2ρ
,
tp

−2K

)

= (τ0−(1
2π−σ)e

(r)
0 )d

(α)
0 +τ0e

(α)
0 +(τ+e(r))Td(α)+τ T

G e(α)

− τ0ǫ
−1/2
0 (A

(α)
1 T11 +A

(α)
2 T21 + Tα1)

− (τ0 − (1
2π − σ)e

(r)
0 )(A

(α)
1 T12 +A

(α)
2 T22 + Tα2) − (A

(α)
1 T1r +A

(α)
2 T2r + Tαr)

+
(

1
3 (c3 − a3) sinσ, 0, 1

2K
−1(b2 − a2)

)

. (109)

where
τ = −e(r) + (τ0 − (1

2π − σ)e
(r)
0 )P C0 + PG e(r), (110)

and

τ0 − (1
2π − σ)e

(r)
0 = −CT

0 PG e(r) + e
(r)
0

CT
0 P C0 + C00

≡ −S
(r)
1 + e

(r)
0

S2 + C00
, (111)

in terms of previously-defined vectors and matrices.
The expression (109) is again straightforward to compute. It is possible,

with some work, to confirm analytically from the expressions (91), (108) and
(109) that the reciprocal relations (26) and (27) hold exactly.

5.5. Numerical approximation

All that remains is to develop numerical approximations to the matrix T in
(82) in terms of solutions to (80). We follow methods outlined in, for example,
Evans and Fernyhough [12], and expand the unknown functions Vi(ξ) for i =
1, 2, s, r, p in a finite series

Vi(t) ≈
R
∑

r=0

α(i)
r vr(t), ξ ∈ Γ (112)

in terms of R + 1 unknown coefficients α
(i)
r and functions

vr(t) =
(−1)r(2r)!Γ(1

6 )(ln(b/c))1/6

21/3πΓ(2r + 1
3 )

(

(ln(b/c))2 − (ln b− t)2
)−1/3

C
1/6
2r

(

ln b− t

ln(b/c)

)

,

(113)
expressed in terms of Gegenbauer polynomials, Cν

n . This choice is made to
incorporate the expected inverse cube root singularity in the velocity of the
fluid at the corner of the wedge, or as t → ln c, whilst the wall condition (50)
at t = ln b dictates that even Gegenbauer polynomials should be used. See,
for example, Evans and Fernyhough [12]. The numerical pre-factor in (113)
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Ârr

Âp
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Figure 4: Variation of dimensionless hydrodynamic coefficients (in (a) Âss, Ârs =
Âsr, Ârr and Âp and in (b) −2q̂s = f̂p and −2q̂r = t̂p) against Kb ≡ ω2b/g for internal
tank dimensions of a/b = 0.5, c/b = 0.8 such that the channel width ratio is 0.4, and
2σ = 0.8π.

is chosen for subsequent algebraic simplification. Using (112) in the integral
equation (80), multiplying through by vm(ξ), m = 0, 1, . . . , R and integrating
over ξ ∈ Γ, a process which characterises the Galerkin method, gives rise to the

following real, symmetric algebraic system of equations for the coefficients α
(i)
r :

R
∑

r=0

α(i)
r Kmr = R(i)

m , m = 0, 1, . . .R (114)

for each i = 1, 2, s, r, p where

Kmr =

∫

Γ

∫

Γ

K(t, ξ)vm(ξ)vr(t) dξ dt, R(i)
m =

∫

Γ

fi(ξ)vm(ξ) dξ. (115)

Using the definition of K from (76) gives

Kmr =

∞
∑

n=1

∞
∑

j=1

PnjF
I
mnF

I
rj

cosh pn(1
2π − σ) cosh pj(1

2π − σ)

+
∞
∑

n=1

F I
mnF

I
rn

pn coth pn(1
2π − σ)

+
∞
∑

n=1

F II
mnF

II
rn

qn coth qnσ
(116)

where standard integral results (see Erdélyi et al. [8]) give, for n ≥ 1

F I
mn =

(

ln(b/c)

ln(b/a)

)1/3 J2m+1/6

(

ln(b/c)
ln(b/a)nπ

)

(nπ)1/6
and F II

mn =
J2m+1/6 (nπ)

(nπ)1/6
.

(117)
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Also, from the definitions of fi(ξ) in (78), (79) we find

R(1)
m =

ǫ
1/2
0 δm0

22/3Γ(7
6 )

(

ln(b/c)

ln(b/a)

)1/2

(118)

in terms of the Kronecker delta symbol,

R(2)
m =

∞
∑

n=1

∞
∑

j=1

PnjCj0F
I
mn

cosh pn(1
2π − σ)

(119)

and

R(α)
m =

∞
∑

n=1

∞
∑

j=1

Pnjd
(α)
j F I

mn

cosh pn(1
2π − σ)

+

∞
∑

n=1

e
(α)
n F I

mn

pn coth pn(1
2 − σ)

+
∞
∑

n=1

∞
∑

j=1

Pnje
(α)
j F I

mn

cosh pn(1
2π − σ) cosh pj(1

2π − σ)
(120)

for α = s, r, p. Finally, the matrix elements are approximated by substituting
(112) into (82) which results in

Tij ≈
R
∑

r=0

α(i)
r R(j)

m , i, j = 1, 2, s, r, p. (121)

Numerically it is found that values of Tij computed using (114), (121) converge
very rapidly with increasing truncation size R. This partly on account of the
second-order accurate Galerkin method that has been employed but also be-
cause the choice of basis functions accurately reflects the fluid behaviour. In
practice, R is taken to be of the order of 5 for 5 decimal place accuracy and so,
numerically, the solution of (114) and the computation of (121) is very quick and
accurate. Other infinite series occur in the process of making these calculations
and therefore need truncation. It is found that the required 5 decimal places of
accuracy is attained provided we truncate series over the index n to N = 1000
terms and series over the index j to 16 terms. The most numerically intensive
part of this process is inverting matrix in the definition of P in (66).

A sample set of numerical results showing the variation of dimensionless
added inertia coefficients, defined here as Âss = Ass/Mw, Âsr = Asr/(Mwb),
Ârr = Arr/(Mwb

2), Âp = ApMwω
2/b2, (where Mw = ρπb2 is the mass per unit

length of fluid displaced by the submerged cylinder), moments, t̂p = tp/b
2, and

fluxes, q̂r = qr/b
2, against dimensionless frequency Kb are shown in figures 4

and 5. Evident in these figures are values of Kb at which the various hydrody-
namic coefficients asymptote towards plus/minus infinity. Unsurprisingly, these
are identified as the natural undamped sloshing resonances of the internal tank
whose resonant frequencies can be identified from figure 3. In the tank configu-
ration with the smaller wedge section, the values of roll inertia and volume flux
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Figure 5: Variation of dimensionless hydrodynamic coefficients (in (a) Âss, Ârs =
Âsr, Ârr and Âp and in (b) −2q̂s = f̂p and −2q̂r = t̂p) against Kb ≡ ω2b/g for internal
tank dimensions of a/b = 0.5, c/b = 0.625 such that the channel width ratio is 0.75,
and 2σ = 0.2π.

are seen to be smaller, as one would expect. It should also be noted that in the
limit of ω → 0, Ass → Mt, the mass of the water in the tank.

The most severe test of the numerical method and the accuracy of the hy-
drodynamic coefficients is provided by the computation of the dimensionless
version of Z2, given by (37), namely Ẑ2 = Z2Mwω/b

2, required in the eval-
uation of the wave power W . Thus, we confirm numerically that Z2 remains
bounded when the hydrodynamic coefficients diverge at the resonant frequency.
This feature of the numerical results is rooted in the way in which have been able
to express, in Section 5.4, the hydrodynamic coefficients in terms of elements of
the T which preserves the reciprocal relations automatically and independently
of the truncation parameters used in the numerical scheme. Similar bounded-
ness in combinations of singular hydrodynamic coefficients has been reported
in Evans and Newman [11] in a related problem and in Faltinsen and Timokha
[13, §5.4.1.3]

6. Results

We focus now on the computation and optimisation of power from the fully
coupled device. We shall consider only the case where the turbine power take-
off parameter λ is real and constant. The dimensionless version of this will be
reported, being λ̂ = λMwω/b

2 ≡ λ̃
√
Kb.

The success of the device relies on the power W being as high as possible over
a broad range of wave frequencies typical of those found in a real sea spectrum
(say 5-11s waves).

There are three components to W in the expression (44), each of which con-
tributes to maximising the power. The first component is Wmax itself and this
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Figure 6: Values of µ and ηopt against period, T for a cylinder with b = 7m, h = 50m,
b/f = 0.75, M/Mw = 0.15, and an internal tank with a/b = 0.5, c/b = 0.8, and
2σ = 0.8π.
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is a function of the geometry and motion of the WEC. This has elements which
are fixed by the design of the device. That is, we are considering a submerged
circular circular cylinder moving in surge motion. For a three-dimensional cylin-
der of finite length, the length, radius and submergence of the cylinder can all
be adjusted to maximise Wmax with respect to some measure of the size of the
cylinder. Three-dimensional WECs of this type are normally assessed by their
capture factor, being the ratio of Wmax to the wave energy incident on the
length of the WEC.

In two-dimensions, however, the situation is much more straightforward since
all quantities are measured per unit length of the device and this naturally
results in the efficiency, η, of the WEC, being the ratio of the power absorbed
per unit length of the cylinder to the incident wave power per unit crest length.
Thus, a symmetric device moving in surge the efficiency is well known (see, for
example, Evans [9]) to be given by η = W/(2Wmax) and takes a maximum of
ηmax = 1

2 , or 50% conversion efficiency. All computations below are based on
this two-dimensional setting where efficiency is given by

η =
1

(1 + |Z2|/Re{Z2})

(

1 − (λ − |Z2|)2

|λ+ Z2|2
)

, (122)

which has just two components to consider. The first, which represents the
optimum efficiency for real λ, can be written

ηopt =
1

1 +
√

1 + µ
, where µ = Im{Z2}/Re{Z2} (123)

and is thus dependent solely on the ratio µ. In particular, to maximise the
efficiency (so that ηopt = ηmax = 1

2 ), this ratio needs to be zero. In practice
we will aim to minimise µ over a broad range of wave frequencies – a task
made easier if µ vanishes at multiple frequencies within the range of interest.
Such zeros occur when Im{Z2} = 0 and these are identified as resonances of
the coupled cylinder/tank configuration. The aim will be design the cylinder
radius and submergence and the internal tank configuration to minimise µ. To
maximise the second component, we must aim to choose a value of λ such that
λ ≈ |Z2| for the same broad range of frequencies. This is a tuneable condition
but still, we will get the best results if |Z2| is approximately constant over the
range of frequencies of interest.

We continue by presenting, in figures 6 and 7 two sets of results corresponding
to the two internal tank configurations considered in figures 4 and 5 now coupled
to a realistic mooring system in a physical setting. Thus, we have fixed the radius
at b = 7m, the water depth to be 50m, the submergence of the cylinder at b/f =
0.75 equivalent to a clearance between the free surface and the top of the cylinder
of 2.33m. Also fixed is the ratio of the mass of the cylinder to the mass of water
displaced by the cylinder, M/Mw = 0.15. These parameters have been chosen as
they are typical of those shown to perform well for a submerged cylinder WEC
when internal mechanical systems of pendulums replace the internal water tank.
In this dimensional setting we show the variation of the factor, µ, in the left-hand
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Figure 7: Values of µ and ηopt against period, T for a cylinder with b = 7m, h = 50m,
b/f = 0.75, M/Mw = 0.15, and an internal tank with a/b = 0.5, c/b = 0.625, and
2σ = 0.2π.
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WEC h (m) b(m) δ b/f L/b s c/b a/c 2σ/π λ̃ T

A 50 7 1 0.75 0.53 0.64 0.15 1.0 0.80 1.99 4.8
B 25 3.5 1 0.80 0.81 0.64 0.11 1.0 0.80 1.27 3.3
C 25 7 2 0.46 1.39 0.38 0.76 0.88 0.80 0.84 7.1

Table 1: Two-dimensional optimised configurations for a full scale and half scale
device. Here s is the specific gravity given by s = (M + Mt)/Mw and T is the natural
sloshing period of the fluid in the tank.

figures and corresponding variations of optimal efficiency ηopt in the right-hand
figures both against wave period, T . Apart from the tank configuration which
is set as described in figures 4 and 5 the only degrees of freedom that are left to
be defined are the length of the mooring system L, being the vertical distance
between the midpoint of P1 and P2 or P shown in figure 1 and the centre O of
the cylinder, and δ, which encapsulates the type of mooring system. On account
of how the various terms are arranged within the equations, it turns out to make
sense to plot curves of µ and ηopt against T for selected values of δb/L and L/b;
the values given to these parameters determine L and δ with b = 7m.

In figure 6 one clearly observes the correspondence between vanishing µ
where the cylinder/tank are resonant and maximum ηopt = 1

2 . As also suggested
if |µ| takes low values over a range of periods the ηopt will remain close to its
maximum of 1

2 ; the best example here is with δb/L = 1 and L/b = 2. It is not
easy to understand mathematically how the multiple resonances, characterised
by vanishing µ occur. Crowley et al. [3] show that the cylinder itself, without
coupling to an internal resonant system can exhibit multiple resonances. In the
example considered in figure 6 we note that the internal tank configuration is
resonant at T ≈ 9.5s and it is tempting to conclude from the figure shown that
there is a signature of this internal resonance in each set of results shown.

However the system develops its response, the first point of note is that it
is encouraging to find here that the sloshing of an internal fluid, driving air
through the turbine, is capable of generating multiple resonances and hence
multiple peaks in optimal efficiency across a broad range of periods.

In figure 7 a similar set of results are shown for a system with an internal tank
configuration corresponding to the results shown in figure 5. Here, the sloshing
resonance of the internal fluid is calculated to be at T ≈ 6s and, again, results
are suggestive of the influence of that resonance. The mooring configuration
δb/L = 2 with L/b = 1 gives an impressive-looking broadbanded efficiency close
to maximum over periods from 6 − 12s.

The results provided by figures 6 and 7 serve as a guide as to the differ-
ent types of results we might expect. It is evident that the mooring system
δ = 0, whilst capable of performing well over small range of periods, is not as
broadbanded as for other values of δ.

By far the easiest mooring system to realise practically is that presented in
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figure 1(b) for δ = 1. For this reason we focus on the case δ = 1 in addition
to selected fixed values of either b = 7m, h = 50m (case A) or the half scale
b = 3.5m, h = 25m (case B). However, we will now allow all other geometri-
cal parameters including the mooring length, L, and submergence, f , as well
as parameters, a, c and σ, associated with the internal tank configuration, to
vary. Specifically these are to be considered as free variables within a numerical
optimisation routine whose aim is to computationally determine the device pa-
rameters which maximise the power of the device over a range of wave periods.
To avoid unphysical or impractical results constraints must be placed in the
optimisation procedure on most of these variables. Of particular note we do
not allow b/f to exceed 0.8 so that there is reasonable clearance between the
top of the cylinder whilst the internal wedge angle 2σ cannot exceed 0.8π. The
ratio M/Mw is fixed at 0.15. The objective function to be minimised in the
optimisation routine is defined as the time-integral of 1

2 −η over periods of 5s to
11s. This is not particularly sophisticated, but, by minimising this function, we
are simply trying to achieve an evenly-weighted broadbanded efficiency across
energetic wave periods belonging to a typical real sea state.

The results of this optimisation procedure are shown in table 1. This shows
that, in both full scale and half scale examples A and B, the optimisation selects
an annular tank with no internal wedge protrusion and a relatively small inner
core. Indeed, the table show that the resonant wave periods for each of these
two cases is well below the range of wave periods over which the optimisation is
being performed. Contrary to the results suggested by figures 6 and 7 it appears
that internal sloshing resonances are not essential for the successful performance
of this WEC. Similar conclusions were drawn from the study of Crowley et al.
[3] when the optimisation of the configuration of internal pendulums simiarly
selected resonant periods below the target period range. The particular conclu-
sion drawn in that paper might apply here also; that it is the pitching cylinder
resonance itself which is the principal component in making this device work.
The internal water tank acts instead as an inertial device against which relative
rotation of the cylinder under motion produces power.

In the final line of table 1 we consider a further set of fixed values of b = 7m
and h = 25m with δ = 2 (case C) and with an added constraint that the mooring
is attached to the sea bed. Here, the optimiser selects a tank configuration which
does include an internal wedge whose resonance period of T = 7.1s appears
important.

In figure 8 we show how the two optimised cases A and B operate. Figure
8(a) demonstrates that a high broadbanded maximum efficiency is possible for
the full size cylinder (case A), associated with µ being close to zero over a wide
range of frequencies and |Ẑ2|/

√
Kb not varying far from the optimal value of

λ̃ selected by the optimiser. Figure 8(d) shows the associated maximum pitch
angle of the cylinder per unit wave amplitude (that is, per 2m wave height)
which can readily be computed from the solution. Case A looks fairly reasonable,
confined to about 16◦ though case B is far in excess of the limits under which
linearised theory should be used. Clearly, for larger wave heights the theory
presented here is not applicable. The results of case B suggest that the cylinder
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Figure 9: Results for the optimised pitching cylinder device C detailed in table 1: (a)
the efficiency E and its optimal value Eopt and (b) the excursion of the device |Θ/A|.

here is too small to convert high proportions of incident wave energy and, when
tuned to do so, is forced into large pitching excursions.

We return briefly to case C and show its efficiency curve and cylinder excur-
sion in figure 9. Here, with the bigger cylinder, a high broadbanded efficiency
is returned and, with the δ = 2 mooring attached to the sea bed inducing twice
the cylinder roll angle than in cases A and B the cylinder pitch excursions are
reduced from those seen for δ = 1 in figure 8.

7. Conclusions

We have presented a preliminary investigation into the operation of a sub-
merged cylinder wave energy converter with an internal power take off system
based on sloshing fluid motion. It has been demonstrated that the motion of a
pitching cylinder close to the free surface coupled to the pitch-induced roll of the
cylinder itself driving the internal water motion can create multiple resonances
and resulting broadbanded power take off characteristics. Towards the end we
have focussed on one particular embodiment for the size location and mooring of
the cylinder and used numerical optimisation to identify the best configuration
under these conditions. The flexibility offered by different mooring systems has
not been fully explored here. Nor have we considered other practical constraints
that might need to be imposed on the system such as limiting the amplitude
of the motion or increasing the submergence of the cylinder. With the number
and flexibility of the parameters available it may be possible to consider other
solutions and retain a high broadbanded efficiency.

During the paper we have shown how to determine sloshing frequencies and
forced motion hydrodynamic coefficients for fluid in a tank with a novel and
complex geometrical configuration. This has been done using powerful mathe-
matical techniques resulting in accurate and efficient numerical results.
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Appendix A: The centre of gravity of the cylinder

Here we make the calculation of the centre of gravity of the tank in figure
2(a),

zG + f = − ρc

M

∫

δV

rz dV = 2
3 (c3 − a3) sinσ

ρc

M
, (124)

where ρc is the density of the internal mass of the solid cylinder and M the
mass of the cylinder without the internal fluid. The z-component of the position
vector r = (r sin θ, r cos θ) with respect to the centre of the cylinder is integrated
over the internal region of the cylinder, where only the wedge section a < r < c,
−σ < θ < σ makes a net contribution away from zG = −f . The turbine is
neglected in this calculation.
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