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Abstract

This paper describes a semi-analytic approach to problems involving rectan-
gular elastic plates of shallow draft floating on water. Specifically, two prob-
lems are considered: the scattering of plane monochromatic incident waves
by a single elastic plate and the propagation/attenuation of waves through a
periodic rectangular arrangement of plates. The approach combines Fourier
methods with Rayleigh-Ritz methods for free modes of rectangular plates
which reduces each problem to an algebraic system of equations which are
are numerically accurate and efficient to compute. A selection of results
are given to illustrate the work. The approach can be applied to many
problems in hydroelasticity including the seakeeping of large flat-bottomed
marine vessels, deflections in very large floating structures such as offshore
airports and wave propagation through areas of broken sea ice.

Keywords: Floating ice, ocean wave scattering, periodic arrays,
rectangular ice floes

1. Introduction

The propagation of energy through thin flexible ice sheets floating on
water and its coupling to ocean wave energy is a research topic which has
attracted significant recent attention; see, for example, the review article
of Squire [20]. The principle application area relates the study of seasonal
sea ice where interest centres on characterising the propagation of wave en-
ergy originating from the ocean through areas of broken ice and its effect on
shore-fast sea ice [9]. Current models to predict attenuation rate of energy
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(e.g. [11], [23], [24]) typically incorporate results from fundamental sea-
ice/wave interaction problems. These include, for example, how energy is
transmitted at water/ice sheet boundaries and across cracks, leads, pressure
ridges and keels in ice sheets (e.g. [1], [22], [21], [5], [4], [25]). Lately, more
sophisicated modelling has been performed on interaction effects between
multiple three-dimensional ice floes and large regular or pseudo-random ar-
rangements of ice floes (e.g. [16]). Scattering by more realistic ice floes
which typically have jagged edges and are roughly polygonal are hard to
compute, requiring discrete boundary/finite element-type calculations (e.g.
[15], [17]). Consequently, researchers have typically resorted to using circu-
lar ice sheets for which semi-analytic methods (e.g. separation of variables
and mode-matching) can be employed to speed up numerical calculations
(e.g. [2], [3], [16]).

A second application area concerns the calculation of the wave response
of large or very large floating structures such as large ships/barges, off-
shore airports and floating storage facilities. Fully-discretised numerical
approaches coupling structural and hydrodynamic responses have been de-
veloped for these types of problems (see e.g. [8], [12], [7]) but a numerically
very expensive. It is worth noting that, for the applications listed above,
geometries are often approximately rectangular and of shallow draft.

This paper provides an account of a semi-analytical approach to solving
a problem involving waves interaction with thin rectangular elastic plates
floating on water. The work follows from two recent papers involving the
current author. The first ([18]) considers ocean wave interaction with rigid
rectangular plates of small draft and advocates the use of Fourier transforms
methods as a simple, effective and numerically efficient procedure for com-
puting solutions. The second ([14]) considers the the use of flexible floating
plates with internal damping as a continuum model for articulated raft wave
energy converters. One of the key contributions of the latter work was show-
ing how the unknown deflection of the floating plate could be represented in
terms of in-vacuo bending modes of a one-dimensional elastic plate. These
can be determined explicitly and followed the cue from [13].

The foundation of the solution presented in this paper is based on those
two previous pieces of work mentioned above and the detailed development
of solutions presented in, for example, Section 2 of this paper are suppressed
as a result. However, significant challenges remain. Unlike the solution used
in [14] which assumed rectangular plates with flexibity in one direction (and
rigid in a perpendicular direction), the elastic plate has isotropic properties.
The unknown displacement of the plate is now expanded in the in vacuo
eigenmodes for a thin rectangular plate with free edges whose solutions
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cannot be expressed explicitly. Thus, our principle effort is in demonstrating
how the numerical solution of the in vacuo problem, famously first solved
by Ritz (see [6]) can be embedded into the solution of the problem with an
underlying fluid.

In §2 we consider the problem of the scattering of incident waves by a
rectangular ice sheet, using Fourier transforms to derive an integral equation
for an unknown vertical displacement of the ice sheet, subject to constraints
on its edges and corners. We then show how the approximation of that
function using the eigenmodes for the corresponding thin plate can be used
to determine a relatively simple and rapidly convergent system of algebraic
equations.

In §3 we then consider wave propagation/attenuation in infinite doubly-
periodic arrays of rectangular ice sheets. Here by the use of finite Fourier
transforms (Fourier series) replace infinite transforms and result in a similar
system of equations to those derived in §2. The work is summarised in §4.

2. Scattering of ocean waves by a single rectangular ice floe

A thin ice sheet of constant thickness d and density ρi floats, with
a draft assumed much smaller than other physical lengthscales including
wavelength, on the surface of an ocean of infinite depth. The ice sheet
is taken to be rectangular in shape and occupies the horizontal region
D = {(x, y)| − a < x < a, − b < y < b} of the plane z = 0. The
fluid, of density ρw, extends into z < 0. It is incompressible and inviscid
and its motion is irrotational allowing the fluid motion to be described by a
velocity potential which is written ℜ{φ(x, y, z)e−iωt} after assuming single
frequency time dependence. Then φ satisfies

∆φ = 0 (2.1)

in the fluid where ∆ = ∇2 + ∂zz is the three-dimensional Laplacian and
∇2 = ∂xx+∂yy is its projection onto the horizontal plane. On the free surface
of the ocean, the combined linearised dynamic and kinematic conditions give

φz −Kφ = 0, z = 0, (x, y) 6∈ D (2.2)

where K = ω2/g; on the ice sheet, they result in

(D∇2∇2 + 1−Kδ)φz −Kφ = 0, z = 0, (x, y) ∈ D. (2.3)

In the above D = Ed3/(12ρwg(1−ν2)) represents the bending stiffness terms
of Young’s modulus (E) and Poisson’s ratio (ν) and δ = (ρi/ρw)d represents
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heave inertia. Additional terms which represent the less significant effects
of dissipation, compression and rotational inertia are not included in (2.3),
but can be found in [1], for example.

The relationship between the vertical displacement of the surface
ℜ{η(x, y)e−iωt} and the potential is expressed by

η(x, y) =
i

ω
φz(x, y, 0). (2.4)

This function is discontinuous across ∂D = {|x| = a, |y| < b ∪ |y| =
b, |x| < a} the boundary of D comprised of the the four straight edges of
the ice sheet separating it from the ocean. These edges are free of bending
moments and shear stresses which is represented by the conditions

(Bη)(x, y) ≡ ηnn + νηss = 0,

(Sη)(x, y) ≡ ηnnn + (2− ν)ηnss = 0,

}
(2.5)

where n and s are used, respectively, to denote derivatives normal and tan-
gential to the edge (consistently oriented). Additionally, the four corners
are free of twisting moments and this implies that

ηns = 0. (2.6)

Finally far away from the ice sheet, φz → 0 as z → −∞, whilst a radiation
condition requires that

φ− φinc ∼ outgoing waves at infinity (2.7)

where φinc = (−ig/ω)eiK(x cos θ0+y sin θ0)eKz is the potential representing in-
cident waves of unit amplitude propagating in the direction θ0 measured
anticlockwise from the positive x-axis.

An application of double Fourier transforms in x and y to the problem,
following the work of [18], [14] leads to

η(x, y) − 1

4π2

∫
∞

−∞

∫
∞

−∞

√
α2 + β2√

α2 + β2 −K
P (α, β)eiαxeiβy dαdβ =

eiK(x cos θ0+y sin θ0) (2.8)

where

P (α, β) =

∫ b

−b

∫ a

−a
(Kδ −D∇2∇2)η(x, y)e−iαxe−iβy dxdy. (2.9)
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Equations (2.1)–(2.4) have been used in deriving (2.8) whilst defining con-
tours of integration in the inverse transform appropriately ensures (2.7) is
also satisfied. The integrand in (2.8) is singular along the circle α2+β2 = K2.
Transforming integration variables from α, β to polar coordinates with
α = Kρ cosχ, β = Kρ sinψ allows us to identify singularities as simple
poles at ρ = 1 on the real ρ-axis and choosing the inverse contour to pass
below this pole allows (2.7) to be satisfied.

An integral equation determining η(x, y), (x, y) ∈ D, is arrived at by
restricting (2.8) to (x, y) ∈ D but requires η(x, y) to additionally satisfy
(2.5) and (2.6) on ∂D. Once η(x, y) is determined in D, (2.8) can be used
for (x, y) 6∈ D to reconstruct the displacement of surrounding free surface.

In order to solve the integral equation for η(x, y), we first write the
right-hand side term in (2.8) as

eiK(x cos θ0+y sin θ0) =
∑

µ,ν=0,1

R(µν)(x, y) (2.10)

where

R(00)(x, y) = cos(Kx cos θ0) cos(Ky sin θ0),

R(01)(x, y) = i cos(Kx cos θ0) sin(Ky sin θ0),

R(10)(x, y) = i sin(Kx cos θ0) cos(Ky sin θ0),

R(11)(x, y) = − sin(Kx cos θ0) sin(Ky sin θ0). (2.11)

The response is decomposed in the same manner as

η(x, y) =
∑

µ,ν=0,1

η(µν)(x, y). (2.12)

such that η(µν)(x, y) = (−1)µη(µν)(−x, y) = (−1)νη(µν)(x,−y) = (−1)µ+ν

η(µν)(−x,−y). These definitions match the symmetries of the functions
R(µν)(x, y) about x and y axes.

We follow [14] exploiting an idea originally due to [13] in expanding the
unknown plate deflection in terms of the eigenmodes of the unloaded thin
elastic plate. That is, we write

η(µν)(x, y) =
∞∑

i=0

a
(µν)
i

(Kδ −Dλ
(µν)
i )

W
(µν)
i (x, y) (2.13)

where a
(µν)
i are undetermined coefficients and the denominator is included

for algebraic convenience. In (2.13) W ≡W
(µν)
i (x, y) and λ ≡ λ

(µν)
i refer to
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the ith eigenfunction/ eigenvalue pair of the eigenproblem

(∇2∇2 − λ)W = 0, (x, y) ∈ D (2.14)

satisfying (BW )(x, y) = (SW )(x, y) = 0 on (x, y) ∈ ∂D and Wxy = 0 on the
four corners of ∂D with symmetry/antisymmetry about x = 0 and y = 0
represented by µ = 0/1 and ν = 0/1.

The problem of determining the free modes and their frequencies for the
oscillations of a thin rectangular elastic plate with free edges, represented in
the eigenproblem above, has a long history. Separately available supplemen-
tary material (see [19]) provides the background to this problem and details
of its numerical solution. In it, the free plate eigenmodes are approximated
by writing

W
(µν)
i (x, y) ≈

N∑

m=0

N∑

n=0

α
(i)
2m+µ,2n+νw2m+µ(x/a)w2n+ν(y/b) (2.15)

where the coefficients α
(i)
2m+µ,2n+ν are determined numerically by the Rayleigh-

Ritz method and where the functions wn(t) for |t| < 1 represent eigenmodes
for the corresponding one-dimensional Euler-Bernoulli beam equation with
free edges and are given by

w0(t) =
√

1/2, w1(t) = t
√

3/2, (2.16)

with

w2n(t) =
1√
2

(
cosh k2nt

cosh k2n
+

cos k2nt

cos k2n

)
, (tanh k2n = − tan k2n) (2.17)

for n ≥ 1 and

w2n+1(t) =
1√
2

(
sinh k2n+1t

sinh k2n+1
+

sin k2n+1t

sin k2n+1

)
, (tanh k2n+1 = tan k2n+1)

(2.18)
again, n ≥ 1. The brackets contain the relations satisfied by kn, an increas-
ing sequence of positive values beyond k1.

In [19] is it also shown that W
(µν)
i (x, y) are orthogonal, in the sense

1

ab

∫ b

−b

∫ a

−a
W

(µν)
i (x, y)W

(κλ)
j (x, y)dxdy = E

(µν)
j δµκδνλδij (2.19)

where

E
(µν)
i ≈

N∑

m=0

N∑

n=0

{α(i)
2m+µ,2n+ν}2 (2.20)
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is determined numerically in terms of coefficients α
(i)
m,n referred to above.

The representation of η(x, y) in terms of eigenmodes of the free-edge
plate problem expressed in (2.15) has two important features in the con-
text of the current problem. First, it means that η satisfies the required
conditions on the edges and corners of the ice sheet and, secondly, it allows
the fourth-order differential operator ∇2∇2 acting on η(x, y) in (2.8) to be

substituted by terms involving λ
(µν)
i multiplying W

(µν)
i .

Thus, substituting (2.15) into (2.8) with (2.9) and (2.10) before multi-

plying through by W
(κλ)
j (x, y) and integrating over (x, y) ∈ D results in a

system of equations satisfied by a
(µν)
i as

E
(µν)
j a

(µν)
j

Kδ −Dλ
(µν)
j

−
∞∑

i=0

a
(µν)
i Q

(µν)
i,j = R

(µν)
j , j = 0, 1, . . . (2.21)

and µ, ν = 0, 1 after use of the orthogonality relation (2.19). Here

Q
(µν)
i,j =

ab

4π2

∫
∞

−∞

∫
∞

−∞

√
α2 + β2√

α2 + β2 −K
W

(µν)
i (α, β)W

(µν)
j (−α,−β)dαdβ

(2.22)
where

W
(µν)
i (α, β) =

1

ab

∫ b

−b

∫ a

−a
W

(µν)
i (x, y)e−iαxe−iβy dxdy (2.23)

and

R
(µν)
j =

1

ab

∫ b

−b

∫ a

−a
W

(µν)
j (x, y)R(µν)(x, y) dxdy. (2.24)

Finally, we need to calculate the expressions for W
(µν)
i (α, β). It follows from

(2.15) and (2.23) that

W
(µν)
i (α, β) ≈

N∑

m=0

N∑

n=0

α
(i)
2m+µ,2n+νw2m+µ(αa)w2n+ν(βb) (2.25)

where

wm(σ) =

∫ 1

−1
wm(t)e−iσt dt. (2.26)

With the definitions given in (2.16) and (2.17) it can be shown that w0(σ) =√
2 sinσ/σ, w1(σ) = −i

√
6(sinσ − σ cos σ)/σ2, and, for m > 1,

w2m(σ) =
2
√
2σ2

(σ4 − k22m)
(k2m cos σ tanh k2m + σ sinσ) (2.27)
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and

w2m+1(σ) =
−i2

√
2σ2

(σ4 − k22m+1)
(k2m+1 sinσ coth k2m+1 − σ cos σ). (2.28)

The limits σ → km exist in all cases. For computational purposes we use the
evenness/oddness of w2m and w2m+1 to restrict the integrals to α > 0, β > 0
and convert integrals to polar coordinates (see earlier) before evaluating
the contribution from the pole by shrinking the inverse Fourier transform
contour onto the real axis

Q
(µν)
i,j =

K2ab

π2

∫ π/2

0

∫
∞

0

ρ2

ρ− 1
W

(µν)
i (Kρ cosχ,Kρ sinχ)

W
(µν)
j (−Kρ cosχ,−Kρ sinχ) dρdχ

+ i
K2ab

π

∫ π/2

0
W

(µν)
i (K cosχ,K sinχ)W

(µν)
j (−K cosχ,−K sinχ) dχ.

(2.29)

The first integral in ρ is of a Cauchy principal-value type. Note that Q
(µν)
i,j =

Q
(µν)
j,i . Also using the definitions above

R
(µν)
j = W

(µν)
j (−K cos θ0,−K sin θ0). (2.30)

The displacement far from the ice sheet is described by the radiation
condition

η(x, y) = ηinc(x, y) +

(
2

πKr

)1/2

A(θ; θ0)e
iKr−iπ/4 (2.31)

in terms of the diffraction coefficient A(θ; θ0) and x = r cos θ, y = r sin θ.
From (2.7), considered in the limit r → ∞ and matched to (2.31) through
the use of stationary phase, it can be shown that

A(θ; θ0) =
i

2
K2ab

∞∑

i=0

∑

µ,ν=0,1

a
(µν)
i R

(µν)
i . (2.32)

Application of the optical theorem provides a relation

∫ 2π

0
|A(θ; θ0)|2 dθ = −ℜ{A(θ0; θ0)} (2.33)
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Figure 1: Diffraction coefficient amplitude |A(θ; 0)| measured against heading, θ, and
frequency, Kh, for head incident waves. A square ice sheet is 1m thickness and dimension
20m in (a) and 80m in (b).

which can be used to check the accuracy of the numerical method. Nu-
merically, this is found to be satisfied to 14 decimal places regardless of
truncation of sums and integrals.

Numerically, we truncate sums over i, j to J + 1 terms and typically
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set J = 4. Then N is normally taken to be 4 or 5 and so the numerical
method, while quite complicated to code, is actually very quick to run. For
high accuracy, shorter wavelengths or larger elastic plates we chose larger
values for the truncation parameters, always looking to achieve four decimal
place accuracy. The highest values needed during testing of the results to
maintain the accuracy required was J = 8 and N = 12.

In Fig. 1 we present the variation of the modulus of the diffraction coef-
ficient |A(θ; 0)| for head-incident waves with Kh and θ for square ice sheets.
In both sub-figures, the ice sheet is h = 1m thick and we take E = 6× 109,
ρw = 1025kgm3, δ = (ρi/ρw)h = 0.9 and ν = 0.3, giving D = 54645. In the
left-hand figure, a = 10m and in the right-hand figure, a = 40m. The range
of values of Kh from 0.04 to 0.2 correspond to ocean wavelengths ranging
from 157m to 31m or wave periods from 10s to 4.5s. Fig. 1 shows limited
diffraction for wavelengths much longer than the ice floe.

Separate unpublished studies performed on two-dimensional scattering
by finite length ice sheets suggest that 1m-thick ice sheet behaves approx-
imately as a rigid floating plate for lengths under approximately 20m and
that bending can have significant effects (depending on frequency) on scat-
tering properties for 1m-thick ice sheets over 40m in length.

These observations are supported by the computations of the free surface
illustrated in Fig. 2 for 20×20m and 80×80m ice sheets. In both cases, Kh =
0.1 is chosen, equivalent to 62m incident waves. Negligible bending is shown
in the smaller ice floe (and this remains the case for other wavelengths), but
it is noticeable in the larger ice sheet. Significant diffraction effects are also
evident in Fig. 2(b) which tie in with the cross section through Kh = 0.1 in
Fig. 1(b) of |A(θ, 0)|.

In Fig. 3 we consider wave scattering by elongated ice sheets. In both
sub-figures, we consider an ice sheet of 1m thickness, of length 160m and
width 40m whilst the incident wave is set at Kh = 0.08, equivalent to 73m
incident wave length. The incident wave heading in Figs. 3(a) and (b) is 0◦

and 45◦. It illustrates many expected features of diffraction; circular wave
scattering, shadow and reflective zones. One can also observe the structure
of bending waves (having a distinctive wavelength) within the ice sheet.

3. Wave propagation through a doubly-periodic array of rectan-

gular ice sheets

Consider an infinite doubly-periodic array of identical thin floating ice
sheets arranged on a rectangular lattice with periodicity 2A in the x direction
and 2B in the y-direction. Each cell contains, within its borders, a single
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(a)

(b)

Figure 2: Surface elevation η(x, y) for head incident waves on a 1m thickness ice sheet
with Kh = 0.1 (wavelength 62m). In (a) and (b) the floe sizes are 20×20m and 80×80m.

rectangular ice floe of length 2a and width 2b and rotation ψ. When ψ = 0
the edges of the ice sheets are aligned with the underlying lattice. In such a
case, choosing a = A and b = B results in a continuous covering of ice with
cracks between adjacent ice sheets. With a < A and b < B leads are formed
between them.

Using Bloch-Floquet theory we seek solutions which are quasi-periodic
in both x and y, satisfying

φ(x+ 2A, y, z) = e2iα0Aφ(x, y, z), φx(x+ 2A, y, z) = e2iα0Aφx(x, y, z),
(3.1)

and

φ(x, y + 2B, z) = e2iβ0Bφ(x, y, z), φy(x, y + 2B, z) = e2iβ0Bφy(x, y, z),
(3.2)

for all z < 0 with identical spatial relations holding for the plate displace-
ment η(x, y) = (i/ω)φz(x, y, 0). We refer to α0 and β0 as Bloch wavenumbers
and these need only be considered between 0 < α0A < π, 0 < β0B < π as so-
lutions with all other real values can be related solution within this range of
values. It is typical to call (α0A, β0B) the dimensionless Bloch wavevector.

The problem to solve is now formed from (2.1)–(2.4) applied to a single
ice sheet in a fundamental lattice cell, say |x| < A, |y| < B, with (3.1)
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(a)

(b)

Figure 3: Surface elevation η(x, y) for a wave heading of (a) 0◦ and (b) 45◦ on a 1m
thickness ice sheet of length 160m and 40m width with Kh = 0.08 (wavelength 73m).

applying with x = −A and (3.2) with y = −B so as to constitute periodic
boundary conditions connecting the solutions at the edges of the cell. Within
the framework of this homogeneous problem, we seek non-trivial solutions
which represent the propagation of free waves through the array. Specifically,
we will seek values of frequency parameterK for which this occurs for a given
Bloch wavevector, (α0A, β0B).

To solve the problem defined above we follow adopt the method of §2, re-
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placing infinite Fourier transforms with finite Fourier transforms (or Fourier
series). The most general expression satisfying (3.1) and (3.2) is given by

φ(x, y, z) =
∞∑

k=−∞

∞∑

l=−∞

Ak,l(z)e
iαkxeiβly (3.3)

where Ak,l(z) is the (discrete in x, y) transform function and

αk = α0 +
kπ

A
, βl = β0 +

lπ

B
, (3.4)

for all k, l. In accordance with the definition in (3.3) the finite Fourier
transform of φ is defined as

Ak,l(z) =
1

4AB

∫ B

−B

∫ A

−A
φ(x, y, z)e−iαkxe−iβly dxdy. (3.5)

Satisfaction of Laplace’s equation (2.1) along with φz → 0 as z → −∞
implies

Ak,l(z) = Ck,le
γk,lz, γk,l =

√
α2
k + β2l (3.6)

for arbitrary coefficients Ck,l which are determined by taking the transform
(3.5) of φz −Kφ on z = 0 and using conditions (2.2) and (2.3). This leads
to

Ak,l(z) =
Pk,le

γk,lz

γk,l −K
(3.7)

where

Pk,l =
1

4AB

∫ b

−b

∫ a

−a
(Kδ −D∇2∇2)φz(x, y, 0)e

−iαkxe−iβly dxdy. (3.8)

For clarity, we have assumed that the relative rotation of the ice sheet φ to
that of the lattice is zero.

Now (3.7) represents the solution in transform space, expressed in terms
of φz on z = 0. Taking the inverse, (3.3), a derivative in z and setting z = 0
gives the equation

η(x, y) =
1

4AB

∞∑

k=−∞

∞∑

l=−∞

γk,le
iαkxeiβly

γk,l −K

∫ b

−b

∫ a

−a
(Kδ −D∇2∇2)η(x, y)e−iαkxe−iβly dxdy. (3.9)
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Values of (K,α0, β0) that satisfy this equation belong to dispersion surfaces
which govern the relationship between frequency of motion and spatial pe-
riodicity in x and y of waves able to propagate indefinitely through the
periodic array of ice sheets. In particular, those values of K for which no
pairs (α0A, β0B) exist which satisfy (3.9) are said to belong to stop bands.
If K does not belong to a stop band it is said to belong to a pass band
and this implies that wave propagation allowed in at least some directions
through the array. Solutions of (3.9) are sought in exactly the same way as
for the single ice sheet, by expanding in series of eigenmodes. We write

η(x, y) =
∑

µ,ν=0,1

∞∑

i=0

a
(µν)
i W

(µν)
i (x, y) (3.10)

and this leads to the system of equations

E
(κλ)
j a

(κλ)
j

Kδ −Dλ
(κλ)
j

−
∑

µ,ν=0,1

∞∑

i=0

a
(µν)
i Q̃

(µν,κλ)
i,j = 0 (3.11)

for κ, λ = 0, 1 where

Q̃
(µν,κλ)
i,j =

ab

4AB

∞∑

k=−∞

∞∑

l=−∞

γk,l
γk,l −K

W
(µν)
i (αk, βl)W

(κλ)
j (−αk,−βl) (3.12)

and all other symbols are defined within §2.
There is not the same level of simplification as in §2 where the inci-

dent wave forcing was decomposed into the sum of four terms with different
symmetries. In other words, there is now coupling between different sym-
metry modes in (3.12), essentially because of the offset in the Fourier modes
introduced by quasi-periodicity sought in solutions.

In Fig. 4 we have plotted solutions of (3.11) in the case of D = 54645,
δ = 0.9, a = 10m, a/A = b/B = 1 and a/b = 1.5. The solutions form disper-
sion surfaces corresponding to propagating waves with the doubly-periodic
array in frequency-Bloch wavevector space represented here by (α0A, β0B)
on horizontal axes and KA along the vertical axis. In the literature, it is
common to compress the information contained on these surface into the
union of three cross-sections through the surfaces (the boundaries of the
irreducible Broullion zone) to form a so-called band-gap diagram. Its main
purpose is to to identify frequencies for which no waves may propagate,
based on an assumption that minima and maxima in each dispersion sur-
face are captured by this process. Such frequencies are then said to lie in a
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Figure 4: The first five dispersion surfaces (defined as relationship between the Bloch
wavevector, (α0A, β0B), and frequency KA supporting wave propagation) for a doubly-
periodic array of ice sheets: D = 54645, a = 10m, a/A = b/B = 1 and a/b = 1.5.

stop band. In the solution above there is a stop band between kA = 3.95
and kA = 3π/2 ≈ 4.71. At other frequencies, within so-called pass bands,
there are continuous ranges of values of Bloch wavevectors for which solu-
tions exist and these relate to a range of possible phase relations as wave
pass through the array. The slope of the dispersion surfaces, measured in
the direction of the Bloch wavevector from the origin in Fig. 4 indicates
the magnitude and direction group velocity of those waves. That is to say
that the direction of energy transport is not always in the same direction
as the Bloch wavevector. For point disturbances in the array, propagation
of energy is only permitted in directions in which the Bloch wavevector and
the group velocity vector are aligned. These are most often along the two
perpendicular axes defining the lattice. For square lattices, radiation would
also be expected along directions at 45 degrees to these lines; for non-square
lattices radiation from point sources along other directions is less likely.

In Fig. 5 a perspective snapshot is shown of a section of the surface of
an ice-covered ocean. In this example, a/A = b/B = 1 and ψ = 0◦ so
that neighbouring ice sheets are separated by cracks. The parameters for
this particular realisation are an ice thickness of h = 1m, a = 20m and
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Figure 5: A section of the surface elevation η(x, y) corresponding wave propagation
through a doubly-periodic array of ice sheets. With h = 1m, a = 20m, a/b = 1.5,
a/A = b/B = 1, ψ = 0◦, α0A = 1

2
, β0B = 1

2
and Kh = 0.04362 is a solution on the first

dispersion surface.

a/b = 1.5 so that individual ice sheets have dimensions 40 × 26.3m. The
particular shown corresponds to Bloch wavenumbers of α0A = β0B = 0.5
and Kh = 0.04362 is the solution which lies on the first dispersion surface
and corresponds to low frequency (approximately 10 second) wave motions.
It can be seen in Fig. 5 the ice sheets respond as rigid plates in this example
as a consequence of their size and the long underlying wavelength which
allows the individual floes to ‘ride’ the surface.

When the ice sheet is rotated by a non-zero angle ψ with respect to the
underlying lattice, the changes that are needed result in a revised version of
(3.11) being

Q̃
(µν,κλ)
i,j =

ab

4AB

∞∑

k=−∞

∞∑

l=−∞

γk,l
γk,l −K

W
(µν)
i (α′

k, β
′

l)W
(κλ)
j (−α′

k,−β′l) (3.13)

where

α′

k = αk cosψ + βl(b/a) sinψ, β′l = βl cosψ − αk(a/b) sinψ (3.14)

This results quite easily from a rotation of (x, y) coordinates through an
angle ψ in (3.9)

In Fig. 6 we combine a rotation of the ice sheets with an opening up
of the water surface between adjacent ice sheets resulting in open water
channels or ‘leads’ between neighbouring ice sheets. We choose h = 1m and
a/b = 1.5 as before but with a = 30m so that each ice sheet is 60 × 40m
in size. Here a/A = b/B = 0.75 and ψ = 15◦ which allows each ice sheet
to reside inside its own cell. The particular solution shown in Fig. 6 is for
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Figure 6: A section of the surface elevation η(x, y) corresponding to wave propagation
through a doubly-periodic array of ice sheets separated by open water leads. With h = 1m,
a = 30m, b = 20m, a/A = b/B = 0.75, ψ = 15◦, α0A = 1, β0B = 1

2
and Kh = 0.11889 is

a solution on the third dispersion surface.

α0A = 1, β0B = 0.5 and a solution is taken from the third dispersion surface
with Kh = 0.11889 equivalent to 6.78s-period motion. The motion is most
easy visualised in plan view and there is a complicated interaction between
water and ice sheets which can be seen to produce significant flexing of the
ice sheets in the array.

Many similar types of results can easily be obtained and we have only
shown two examples which highlight the main features which can be ac-
cessed.

4. Conclusions

In the first part of this paper we have described a semi-analytical ap-
proach to determine the response of a shallow-drafted rectangular elastic
plate to waves. The application of Fourier transform methods results in
an integral equation for the unknown displacement. This function is ap-
proximated in a numerical scheme using eigenmodes of the one-dimensional
Euler-Bernoulli beam equation with numerically-determined weighting co-
efficients. This leads to a system of equations which is complicated to code,
but one which is executed very quickly.

The coupling of numerically-determined in vacuo eigenmodes to the hy-
drodynamic problem is similar to other approaches; most notably that of
[15]. There, a finite-element method discretisation of the elastic plate forms
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the basis of the method; in this paper we use a spectral method which is
computationally inexpensive for parameters of interest.

In the second part, the method is extended to doubly-periodic arrange-
ments of ice sheets. Fourier series replace transforms and the result is a
homogeneous infinite system of equations to determine wave modes propa-
gating without attenuation through the array.

In both parts, a small selection of results serve to demonstrate the meth-
ods at work although there is no focus on any particularly new or unexpected
wave phenomena. The existence of stop bands in periodic arrays of rectan-
gular ice sheets may be of interest to some researchers interested in metama-
terials. Extensions to the current work could include calculating interactions
between finite arrays or singly-periodic arrays of rectangular ice floes.
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