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Abstract

In this paper a finite array of hinged flap-type wave energy converters are modelled using a
mathematical approach. These are illustrative of the Oyster device of Aquamarine Power LTD2. A
novel semi-analytic solution method is presented for a set of boundary-value problems involving the
scattering and radiation of waves by thin barriers used to model the device hydrodynamics. The
approach makes use of the geometry to apply Fourier transforms, deriving non-singular integral
equations in terms of the jumps in pressure across the flaps. These are then solved numerically
using a highly efficient Galerkin expansion method. The focus of the results is on optimisation.
We suggest optimal parameters for a single device, highlighting key features of its success and
identifying flap length as crucial to device performance. This optimisation is then carried through
to arrays with optimal arrangements and spacings being determined for a model sea state. Here,
the lateral displacement of the devices emerges as a critical factor in optimal array configuration.

1. Introduction

The development of technology for the conversion of ocean wave energy into a source of useable
energy has been a long and slow process. Interest in the potential of wave energy converters
(WECs) as a significant source of renewable energy started in earnest in the mid-1970’s. However,
the route to full scale commerical deployment has been plagued by a combination of factors, not5

least the difficulty in engineering devices exposed to the harsh marine climate which are both
reliable and efficient. In the UK there are two devices which have recently emerged as promising
candidates for large scale commercial success: the Pelamis device manufactured by Ocean Power
Delivery and the Oyster device of Aquamarine Power LTD2. Although engineering development
challenges remain both have enjoyed some success as single device prototypes and the emerging10

challenge is in extending to multiple devices in a wave farm array.
This paper uses a mathematical approach to consider a variety of aspects concerned with the

operation of a hinged flap-type device which is illustrative of the Oyster device referred to above.
The Oyster device itself was derived from research carried out at Queens University, Belfast,
UK, [see 22, for example] and we follow some of the basic modelling assumptions used in that15

early work. Thus, we consider a wave energy converter that is assumed to operate in shallow
water environments. This is comprised of a long, buoyant, rectangular paddle extending upwards
through the water surface. The paddle is hinged along a horizontal axis on a fixed foundation
protruding vertically from the sea bed. When waves are incident upon the flap, it pitches about the
submerged hinge and power is generated by this pitching motion relative to the fixed foundation.20

In the hydrodynamic modelling needed for the computation of power output we make a number
of assumptions. The first is that the width of the flap-type paddle and its foundation are small
enough with respect to typical wavelengths to be regarded as infinitely thin. The next is to assume
that linearised wave theory can be employed, an approximation requiring wave steepnesses and
paddle pitching angles to be small enough. Such approximations are standard in the analysis of25

wave energy devices, see Cruz [4] for example.
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To date, much of the development work on Oyster has been carried out using numerical CFD
and experimental wave tank testing [22, 9]. However, recently a series of papers, [17, 16, 15] have
approached the hinged flap-type problem. Thus, an infinite periodic array, a single device and a
finite number of in-line devices have all been considered. Our paper uses the same background30

theory as contained in [16] and [15]. However, there are some differences which will be alluded to
in the description of our approach below.

The main purposes of the present paper are three-fold. First to describe the principle of
operation of a single flap-type device. There are good reasons to suppose that high performance
is unlikely. In particular, it is well known that for fore-aft symmetric devices designed to operate35

in a single mode of motion (pitch in the case of the Oyster) efficiencies are limited to a maximum
of 50% in a two-dimensional setting (corresponding here to a flap extending across a finite-width
wave tank). Other device concepts such as the Bristol Cylinder [5] and the Salter Duck [18] which
are designed to operate in a more complicated manner are theoretically capable of efficiencies up
to 100%. Moreover, hinged flap-type converters representative of Oyster are known to have a40

natural resonant period of about 20s [22] well beyond the range of energy-dense periods in a real
sea spectrum. We will be able to describe why the hinged flap-type WEC of finite length works
better than suggested by these two counter arguments. This insight is not contained in the paper
of Renzi and Dias [16].

The second main purpose of the paper is to demonstrate a mathematical solution method45

to the hydrodynamic problems that arise when considering a finite array of N flap-type devices
which are parallel but otherwise positioned arbitrarily. Thus is it shown how an application of
Fourier transforms leads to N coupled integral equations in terms of N unknown functions relating
to jumps in hydrodynamic pressures across the flaps. Furthermore, application of a Galerkin
approximation involving a judicious choice of expansion functions reduces the integral equations50

to a low-order system of equations whose solutions are efficiently and accurately computed. This
approach is different to Renzi and Dias [16], Renzi et al. [15] who used Green’s functions to develop
hypersingular integral equations, solved by collocation.

The third purpose is to exploit the numerical efficiency of solutions for arrays of devices to
perform an optimisation over a number of free parameters associated with the theoretical problem.55

This allows us, in the first instance, to assess the optimal configuration of a single flap device under
a realistic random sea state. In particular, it is demonstrated that the length of the flap is critical
to its performance. Continuing further, the configuration of a multi-flap array is considered, the
optimisation procedure being used to select the arrangement of the array which yields the highest
total power output, again in a model sea state. Here, the stagger and distances between elements60

of the array emerge as critical factors in determining array performance.
One of the difficulties in designing arrays of devices – and the reason why we have resorted

to using numerical optimisation in this paper – is that there are limited theoretical results for
optimisation of power from multiple elements of an array. This is in stark contrast to what is
known about how single devices work and are optimised. In the Appendix we have provided65

a series of results relating to optimal power for arrays of devices under practical constraints on
the power take-off. It is hard to imagine that all of these results are new, although the authors
have been unable to find them in the literature – perhaps because they have limited application.
However, for an array of two identical devices new results of practical use have been derived for
the maximisation of power.70

In §2 of the paper we derive expressions for the power absorption and relate them to certain
properties of scattering and radiation potentials satisfying linear water wave problems and associ-
ated with the scattering and radiation of waves by each of the thin barriers. Much of this section
is guided by principles of wave power conversion calculations set out, for example, in Thomas
[20]. These are then extended in the Appendix where strategies are developed for determining75

optimal mechanical damping for practical power take-off systems in the context of an array and
new results are derived. We go on to specify the hydrodynamic problems associated with the
scattering and radiation of waves by a finite array of parallel flaps in §3 and in §4 a new integral
equation formulation is derived and presented for their approximate solution.

Certain elements which are key to the numerical calculations and accuracy of the subsequent80

approximate solutions are discussed in §5. It is here that we introduce a self-similar spectrum
applicable to the near-shore context and used in the determination of the mean capture factor.
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Figure 1: Some key parameters imposed on side and plan views of the nth flap converter used in the hydrodynamic
model.

This is employed throughout the results as a measure for optimal performance in random waves
representative of a real sea. Results are then presented in §6; initially for a single device and then,
with increasing generality, for arrays of 2,3 and 5 devices. Finally, in §7 conclusions are drawn85

and suggestions for future work are given.
In the final preparation for submission of this paper the authors became aware of a recently

published paper, Sarkar et al. [19] which considers the same problem of power take-off from
arbitrary arrays of parallel flap-type devices. There are, of course, inevitable similarities between
the paper of Sarkar et al. [19] and the present paper. Thus, the hydrodynamical modelling and90

model assumptions are the same and the focus on assessing the performance differences between
in-line and staggered arrays is similar. Some of the conclusions are similar too. However, there
are some significant differences in the two pieces of work. The features of our paper highlighted
earlier in the Introduction, such as the mathematical analysis of the single device performance
and the development of analytic expressions for optimising power for arrays, are new. In terms of95

the approach taken to solve the hydrodynamic problem, Sarkar et al. [19] use Green’s functions
to develop hypersingular integral equations numerically approximated by collocation methods.
In constrast, we have taken a very different mathematical approach, using Fourier transforms
to develop non-singular integral equations which are numerically approximated by Galerkin’s
method. This difference is significant in terms of numerical efficiency of computations. Numerical100

simulations on a test problem performed by Sarkar et al. [19] on a 3.4Ghz PC with 16GB of RAM
are quoted as taking 6 minutes on average (page 7). On a similar piece of equipment (a 3.0Ghz
PC with 16GB RAM) our method applied to their same problem is roughly 20 times faster. This
increase in numerical efficiency is crucial if one wants to implement optimisation methods as we
have done here.105

Finally, the focus of the numerical results is very different here to Sarkar et al. [19] where the
main focus is on q-factors for central device elements as functions of wave period. There, discrete
configurations of elements in the array have been considered with fixed spacings and mainly in
normally-incident waves. We have instead focused on the total power developed by the whole
array under a random wave spectrum (adjusted for the nearshore environment) with directional110

spreading and, instead of fixed spacings, we have implemented an optimisation routine which
selects the optimal array configuration. Some of the conclusions made by Sarkar et al. [19] we
agree with, such as general rules preferring certain types of stagger over others. However, the
results presented here have been able to select optimal configurations at spacings well beyond
those considered in Sarkar et al. [19].115

2. Formulation

Cartesian coordinates have been chosen with the origin at the mean free surface level and
z pointing vertically upwards. The fluid has density ρ and is of constant, finite depth h. We
consider a finite array of N flap-type devices, each labelled by the index n. These are oriented
parallel to the y-axis, have length denoted by 2an and are centred (when viewed from above) at120
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Figure 2: Some key parameters imposed on a plan view of an example configuration of an array of flap converters.

the points (x, y) = (bn, dn) such that b1 ≤ b2 ≤ ... ≤ bN . The hydrodynamic model assumes
the flaps are infinitely thin and buoyant so that when at rest they occupy the vertical planes
{x = bn, dn − an < y < dn + an,−h < z < 0} for n = 1, ..., N . They are hinged along horizontal
axes (x, z) = (bn,−c), which are denoted in figure 1 by P . Above its pivot each flap is free to
move and below it is held fixed and vertical. Θn(t) is the (assumed small) angle through which125

the nth flap has rotated measured anticlockwise from the vertical. A standard small-amplitude,
linearised theory of water waves is used. A monochromatic wave of assumed small amplitude H/2
and radian frequency ω is incident on the array from x < 0 making an anti-clockwise angle β with
the positive x-direction where β ∈ (−π/2, π/2).

The time-dependent problem is as follows. We define a velocity potential Φ(x, y, z, t) satisfying130

52Φ = 0, in the fluid (2.1)

with linearised dynamic and kinematic free surface conditions

Φt + gζ = 0, and ζt = Φz, on z = 0 (2.2)

where ζ(x, y, t) denotes the free surface and g is the gravitational acceleration. On the bottom of
the fluid,

Φz = 0, on z = −h. (2.3)

Having considered the boundary conditions on the free surface and sea bed we now turn our
attention to the boundaries formed by the flaps themselves. On the nth flap, the time-dependent
linearised kinematic condition is

Φx
(
b±n , y, z, t

)
= Θ̇n (t)u (z) , where u (z) =

{
0, −h < z < −c
z + c, −c < z < 0

(2.4)

for y ∈ (dn − an, dn + an) and n = 1, ..., N .135

Now, since we are interested in the flaps’ capacity for wave energy absorption we must consider
the forces which are acting. Applying Newton’s second law for rotation to the motion of each of
the N flaps about their pivots (which occupy a horizontal axes given by (x, z) = (bn,−c) for
dn − an < y < dn + an) gives

InΘ̈n(t) = −CnΘn(t) +Xw,n(t) +Xe,n(t), for n = 1, ..., N , (2.5)

where In denotes the moment of inertia and Cn the restoring moment (produced by assumed
buoyancy) of the nth flap about its pivot. The values of these quantities are determined by the
physical properties of the corresponding flaps, namely their dimensions and density. Further,
Xw,n are the time-dependent wave torques acting on each of the N flaps, given by the integrated
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moment of the pressure forces acting on the nth flap in the positive x-direction:

Xw,n (t) = ρ

∫ dn+an

dn−an

∫ 0

−h
[Φt
(
b+n , y, z, t

)
− Φt

(
b−n , y, z, t

)
]u(z) dz dy for n = 1, ..., N. (2.6)

Finally, Xe,n denote the external mechanical torques produced by the power take-off on each of
the N flaps.

Now, with the formulation of the time-dependent problem set out it is convenient to factor out
the assumed harmonic time dependence due to the incident wave by writing

Φ (x, y, z, t) = Re
{
φ (x, y, z) e−iωt

}
, ζ (x, y, t) = Re

{
η (x, y) e−iωt

}
,

Θ̇n (t) = Re
{

Ωne
−iωt} , Xw,e (t) = Re

{
Fw,ee

−iωt} . (2.7)

where Ωn is the complex angular velocity of the nth device. Its use in this context follows the
general convention when formulating wave energy problems.

Since Laplace’s equation and the boundary conditions for the velocity potential φ are linear
we may use the principle of superposition to decompose the problem into component parts

φ (x, y, z) = AφS (x, y, z) +

N∑
m=1

Ωmφ
m (x, y, z) where A =

igH

2ωψ0 (0)
(2.8)

where ψ0 is a normalised depth eigenfunction and will be defined, along with the incident wave,140

a little later. Here φS is associated with the scattering of an incident wave of unit amplitude by
flaps held fixed vertically with the scaling A ensuring an incident wave height H (peak to trough).
Meanwhile, φm corresponds to the generation of waves by the mth flap when it experiences a
prescribed oscillatory motion in otherwise undisturbed waters and all other flaps are held fixed.

Using (2.7) in (2.1) - (2.3), φS and φm satisfy

52φS = 0 and 52 φm = 0, for m = 1, ..., N , in the fluid (2.9)

with the combined linear kinematic and dynamic free surface condition giving

φSz −
ω2

g
φS = 0 and φmz −

ω2

g
φm = 0, for m = 1, ..., N on z = 0 (2.10)

and on the bottom of the fluid,

φSz = 0 and φmz = 0 for m = 1, ..., N on z = −h. (2.11)

Further, from (2.4) the linearised kinematic condition on the nth flap for the scattering problem
is given by

φSx
(
b±n , y, z

)
= 0 for −h < z < 0 and y ∈ (dn − an, dn + an), n = 1, ..., N , (2.12)

since the flap is held fixed forming a solid, vertical barrier. For the remaining potentials, φm, the
condition on the nth flap when the mth flap is oscillating is given by

φmx
(
b±n , y, z

)
= u (z) δmn for y ∈ (dn − an, dn + an), n,m = 1, ..., N (2.13)

where the angular velocity was factored out in (2.8).145

At this point it is pertinent to introduce the incident wave; a solution defined by its time-
independent velocity potential is

φI (x, y, z) = eik(x cos β−y sin β)ψ0 (z) (2.14)

where k is the positive, real wave number satisfying ω2 = gk tanh kh and ψ0 (z) is a normalised
depth eigenfunction associated with the propagating waves defined by

ψ0 (z) = N
−1/2
0 cosh k (z + h) , N0 =

1

2

(
1 +

sinh 2kh

2kh

)
. (2.15)
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The potentials φm, m = 1, ..., N and φD ≡ φS − φI describe outgoing waves at large distances
from the flap.

Removing the harmonic time-dependence, Newton’s law (2.5) may now be written as

−iωInΩn = − iCn
ω

Ωn + Fw,n + Fe,n (2.16)

where Fw,n is correspondingly given by

Fw,n = −iωρ
∫ dn+an

dn−an

∫ 0

−h
[φ
(
b+n , y, z

)
− φ

(
b−n , y, z

)
]u(z)dzdy. (2.17)

Using an analagous decomposition of Fw,n to that of φ (given in (2.8)) we write

Fw,n = AFS,n +

N∑
m=1

ΩmFm,n (2.18)

where

FS,n = −iωρ
∫ dn+an

dn−an

∫ 0

−h
[φS

(
b+n , y, z

)
− φS

(
b−n , y, z

)
]u(z)dzdy (2.19)

and

Fm,n = −iωρ
∫ dn+an

dn−an

∫ 0

−h
[φm

(
b+n , y, z

)
− φm

(
b−n , y, z

)
]u(z)dzdy (2.20)

for n = 1, ..., N .150

We then further decompose Fm,n into real and imaginary components

Fm,n = iωAnm (ω)− Bnm (ω) (2.21)

where the real quantities Anm(ω) are each in phase with the acceleration of the nth flap due
to the forced oscillatory motion of the mth, routinely being called the added inertia coefficients.
Meanwhile, the real components Bnm(ω) are the corresponding radiation damping coefficients and
are in phase with the velocity of the nth flap due to the motion of the mth. Substituting back
into (2.18) we have that the time-independent wave torque is given by

Fw,n = AFS,n +

N∑
m=1

(iωAnm − Bnm) Ωm. (2.22)

Given the nature of the problem, in which we are considering an array of flap-type devices, it
is natural to pursue a matrix formulation. To that end we let

A = (Anm) and B = (Bnm) (2.23)

denote the real, symmetric N ×N added inertia and radiation damping matrices and

M = diag (I1, I2, ..., IN ) and C = diag (C1, C2, ..., CN ) (2.24)

be diagonal matrices with elements comprised of the moments of inertia and restoring torques of
each of the N flaps. Further, we define the following complex N -vectors

FS = A (FS,1, FS,2, ..., FS,N )
T

and Ω = (Ω1,Ω2, ...,ΩN )
T

(2.25)

which allow us to define the vector of wave forces as

Fw = FS + (iωA−B) Ω. (2.26)

6



Thus far we have not considered the mechanism for power take-off. For now, we decide that it
should take a general form and be written as

Fe = −ΛΩ (2.27)

so that the force due to power take-off on the nth flap is a linear combination of forces proportional
to the angular velocities of all N flaps. This is governed by the controllable power take-off matrix
Λ for which we wish to determine optimal values. Employing our matrix notation and expressions
for the external mechanical and wave torques we may rewrite equation (2.16) as

FS =

(
B− iω

(
A + M− 1

ω2
C

))
Ω + ΛΩ. (2.28)

The notation may be further streamlined by defining the following complex, symmetric matrix

Z = B− iω
(

A + M− 1

ω2
C

)
, (2.29)

which gives the exciting force vector to be

FS = (Z + Λ) Ω. (2.30)

Using that the time averaged power is given by

W =
1

2
<e
{
F†wΩ

}
=

1

2
<e
{

F†SΩ
}
− 1

2
Ω†BΩ (2.31)

then after some manipulation it may be shown (see for example, Evans [6]) that

W =
1

8
F†S
[
B−1 −E†B−1E

]
FS where E =

(
Z† −Λ

)
(Λ + Z)

−1
. (2.32)

Here the dagger notation has been used for the adjoint (or conjugate transpose) of a matrix. By
inspection of this form for the power we may easily see that the maximum is given by

Wmax =
1

8
F†SB−1FS (2.33)

which is achieved when the condition Λ = Z† is satisfied. However, this requires Λ to be a dense,
complex matrix which gives rise to fundamental issues in terms of the practical implementation.
Firstly, due to the non-zero off-diagonal elements, the damping which is applied to the nth flap
depends on the complex angular velocity of all N flaps. This requires them to be be linked and
would be impractical in reality. Secondly, the complex values require a phase-lag between power
and velocity. Thus the form given in (2.31) has limited practical use and it is arguably simpler to
compute the power using (2.16) in (2.31) first to give

W = −1

2
<e
{
F†eΩ

}
=

1

2
<e
{

F†S
(
Z† + Λ

)−1
Λ (Z + Λ)

−1
FS

}
(2.34)

in which the second equality results after using (2.27) and (2.30) and the assumption that Λ is
real. In Appendix A we go on to consider particular practical forms for Λ, in each case deriving
equations determining optimal values. In general these are not closed form but implicit. However,
for two identical, parallel devices we are able to establish analytic bounds for the optimal power
take-off parameter Λ.155

At this point we focus on the calculation of the power. This requires the determination of
certain hydrodynamic coefficients, namely the exciting force on a fixed flap, FS , along with the
added inertia and radiation damping matrices, A and B. These are found through the solution
of the hydrodynamic problems for φS and φm, m = 1, ..., N .
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3. Specification of the Scattering and Radiation Problems160

3.1. The Scattering Problem

The scattering problem deals with the diffraction of the incident wave when the flaps are held
fixed vertically. The problems for both a single fixed barrier and a periodic array have previously
been considered by many authors (for example Morse and Rubenstein [13] and Carr and Stelzriede
[3] in the first case and Porter and Evans [14] and Williams and Crull [23] in the second).165

First, we extract the depth dependence since the flaps extend uniformly throughout the entire
depth, remaining in a fixed vertical position. We do this by writing the velocity potential associated
with the scattering problem as

φS (x, y, z) = ψS (x, y)ψ0 (z) . (3.1)

Thus (2.9) reduces to the modified Helmholtz equation,(
∂2

∂x2
+

∂2

∂y2
+ k2

)
ψS = 0, (3.2)

in the plane of the free surface. Both the combined linear free surface condition (2.10) and the
bottom condition (2.11) are automatically satisfied by (3.1), leaving the condition on the flap itself
(2.12) which becomes

ψSx
(
b±n , y

)
= 0 for y ∈ [dn − an, dn + an] , n = 1, ..., N. (3.3)

It can be seen immediately from (2.14) that the incident wave may be represented by

ψI = e−ik(x cos β−y sin β). (3.4)

Then the exciting wave torque about the pivot of the nth flap is given, from (2.19), by

FS,n = −iωρ
∫ an+dn

an−dn

∫ 0

−h

[
ψD
(
b+n , y

)
− ψD

(
b−n , y

)]
ψ0 (z)u (z) dzdy for n = 1, ..., N, (3.5)

where ψD ≡ ψS − ψI represents the diffracted potential and is characterised by outgoing waves
at infinity. It is helpful to decompose u(z) in terms of the complete set of normalised depth
eigenfunctions

ψj (z) = N
−1/2
j coskj (z + h) , Nj =

1

2

(
1 +

sin2kkh

2kjh

)
(3.6)

where kj for j = 1, 2, ... are the positive roots of ω2 = −gkjtankjh. This is consistent with the
definition given for ψ0(z) in (2.15) if we let k0 = −ik. The normalised depth eigenfunctions ψj(z),
including j = 0, satisfy the orthogonality relation

1

h

∫ 0

−h
ψi (z)ψj (z) dz = δij . (3.7)

We can then write

u (z) =

∞∑
j=0

Ujψj (z) , (3.8)

where, using the definition of u(z) from (2.4), we have

Uj =
1

h

∫ 0

−h
u(z)ψi(z)dz =

N
−1/2
j

k2
jh

(kjc sin kjh+ cos kjh− cos kj (h− c)) . (3.9)

Finally, substituting u(z) as expressed in (3.8) into the integral (2.20) and using the orthogonality
relation (3.7), the z integral evaluates to hU0. This results in the exciting torque (2.20) on each
of the N flaps reducing to

FS,n = −iωρU0h

∫ dn+an

dn−an

[
ψD
(
b+n , y

)
− ψD

(
b−n , y

)]
dy for n = 1, ..., N. (3.10)
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3.2. The Radiation Problem

The remaining components in the decomposition of the velocity potential deal with the waves
radiated when each of the flaps in turn undergoes a prescribed oscillatory motion whilst all others
remain fixed. The linearised kinematic condition on the flap extends throughout the entire depth
and depends only on z. Using the decomposition of u(z) this gives

φmx
(
b±n , y, z

)
= δmn

∞∑
j=0

Ujψj (z) for y ∈ (dn − an, dn + an) , z ∈ (−h, 0) andn,m = 1, ..., N.

(3.11)

On account of (3.11), we may express the potential everywhere as a superposition of modes
associated with the same set of depth modes

φm (x, y, z) =

∞∑
j=0

Ujφ
m
j (x, y)ψj (z) for m = 1, ..., N. (3.12)

Returning to our governing equations we now have, using the definition of ψj(z) given in (3.6)
and independence of the solutions,(

∂2

∂x2
+

∂2

∂y2
− k2

j

)
φmj = 0 for j = 0, 1, 2, ... and m = 1, ..., N (3.13)

in the plane of the free surface. The linearised kinematic condition, using (3.11) and (3.12),
becomes

∂φmj
∂x

(
b±n , y;β

)
= δmn for y ∈ (dn − an, dn + an) , z ∈ (−h, 0) and m,n = 1, ..., N. (3.14)

Finally, using (2.4), (3.8) and (3.12), the wave torque about the pivot on the nth flap due to the
prescribed oscillatory motion of the mth flap (2.20) becomes

Fm,n = −iωρh
∞∑
j=0

U2
j

∫ dn+an

dn−an

[
φmj
(
b+n , y

)
− φmj

(
b−n , y

)]
dy for n,m = 1, ..., N. (3.15)

4. Derivation of Integral Equations

4.1. The Scattering Problem

Methods based on Green’s functions applied to the solution to the wave equation are well
known and versatile, particularly when applied to scattering of waves by geometries with complex
shapes. Here we will take advantage of the geometry being considered, in which the N -flaps are all
thin and arranged parallel to each other, to apply a more direct solution using Fourier transforms
. We define the Fourier transform of ψD(x, y) by

ψ
D

(x, l) =

∫ ∞
−∞

ψD(x, y)e−ilydy. (4.1)

Then, taking Fourier transforms with respect to y of the governing Helmholtz equation (3.2) gives(
d2

dx2
+
(
k2 − l2

))
ψ
D

= 0. (4.2)

We proceed by assuming a general arrangement of flaps in which each flap is displaced laterally
from neighbouring flaps. That is, b1 < b2 < ... < bN and the domain is divided into N +1 sections
denoted by χν , ν = 1, ..., N + 1 as shown in figure 2. These are separated by vertical planes in
line with each of the barriers at x = bn, n = 1, ..., N . It turns out that the special case in which
one or more flaps occupy the same plane can be recovered from the final system simply by setting
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bn = bm for m 6= n. Solving the Fourier transformed Helmholtz equation (4.2) in each of the
domains gives

ψ
D

(x, l) =


A1(l)eλ(x−b1) for −∞ < x < b1

Aν(l)eλx +Bν(l)e−λx for bν−1 < x < bν , ν = 2, ..., N

BN+1(l)e−λ(x−bN ) for bN < x <∞
(4.3)

where B1 = AN+1 = 0 so that the solution remains bounded as x→ ±∞. Also,

λ(l, k) =
√
l2 − k2 = −i

√
k2 − l2, when |l| < k, (4.4)

where the choice of branch ensures the radiation condition is satisfied. By continuity of ψ
D

x across
x = bn for n = 1, ..., N we may derive a set of N linear equations for the unknowns Aν(l) and
Bν(l), ν = 1, ..., N + 1,

A1(l) = A2(l)eλb1 −B2(l)e−λb1 when ν = 1, (4.5)

Aν(l)eλbν −Bν(l)e−λbν = Aν+1(l)eλbν −Bν+1(l)e−λbν for ν = 2, ..., N − 1, and (4.6)

AN (l)eλbN −BN (l)e−λbN = −BN+1(l) when ν = N. (4.7)

Further, defining N functions related to the pressure differences across each of the flaps,

Pn (y) = ψD
(
b+n , y

)
− ψD

(
b−n , y

)
for n = 1, ..., N, (4.8)

taking Fourier transforms and using our Fourier transformed solutions (4.3), we may produce an
additional N linear equations for our unknowns

Pn(l) =


A2(l)eλb1 +B2(l)e−λb1 −A1(l) for n = 1,

An+1(l)eλbn +Bn+1(l)e−λbn −An(l)eλbn −Bn(l)e−λbn for n = 2, ..., N − 1,

BN+1(l)−AN (l)eλbN −BN (l)e−λbN for n = N,

(4.9)

where the Fourier transformed pressure difference is defined by

P ν(l) =

∫ dν+av

dν−aν
Pν(y)e−ily dy. (4.10)

This complete set of 2N linear equations may be solved for our unknowns surprisingly simply to
give

ψ
D

(x, l) =


− 1

2

∑N
ν=1 e

−λ(bν−x)P ν(l) for −∞ < x < b1
1
2

∑n−1
ν=1 e

λ(bν−x)P ν(l)− 1
2

∑N
ν=n e

−λ(bν−x)P ν(l) for bn−1 < x < bn, n = 2, ..., N
1
2

∑N
ν=1 e

λ(bν−x)P ν(l) for bN < x <∞.
(4.11)

At this point we invoke the inverse Fourier transform to give an integral representation for ψD(x, y)
applicable throughout the N + 1 sections of the domain, namely

ψD(x, y) =
1

4π

N∑
ν=1

sgn(x− bν)

∫ ∞
−∞

e−λ|x−bν |eilyP ν(l)dl (4.12)

=
1

4π

N∑
ν=1

sgn(x− bν)

∫ ∞
−∞

e−λ|x−bν |eily
∫ dν+aν

dν−aν
Pν(y′)e−ily

′
dy′dl. (4.13)

We now apply the following condition

∂ψD

∂x
(b±n , y) = −∂ψ

I

∂x
(b±n , y) for n = 1, ..., N (4.14)
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which ensures zero velocity on each of the stationary flaps. This results in the following N coupled
integral equations for Pν(y),

−∂ψ
I

∂x
(bn, y) = − 1

4π

N∑
ν=1

∫ ∞
−∞

λ (l, k) e−λ|bn−bν |eily
∫ dν+aν

dν−aν
Pν (y′) e−ily

′
dy′dl, (4.15)

for n = 1, ..., N . Bearing in mind the known end-point behaviour of the pressure difference across

each of the flaps, Pν (y) ∼
(
a2
ν − (y − dν)

2
)1/2

as y → dν ± aν , it may be shown that the inner

integral behaves like O
(
|l|−3/2

)
for large |l|. This behaviour of the inner integral in turn ensures

the convergence of the outer integral. It is important to note that the order of integration in
(4.15) may not be interchanged as this leads to divergent integrals. We may not solve this set of
integral equations analytically, instead we now consider a numerical solution method, introducing
expansions for the unknowns

Pν (y) ≈
2P+1∑
p=0

α(ν)
p wp

(
y − dν
aν

)
for dν − aν < y < dν + aν and ν = 1, ..., N, (4.16)

where

wp(t) =
eiπp/2

(p+ 1)

√
1− t2Up (t) and Up (cosθ) =

sin (p+ 1) θ

sinθ

are Chebychev polynomials of the second kind. Here, the known end-point behaviour of Pν (y) has
been incorporated into the orthogonal basis functions wp(t) along with numerical scaling factors
which anticipate later algebraic simplification. In order to determine the new set of unknowns

α
(ν)
p we first substitute (4.16) into (4.15) to give

∂ψI

∂x
(bn, y) =

1

4π

2P+1∑
p=0

N∑
ν=1

α(ν)
p

∫ ∞
−∞

λ (l, k) e−λ|bn−bν |eily
∫ dν+aν

dν−aν
wp

(
y′ − dν
aν

)
e−ily

′
dy′dl,

(4.17)

for n = 1, ..., N . Then, as is typical of the Galerkin method, we multiply the nth equation through
by (−1/π)w∗q ((y − dn) /an) and integrate over the corresponding domain y ∈ (dn − an, dn + an)

to give the following system of equations for the coefficients α
(ν)
p :

2P+1∑
p=0

N∑
ν=1

α(ν)
p K(nν)

qp ' D(n)
q (4.18)

for q = 0, 1, ..., 2P + 1 and n = 1, ..., N where

K(nν)
qp =

1

4π2

∫ ∞
−∞

λ(l, k)e−λ|bn−bν |
∫ dn+an

dn−an
w∗q

(
y − dn
an

)
eilydy

∫ dν+aν

dν−aν
wp

(
y′ − dν
aν

)
e−ily

′
dy′dl

(4.19)

and

D(n)
q = − 1

π
ik cosβe−ikbn cos β

∫ dn+an

dn−an
eiky sin βw∗q

(
y − dn
an

)
dy. (4.20)

Using Gradshteyn and Ryzhik [10§3.715 (13), (18)], for example, along with properties of the
Bessel functions Jq, we may derive the following integral identity

∫ a

−a
eilx

(
a2 − ξ2

)1/2
Up

(
ξ

a

)
dξ =

e
inπ/2 (p+ 1)πa2

al
Jp+1 (al) if l 6= 0

1
2a

2πδp0 if l = 0.
(4.21)
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This can then be used to evaluate the integrals in (4.19) and (4.20) and ultimately we arrive at
the results

K(nν)
qp =

1

4

∫ ∞
−∞

λ(l, k)

l2
e−λ|bn−bν |eil(dn−dν)Jp+1 (aν l) Jq+1 (anl) dl (4.22)

and

D(n)
q =

−
ieik(dnsinβ−bncosβ)Jq+1 (kansinβ)

tanβ
if β 6= 0

1

2
ikane

−ikbnδq0 if β = 0.

(4.23)

It may be seen that the integrals giving K
(nν)
qp are exponentially convergent in all cases except

when ν = n (assuming for the moment bn 6= bν for n 6= ν). In this case we note that K
(nn)
pq = 0

if p+ q is odd and so we may reduce our consideration to elements for which p+ q is even. Then
we use an integral result involving products of Bessel functions [10§6.5382(2)] to write

K
(nn)
2q+µ,2p+µ =

δpq
8q + 4 + 4µ

+ K̃
(nn)
2q+µ,2p+µ (4.24)

where

K̃
(nn)
2q+µ,2p+µ =

1

2

∫ ∞
0

(
λ(l, k)

l2
− 1

l

)
J2p+1+µ(anl)J2q+1+µ(anl)dl (4.25)

for µ = 0, 1 and p, q = 0, 1, .... This ensures more rapid convergence, with the integrand decaying

like O
(

(kan)
2
/l4
)

, and finally results in (4.18) reducing to the following coupled pair of systems

α
(n)
2q

8q + 4
+

P∑
p=0

α(n)
2p K̃

(nn)
2q,2p +

N∑
ν=1
ν 6=n

[
K

(nν)
2q,2pα

(ν)
2p +K

(nν)
2q,2p+1α

(ν)
2p+1

] = D
(n)
2q (4.26)

and

α
(n)
2q+1

8q + 8
+

P∑
p=0

α(n)
2p+1K̃

(nn)
2q+1,2p+1 +

N∑
ν=1
ν 6=n

[
K

(nν)
2q+1,2p+1α

(ν)
2p+1 +K

(nν)
2q+1,2pα

(ν)
2p

] = D
(n)
2q+1 (4.27)

for q = 0, ..., P . This coupled pair of systems determining for our unknowns α
(n)
p , p = 0, ..., 2P +1,

n = 1, ..., N are now second-kind in structure. Finally, substituting (4.16) into (3.10), the exciting
torque induced on the nth flap may now be expressed in terms of the Galerkin expansion coefficients
as

FS,n = −1

2
iωρU0hα

(n)
0 anπ for n = 1, ..., N. (4.28)

4.2. The Radiation Problem

The solution method for the remaining wave torques, associated with the radiation problem,
follows similarly to the scattering problem. We follow the method used previously to derive the
integral equations for φjm (b+n , y) in dn − an < y < dn + an as

δmn =
∂φmj
∂x

(b+n , y) = − 1

4π

N∑
ν=1

∫ ∞
−∞

γ (l, kj) e
−γ|bn−bν |eily

∫ dν+aν

dν−aν
P jmν(y′)e−ily

′
dy′dl (4.29)

for n,m = 1, ..., N and j = 0, 1, ... . The significant differences from the scattering problem are the170

replacement of λ(l, k) with γ(l, kj) ≡
√
l2 + k2

j and the revised forcing term which ensures zero
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velocity on each of the stationary flaps whilst also satisfying the linearised kinematic condition on
the mth flap, which is undergoing prescribed oscillatory motion.

We have also defined a new set of functions each related to the pressure difference across the
nth flap due to the oscillatory motion of the mth flap when all others are held fixed,

P jmn(y) = φmj (b+n , y)− φmj (b−n , y) for n,m = 1, ..., N and i = 0, 1, 2, ... . (4.30)

The potential may then be found to be

φmj (x, y) =
1

4π

N∑
ν=1

sgn(x− bν)

∫ ∞
−∞

e−γ|x−bν |eily
∫ dν+aν

dν−aν
P jmν(y′)e−ily

′
dy′dl. (4.31)

We again assume a Galerkin expansion for our unknown functions, given in (4.30), related to
the pressure difference across the νth flap when the mth flap is free to oscillate. This is expressed
in terms of the same set of orthogonal basis functions, wp, defined earlier in (4.16), but with a
new set of unknown coefficients. At this point for ease of notation we drop the j superscript and
henceforth will assume we are considering the jth mode. We write

Pmν(y) '
2P+1∑
p=0

α(mν)
p wp

(
y − dν
aν

)
for dν − aν < y < dν + aν , ν = 1, 2, ..., N. (4.32)

Following the same approximation methods as previously for the scattering problem we find the

following system of equations for the coefficients α
(mν)
p :

2P+1∑
p=0

N∑
ν=1

α(mν)
p L(nν)

qp ' E(nm)
q . (4.33)

Where, analogously to the scattering problem we have defined

L(nν)
qp =

1

2

∫ ∞
−∞

γ(l, kj)

l2
e−γ|bn−bν |eil(dn−dν)Jp+1(aν l)Jq+1(anl)dl (4.34)

and

E(nm)
q = δmnδq0an (4.35)

so that we may write our integral equations more compactly.
As for the scattering problem we find that the integrals are again exponentially convergent

in all cases except where ν = n (again making the assumption for the moment that bn 6= bν for

n 6= ν) and that L
(nn)
qp = 0 if p + q is odd. The integral result from Gradshteyn and Ryzhik

[10§6.5382(2)] is employed as before, for the non-zero elements, to write

L
(nn)
2q+µ,2p+µ =

δpq
8q + 4 + 4µ

+ L̃
(nn)
2q+µ,2p+µ (4.36)

where

L̃
(nn)
2q+µ,2p+µ =

1

2

∫ ∞
0

(
γ (l, kj)

l2
− 1

l

)
J2p+1+µ (anl) J2q+1+µ (anl) dl (4.37)

for µ = 0, 1 and p, q,= 0, 1, 2, ... . Which results in the following coupled pair of systems

α
(nm)
2q

4q + 2
+

1

2

P∑
p=0

α(nm)
2p L̃

(nn)
2q,2p +

N∑
ν=1
ν 6=n

[
L

(nν)
2q,2pα

(mν)
2p + L

(nν)
2q,2p+1α

(mν)
2p+1

] = E
(nm)
2q (4.38)
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and

α
(nm)
2q+1

4q + 2
+

1

2

P∑
p=0

α(nm)
2p+1L̃

(nn)
2q+1,2p+1 +

N∑
ν=1
ν 6=n

[
L

(nν)
2q+1,2p+1α

(mν)
2p+1 + L

(nν)
2q+1,2pα

(mν)
2p

] = E
(nm)
2q+1 (4.39)

for q = 0, ..., P , m = 1, ..., N where, for fixed j, the integrand in (4.37) decays like O((kjan)2/l4).175

Here, kj ∼ jπ/h and so the integration range required is increased for larger values of j and an/h.

Finally, reintroducing the j superscript and identifying α
(mn)j
0 ≡ α

(mn)
0 when applied to the

jth mode, from (2.20) the wave torques are given by

Fmn = −iωρhanπ
∞∑
j=0

U2
j α

(mn)j
0 . (4.40)

5. Numerical Calculations

5.1. Angle of Excursion

The formulation is based on a linearised theory of water waves and there has been an a priori
assumption that excursions of the flap from the vertical are small in order that the results retain
validity. We must therefore be careful to ensure in the results presented that this assumption is
justified. Here we consider the size of the response of nth device as a function of frequency and
incident wave amplitude. We recall from (2.30) that

Ω = (Z + Λ)
−1

FS (5.1)

and so, since from (2.7) the maximum angle of excursion of the nth flap for a particular incident
wave frequency is given by |Θn| = |Ωn/ω|, we have

∣∣∣∣Θn

H

∣∣∣∣ =
|Ωn|
Hω

=

∣∣∣((Z + Λ)
−1

FS

)
n

∣∣∣
Hω

, (5.2)

the (dimensional) measure of the maximum displaced angle of the flap per unit height of incident
wave.180

5.2. Irregular Waves

Throughout the results presented later we consider the optimal device performance when
subject to irregular waves. To do this we need to introduce a wave energy spectrum S(T ) which is
used to represent a more realistic sea state. We choose the Bretschneider Spectrum (Bretschneider
[2]),

SBS(T ) =
5

6
H2

1
3

T 5

T 4
p

e−
5
4 (T/Tp)4 , (5.3)

which was designed to model seas over long fetches that are not necessarily fully developed. This
is appropriate to the wave energy sites off the coast of the UK where waves are incident from
the Atlantic ocean. Here H 1

3
denotes the significant wave height, that is the mean height of the

highest one third of waves, and Tp is the peak wave period in the spectrum. However, since the
Bretschneider Spectrum is designed to model deep water, an additional depth dependent factor is
introduced. This is of the form suggested by Bouws et al. [1] for the JONSWAP (Joint North Sea
Wave Project) spectrum and produces a self similar spectrum which favours shorter wavelengths
in shallower water. Thus we employ the following adapted spectrum,

S(T ) = φK (fH)SBS(T ), (5.4)
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where

φK (f) =

[
(k (f,H))

−3 ∂k(f,H)
∂ω

]
[
(k (f,∞)) ∂k(f,∞)

∂ω

] (5.5)

and

fH = 2πω

√
H

g
. (5.6)

Finally, the directional spread of incident waves in the nearshore environment is incorporated using
a normalised cosine curve spanning ±π/6 radians (±30◦) to model the predominantly normally
incident wave fronts,

E (T, β) = S(T )D (β) where D (β) =

{
3
π (cos (6β) + 1) if − π

6 < β < π
6

0 otherwise.
(5.7)

The mean incident wave power per unit crest length for this spectrum is given by

W inc = 2πρg

∫ π
6

−π6

∫ ∞
0

cg(T )E(T, β)T−2 dT dβ (5.8)

whilst the average power absorbed by an array of N wave surge converters is

W = 2πρg

∫ π
6

−π6

∫ ∞
0

cg(T )E(T, β)l(T, β)T−2 dT dβ. (5.9)

Here l(T, β) is the single-frequency capture width of the array, expressed as a function of both
wave period and angle of incidence, and cg(T ) denotes the finite depth group velocity, expressed
as function of the wave period. Combining these expressions we can define a mean capture factor
which is non-dimensionalised by the total length of the devices in the array

l =
W

W inc

∑N
n=1 2an

. (5.10)

We will aim to maximise this quantity subject to some physical constraints and assumptions about
the sea state.

We choose a model sea state determined by the parameters H 1
3

= 2.83m and Tp = 9s as

suggested by Falnes [8] consistent with an annual average power of approximately

W =
ρg2H2

1
3

Tp

64π
' 30kW/m. (5.11)

5.3. The physical parameters of the device

Having treated the flaps as infinitely thin for the solution of the hydrodynamic problem, we185

now give each device a width 2wn to enable us to specify their physical properties such as mass,
moment of inertia and buoyancy torque. All flaps are assumed to have the same mean density
ρs and to extend from their pivots, located at identical depths z = −c, to the mean free surface
level. The nth device has mass Ms,n = 4ρswncan with the moment of inertia about its pivot given
by In = 1

3Ms,n(c2 + w2
n). The mass of water displaced by the flap is given by Mw,n = 4ρwncan190

where the fluid has density ρ and the constant of proportionality in the buoyancy torque of the
nth device is then Cn = 1

2Mw,n(1−s)gc. Here s = ρs/ρ = Ms,n/Mw,n denotes the specific gravity
of the flap.

We define the following matrices of dimensionless quantities

Â =
3

c2
M−1

w A, B̂ =
3

c2ω
M−1

w B, and Λ̂ =
3

c2ω
M−1

w Λ (5.12)
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Figure 3: Modulus of dimensionless exciting torque on a fixed barrier against ka for different angles of incidence,
β = 0◦, 15◦, 30◦, 60◦, as indicated.

where

Mw = diag (Mw,n) (5.13)

is the matrix with diagonal elements given by the mass of water displaced by each of the N flaps.
Thus, Z becomes

Ẑ =
3

c2ω
M−1

w Z (5.14)

and

F̂S,n = FS,n/ (4iρωU0han) for n = 1, ..., N. (5.15)

This non-dimensionalises the torque on the nth flap by the torque induced by normally incident
waves on a section of the same length 2an of an infinitely long flap.195

In addition to these non-dimensionalisations we decide that the power take-off should take the
form Λ = λI for the purpose of the results presented. The assumption we are making in this
choice is that all devices will have identical power take-off. This is representative of a practical
power take-off system and simplifies the mathematics by reducing the number of free parameters
and focusing our attention. The power may then be calculated using the form derived in the200

Appendix.

6. Results

6.1. A Single Device

The main focus of this paper is the optimisation of arrays of flap-type oscillating wave surge
converters. However, it is useful to first consider a single device. This allows us to appraise the205

accuracy of the solution method, to consider the factors which play a role in the success of flap-
type converters and to establish optimal device parameters which are then used in determining
optimal array configurations and spacings. We therefore fix N = 1 for this section and, for the
sake of simplicity, centre the flap at the origin so that (b1, d1) = (0, 0).

According to the non-dimensionalisation given in (5.15) the dimensionless exciting torque,210

(4.28), is given by F̂S,1 = − 1
8πα0. This is independent of the geometrical parameters of the flap,

instead depending only on ka and β. In figure 3 |F̂S,1| is plotted as a function of ka for a range
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Figure 4: Variation of: (a) |Z11| and =m {Z11} /B11, and (b) capture factors l̂max, l̂opt and l̂ with period T in
seconds for optimal flap parameters, shown in table 1. The first two figures show results for device configuration 1
and the second two those for device configuration 2.

of incident wave angles, β = 0◦, 15◦, 30◦ and 60◦, demonstrating agreement with known limiting
behaviours. Firstly, considering normal incidence (β = 0◦) we see that as ka increases, and the
device becomes long compared to the incident wavelength, the torque tends to the two-dimensional215

limit i.e. the torque for a section of equivalent length from an infinitely-long flap. On the other
hand as ka→ 0, and the device becomes small compared with the incident wavelength, then the
torque tends to zero for all incident wave directions as expected. Considering the effect of the angle
of incidence we may further note that as β → 90◦ and the incident waves become increasingly
oblique the torque again tends to zero.220

The numerical method used depends on various numerical truncation parameters. The infi-
nite integrals defining matrix entries have been computed using 10-point Gauss quadrature on
a truncated integration range and with a discretisation scheme which resolves the 2π-oscillation
period of Bessel functions. Numerical experimentation suggests that as few as n = 6 evanescent
modes in the radiation problem and P = 6 modes in the Galerkin approximation are sufficient to225

achieve results which are accurate enough for graphical purposes in all cases presented. Accurate
results are very quick to compute. Results have been computed independently using a collocation
method applied to a hypersingular integral equation formulation to verify their accuracy (personal
communication, Dr Nicholas Biggs).

Having established confidence in the accuracy of the results we now turn our attention to the
optimal performance of a single device. We first consider the single-frequency capture factor of
the flap as a measure of its performance. This is given by

l̂ = l̂max
2B11

B11 + |Z11|

(
1− (λ− |Z11|)2

|λ+ Z11|2

)
(6.1)
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Figure 5: Variation of mean capture factor l with flap length 2a1 in metres along with scale diagrams of the devices.
The solid line corresponds to device configuration 1 and the dashed line to device configuration 2. Optimal λ has
been determined and used at each flap length.

for a single device, where

l̂max =
2π|FS,1(β)|2

2ka
∫ 2π

0
|FS,1 (θ)|2 dθ

(6.2)

and the exciting force has been expressed as a function of incident wave direction, β, see for230

example Evans and Porter [7]. Thus, there are three main ingredients in the determination of the

capture factor. The first (6.2) sets l̂max and is decided by the geometry of the wave absorber.
This depends on scattering of waves by the fixed absorber and is optimised by a highly directional
force profile as a function of wave angle. The flap offers this feature. The second factor multiplies
l̂max to set l̂opt and depends on hydrodynamic coefficients,235

2B11

B11 + |Z11|
=

2

1 + (1 + (=m{Z11}/B11)2)1/2
. (6.3)

The key to optimising this is making the factor =m{Z11}/B11 as small as possible over a range
of periods. The final factor in (6.1) is the only point at which the controllable power take off
is introduced. Here, we are looking for λ to be close to |Z11| over a broad range of periods.
Optimising the performance of the device involves finely tuning these three components so that
each is optimised in unison. An illustration of the key roles these factors play in device performance240

is shown in figure 4 for the optimal parameters given in table 1. We will discuss this a little later,
but first we focus our attention on the numerical optimisation used to determine the optimal
device configuration.

Optimal device parameters were found by taking advantage of the high numerical efficiency of
the solution method to embed the calculation of the mean capture factor in a multi-dimensional245

numerical optimisation procedure. This was given as free parameters the flap width 2w1, the
flap length 2a1, the hinge depth c, the power take-off parameter λ and the specific gravity s.
Sensible bounds were set on the values these parameters could take and the depth of the water
was chosen to be h = 12m. The optimal parameters determined are shown in table 1 along with
their corresponding mean capture factors l.250

The first row gives optimal values when the hinge height and flap width were fixed at values
representative of the Oyster [Aquamarine Power 12], termed device 1. In this case the specific
gravity selects its lower bound, which was set at 0.15 whilst the optimal device length was found
to be 24.6m, commensurate with the second generation ‘Oyster 800’ device. In the second row
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Device 2a1 (m) 2w1 (m) c (m) s λ l

1 24.6 1.9 8.4 0.15 7.54 0.684
2 19.2 2.4 5.0 0.15 2.02 0.789

Table 1: Optimal device parameters, namely length, width, hinge depth, specific gravity and power take-off pa-
rameter for a single flap are shown along with the corresponding mean capture factors. In the first row conditions
particular to the Oyster device are adopted, with only 2a1 and λ being allowed to vary whilst in the second all
parameters have been allowed to vary within sensible bounds. The depth is fixed at h = 12m.
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Figure 6: Maximum angle of excursion per unit height of incident wave. Results for device type 1 are shown by
the solid line and results for device type 2 by the dashed line.

all parameters were allowed to vary, with the specific gravity of the flap again selecting its lower255

bound at s = 0.15. This configuration favours a shorter flap with a higher hinge point than the
Oyster along with a smaller power take-off parameter. This geometry is termed device 2.

With the optimal parameters determined we return our attention to the components of op-
timisation shown in figure 4. First, we consider =m {Z11} /B11 . Resonance occurs when this
quantity vanishes since when this is the case ω2 (A11 + I1) = C1 and the moment of inertia, plus260

added inertia, is balanced by the restoring forces due to buoyancy. Generally, we want it to be as
small as possible across a range of periods as this results in l̂opt remaining close to l̂max. In figure
4(a) we see one of the key features in the broad-banded success of the Oyster device; despite not
achieving true resonance device 1 is near resonant across a wide range of incident wave periods.
Meanwhile, in figure 4(c) we notice that the natural resonant period of device 2 does fall within the265

range of interest. This reduction of the resonant period is due to a combination of reducing device
length, increasing the width and raising the hinge position and tallies with the numerical findings
of Folley et al. [9] and Whittaker and Folley [22] where it is suggested that shorter, wider devices
have lower resonant periods. Again this quantity remains small across the full range, especially
for lower wave periods where the energy in the nearshore spectrum is focused.270

It it through the final component that the power take-off parameter plays a part. Optimal
tuning requires λ = |Z11| and results in l̂ attaining l̂opt. Generally, λ is constant and so we are
looking for |Z11| to be relatively flat. λ may then be fixed at a value determined by the weighted
average of |Z11| over a real sea spectrum. Here λ has been determined to be optimal for the real
sea spectrum described in §5. The explanation given above suggests mathematical reasons for the275

broad-banded success of flap-type converters as a wave energy design solution.
Figure 5 shows the variation of mean capture factor l with flap length 2a1 for both device

configurations, the optimal value of λ having been determined for each length. A clear peak may
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Figure 7: A heatmap showing the mean capture factor for device 1 as a function of flap length 2a and power take-off
parameter λ. A zoomed in view of the boxed area is shown in the plot to the right.

be seen in both cases, indicating that device length is critical to performance. The peak for the
second device configuration is skewed further to the left than that of device 1 suggesting a shorter280

optimal flap length of 19.2m when the hinge is positioned higher on the device. The maximum
mean capture factor is also higher for device 2 than for device 1 demonstrating a greater power
absorption potential. However, the 15% increase in l obtained with a higher hinge position is offset
by a significant increase in the amplitude of the flap oscillations. In figure 6 the flap excursion per
unit height of incident wave is shown as a function of incident wave period for both device 1 and285

device 2. The peak in the flap excursion for device 2 is suggestive of resonance at T ' 9s. The
problem being that this also results in a peak flap excursion of 26.5◦, motion of this magnitude is
poorly approximated by a linearised theory leading to inaccurate results. Meanwhile, for device
1 (where parameters have been chosen to be representative of the Oyster) we see a maximum
flap excursion per incident wave height of just 7◦, confirming linearised theory is an appropriate290

approximation in this case. From now on we will consider only device 1, in which the hinge point
is located closer to the sea bed, as this leads to smaller flap excursions and more accurate results.

Finally, figure 7 shows a heat map demonstrating the dependence of the mean capture factor
on both the flap length 2a and the power take-off parameter, λ. Both parameters are clearly
important to device performance with the marked vertical gradient in the closer view reinforcing295

the critical role the flap length in particular plays in device performance. It is perhaps unsurprising
to note that the dependence on λ is comparatively less sensitive since in calculating the mean
capture factor since an average has been taken over a spectrum of incident wave periods. Thus
the advantage seen with precise tuning for single-frequency is lost.

6.2. Multiple Devices300

The geometrical properties of the flaps could mathematically be allowed to vary from one
device to the next, but here we have chosen to define them identically for all flaps for the sake of
mathematical simplicity and since this might reflect a realistic design process. Correspondingly,
for the purpose of the results presented here we will fix a1 = a2 = ... = aN ≡ a and λ1 = λ2 =
... = λN ≡ λ so that all flaps have identical length 2a and power take-off λ. These are fixed at305

the optimal values determined in section §6.1 for a single device under the conditions most closely
representative of the Oyster.

First, we would like to convince ourselves of the accuracy of the solution method for multiple
flaps. To this end we consider how the exciting torque varies with separation for two identical in-
line flaps. By symmetry both experience the same exciting torque, |F̂S,1| = |F̂S,2| = |F̂S |. Figure310

8 shows |F̂S | plotted as a function of s/a = (d2 − d1 − 2a)/a, the dimensionless distance between
the flaps, for normal incidence, fixed kh = 0.8 and a/h = 1. As the separation increases, becoming
large compared with both the incident wavelength and the device length, forces converge to those
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Figure 8: Modulus of the dimensionless exciting torque induced on one of two in-line flaps as a function of s/a, the
spacing between them non-dimensionalised by device length, for normal incidence and fixed kh = 0.8. The cross
shows the force induced on a single flap of twice the length whilst the dashed lines shows asymptotic limits for both
small and large separations. An enlargement of the boxed area is shown to the right of the plot along with a plan
view of the device set up.

for flaps in isolation. Meanwhile, as the separation becomes small the behaviour is more subtle.
Here results don’t converge to a single device of twice the length, as if two flaps had effectively315

been glued together (marked by × in figure 8). Instead, the singularities at the end points of the
flaps play an important role mathematically, even for small apertures, and result in a non-uniform
limit. A small gap approximation, not reported in detail here, has been made using matched
asymptotic expansions (e.g. Tuck [21]) in which the inner problem consists of a gap in a barrier
of infinite length and the outer problem consists of a single barrier of double length with a source320

placed at its centre for x > 0 and a sink for x < 0. The resulting approximation is shown in figure
8 and demonstrates good agreement with the direct computations based on §4 as the spacing
s/a → 0. This, in addition to other numerical checks have been used to confirm the accuracy of
the results for multiple flaps.

In the following we expand on the ideas which arose from the analysis of two identical devices325

in Appendix A to consider optimal array configuration as would be appropriate to the context
of a wave farm. Embedding the calculation of mean capture factor in a numerical optimisation
procedure we take the flap positions (bn, dn) as free parameters for n = 1, ..., N . To begin with we
choose N = 3 and consider four possible configurations of an array of three devices as shown in
figure 9. Here various restrictions have been imposed on the spatial parameters according to the330

symmetries of the different geometries; in configuration (a) we have just one free parameter, the
spacing in the y-direction, whilst in configurations (b), (c) and (d) we have two free parameters,
the spacings in both x and y directions. The optimal values determined for each configuration are
shown in table 2.

This demonstrates the advantage of taking the devices out of line as suggested by the analysis335

in Appendix A. We see a 5% improvement in performance with either of configurations (b) or
(c) over that for a single device operating in isolation. This shows an effective increase in power
take-off from each element in the array as a result of its appropriate configuration with optimal
spacings. This enhancement in performance, due to the positive interaction effects between the
devices resulting in constructive interference, is limited since we have taken the average over a340

directional spectrum. It has been shown, see Wolgamot et al. [24], that when averaged over all
incident wave directions an array of devices will be capable of exactly the same power absorption
as the sum of its parts, that is the total power absorbed from each of the devices operating
independently. Nonetheless, we do see a gain in the power absorption and optimal spacings have
been suggested for all four array configurations with scale diagrams being shown in figure 9.345

Figure 10 shows the angular excursion per unit height of incident wave and the single-frequency
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Figure 9: Plan views of configurations (a)-(d), to scale, for optimal spacings.

Spacing (m) between devices in:

x-direction y-direction l

(a) 0 43.0 0.695
(b) 51.7 40.9 0.717
(c) 51.7 40.9 0.717
(d) 50.4 37.6 0.711

Table 2: Optimal spacings in metres for four possible configurations of an array of three devices, as shown in figure
9, along with corresponding mean capture factors.
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Figure 10: Variation with wave period of the angle of excursion and single-frequency capture factor in normally
incident waves for each device in an array of 3 for configurations (b) and (c). Only two lines are shown in each
plot due to symmetry and in all cases the solid line shows results for the fore flap(s) relative to a normally incident
wave and the dashed line shows the aft flap(s).

22



capture factor for each device for both configurations (b) (shown in 10(a) and (b)) and configu-
ration (c) (shown in 10(c) and (d)) subject to normally-incident waves. This example wave angle
has been chosen since it corresponds to the largest system response for a symmetric array. The
single-frequency capture factor on each device is defined by

l̂n =
Wn

2anWinc
=

1

2
λ
∣∣∣((Z + λI)

−1
FS

)
n

∣∣∣2 (6.4)

and due to symmetry in normally incident waves we consider only two devices in each array,
one fore and one aft. For both configurations we see a larger variability in capture factor and
angular excursion for aft flap(s). This is especially apparent for the ‘bowl’-like configuration (b)
in which the single aft flap experiences a large variability in capture factor relative to the two
flaps toward the fore of the configuration. For both arrangements we see the angular excursion350

per unit wave height remains below 7.5◦, reaffirming that a linearised theory continues to make a
good approximation for an array.

Next, we consider six possible configurations for an array of five devices. Again restrictions
have been imposed on the spacial parameters used in the optimisation procedure according to
the symmetries of the different geometries; in configuration (a) we have just one free parameter,355

the spacing in the y-direction, whilst in configurations (b) and (c) we have four free parameters
with both a fore and aft spacing in the x-direction relative to a normally incident wave along
with central and outer spacings in the y-direction. In configurations (d) and (e) we have three
free parameters, the spacing in the x-direction along with both the central and outer spacings in
the y-direction as before. Finally, in configuration (f) we have two free parameters, assuming the360

step sizes in the staggered array to be constant in size. The optimal values determined for each
configuration are shown in table 3.

Here we see further improvement in the mean capture factors over both that achieved by a
single device and by an array of three devices. The trend for the optimality of a symmetrical,
staggered arrangement as shown in figure 11(b) and (c) continues with the larger array size, again365

seeing the highest mean capture factor, this time with a 7% improvement in performance over that
of a single device. Meanwhile, for the in-line array with optimal spacings we see a 2% improvement
in performance over a single device, whilst not being a large increase this is in the context of the
possibility for deterioration in performance with less favourable spacings. The optimal spacings
for all six arrangements are shown in table 3.370

In figure 12 both the angular excursion per unit incident wave height and the single-frequency
device capture factor are plotted as a function of wave period for arrays (b) and (c) subject to
normal incidence. Here, the fore flaps are shown by the solid lines, the middle flaps by the dashed
lines and the rear flaps by the dotted lines. Similar features are seen to those reported earlier for
the three device arrays. Least variability in both interaction factor and angular excursion is seen375

for the front flaps, with increasing variation due to interaction effects for devices placed further
back in the array. The angular excursion remains below 7.5◦ for all wave periods of interest and
both configurations, again confirming linear theory to be a good approximation.

There is the possibility of considering optimal array configuration through use of the dimension-
less interaction factor, q, which is defined by the ratio of maximum array power to the maximum380

power for a single device times the no. of devices. This is the approach which is taken in Sarkar
et al. [19] where the consideration is restricted, for the most part, to normal wave incidence.
However, the interaction factor is a single frequency measure and here we have favoured an ap-
proach which averages over a random wave spectrum with directional spreading. As a result the
mean capture factor of both an individual device and an array has been used as a measure for385

performance and hence optimality.
The potential to exploit positive interaction effects to enhance the performance of each device

in an array through its optimal arrangement is limited due to the spectrum of incident wave angles
and periods considered. Despite this, optimal spacings have been determined for all arrangements
and in every case an improvement in the mean capture factor has been achieved. The advantages390

of this improvement are compounded by the possibility for deterioration in performance with less
favourable spacings. In fact, in Sarkar et al. [19] a deterioration of performance was seen for all
array configurations in random seas, with an average interaction factor, q, of less than one. This
is despite consideration of an array of thirteen devices subject to normally incident waves, where
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Figure 11: Plan views of configurations (a)-(f) to scale for optimal spacings.

Spacings (m) between devices in:

x-direction y-direction l

fore aft central outer

(a) 0 0 43.9 0 0.700
(b) 49.3 52.5 39.1 37.5 0.729
(c) 49.6 51.5 38.0 38.6 0.728
(d) 51.5 0 41.1 40.8 0.727
(e) 51.5 0 41.1 40.8 0.726
(f) 50.9 0 36.0 0 0.722

Table 3: Optimal spacings, in metres, for six different configurations, shown in figure 11, of an array of five devices
with corresponding mean capture factors.
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Figure 12: Variation with wave period of the angle of excursion and single-frequency capture factor of an array of
5 devices subject to normally incident waves. Results are shown for arrangement (b) in plots (a) and (b) and for
arrangement (c) in plots (c) and (d). The solid lines shows results for the front flap(s), the dashed line show the
mid flaps and the dotted lines the rear flap(s).

the potential to harness positive interaction effects is greater. The reason for this poor array395

performance is due to sub optimal spacings having been chosen for the considered spectrum. In
all cases the optimal spacings are found to be well beyond the fixed spacings considered in Sarkar
et al. [19].

In addition to key differences in the approach we note agreement with some of the key features
observed in Sarkar et al. [19] for normal wave incidence. In particular, an enhancement of the400

performance of the central flap for a ‘chevron’ configuration is illustrated in figures 10 (d) and
12 (d) for arrays of three and five devices respectively. This agrees with observations made for
a similar array shape in Sarkar et al. [19]. However, since this feature is less pronounced in
obliquely-incident waves and is balanced by a less exceptional performance of other devices in
the array, no clear gain in net power output is seen relative to the inverse configuration which is405

‘bowl’-like in shape. Further, the critical role lateral spacing plays in optimal array performance
is independently identified in both papers.

7. Conclusions

In this paper, an analytical approach has been taken to calculations assessing the performance
of a three-dimensional flap-type wave energy converter functioning both in isolation and within410

an array. The novel semi-analytic solution method developed for the treatment of this problem
results in a solution which is fast, accurate and simple to implement. Advantage has been taken of
the high numerical efficiency to embed the calculation of mean capture factor in an optimisation
procedure. This has been used to suggest optimal flap parameters for an individual device subject
to a real sea spectrum of incident wave periods and directions. The results presented appear to415
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align with those used by Whittaker and Folley [22] in the design process of the Oyster device. In
particular, the flap length seems to be a critical factor in determining device performance with an
optimal value of 24.6m being suggested. This is close to the 26m length of the second generation
‘Oyster 800’ device. Based on optimal flap parameters for a single device further optimisation for
an array results in optimal spacings being suggested for a range of practical configurations and420

ultimately the proposal of an optimal arrangement for arrays of both 3 and 5 devices. It is found
that by staggering the devices, allowing for greater interaction between them, an improvement in
performance is seen. This, along with a preference for symmetry which is inherent to the system,
results in the largest effective increase in power absorbed by the single elements being seen when
the devices are arranged in either a ‘bowl’-like or a ‘chevron’ configuration. This applies for both425

of the small array sizes considered of 3 and 5 devices and is indicative of a broader pattern of
behaviour.

In addition to the results seen for this particular problem, the solution method could be readily
adapted to other problems, for example the scattering of waves by an infinite thin barrier with a
finite number of gaps; see [11]. In particular, this work is currently being extended to consider flaps430

which do not penetrate the entire depth. The hope being that as much power may be extracted
without encountering the adverse conditions of the surface region.
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AppendixA. Power take-off expressions

In this Appendix we consider strategies for determining optimal Λ for practical power take-off
systems applied to arrays of wave energy devices. We begin by considering two particular forms
for the power take-off matrix Λ. Firstly, if Λ = diag (λ1, λ2, ..., λN ) is a real, diagonal matrix,
then

W =
1

2
<e
{

F†S
(
Z† + Λ

)−1
Λ (Z + Λ)

−1
FS

}
(A.1)

Differentiating w.r.t λi for i = 1, 2, ..., N , using the identity

d

dx
A−1 = −A−1 dA

dx
A−1 (A.2)

for any matrix A whose elements depend on x, gives

dW

dλi
=

1

2
<e
{

F†S
(
Z† + Λ

)−1
(
Jii − Jii

(
Z† + Λ

)−1
Λ−Λ (Z + Λ)

−1
Jii
)

(Z + Λ)
−1

FS

}
.

(A.3)
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Figure A.1: Demonstration of bounds on λopt. In (a) numerical values of λopt as determined by the optimisation
procedure are plotted as crosses alongside the analytic bounds λmax = max {|z1 + z2|, |z1 − z2|} (the dotted line)
and λmin = min {|z1 + z2|, |z1 − z2|} (the dashed line) established in §1.3.1. These are shown for a range of
incident wave periods. In (b) the capture factors corresponding to these λ are shown as a function of wave period.

Here, Jij denotes the single entry matrix which is zero everywhere except the ijth entry which is
unity. Setting (A.3) to zero for i = 1, ..., N results in a system of N non-linear equations for λi,
i = 1, ..., N .490

Constraining Λ further so that λ1 = λ2 = ... = λN ≡ λ and all devices have identical, real
power take-off then the power is

W =
1

2
<e
{
λF†S

(
Z† + λI

)−1
(Z + λI)

−1
FS

}
(A.4)

which may be differentiated w.r.t λ to give

dW

dλ
=

1

2
<e
{

F†S
(
Z† + λI

)−1
(
I− λ

(
Z† + λI

)−1 − λ (Z + λI)
−1
)

(Z + λI)
−1

FS

}
. (A.5)

Setting this equal to zero gives a single equation which may be used to determine the optimal
value for λ. In general this must be done numerically. However, further analytic progress can be
made if we assume the two flaps are identical. In this case the 2× 2 matrix Z is symmetric about
both diagonals. In other words, Z depends on two independent parameters, z1 = Z11 = Z22 and
z2 = Z12 = Z21, say. Thus we can write

Z = YDY (A.6)

where

Y =
1√
2

(
1 1
1 −1

)
and D =

(
z1 + z2 0

0 z1 − z2

)
(A.7)

whilst Y = Y−1 = YT . Now (A.4) becomes

W =
1

2
<e
{
λF†S

(
Y
(
D† + λI

)
Y
)−1

(Y (D + λI) Y)
−1

FS

}
=

1

2
<e
{
λF†SY

(
D† + λI

)−1
(D + λI)

−1
YFS

}
=
A2

4

(
λ |FS,1 + FS,2|2

|z1 + z2 + λ|2
+
λ |FS,1 − FS,2|2

|z1 − z2 + λ|2

)
, (A.8)

where FTS = A (FS,1, FS,2). It follows that

dW

dλ
=
A2

4


(
|z1 + z2|2 − λ2

)
|FS,1 + FS,2|2

|z1 + z2 + λ|4
+

(
|z1 − z2|2 − λ2

)
|FS,1 − FS,2|2

|z1 − z2 + λ|4

 (A.9)

28



-4

-2

 0

 2

 4

 6

 8

 10

 5  6  7  8  9  10  11

(a)

λ

|z1 + z2|

=m{z1+z2}
B11+B12

T (s)

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 1.1

 1.2

 1.3

 1.4

 1.5

 5  6  7  8  9  10  11

(b)

l̂

T (s)

Figure A.2: Variation of: (a) |z1 + z2| and =m {z1 + z2} /B11 +B12, and (b) capture factors l̂max, l̂opt and l̂ with
period T in seconds for two identical, in-line devices of type 1 (table 1) with an optimal spacing of 43.1m.

and setting this to zero determines the optimal λ = λopt. For this to occur, one term must be
positive and the other negative and so

min {|z1 + z2| , |z1 − z2|} ≤ λopt ≤ max {|z1 + z2| , |z1 − z2|} , (A.10)

giving bounds on the optimal power take-off parameter depending on elements of Z. These are
shown graphically in figure A.1 for two identical devices with optimal parameters as determined
in §6.1 in the second row of table 1. They have been optimally positioned according to results
produced using a numerical optimisation procedure with a horizontal spacing of 43.1m and a lateral
spacing of 55.2m. Along with the analytic bounds, A.1 also shows optimal values for the power495

take-off parameter computed numerically for each wave period using the optimisation procedure
of §6. These are marked by ×. The resulting single-frequency capture factors are shown in figure
A.1(b). The values gained using analytic bounds remain within a 3% tolerance of the numerical
optimum, both providing a good approximation and facilitating a faster numerical procedure by
suggesting an accurate initial guess along with tight bounding conditions.500

In the particular case of two identical devices, positioned in-line and subject to normally
incident waves (β = 0◦) then FS,1 = FS,2 and we may find an exact analytic solution λopt =
|z1 + z2|. In fact, we may make an analagous decomposition to that given in (6.1) for a single
device. We have

W =
λ|AF |2

|z1 + z2 + λ|2
. (A.11)

Using the identity that 2λ (<e {z1 + z2}+ |z1 + z2|) = |λ+ z1 + z2|2 − (λ− |z1 + z2|)2
, for real λ,

this may be rewritten as

W =
1

2

|AF |2

(|z1 + z2|+ B11 + B12)

(
1− (λ− |z1 + z2|)2

|λ+ z1 + z2|2

)
(A.12)

so when λ = λopt = |z1 + z2|, for a specified frequency, then W may take its optimal value of

W = Wopt =
2 (B11 + B12)

|z1 + z2|+ B11 + B12

|AF |2

4 (B11 + B12)
. (A.13)

Further, if =m {z1} = =m {z2} = 0 and λ = <e (z1 + z2), or equivalently

I1 +A11 = C1/ω
2 and λ = B11 + B22, (A.14)

then the power attains its maximal value of

W = Wmax =
|AF |2

4 (B11 + B12)
. (A.15)
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Figure A.3: Configuration of two identical, slightly out-of line flaps.

This shows that maximum power is achieved when the devices are optimally tuned at resonance;
the first of (A.14) is satisfied when the inertia (including added inertia) is balanced by the restoring
buoyancy torques and the second is tuneable. Figure A.1 illustrates the components of optimisa-
tion. The main difference from a single device is seen through the increase in l̂max for the energy
dense incident wave periods in the region of 6-9s. The other components of optimisation, which505

determine how closely the optimal and actual values lie to this theoretical maximum, take similar
values to those seen before.

Meanwhile, for β 6= 0, we have FS,1 = −FS,2 when 2k |d2 − d1| sinβ = π and λopt = |z1 − z2|
in this special case. Note also that z2 = B12 − iωA12 = B21 − iωA21 and so for widely separated
devices z2 → 0. This implies from (A.10) that, as we would expect, λopt → |z1| which is the510

optimal power take-off parameter for isolated devices.
Finally, we can use (A.4) to consider the effect of introducing a small offset, 2α, say to an

in-line array of two identical devices under normal incidence (see figure A.3). This offset results in
a phase difference of the incident wave of 2α between one flap and the next. So, to leading order,
the exciting forces may be represented in the form

FS,1 = Fe−ikα and FS,2 = Feikα (A.16)

relative to the in-line case, in which α = 0 and F = FS,1 = FS,2 denotes the exciting force exerted
on either of the flaps. Substituting into the expression for the power (A.8), this gives

W = A2λ|F |2
(

cos2 (kα)

|z1 + z2 + λ|2
+

sin2 (kα)

|z1 − z2 + λ|2

)
' A2λ|F |2

(
1

|z1 + z2 + λ|2
+

(kα)
2

|z1 − z2 + λ|2

)

= Win−line +A2λ

∣∣∣∣ Fkα

z1 − z2 + λ

∣∣∣∣2 (A.17)

where the small angle approximations cos (kα) ' 1 and sin (kα) ' kα have been used and Win−line
denotes the power absorbed in the in-line case. Here, (A.17) shows an immediate increase in the
power absorption is achieved by taking the devices out of line. This is an effect which is seen in
the main text when considering optimal array configurations where it is found numerically that515

staggered arrays perform the best, achieving the highest mean capture factors.
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