
The effect of submergence on the scattering by

the interface between two semi-infinite sheets

T. D. Williams a,∗,1, R. Porter a

aDepartment of Mathematics, University Walk, Bristol, BS8 1TW, UK

Abstract

This paper considers the reflection and transmission of a flexural-gravity wave within
ice sheets floating on water as it propagates through a series of abrupt changes in ice
sheet characteristics. The canonical problem involves one such junction at which two
semi-infinite ice sheets of different properties are either frozen together or separated
by a crack. Unlike most mathematical approaches to problems involving ice sheets,
we allow the ice sheets to adopt a variable submergence according to their thickness.
The problem is solved using integral equations formulated through the matching of
eigenfunction expansions.

The inclusion of variable submergence of the ice sheet has been shown to have
a considerable effect upon simulations for predicting ice thicknesses in realistic ice
fields with random configurations of multiple ice heterogenieties.
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1 Introduction

In the last decade, a considerable number of papers have been written which aim to determine
the scattering properties of a variety of inhomogeneties in ice sheets floating on water. These
include features such as leads (open stretches of sea water between two ice sheets) and cracks
which form when ice sheets fracture as well as pressure ridges (often forming both ‘keels’
below and ‘sails’ above the otherwise constant lower and upper levels of the ice sheets) which
form when two ice sheets are compressed by currents and/or wind stress (eg. Wadhams, 1988,
who also provides some statistical distributions for such features).

Thus the large polar ice sheets that form across the Arctic and Antartic seas are embedded
with a variety of different structures all of which have an effect on the propagation of hy-
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droelastic waves whose energy originates from the transmission of ocean surface waves into
flexural waves at the boundary of the marginal ice zone.

There are good reasons to be interested in the wave propagation across the ice sheets. First,
wave action is one of the factors assisting the breakup of ice (in turn accelerating the melting
of sea ice) and thus it is useful to be able to approximate how far waves can propagate
through an ice field. Secondly, it may be possible to use inverse scattering ideas along with
a statistical knowledge of the distribution of inhomogeneties to determine the thickness of
the ice. Remote sensing of the wave propagation across ice sheets can be done efficiently and
continuously using satellite interrogated wave buoys and thus an inverse scattering approach
for determinating ice thickness is an extremely attractive prospect. In contrast, current
methods which rely on taking manual measurements of ice thickess are slow and costly. The
determination of ice thickness is an area of key importance given the current concern of the
retreat of summer sea ice in the Arctic seas.

The idea of using inverse scattering techniques outlined above has recently been adopted by
Williams & Squire (2008a). In their work, the results of this paper are used to approximate
the scattering by ice sheets containing a large number of leads with random separations.
The scattering predicted by each individual configuration is then fitted with a simpler curve
based on the ‘serial approximation’ of Williams & Squire (2004) and a thickness estimate
produced. The results of doing this are surprisingly good with the actual thickness of ice
being determined to within 5% of its exact value. Key to the method is the speed over which
they can perform each simulation which in turn requires the determination of the reflection
and transmission for a large number (typically between 100 and 1000) of features in ice over
a range of wave periods. For this, a multiple-scattering wide-spacing approach is used in
which it is only the propagating waves diffracted from each feature which interact with a
neighbouring feature. This approach means that it is only the reflection and transmission
coefficients from each feature that need to be computed, before being combined using a
simple algorithm to form the reflection and transmission coefficients for the large ensemble
of features.

The importance of accurately and efficiently determining the reflection and transmission
properties from each feature is therefore of some importance. These fundamental problems,
as described at the beginning of the introduction must come under scrutiny. In these linear
hydro-elastic problems, it is has been common practice for researchers to assume that the
ice sheet ‘floats’ on top of the water so that the underside of the ice sheet occupies the same
horizontal plane as the mean open water level, irrespective of changes in ice thickness. For
two identical ice sheets separated by a narrow crack (Squire & Dixon, 2000; Evans & Porter,
2003) this is not an issue. But when considering scattering by changes in ice thickness (for
example, through a pressure ridge) it is not physically realistic to ignore the submergence
of the ice sheet and assume the extra mass of ice simply sits above the waterline. Largely
because of the mathematical difficulties of incorporating changes of submergence of the ice
sheet, but also because of the seemingly small drafts of irregularities in comparison to the
wavelengths of ice-coupled waves (which for 1-m-thick ice are commonly between 50m and
600m) many researchers have continued to calculate scattering without including submer-
gence (eg. Williams & Squire, 2004, 2007; Kohout et al., 2007). This is also routinely done
when modelling ice floes in open water (eg. Meylan & Squire, 1994; Wang et al., 2007).
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Indeed, Williams & Squire (2008b) show that when considering an iceberg embedded into
an ice sheet or an ice floe in open water, results for an individual feature obtained from
neglecting submergence are qualitatively very similar to those obtained when the correct
draft is included. However, small differences can add up, especially when large numbers of
irregularities are considered, and Williams & Squire (2008a) show that neglecting submer-
gence has a dramatic effect on the simulations conducted in that paper. More specifically,
results for the estimated average ice sheet thickness may be in error by as much as 50% if the
correct ice submergence is neglected. For the first time, this empahsises the importance of
accurately incorporating the correct draft into this type of problem, although other authors
have certainly included it without demonstrating such startling effects of doing so (Wu et al.,
1995; Porter & Porter, 2004; Bennetts et al., 2007).

In the current paper, we approach the problem of the transmission of oblique waves through
a junction between two semi-infinite ice sheets of (generally) different but uniform thickness.
Each sheet individually obeys Archimedes’ Law; consequently there exists a step in the lower
profile of the ice sheet along the line of the junction. This is a problem which is not amenable
to the mild-slope method of Porter & Porter (2004); it could also be treated by adapting
the methods of Wu et al. (1995) and Bennetts et al. (2007), although our method has the
advantage that it takes into account the singularity in the velocity potential at the lower
corner of the step which produces extremely good convergence. This single step problem is the
canonical problem to consider when the horizontal distance over which the thickness changes
is much less than the shortest wavelength in the spectrum (typically about 50 metres), as in
the two edges of a lead.

In the problem under consideration here, we allow the junction between the two ice sheets of
different thickness to be either frozen or to contain a narrow crack. The method of solution
involves expanding either side of the junction, under each semi-infinite ice sheet, in a set
of non-orthogonal eigenfunctions. There is a complicated matching process at the junction
which takes into account continuity of fluid velocity and pressure, applies no normal flow
on the vertical face of the thicker ice sheet in addition to the application of free bending
and shearing conditions on the edge of each ice sheet. The information is formulated as an
integral equation for an unknown horizontal fluid velocity, u(z), in the vertical matching
interval below the ice sheets in a manner similar to that used by Porter (1995) for surface
wave scattering by vertical steps in the sea bed. It is shown that the key quantities are readily
determined as inner products of u(z) with the forcing functions in the integral equation. This
is typical of the integral equation method (see Porter, 1995), and results in very accurate
numerical solutions when the integral equations are approximated via a Galerkin method.

In section 2, the governing equations are stated and the integral equation is formulated by
application of various conditions. The Galerkin approximation is implemented in section 3,
giving rise to the systems of equations that are solved numerically. In section 4 we show how
reflection and transmission coefficients can be obtained when there are multiple junctions
by applying the wide-spacing approximation. In the short section 5, we briefly discuss the
system that arises and the equations that need to be solved when considering the possibility
of edge waves travelling either side of a crack. For ice sheets of the same thickness either side
of the crack, Evans & Porter (2003) showed that edge waves existed very close to the cut-
off frequency. These edge waves are exponentially decaying in the direction perpendicular
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to the crack, but travel along the crack with a wavenumber close to the wavenumber for
propagation in the absence of the crack. In Evans & Porter (2003), the edge wave was shown
to be symmetric about the crack. Because of the difference in ice sheet thickess, the symmetry
is destroyed. It is shown that edge waves exist only for very small perturbations from equal
thickness. The results are described in section 6 and finally the paper is summarised in
section 7.

2 Governing equations and formulation of integral equations

Cartesian coordinates (x, y, z) are chosen with z pointing vertically upwards and the z = 0
aligned with the position of the undisturbed free surface of a fluid in the absence of ice. The
fluid is assumed to be of constant density ρ, and to have a flat bottom located at z = −H .
Two different ice sheets each of uniform density and thickness now cover the fluid, and
meet one another along the plane x = 0. In x < 0, the ice sheet is of density ρ0, flexural
rigidity D0 and is of thickness h0. In x > 0, the corresponding parameters are ρ1, D1 and
h1. The flexural rigidity is defined in terms of a Young’s modulus Ej , Poisson ratio νj , as
Dj = 1

12
Ejh

3
j/(1 − ν2

j ), j = 0, 1. Archimedes’ Law implies that the submergence either side
of x = 0 is related to the thickness via σj = hj(ρj/ρ). At the interface between the two
ice sheets, the edges may be either frozen together or free. The physical and mathematical
conditions that arise from either case are discussed later.

Time harmonic motion of angular frequency ω is assumed. We choose h1 > h0, so that
the thicker ice sheet occupies the region x > 0, but in order to retain generality we will
allow waves to be obliquely-incident from both negative and positive infinity. Because of
the uniformity in the y-direction (in the direction of the crack), we may take out a constant
phase factor, αy, which will eventually be related to the wavenumber and angle of propagating
waves in x < 0 and x > 0.

Before continuing, it makes sense to non-dimensionalise variables in the problem. We begin by
defining a characteristic lengthscale L = (D1/(ρω2))1/5, and some non-dimensional variables
and parameters (x̄, ȳ, z̄) = (x, y, z)/L, t̄ = ωt, H = H/L, σ̄j = (ρjhj)/(ρL), Dj = Dj/D1

(j = 0, 1), αy = αyL, and κ = ω2L/g. Here, κ, the non-dimensional infinite depth open
water wavenumber, is the main spectral parameter.

Dropping the overbars now for clarity, we define a velocity potential in terms of the non-
dimensional variables and wavenumbers

Φ(x, y, z, t) = Re[φ(x, z)ei(αyy−t)] (1)

whose gradient determines the velocity of a fluid particle at a given point. The function φ
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satisfies the following equations,

(∇2 − α2
y)φ(x, z) = 0 in the fluid domain, (2a)

(Lj(∂x)∂z − 1)φ(x,−σj) = 0 for x ∈ (−1)j(−∞, 0) and (j = 0, 1), (2b)

∂xφ(0−, z) = 0 for z ∈ (−σ1,−σ0), (2c)

∂zφ(x,−H) = 0, (2d)

in addition to edge conditions which we will introduce later. In the above we have defined
the operator

Lj(∂x) = Dj(∂
2
x − α2

y)
2 + κ−1 − σj .

The motion of the ice sheet is governed by a Kirchhoff model (also known as an Euler-
Bernoulli thin elastic plate model) and linearised dynamic and kinematic boundary condi-
tions on the underside of the ice sheets are combined to give (2b). For further details on the
derivation of equations (2), see the appendix in Williams & Squire (2004).

Now, let φ be divided into two parts, one on either side of the place x = 0, by writing

φ(x, z) =







φ(0)(x, z) for (x, z) ∈ (−∞, 0) × (−H,−σ0),

φ(1)(−x, z) for (x, z) ∈ (0,∞) × (−H,−σ1).
(3)

Consideration of separation solutions in each semi-infinite domain, under the conditions (2a),
(2b) and (2d) allows us to write

φ(j)(x, z) = Aje
iαjxϕ(j)(z, αj) +

∑

α∈Sj

Rj(α)e−iαxϕ(j)(z, α), (4)

where

ϕ(j)(z, α) =
cosh γ(α)(z + H)

cosh γ(α)Hj
. (5)

are vertical eigenfunctions. The dispersion relations for each side of the domain is defined
as fj(α) = Λj(γ)γ tanh(γHj) − 1 = 0, where γ(α) =

√

α2 + α2
y and Λj(γ) ≡ Lj(iα) =

Djγ
4 + κ−1 − σj . We also define the sets of roots to the dispersion relations as Sj = {α ∈

C | fj(α) = 0 | 0 ≤ Arg[α] < π}. Each Sj has a single root αj such that γj = γ(αj) is positive
real.

Note that in (4), we have allowed waves to be incident from both minus and plus infinity
with amplitudes A0 and A1 respectively. The amplitude of waves propagating to minus and
plus infinity are R0(α0) and R1(α1). The wavenumber of propagating waves in x < 0 and
x > 0 is γ(α0) and γ(α1) and the waves propagate at an angle θj = tan−1(αy/αj) with
respect to the plane y = 0.
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The ϕ(j) satisfy the following integal rules for j = 0, 1

I(j)(α, β) = −2αB
(2)
j (α)

∫ −σj

−H
ϕ(j)(z, α)ϕ(j)(z, β)dz

= δα,β + 2αB
(2)
j (α)Dj

(

α2 + β2 + 2α2
y

)

∂zϕ
(j)(−σj , α)∂zϕ

(j)(−σj , β)

≡ δα,β + 2αB
(1)
j (α)Dj

(

f∓(α) + f±(β)
)

∂zϕ
(j)(−σj , β), (6)

where δα,β = 1 if α = β and zero otherwise whilst

f±(α) = γ2(α) ± (1 − ν)α2
y (7)

and

B
(0)
j (α) =

−γ2/α

Hj(Λ2
j(γ)γ2 − 1) + 5Djγ4 + κ−1 − σj

, (8)

B
(r)
j (α) = Λr

j(γ)B
(0)
j (α) = B

(2)
j (α)

(

∂zϕ
(j)(−σj , α)

)(2−r)
for r = 1, 2 (9)

the latter relation having been used with r = 1 in deriving (6).

Continuity of fluid pressure and velocity implies the matching conditions

φ(0)(0, z) = φ(1)(0, z)

u(z) ≡ ∂xφ
(0)(0, z) = −∂xφ

(1)(0, z)











for z ∈ (−H,−σ1), (10)

(the minus sign against the second derivative is inherited from the definition in (3) and
assists in subsequent algebraic manipulations).

Hence,

αjAjϕ
(j)(z, αj) −

∑

α∈Sj

αRj(α)ϕ(j)(z, α) =







0 for z ∈ (−σ1,−σj),

−iu(z) for z ∈ (−H,−σ1).
(11)

For each j (j = 0, 1) we multiply (11) by −2(−1)jB
(2)
j (β)ϕ(j)(z, β) (β ∈ Sj) and integrate

with respect to z over (−H,−σj). Using (6), this gives

2(−1)jB
(2)
j (β)i(F ju)(β)

= Ajδβ,αj
− Rj(β) + 2αjA1DjB

(1)
j (β)

(

f−(β) + f+(αj)
)

∂zϕ
(j)(−σj , αj)

− 2DjB
(1)
j (β)

∑

α∈Sj

αRj(α)
(

f−(β) + f+(α)
)

∂zϕ
(j)(−σj , α) (12)

for all β ∈ Sj, j = 0, 1 where

(F ju)(α) ≡
∫ −σ2

−H
u(z)ϕ(j)(z, α)dz, (13)

Some careful algebra shows that (12) can be written

Rj(β) = Ajδβ,αj
− 2i(−1)j

(

B
(2)
j (β)(F ju)(β) − B

(1)
j (β)eT

j (β)Qj

)

, (14)
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for all β ∈ Sj, j = 0, 1 where

ej(α) =







1

−Djf
−(α)





 , Qj ≡







S(j)

Q(j)





 =







DjL
+(∂x)

1





 ∂x∂zφ
(j)(0,−σj), (15)

and where we have defined L
±(∂x) = (∂2

x − α2
y) ∓ (1 − ν)α2

y. In the above, S(j) and Q(j)

represent the unknown shear force and the gradient of elevation (respectively) at the edges
of the two ice sheets.

We now apply the first condition in (10) to give

A0ϕ
(0)(z, α0) +

∑

α∈S0

R0(α)ϕ(0)(z, α) = A1ϕ
(1)(z, α1) +

∑

α∈S1

R1(α)ϕ(1)(z, α), (16)

Substituting in from equation (14) (with α replacing β) for the Rj(α) into the above gives
the integral equation

(Ku)(z) = f(z) for z ∈ (−H,−σ1), (17)

where

(Ku)(z) = i
1

∑

j=0

∑

α∈Sj

B
(2)
j (α)(F ju)(α) × ϕ(j)(z, α)

=
1

∑

j=0

∫ −σ1

−H
G(j)(0, z, z0)u(z0)dz0, (18a)

f(z) =
1

∑

j=0



(−1)jAjϕ
(j)(z, αj) + i

∑

α∈Sj

B
(1)
j (α)eT

j (α)Qjϕ
(j)(z, α)



 , (18b)

and

G(j)(x − x0, z, z0) = i
∑

α∈Sj

B
(2)
j (α)eiα|x−x0|ϕ(j)(z, α)ϕ(j)(z0, α) (19)

are, as one might expect, the Green’s functions for the two regions x < 0 (j = 0) and x > 0
(j = 1), which are well known to have logarithmic singularities as (x, z) → (x0, z0).

2.1 Edge conditions

If h0 > 0, the forcing function, f(z), in (17) contains four unknown constants — S(j) and
the Q(j), j = 0, 1 in the two Qj vectors— and we will have four edge conditions to apply.

f also contains the two incident waves so if we write

f(z) = fT (z)Q̂, Q̂T = (A0, A1,Q0,Q1),

and solve

(Ku)(z) = f(z),
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the linearity of K implies that u = uT Q̂ solves (17).

If we now substitute this into (14), we can write

Rj(α) = rT
j (α)Q̂, (20a)

rT
0 (α) =

(

δα,α0
, 0, 2iB

(1)
0 (α)eT

0 (α), 0, 0
)

− 2iB
(2)
0 (α)(F0u

T )(α), (20b)

rT
1 (α) =

(

0, δα,α1
, 0, 0, −2iB

(1)
1 (α)eT

1 (α)
)

+ 2iB
(2)
1 (α)(F1u

T )(α). (20c)

Now, applying the edge conditions will always involve two manipulations involving the two
Qj vectors; in addition, we will have to calculate

Pj =







P (j)

M (j)





 =







1

DjL
−(∂x)





 ∂zφ
(j)(0,−σj)

=
∑

α∈Sj

(

Ajδα,αj
+ Rj(α)

)

ej(α)∂zϕ
(j)(−σj , α). (21)

P (j) and M (j) represent the displacement and bending moment at the edge of the jth sheet.

By (20a), these quantities will depend on Q̂, and by manipulating these as well we eventu-
ally obtain four equations in the four unknowns, which we will then solve in terms of the
amplitudes of the given incident wave forcings A0 and A1. Potentially then, we need to solve
a 4× 4 system, but for the edge conditions that we use this always reduces down to a 2× 2
one, which we write

MedgeQ = B







A0

A1





 , (22)

where Q is an unknown 2-vector.

When h0 = 0, this system actually becomes two scalar equations (see §2.1.2 below). There
are two main sets of edge conditions that we use, the frozen edge and free edge conditions,
which we now introduce.

2.1.1 Frozen edge conditions

If the two sheets of ice are frozen together we require that the displacement, the slope of the
displacement, the bending moment and the transverse edge force are continuous across the
edge. This can be represented by the following equations

Q0 = Q1, (23a)

P0 = P1. (23b)

Two unknowns (either Q0 or Q1) may be eliminated immediately by applying (23a), and the
other two may be found by applying (23b). This is done by substituting u, the solution to
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(17) which will depend on the two unknowns, into (14), calulating P (j) and M (j) and using
(23b) to create a 2 × 2 system of linear equations.

2.1.2 Free edge conditions

If the two sheets of ice are free to move independently we require that the bending moments
and transverse edge forces must vanish from both sides of the crack.

This can be represented by the following equations

S(j) = 0, (24a)

M (j) = 0, (24b)

for j = 0, 1. Again we may eliminate two unknowns from the Qj vectors using (24a), and
we find the remaining two by applying (24b). As with the free edge case, this will usually
result in a 2 × 2 system of linear equations.

The exception is that if h0 = 0 (i.e. if the left hand region is open water without an ice
cover) then the forcing term corresponding to that side,

i
∑

α∈S0

B
(1)
0 (α)eT

0 (α)Q0ϕ
(0)(z, α),

will vanish as

eT
0 (α)Q0 =

(

1 0

)







0

Q(0)





 = 0

for all α ∈ S0. The bending moment M (0) will be zero automatically also, so to find the
remaining unknown Q(1) the only condition that we need to apply is M (1) = 0.

3 Numerical Procedure

The solution of the integral equation (17) is approximated using a Galerkin scheme in which,
first, the unknown function representing the horizontal component of fluid velocity along
x = 0 below the corner of the step in a series of even Gegenbauer polynomials. Thus we
write

u(z) =
2

H1

∞
∑

n=0

unC2n

(

z + H

H1

)

, (25)

where

Cn(t) =
n!(n + β)Γ2(β)

π21−2βΓ(n + 2β)
(1 − t2)β−1/2C(β)

m (t), (26)
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and C(β)
m (t) is a Gegenbauer polynomial. The weighting in the definition above is chosen so

that the orthogonality relation

2
∫ 1

0
C2m(t)C

(β)
2n (t)dt = δmn (27)

is satisfied.

The constant β which appears in u(z) allows us to incorporate the required singularity into
the fluid velocity at the corner of the ice sheet. Specifically, if H1 6= H2 then β = 1/6 captures
the order of the singularity, while if H1 = H2 then β = 1/2 is chosen.

The Galerkin scheme involves inserting the series representation (25) into the integral equa-
tion (17) and making the resulting equation orthogonal to C2m((z +H)/H1) over −H < z <
σ1. This procedure results in the infinite linear system of algebraic equations

1
∑

j=0

∞
∑

n=0

G(j)
mnun = fm, m = 0, 1, . . . (28)

for the coefficients un. In the above

fm = 2
∫ 1

0
C2m(t)f(H1t − H)dt

=
1

∑

j=0



(−1)jAjF
(j)
m (αj) + i

∑

α∈Sj

B
(1)
j (α)eT

j (α)QjF
(j)
m (α)



 , (29)

and

G(j)
mn = 4

∫ 1

0

∫ 1

0
C2m(t)G(j)(0, H1t − H, H1t0 − H)C2n(t0)dt0dt

= i
∑

α∈Sj

B
(2)
j (α)F (j)

m (α)F (j)
n (α). (30)

In (29) and (30) we have defined

F (j)
n (α) =

2

H1

∫ −σ1

−H
ϕ(j)(z, α)C2n

(

z + H

H1

)

dz

= 2sech(γHj)
∫ 1

0
cos(κt)C2n(t)dt

=
(−1)nΓ(β)

cosh(γHj)

(

κ

2

)−β

(2n + β)J2n+β(κ), (31)
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where the abbreviation κ = −iγH2 has been used. These functions are defined so that

(F ju)(α) =
∞
∑

n=0

unF
(j)
n (α),

and their final expressions come from the result

cos(κt) = Γ(β)
(

κ

2

)−β ∞
∑

n=0

(2n + β)(−1)nJ2n+β(κ)C
(β)
2n (t), (32)

for −1 ≤ t ≤ 1 (Abramowitz & Stegun, 1965, equation 9.1.81).

For the purposes of computation, the infinite system of equations in (28) above is truncated
typically to a modest size of order 10.

4 The extension to multiple edges

Thus far we have considered the scattering of waves by a single junction in the ice sheet,
between two ice sheets of generally different thicknesses and submergence with either frozen
or free edges. We wish to consider the interaction of waves with more than one such junction.
This is often achieved using a so-called wide spacing approximation (Evans, 1990; Martin,
2006) in which only propagating wave effects are considered in the interaction between two
junctions.

Here we have chosen to consider the full unapproximated interaction between junctions
within a framework under which the classic wide-spacing results may eventually be recovered
as an approximation. Other authors that have used similar ideas are Guazelli et al. (1992)
and Porter & Porter (2003).

This involves formulating the interaction at each junction in terms of reflection and trans-
mission matrices (rather than coefficients) which identify the outgoing wave amplitudes in
mode α towards x = ±∞ (i.e. j = 0, 1) due to an incident wave of mode β from either ±∞.

Thus we replace (4) by

φ(j)(x, z) =
∑

α∈Sj

(

Aj(α)eiαx + Rj(α)e−iαx
)

ϕ(j)(z, α). (33)

the key difference here being the sum over the whole set Sj in the incident wave amplitudes
Aj(α) (j = 0, 1). Then it is not difficult to show that

R0(α) =
∑

β∈S0

R+(α, β)A0(β) +
∑

β∈S1

T−(α, β)A1(β), (34a)

R1(α) =
∑

β∈S1

R−(α, β)A1(β) +
∑

β∈S0

T+(α, β)A0(β), (34b)

gives the outgoing wave amplitudes towards x = ±∞. Thus R+(α, β) represents the waves
reflected back from the junction at x = 0 in mode α from a wave incident from −∞ in
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mode β. The matrix element T+(α, β) gives the corresponding wave amplitude transmitted
to x = +∞.

It is not difficult to adapt the theory presented in the section 2 to calculate these matrix
elements.

In matrix/vector form, (34) can be written, where each element corresponds to the discrete
values of α and β.

R0 = R+A0 + T−A1, (35a)

R1 = R−A1 + T+A0, (35b)

Now suppose we have two junctions in the ice sheet, the first located at x = 0 and a second
at x = l. There are now three generally different regions x < 0, 0 < x < l and x > l
corresponding to j = 0, 1, 2 each having their own separation solutions. Thus we write the
potential as

φ(x, z) =



















∑

α∈S0

(

A0(α)eiαx + R0(α)e−iαx
)

ϕ(0)(z, α) for x ∈ (−∞, 0),
∑

α∈S1

(

B0(α)eiαx + B1(α)eiα(l−x)
)

ϕ(1)(z, α) for x ∈ (0, l),
∑

α∈S2

(

A1(α)eiα(l−x) + R1(α)eiα(x−l)
)

ϕ(2)(z, α) for x ∈ (l,∞).

(36)

Each junction will then have an associated set of scattering matrices R±
j (α, β) and T±

j (α, β),
j = 0 corresponding to x = 0, the interface between regions 0 and 1 and j = 1 corresponding
to the interface at x = l between regions 1 and 2.

It follows from (35) then that

R0 = R+
0 A0 + T−

0 DB1, (37)

B0 = T+
0 A0 + R−

0 DB1, (38)

B1 = T−
0 A1 + R+

1 DB0, (39)

R1 = R−
1 A1 + T+

1 DB0, (40)

where

D = diag{eiαl}
∣

∣

∣

α∈S1

contains either a phase shift or exponential decay as the generated waves travel from one
edge to the other. Hence

B0 = (I − R−
0 DR+

1 D)−1(T+
0 A0 + R−

0 DT−
0 A1) ≡ M0A0 + M1A1, (41)

and so (35) holds in this case also, where the scattering matrices for the combined system
of two junctions are now given in terms of the individual scattering matrices as
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R+ = R+
0 + T−

0 DR+
0 M0, (42a)

R− = R−
1 + T+

1 DM1, (42b)

T+ = T+
1 DM0, (42c)

T− = T−
0 D(T−

0 + R+
0 DM1). (42d)

The process described above can then be used iteratively for more than two junctions.
Note that computationally, only a small number of evanescent waves are included in the
interactions and so each scattering matrix is small. If evanescent effects are completely
ignored, the scattering matrices are 2×2 and we return to the familiar case of wide-spacing.

5 Edge Waves

Evans & Porter (2003) showed that for two identical ice sheets separated by a crack (so
h0 = h1) there are certain wavenumbers βy, slightly above the wavenumber γ0, at which
edge waves may exist and travel along a crack and decaying exponentially away from it in
the absence of an incident wave. Mathematically, this is equivalent to setting A0 = A1 = 0,
which would then imply that (22) becomes

MedgeQ = 0. (43)

We then allow αy to be greater than γ0 > γ1 and by varying it look for non-trivial solutions
to (43) — i.e., we find a value of αy (βy) such that the determinant of Medge vanishes. The
null space of Medge then determines the shape of the edge wave (i.e. the value of Q).

By following the same procedure we will investigate whether or not these edge waves may
also exist when h0 6= h1.

6 Results

We begin this section by presenting some initial results which illustrate the range of ge-
ometries and combinations of edge conditions that can be treated with this method. These
results are verified using independent methods wherever possible.

Particular attention is paid to the problem of scattering by leads, and to the convergence of
the wide-spacing approximation (WSA) for leads. This is done primarily because Williams
& Squire (2008a) use the WSA to calculate the scattering by a large field of leads in an ice
sheet, for the purpose of estimating the thickness of said ice sheet, and consequently they
would like to be assured of reliable results.
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Fig. 1. Sample results when the effect of submergence is neglected. (a) The solid line shows the
scattering by a single edge when h0 = 0, while the dashed and chained lines show the scattering
when h0 = 0.5m and when either the free edge or frozen edge conditions are applied (respectively).
For all cases h1 = 1 m and H1 = 20 m. (b) The solid line shows the scattering by a pair of edges
when h0 = h2 = 0 , while the dashed and chained lines show the scattering when h0 = h2 = 0.5 m
and when either the free edge or frozen edge conditions are applied (respectively, and at both edges).
For all cases the waves are normally incident, h1 = 1 m, H1 = 20 m and l = 15 m (only applicable
in Figures b and c). (c) The solid line shows the scattering when h0 = h2 = 1m, H0 = 20m, h1 = 0
, while the dashed line shows the scattering when h1 = 0.5m and the free edge conditions are
applied (at both edges). The chained line shows the scattering when h0 = 0, h1 = 1m, h2 = 0.5 m
and H1 = 20 m. The frozen edge conditions are applied at the joint between the two ice sheets,
and l = 15 m. Checks: the dots in (a) compare our results with those from a different eigenfunction
matching method (Evans & Porter, 2003), while the dots in (b) and (c) compare our results with
those from that same eigenfunction matching method when they are extended using (42).

We finish the section by extending the investigation of Evans & Porter (2003) into the
existence of edge waves along a crack between two ice sheets. They observed them numerically
when the ice sheets on either side of the crack had identical thicknesses, and we investigate
how long they persist when one or other of the thickness is changed. It is found that only a
tiny change is needed to completely obliterate them.

6.1 Sample results and verification

Let us define a reflection coefficient R = R+(α0, α0). The quantity that we are most inter-
ested in is its magnititude, |R| = |R+(α0, α0)| = |R−(α1, α1)|, which is the amplitude of the
reflected wave if a unit amplitude wave propagating wave arrives at the feature in question
either from the left or from the right.

There are many different ways of calculating the scattering by edges between ice sheets
when the effects of submergence are neglected, and so we begin our verification by testing
that our method works in that case. Recall that this is simply a matter of using the C(1/2)

n

polynomials (also known as the Legendre polynomials) instead of the C(1/6)
n polynomials.

Figure 1(a) shows the amount of reflection by a single edge when h1 = 1m, H1 = 20m
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Fig. 2. Sample results when the effect of submergence is included. The curves shown in all the
figures correspond to the same geometries used in Figure 1. Checks: The dots plotted in Figure (b)
compare the results using the method of Williams & Squire (2008b), who used Green’s theorem.

and h0 = 0 (solid line), 0.5 m with free edge conditions (dashed line) and 0.5 m with frozen
edge conditions (chained line). The dots that fall on each line are the result of doing the
same calculations but with the eigenfunction matching method (EMM) as it is usually used
(Sahoo et al., 2001; Evans & Porter, 2003) instead of coupling it to a Galerkin scheme as
we do—as can be seen the two different methods give very good agreement. The curves are
all plotted against κ = g/(Lω2), the nondimensional open-water, infinite-depth wavenumber.

In Figure 1(b), we add the mirror image of the edge in Figure 1(a) 15 m to the right of
that edge, so that the solid line represents a 15-m-wide, 1-m-thick floe in open water, and
the other lines represent the same floe embedded in a 0.5-m-thick ice sheet, with the free
(dashed) and frozen (chained) edge conditions applied at both edges.

Figure 1(c) is similar to Figure 1(b): the solid and dashed lines represent 15-m-wide leads
in a 1-m-thick ice sheet, the former showing the reflection when the lead just contains open
water while the latter contains 0.5-m-thick ice with free edges. For a little variation, however,
the chained line shows the scattering by a 15-m-wide, 1-m-thick floe with open water on the
left and 0.5-m-thick ice on the right. Frozen edge conditions are applied at the edge between
the floe and the ice sheet.

In both Figures 1(b) and 1(c), the dots plotted are calculated with the usual EMM combined
with our the multiple edge result (42) and show excellent agreement with our results.

Figure 2 shows reflection results for the same geometries as in Figure 1, but when the effects
of submergence are included. The results in Figure (b) were checked using the method of
Williams & Squire (2008b) who used Green’s theorem and good agreement was obtained, as
can be seen by the dots plotted. Unfortunately, no independent methods were available to us
for checking the results of either Figures (a) or (c) as the Green’s theorem method doesn’t
work for semi-infinite regions, for when the two outer thicknesses are different, or when the
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Fig. 3. The dependence of the scattering by edges between open water regions and regions of 1-m-thick

ice on the angle of incidence. The geometries in Figures (a), (b) and (c) are the same as for the solid
lines in Figures 2(a), (b) and (c) respectively. The different lines correspond to κ = 0.5 (solid, wave
period is 11.8 s), κ = 1 (dashed, wave period is 7.67 s) and κ = 2 (chained, wave period is 4.97 s),
and the waves arrive from the left hand region. min{Hj | j = 0, 1, 2} = 20m and submergence
effects are included. Checks: The dots plotted in Figure (b) compare the results using the method
of Williams & Squire (2008b), who used Green’s theorem.

middle thickness is smaller than the outer ones. However, as the results of (a) are needed
to obtain those in (b), we are fairly confident in those ones also. In support of those in (c),
they are calculated in exactly the same way as those in (b) so we are quite confident of them
also. Moreover, all the no-submergence results were confirmed with the EMM method, and
as mentioned above “switching” the effects of submergence “on” or “off” only involves the
fairly minor change of swapping one set of Gegenbauer polynomials for another.

In terms of the actual scattering patterns shown in Figures 1(a) and 2(a), including the
effects of submergence when both sides of the transition are covered with ice makes little
difference. In both figures the reflection curves initially climb steeply as κ increases from
zero, before leveling off in the short wave limit to about 0.94 and 0.20 when the free and
frozen edge conditions are applied respectively. In contrast, including submergence when
h0 = 0 produces quite marked changes in the reflection predicted—particularly for short
waves when |R| ≈ 0.86 without submergence but increases to about 0.99 with submergence
at κ = 10. There is also slightly more reflection as κ → 0 when submergence is included–the

limiting value is predicted by Lamb (1932) to be (1 −
√

H1/H0)/(1 +
√

H1/H0). However,

including submergence produces less scattering for κ in the interval (.42, 2.28) (for periods
between 4.6 and 13 s) than is predicted without submergence.

Moving to Figures 1(b) and 2(b), it can be seen that submergence now produces slightly
more reflection when the central ice strip is frozen than when submergence is neglected.
Similarly, when the floe’s edges are free the two peaks in reflection at κ ≈ 1.6 and κ ≈ 2.6
are about 0.05 and 0.10 greater when submergence is included than when it isn’t. For the
floe in open water, apart from the relative sizes of |R| which are basically the same as in
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Fig. 4. The dependence of the scattering by free edges between regions of 0.5-m-thick and 1-m-thick

ice on the angle of incidence. The geometries in Figures (a), (b) and (c) are the same as for the
dashed lines in Figures 2(a), (b) and (c) respectively. The different lines correspond to κ = 0.5
(solid), κ = 1 (dashed) and κ = 2 (chained) and the waves arrive from the left hand region.
min{Hj | j = 0, 1, 2} = 20m and submergence effects are included. Checks: The dots plotted in
Figure (b) compare the results using the method of Williams & Squire (2008b), who used Green’s
theorem.

Figures 1(a) and 2(a), the main difference between the two cases is the zero in reflection that
appears in Figure 1(b) but which becomes a minimum in Figure 2(b). Williams & Squire
(2008b) showed that when heave is included as well as submergence the zero reappears.

The most noticeable aspect of Figures 1(c) and 2(c) are the large number of maxima and
minima in the open lead graphs. These are due to resonances between the lead edges and
the wavelength for open water. The wavelength for ice is much longer which is why fewer
resonances are seen when the lead is filled with ice. No resonances are expected for when the
two outer regions are different.

Again, comparing Figure 1(c) to 2(c) submergence seems to have more effect when open
water is present. The scattering by the ice-filled lead is essentially the same whether or not
submergence is considered, while in the other two cases submergence produces noticeably
more reflection at low and high κ, but less reflection for an intermediate range.

Figures 3 and 4 both show the dependence of the scattering by different edges on the angle
of incidence. The periods used in both are 11.8 s (solid lines, κ = 0.5), 7.67 s (dashed lines,
κ = 1), and 4.97 s (chained lines, κ = 2). As in Figure 2(b), results in Figures 3(b) and 4(b)
are both checked against the Green’s function method of Williams & Squire (2008b), with
very good agreement being found (as can be seen from the dots plotted on the figures).

The most obvious feature of Figures 3(a) and 4(a) is the existence of a critical angle beyond
which there is complete reflection. These follow from the relation αy = γ0 sin θ0 = γ1 sin θ1;
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if γ1 < αy < γ0 then no propagating waves are able to travel into the right hand region. In
addition, they are higher when the left hand region is covered with ice than when it is just
open water. This is because the two wavenumbers are closer when both regions have an ice
cover—increasing h0 up to h1 makes γ0 drop to γ1 (wavelength increases with ice thickness).

For smaller angles of incidence, the behaviour is very simple—increasing it from normal in-
cidence, |R| drops slightly to a minimum or a zero before climbing to 1 at the critical angle.
And as expected, smaller periods produce more reflection—which is also true in general for
Figures 3(b,c) and 4(b,c).

The addition of an extra edge in Figures 3(b) and 4(b) adds somewhat more fine structure
to the lower period curves, particularly when a floe is floating in open water (Figure 3b) or
when it is embedded in thinner ice (Figure 4b). In both κ = 2 curves, a pair of zeros can be
seen and when h+0 = 0.5 m an inflexion point is apparent. In general, though the behaviour
is fairly simple—|R| increases to 1 as the angle of incidence is increased up to 90◦. We might
have expected there to have also been a critical angle apparent in this case—the fact there
isn’t is due to the extra interactions waves between the two edges due to evanescent waves.
That these are able to have an effect is due to the relatively short floe width (15m); at the
smallest period, when l would be the largest compared to the wavelength in the floe we see
very large but not quite total reflection when h0 = 0. If l were increased enough for the
evenescent waves to die down before they reach the edge, we would expect to see the critical
angle behaviour re-appearing.

In contrast to the latter two figures, it is the higher periods in Figure 3(c) and Figure 4(c)
that have the more structure. Both pairs of κ = 0.5 and κ = 1 curves drop to single zeros
before climbing to 1 in the grazing-incidence limit. The κ = 2 curve in Figure 3(c) simply
climbs monotonically to 1, although its counterpart in Figure 4(c) contains a slight inflexion.

The final figure in this section, Figure 5, reproduces the results for the leads in Figures 1(c)
and 2(c), but this time compares the exact results with the wide-spacing approximation
(Evans, 1990; Martin, 2006). The solid curves, which represent exactly the scattering by
open leads without (a) and with (b) submergence included, are compared to WSA results
which are plotted as dots. Other authors (eg. Vaughan et al., 2007) have already established
this result when submergence is not considered, but we wished to demonstrate that the
WSA result for an open lead is also very accurate when it is considered. This result is very
important for the paper of Williams & Squire (2008a) as using the WSA greatly accelerates
the computations done therein.

6.2 Edge waves

Figure 6 shows an example of what the displacement profile of an edge wave along a crack
of period 7.67 s (chosen to make κ = 1) in a 1-m-thick ice sheet looks like. The wave profile
is sinusoidal in the direction parallel to the crack, but it has a very slow exponential decay
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Fig. 5. Verification of the accuracy of the wide-spacing approximation for leads. In all situations
the waves are normally incident, h0 = h2 = 1m, H0 = 20m, and l = 15 m, and the results in
Figure (a) do not include the effects of submergence while the results in (b) do. Solid lines show
the (exact) scattering when h1 = 0, while the dots show the wide-spacing results for comparison.
Dashed lines show the (exact) scattering when h1 = 0.5 m and the free edge conditions are applied
at both edges, while the dotted lines show the wide-spacing results for comparison.

Fig. 6. Displacement profile as an edge wave travels along a crack when h0 = h1 = 1 m, period=7.67 s
(κ = 1) and H1 = 20 m. βy/γ0 = 1.0002, making its wavelength 118.79 m (compared to 118.82 m,
which is the usual wavelength for a wave of this period in water of this depth under a 1-m-thick
ice sheet). Note the gradual decay of the wave with distance from the crack.

as you travel away from the crack. βy/γ0 = 1.0002, making its wavelength 118.79m, only
0.02% smaller than the usual wavelength for a wave of this period under a 1-m-thick ice
sheet (118.82m).

Figure 7 shows that the wavelength of any edgewave along a crack is extremely close to the
usual ice wavelength for all periods, although it is slightly more different for small periods.
The figure plots βy/γ0 − 1, the difference between the two wavenumbers as a fraction of γ0

itself, against κ when h0 = h1 = 1 m, and it appears that the difference is usually no more
than 0.06%.
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Fig. 8. Dependence of the edge-wave wavenumber βy on h0 when h1 = 1m, period= 7.67 s (κ = 1)
and H1 = 20 m.

We now investigate what happens to the edge waves when we change the thickness of the
left-hand ice-sheet slightly, so that the sheets on either side of the crack are no longer identi-
cal. Figure 8 shows that when κ = 1 and h1 = 1 m, either increasing or decreasing h0 from h1

causes βy to decrease towards γM = max{γ0, γ1}. When the two thicknesses differ by about
2mm, βy becomes equal to γM . In this situation the wave no longer decays exponentially on
both sides, but persists to |x| → ∞ in the direction where the ice is thinnest. Defining some
parameters δ± such that the two times that βy = γM occur when h0/h1 = 1 + δ±, we can
now say that unless δ− ≤ h0/h1 − 1 ≤ δ+, no edge waves can exist.

Figure 9 plots δ± for a range of κ when h0 = 1 m. It shows that for these κ if h0 is less
than about 5mm different from this h1, then no edge waves can exist. In addition, as the
wavelengths increase, the interval in which edge waves can exist shrinks to zero, and the
largest intervals occur for smaller wavelengths. Such small tolerances suggest that edge waves
are unlikely to ever exist along a real crack between two semi-infinite ice sheets, as the ice
on either side would essentially have to be exactly the same.
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is the lower curve, while δ+ is the upper curve.

7 Conclusions

The principal part of this paper describes a method for formulating the solution to the
problem of scattering of an incident flexural-gravity wave by an interface between two semi-
infinite ice sheets of differing properties floating on water. Full generality has been assumed
in the choice of ice sheet properties so that, for instance, the ice thickness may be reduced
to zero yielding an open water free surface. In contrast to many approaches to problems
involving ice sheets, we have allowed variable submergence of the ice sheets in accordance
with Archimedes’ principle. For a single interface between two differing ice sheets, a number
of problems can be considered. The real interest comes about from the interaction of waves
with multiple changes in ice sheets. For example, we have been able to consider icebergs or
leads embedded in an ice sheet.

The method of solution has been based on matching separation solutions across the inter-
face through the depth between the two semi-infinite ice sheets to construct an integral
equation for the horizontal component of the velocity. The solution of the integral equations
is approximated by a Galerkin scheme using an appropriate choice of expansion functions
which accurate reflect the physical properties of the solution leading to a fast and accurate
numerical method.

This has been motivated by a desire to accurately model the interaction of waves with random
configurations of leads embedded in real ice sheets. This forms the subject of a separate paper
Williams & Squire (2008a), in which it transpires that the effect of the inclusion of variable
submergence has a considerable effect on estimates of ice thickness.
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