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Summary

It is shown that localised wave motions (often referred to edge waves or trapped
modes) are capable of being supported by two complementary arrangements involving
floating ice on water: a finite width ice sheet of constant thickness floating on open
water; and an open water channel – or lead – embedded in an ice-covered ocean. The
search for such solutions is motivated by a simple observation, evidently not made
before, that wavelengths of propagating waves in thin ice sheets can be either greater
or less than those of the same frequency on an unloaded water surface depending on
physical parameters in the problem. The existence of edge waves are confirmed by
accurate computations of solutions to integral equations derived from the underlying
boundary-value problems using Fourier transform methods.

1. Introduction

The interaction between ocean waves and thin floating elastic plates has been the subject
of a large number of papers in recent years, with the principal application area being the
study of sea ice. Its practical importance is in furthering the understanding of wave energy
propagation within the Marginal Ice Zone, an area of broken floating ice floes between the
open ocean and the shore-fast sea ice. In particular, the dependence of sea ice and prevailing
ocean wave conditions in assisting the further break-up of ice sheets is a poorly-understood
process but one which plays an important part in climate modelling, (1). An informative
review can be found in (2).
Statistical studies (e.g. (3), (4), (5)) of wave propagation through broken sea ice use

information taken from fundamental ocean wave/sea ice interaction problems. These include
determining how energy is transferred from ocean waves to flexural-gravity waves across
the edge of an ice sheet (e.g. (6), (7), (8)); or how waves propagate across narrow cracks,
‘ridges’ and ‘keels’ in ice sheets (e.g. (9), (10), (11), (12)) across open water ‘leads’ between
ice sheets (13), or across ice sheets of finite extent (e.g. (14), (15)). More complicated
problems involve determining fully three-dimensional scattering characteristics from finite
ice floes (16), (17) to their interaction effects in large arrays (18), (19).
All problems listed above assume the existence of an incoming wave field and measure

some effects of practical importance. However it can also be important to consider situations
in which there is no incoming source of wave energy. Instead wave energy is assumed
to be confined within the particular arrangement of ice sheet and open water and it is
this aspect of wave/ice sheet interaction with which our concern rests here. To highlight
its significance, in mechanical systems the analogue of such a study would be to identify
structural resonances. For examples of the influence of ‘wave trapping’ on water wave
problems in related contexts, see (20). In the context of ice sheets knowledge of localised
solutions is important in determining solutions to certain types of inhomogeneous problems;
see for e.g. (21).
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We will consider two specific arrangements of thin floating ice sheets. The first involves
an ice sheet of constant finite width and infinite length; the second is the complementary
arrangement in which a open water channel of constant width (i.e. a lead) is embedded
between two semi-infinite ice sheets. In both cases the fluid will be assumed, for simplicity,
to be of infinite depth.
In the first case we consider the existence of flexural-gravity waves trapped within the ice

sheet; that is, their energy is not able to radiate away from the ice sheet in the form of ocean
surface waves. For reasons which will be explained later within the paper, this problem turns
out to be simpler to construct solutions to than the second. There, we consider surface waves
trapped within the open water lead between the two ice sheets in which energy is not able
to radiate to infinity through the ice sheet in the form of flexural-gravity waves.
Both types of solution described above are generically referred to as ‘trapped waves’ in the

water wave literature. Because of the particular class of solution that they represent, they
are also often referred to as ‘edge waves’. This terminology originates from Stokes (22) who
determined an explicit solution wave motion localised to the edge of a plane beach. Many
examples have since emerged of edge waves in a variety of settings. The generic description
is a geometry which is constant in one horizontal (longshore) direction, allowing a wave-like
behaviour to be assumed in that direction; this has the mathematical effect of reducing a
three-dimensional boundary-value problem to one posed in a two-dimensional cross-sectional
plane. If the wavenumber describing the longshore wave behaviour is assumed to be greater
than the wavenumber of free waves at infinity then, by construction, radiation of energy to
infinity is prohibited and any non-trivial solution of the reduced two-dimensional problem
would describe edge waves. This is neither a necessary or sufficient condition for the
existence of edge waves.
Applying the reasoning above in the context of ice sheets (23), (10) and (24) showed

that edge waves could be supported by an infinitely-narrow crack between two adjacent ice
sheets floating on water. These are peculiar results in the sense that they do not follow the
standard reasoning described below. They perhaps are more closely related to edge waves
that are known to exist along thin elastic plates without fluid loading, (25).
The usual heursitic argument that motivates the existence of edge waves are an extension

of those already introduced. Assume the wavenumber is k− at x = −∞ and at x = +∞
it is k+ > k−, say. Waves propagating from x = +∞ at an oblique angle θ+ will possess
a longshore component of wavenumber l = k+ sin θ+. For θ+ above some critical angle l
becomes greater than k− implying no waves can propagate to x = −∞. In simple physical
terms an oblique wave undergoes total internal reflection at the interface between domains
with different phase speeds. If two such interfaces are reflected about an origin so that the
wavenumber tends to k− at both x = ±∞ but rises to k+ > k− at the origin then oblique
waves will undergo persistent reflections and become trapped.
It is this mechanism which underpins the present study. Motion of angular frequency ω

is assumed. Waves on the surface of the fluid have a wavenumber K = ω2/g where g is
gravitational acceleration. Flexural-gravity waves supported by a floating elastic plate are
characterised by a positive real wavenumber κ which is known to satisfy the relation (see,
for example, (9))

(βκ4 + 1−Kδ)κ−K = 0. (1)

Here β and δ are positive parameters which encode properties of the elastic plate and
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the fluid. The existence of a positive real root of (1) can be established by considering
intersection of the graphs of the functions f(κ) = (βκ4 −Kδ)κ and K − κ. In particular,
one can then readily determine that κ < K if K > K∗ whereK∗ = (δ/β)1/3 and, conversely,
that κ > K if K < K∗.
In other words, depending on wave frequency and parameters of the elastic plate,

wavenumbers of free waves in the elastic plate can be either greater than or less than
the wavenumber of those on the ocean. According to the arguments rehearsed earlier, if
κ > K we will expect total internal reflection to occur as waves move from ice to water and
vice versa if κ < K.
This provides the evidence of the existence of trapped waves in ice sheets and open water

leads. In Sections 2 and 3 we calculate these edge waves using Fourier transform methods
before the work is summarised in §4. In the first of two appendices we include details
associated with the solution to one of the problems and provide details of conditions needed
to calculate edge waves along cracks in the second.

2. Trapped waves in a floating ice sheet of finite width

Cartesian coordinates are used with z = 0 coinciding with the undisturbed surface of a fluid
of density ρw and z pointing upwards. A scaling of coordinates is assumed such that the
elastic plate lies between −1 < x < 1, z = 0, for all y. Classical linearised water wave theory
is used in which the velocity potential used to describe the fluid motion can be written

Φ(x, y, z, t) = ℜ{φ(x, z)eilye−iωt}. (2)

Thus, a dimensionless ‘longshore’ wavenumber l and a single frequency time dependence
ω/2π are assumed and it follows that the complex-valued reduced potential φ(x, z) satisfies

(∇2 − l2)φ = 0, in z < 0, −∞ < x < ∞ (3)

where ∇ = (∂x, ∂z). In regions of open water the linearised kinematic and dynamic
conditions on the free surface of the fluid combine to give the boundary condition

φz −Kφ = 0, on z = 0 (4)

where K = ω2/g. As z → −∞, |∇φ| → 0.
The ice sheet plate has density ρp, non-dimensional thickness d ≪ 1 and is assumed

to have negligible draft. Its deflection is modelled by Kirchhoff-Love thin elastic plate
theory. Consequently regions of the surface covered by ice are represented by the boundary
condition (e.g. see (10))

(

β(∂2
x − l2)2 + 1−Kδ

)

φz −Kφ = 0, on z = 0 (5)

where β = Ed3/(12ρwg(1−ν2)), δ = d(ρp/ρw) represent bending stiffness and heave inertia
in terms of Young’s modulus E and Poisson’s ratio, ν. In addition, the edges of the plate
must be free of bending moments and shear stress and this requires

(∂2
x − νl2)φz = 0, at x = ±1, z = 0 (6)

and
(∂3

x − (2− ν)l2∂x)φz = 0, at x = ±1, z = 0 (7)
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to hold. Note that both conditions must be applied in the limit as x = ±1 is approached
from within the ice sheet region since φz , which represents elevation of the surface, is
discontinuous across x = ±1.
Following the arguments presented in the Introduction we assume l > K and K < K∗.

This implies travelling waves are supported by the floating ice sheet but that waves cannot
propagate to infinity on the ocean surface.
Clearly, we could decompose the boundary-value problem outlined above into a pair of

problems which are symmetric and antisymmetric about the centreline x = 0 from the
outset (as in (10) for example) – this is done in §3. Here, it is simpler to retain generality
at this stage and identify symmetric and antisymmetric components towards the end of the
solution.
Thus we define a Fourier transform

φ(α, z) =

∫ ∞

−∞

φ(x, z)e−iαx dx (8)

so that (3) is reduced to
(

d2

dz2
− γ2

)

φ = 0 (9)

where γ =
√
α2 + l2. It follows that φ(α, 0) = A(α)eγz . Taking the Fourier transforms of

φz −Kφ on z = 0 and using (4) for |x| > 1 and (5) for |x| < 1 gives

(γ −K)A(α) =

∫ 1

−1

(Kδ − β(∂2
x − l2)2)φz(x, 0)e

−iαx dx. (10)

Inverting the transform gives

φ(x, z) =
1

2π

∫ ∞

−∞

eγzeiαx

γ −K

∫ 1

−1

(Kδ − β(∂2
x − l2)2)φz(x

′, z)e−iαx′

dx′ dα. (11)

To derive an integral equation we either can apply the plate condition (5) to the left-hand
side of (11) from which emerges a homogeneous first-kind integral equation. More simply,
we can take a z-derivative of (11) and set z = 0 to obtain a second-kind integral equation

φz(x, 0) =
1

2π

∫ ∞

−∞

γeiαx

γ −K

∫ 1

−1

(Kδ − β(∂2
x − l2)2)φz(x

′, 0)e−iαx′

dx′ dα (12)

over |x| < 1. Solutions of (12) also need to satisfy (6) and (7).
One could integrate by parts four times in (12) to transfer the four derivatives in x away

from φz(x, 0), using (6) and (7) to simplify end point evaluations released from integration
by parts. In doing so four auxiliarly unknowns appear in the solution, being the pointwise
evaluations of displacement and gradients φz(±1∓, 0), φzx(±1∓, 0) at the edges of the ice
sheets. This course of action is necesssary in §3 but makes the solution more complicated
than is necessary here.
Instead solutions of (12) are sought by expanding φz(x, 0) as

φz(x, 0) =
∞
∑

n=0

anwn(x)

Kδ − βk4n
(13)



trapping of waves by thin floating ice sheets 5

where wn(x) are eigenfunctions and k4n play the part of the eigenvalues in the following
homogeneous problem

(

d2

dx2
− l2

)2

wn(x) = k4nwn(x), |x| < 1 (14)

with
w′′

n(±1)− νl2wn(±1) = 0, and w′′′
n (±1)− (2− ν)l2w′

n(±1) = 0. (15)

This definition serves two purposes. It ensures that the solution satisfies (6) and (7) and,
secondly, it converts derivatives embedded in (12) into multiplicative terms which can
subsequently be factored from the integral. In (13) we have used the eigenmodes for oblique
waves in an elastic plate without fluid loading in the series expansion for the unknown, a
trick first employed in this context by (26).
The eigensolutions are determined in Appendix A where it is also shown that wn(t) are

orthogonal and that

Wn(σ) =

∫ 1

−1

wn(x)e
−iσx dx (16)

can be determined explicitly; see (A16), (A17). Using (13) in (12), multiplying through by
wm(x) and integrating over |x| < 1 leads to the infinite system of equations

amC2
m

(Kδ − βk4m)
−

∞
∑

n=0

anKmn = 0, m = 0, 1, 2, . . . (17)

where C2
m are defined in Appendix A and

Kmn =
1

2π

∫ ∞

−∞

√
α2 + l2√

α2 + l2 −K
Wn(α)Wm(−α) dt. (18)

It is also shown in Appendix A that W2n are even functions and W2n+1 are odd functions
and it follows that (17) decouples into two systems of equations

a2m+µC
2
2m+µ

(Kδ − βk42m+µ)
−

∞
∑

n=0

a2n+µK2m+µ,2n+µ = 0, m = 0, 1, 2, . . . (19)

for µ = 0, 1 (even/odd respectively) where

K2m+µ,2n+µ =
(−1)µ

π

∫ ∞

0

√
α2 + l2√

α2 + l2 −K
W2n+µ(α)W2m+µ(α) dα. (20)

Values of µ = 0, 1 correspond to symmetric and antisymmetric edge wave solutions
respectively.

2.1 Results

Numerically, we truncate the real symmetric equations (19) and search parameter space for
non-trivial solutions. Typically, we have four decimal place accuracy for a system truncated
to five terms. There are no poles in the integrals defining Kmn since l > K; returning to
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Fig. 1 In (a) symmetric (solid) and antisymmetric (dashed) edge wave relations between l and
K; solutions exist above the cut-on l = K (dotted) and for K < K∗ ≈ 3.302. Here, δ = 0.36,
β = 0.01, ν = 0.3. In (b) the symmetric edge wave dispersion relation is visualised for δ = 0.09,
β = 5, ν = 0.3 where K∗ ≈ 0.262.

(11) this condition confirms that the solution tends to zero as |x| → ∞. The integrands in
(20) decay like O(α−2) and the indefinite integrals approximated by truncation. For the
accuracy required, this is done at α = 400. We increase the truncation sizes of the system of
equations and the accuracy of the numerical integration when higher accuracy is required.
Fig. 1 illustrates results found using the method outlined above. In order to illustrate

results for both symmetric and antisymmetric trapped modes we have set parameters δ =
0.36, ν = 0.3 and β = 0.01 in Fig. 1(a). These parameters are not indicative of sea ice.
They can be interpreted as an elastic sheet of thickness 1m and overall length 5m with
ρp/ρw = 0.9, ρw = 1025kgm−3 and a Young’s modulus E = 42891Pa. In this example
the elastic sheet is much more flexible than ice, whose Young’s modulus is cited in the
literature at a value of around E = 6 × 109Pa. The solid and dashed curves provide the
relation between frequency parameter, K, and longshore wavenumber, l, for symmetric and
antisymmetric modes. We observe that the symmetric mode appears exists over the entire
range 0 < K < K∗ whilst the antisymmetric mode is cut-on across line l = K within
a sub-interval of the full range of K. As β increases the antisymmetric mode disappears
across l = K whilst symmetric mode results tend quickly towards the line l = K. Results
using parameters corresponding to a realistic ice sheet are shown in Fig. 1(b) thickess 1m
and width 20m where we have δ = 0.09 and β = 5 are shown in Fig. 1(b). It can be seen
values of l corresponding to a single symmetric edge wave lie in close proximity to K across
a range of frequencies up to K∗ ≈ 0.262. Although this mode appears to vanish across the
line l = K at a frequency away from the origin it is believed that this is caused by a lack
of numerical resolution (computations accurate to over 10 decimal places are required to
resolve that level of detail).
In practical terms, with l and K being so close to each other, edge waves in sea ice would

not be detected. However, their existence would have to be taken into account if addressing
problems of non-planar wave sources in the presence of a finite width plate.
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Fig. 2 Representation of the elevation of an elastic plate (x < 1) and water surface (x > 1) for (a)
symmetric and (b) antisymmetric edge wave modes. Solutions correspond to δ = 0.36, β = 0.01
and l = 2 with K = 1.44077 in (a) and K = 1.86455 in (b).

In Fig. 2 the motions of symmetric and antisymmetric edge waves are represented for the
parameters computed in Fig. 1(a). The graphs represent amplitudes which are modulated
in time and in the z-direction according to (2) and should be reflected about x = 0
appropriately. They obviously show the discontinuity in the displacements between the
edge of the ice sheet and the water surface and the decay to zero in the displacement as
x → ∞.

3. Trapped waves in an open water lead between two ice sheets

This section concerns the same class of problem as in §2 but the intervals over which the
two boundary conditions (4) and (5) hold are interchanged. The assumption made now is
that κ < l < K where κ satisfies (1) and that K > K∗ = (δ/β)1/3. Following the arguments
made in the Introduction, this choice prohibits wave radiation to infinity in the ice sheet,
but allows travelling waves across the open water channel between the ice sheets.
The solution method here is more complicated than in §2 due to the interchange of

boundary conditions. This is because the integral equation which will be derived below will
apply to the solution across the lead between the ice sheets whilst edge conditions must be
applied from a representation of the solution which holds across the ice sheet. Previously,
the integral equation and edge conditions employed the same representation of the solution.
We shall see how this complication emerges below. It also now turns out to be easier to
decompose from the outset the problem into components symmetric and antisymmetric
about the centreplane x = 0. We describe the symmetric solution in some detail and note
the adjustments needed for the antisymmetric solution later.

3.1 Symmetric edge wave solution

We replace (8) with the definition

φ(α, z) =

∫ ∞

0

φ(x, z) cosαxdx. (21)
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Taking transforms of (3) gives the general solution φ(α, z) = A(α)eγz satisfying the deep
water condition with γ2 = α2 + l2, as before. Our starting point is the identity

∫ ∞

1

(

(β(∂2
x − l2)2 + 1−Kδ)φz −Kφ

)

cosαxdx = 0 (22)

which hold on account of the elastic plate condition (5), now applied over x > 1. Successively
integrating by parts results in

(βγ4 + 1−Kδ)φz(α, 0)−Kφ(α, 0) + f1(α)φxz(1
+, 0) + f2(α)φz(1

+, 0)

= (βγ4 −Kδ)

∫ 1

0

φz(x
′, 0) cosαx′ dx′ (23)

in which the right-hand side has been simplified following use of free surface condition (4)
in 0 < x < 1. In the equation above we have defined functions

f1(α) = β(α2 + νl2) cosα, f2(α) = β(α3 + (2 − ν)l2α) sinα. (24)

Using φ(α, 0) = A(α)eγz in (23) to solve for A(α) and inverting the transform gives

φ(x, z) =
2

π

∫ ∞

0

eγz cosαx

∆(α)

{

− f1(α)φxz(1
+, 0)− f2(α)φz(1

+, 0)

+ (βγ4 −Kδ)

∫ 1

0

φz(x
′, 0) cosαx′ dx′

}

dα (25)

where
∆(α) = (βγ4 + 1−Kδ)γ −K. (26)

This expression does not vanish for real α since we have assumed the cut-off condition κ < l
holds where κ as defined in (1) and since γ2 = α2 + l2. Consequently, φ → 0 as x → ∞ as
there are no poles in the integrand in (25).
We take the z-derivative of (25) and set z = 0 to get

φz(x, 0) = −F1(x)φxz(1
+, 0)− F2(x)φz(1

+, 0)

+
2

π

∫ ∞

0

(

1 +
K − γ

∆(α)

)

cosαx

∫ 1

0

φz(x
′, 0) cosαx′ dx′dα (27)

where

Fi(x) =
2

π

∫ ∞

0

γfi(α)

∆(α)
cosαxdα. (28)

Noting that, for x, x′ > 0,

2

π

∫ ∞

0

cosαx cosαx′ dα = δ(x− x′) (29)

we can write (27) as

− F1(x)φxz(1
+, 0)− F2(x)φz(1

+, 0) +
2

π

∫ ∞

0

K − γ

∆(α)
cosαx

∫ 1

0

φz(x
′, 0) cosαx′ dx′dα

=

{

φz(x, 0), x > 1
0, 0 < x < 1.

(30)
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Returning to (28) we have, explicitly,

F1(x) =
2β

π

∫ ∞

0

γ(α2 + νl2) cosα

∆(α)
cosαxdα (31)

convergent for all x. With more work involving the use of the integral identity

∫ ∞

0

sinαX

α
dα =

π

2
sgn(X) (32)

we can show that

F2(x) =
1

2
sgn(x + 1)− 1

2
sgn(x− 1)+

2

π

∫ ∞

0

(K + γ(Kδ − 1− β(l4 + νl2α2))) sinα

α∆(α)
cosαxdα. (33)

This form exposes the source of further discontinuities in the solution, but also improves
the convergence of the integral critical when, as below, further derivatives are taken.
To complete the formulation of the problem we also need to take the x-derivative of (30)

in the interval x > 1 and this gives

φxz(x, 0) = −F ′
1(x)φxz(1

+, 0)− F ′
2(x)φz(1

+, 0)−
2

π

∫ ∞

0

α(K − γ)

∆(α)
sinαx

∫ 1

0

φz(x
′, 0) cosαx′dx′dα. (34)

To calculate F ′
1(x) and F ′

2(x) we follow the earlier calculation of F2(x) and find

F ′
1(x) = −1

2
sgn(x+ 1)− 1

2
sgn(x− 1)−

2

π

∫ ∞

0

(K + γ(Kδ − 1− β(l4 + (2− ν)l2α2))) cosα

α∆(α)
sinαxdα (35)

and, provided x 6= 1,

F ′
2(x) = − 2

π

∫ ∞

0

(K + γ(Kδ − 1− β(l4 + νl2α2))) sinα

∆(α)
sinαxdα. (36)

In this formulation, there is one unknown function φz(x, 0) defined over |x| < 1 which
encodes the vertical fluid velocity across the surface of the gap between the elastic plates,
and two unknown values φz(1

+, 0) and φxz(1
+, 0) which represent the displacements and

gradients of the edges of the elastic plate.
They are determined as follows. First using (30) for 0 < x < 1 results in the following

integral equation for φz(x, 0) across the surface

0 = −F1(x)φxz(1
+, 0)− F2(x)φz(1

+, 0) +
2

π

∫ ∞

0

K − γ

∆(α)
cosαx

∫ 1

0

φz(x
′, 0) cosαx′ dx′dα

(37)
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for x < 1. Reusing (30) for x > 1 in the limit x → 1+ gives

φz(1
+, 0) = −F1(1

+)φxz(1
+, 0)− F2(1

+)φz(1
+, 0)+

2

π

∫ ∞

0

K − γ

∆(α)
cosα

∫ 1

0

φz(x
′, 0) cosαx′ dx′dα (38)

and taking (34) also in the limit x → 1+ gives

φxz(1
+, 0) = −F ′

1(1
+)φxz(1

+, 0)− F ′
2(1

+)φz(1
+, 0)−

2

π

∫ ∞

0

α(K − γ)

∆(α)
sinα

∫ 1

0

φz(x
′, 0) cosαx′ dx′dα. (39)

We go further and let Rs
1(x) and Rs

2(x) satisfy

∫ ∞

0

K − γ

∆(α)
cosαx

∫ 1

0

Rs
i (x

′) cosαx′ dx′dα = Fi(x), 0 < x < 1 (40)

(i = 1, 2). It follows that

φz(x, 0) = (π/2)(Rs
1(x)φxz(1

+, 0) +Rs
2(x)φz(1

+, 0)) (41)

for 0 < x < 1 satisfies (37). Using (41) in (38) and (39) then results in

(

1 + F ′
1(1

+) + S1R
s
1 F ′

2(1
+) + S1R

s
2

F1(1
+)− S2R

s
1 1 + F2(1

+)− S2R
s
2

)(

φxz(1
+, 0)

φz(1
+, 0)

)

= 0 (42)

where we have introduced the notation

S1R
s
i =

∫ ∞

0

α(K − γ)

∆(α)
sinα

∫ 1

0

Rs
i (x

′) cosαx′ dx′dα (43)

and

S2R
s
i =

∫ ∞

0

(K − γ)

∆(α)
cosα

∫ 1

0

Rs
i (x

′) cosαx′ dx′dα. (44)

In other words edge waves correspond to the vanishing of the real determinant of the 2× 2
system (42) given in terms of solutions of the forced equations (40).

3.2 Numerical method

We expand the unknown functions which encode the vertical fluid velocity across the water
surface as

Ri(x) ≈
N
∑

n=0

b
(i)
2nv2n(x), |x| < 1 (45)

and choose v2n(x) = (−1)nP2n(x) where Pn(x) are Legendre functions. We note the relation
(see (27))

∫ 1

0

v2n(x) cosαxdx = j2n(α) (46)
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where jn(α) is a spherical Bessel function (e.g. j0(α) = sinα/α) which decays like 1/α as
α → ∞. Note also that spherical Bessel functions can be expressed in terms of standard
circular Bessel functions.
Using (45) in (40), multiplying by v2m(x) and integrating over 0 < x < 1 gives

∞
∑

n=0

b
(i)
2nM2m,2n = Fi,2m (47)

for m = 0, 1, . . . , N where

M2m,2n =

∫ ∞

0

K − γ

∆(α)
j2m(α)j2n(α) dα (48)

with

F1,2m =
2

π

∫ ∞

0

γβ(α2 + νl2) cosα

∆(α)
j2m(α) dα (49)

and

F2,2m = δm0 +
2

π

∫ ∞

0

(K + γ(Kδ − 1− β(l4 + νl2α2))) sinα

α∆(α)
j2m(α) dα. (50)

Infinite integrals are rapidly convergent and are approximated by truncation.
All we then require to complete the numerical solution is

S1R
s
i ≈

N
∑

n=0

b
(i)
2n

∫ ∞

0

α(K − γ)

∆(α)
sinαj2n(α) dα (51)

and

S2R
s
i ≈

N
∑

n=0

b
(i)
2n

∫ ∞

0

K − γ

∆(α)
cosαj2n(α) dα. (52)

3.3 Antisymmetric modes

We follow a similar procedure for identifying antisymmetric modes by defining sine instead
of cosine transforms. This leads to small algebraic differences to before and edge waves are
now given by non-trivial solutions of

(

1 +G′
1(1

+)− T1Ra
1 G′

2(1
+)− T1Ra

2

G1(1
+)− T2Ra

1 1 +G2(1
+)− T2Ra

2

)(

φxz(1
+, 0)

φz(1
+, 0)

)

= 0 (53)

where

G1(x) =
2

π

∫ ∞

0

βγ(α2 + νl2) sinα

∆(α)
sinαxdα (54)

G2(x) = −1

2
(sgn(x+ 1) + sgn(x− 1))−

2

π

∫ ∞

0

K + γ(Kδ − 1− β(l4 + νl2α2))

∆(α)

cosα

α
sinαxdα (55)
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with

G′
1(1

+) =
2

π

∫ ∞

0

K + γ(Kδ − 1− β(l4 + (2 − ν)l2α2))

∆(α)

sinα cosα

α
dα (56)

G′
2(1

+) = − 2

π

∫ ∞

0

K + γ(Kδ − 1− β(l4 + νl2α2))

∆(α)
cos2 αdα (57)

and

T1Ra
i =

∫ ∞

0

α(K − γ)

∆(α)
cosα

∫ 1

0

Ra
i (x

′) sinαx′ dx′dα (58)

T2Ra
i =

∫ ∞

0

(K − γ)

∆(α)
sinα

∫ 1

0

Ra
i (x

′) sinαx′ dx′dα. (59)

In the above Ra
i (x) satisfy

∫ ∞

0

(K − γ)

∆(α)
sinαx

∫ 1

0

Ra
i (x

′) sinαx′ dx′dα = Gi(x), 0 < x < 1 (60)

for i = 1, 2.
Now we expand the unknown functions which encode the vertical fluid velocity across the

water surface as

Ra
i (x) ≈

N
∑

n=0

b
(i)
2n+1v2n+1(x), |x| < 1 (61)

and choose v2n+1(x) = (−1)nP2n+1(x) such that

∫ 1

0

v2n+1(x) sinαxdx = j2n+1(α). (62)

Using (61) in (60), multiplying by v2m+1(x) and integrating over 0 < x < 1 gives

N
∑

n=0

b
(i)
2n+1M2m+1,2n+1 = Fi,2m+1 (63)

for m = 0, 1, . . . , N where

M2m+1,2n+1 =

∫ ∞

0

K − γ

∆(α)
j2m+1(α)j2n+1(α) dα (64)

with

F1,2m+1 =
2

π

∫ ∞

0

βγ(α2 + νl2) sinα

∆(α)
j2m+1(α) dα (65)

and

F2,2m+1 = −δm0 −
2

π

∫ ∞

0

K + γ(Kδ − 1− β(l4 + νl2α2))

∆(α)

cosα

α
j2m+1(α) dα (66)

whose integrand is bounded since the limit j2m+1(α)/α as α → 0 is bounded. Finally

T1Ra
i ≈

N
∑

n=0

b
(i)
2n+1

∫ ∞

0

α(K − γ)

∆(α)
cosαj2n+1(α) dα (67)
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Fig. 3 Symmetric (solid) and antisymmetric (dashed) edge wave dispersion relations between l
and K for an open water lead. Upper dotted curve is cut-off l = K and lower dotted curve is cut-on
l = κ. Here δ = 0.09, β = 5, ν = 0.3. The cut off/on curves meet at K = K∗ = (0.09/5)1/3 ≈ 0.262.

and

T2Ra
i ≈

N
∑

n=0

b
(i)
2n+1

∫ ∞

0

K − γ

∆(α)
sinαj2n+1(α) dα. (68)

3.4 Results

As in the previous section, numerical solutions are found by truncating infinite integrals at
α = 400 and choosing N = 5 in the solutions. In our calculations this was sufficient to
claim four decimal place accuracy.
In Fig. 3 we present a typical example of the results found using the method described

above. We have set δ = 0.09 and β = 5 to represent 1m thick ice sheets bounding a
lead 20m across. Fig. 3 shows the variation of dimensionless wavenumbers l against K
corresponding to edge wave solutions computed using the methods outlined in the earlier
part of this section. Solutions require K > K∗ = (δ/β)1/3 ≈ 0.262 in this example and they
lie in κ < l < K where κ is given by (1). This range of values is depicted in Fig. 3 between
the upper and lower dotted lines and to the right of their point of intersection. Using the
scales employed in this example, K = 1 corresponds to T ≈ 6s and K = 4, to T ≈ 3s whilst
l = 1 corresponds to a longshore wavelength approxmately 60m and l = 4 to roughly 15m.
Taken together this is not an unrealistic set of parameters to encounter in a real sea ice
environment.
In Fig. 4 a representation of the displacement of the water surface in the lead and the

ice sheet beyond is given. Solutions are normalised by φz(1
+, 0). The parameters used

are δ = 0.09 and β = 5 giving K∗ ≈ 0.262. In both cases l = 2 is chosen and the first
symmetric and antisymmetric modes are found to be at values K = 2.2133 and K = 3.1168
respectively. For larger values of β (which can be thought of as narrowing the lead) the
contrast in displacement between the water in the lead and the ice sheet, which is already
large in Fig. 4, being scaled to one hundredth of its computed size, increases.
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Fig. 4 Elevation of the water surface (x < 1) scaled to 1

100
th of its computed value and the

ice sheet (x > 1) for (a) the symmetric and (b) the antisymmetric edge wave modes. Solutions
correspond to δ = 0.09, β = 5 and l = 2 with K = 2.2133 in (a) and K = 3.1168 in (b).

This last observation, namely that the narrowing of the lead results in a widening of the
contrast between the surface displacements in the lead and on the ice sheet ties in with
a separate mathematical observation. During the preparation of this paper a ‘small-lead’
approximation was attempted. Thus, one might expect edge wave solutions to tend to the
infinitely-narrow crack solutions outlined in Appendix B as the size of lead is reduced. As
it turns out the limit appears elusive. In that Appendix, there is a clue as to why this limit
might not exist. In contrast to the finite lead problem outlined in §3, in the infinitely-narrow
crack solution, one of the two conditions that the edge of the ice sheet satisfies is not applied
during the construction of the solution through Fourier cosine or sine transforms. Instead,
it is enforced on the solution afterwards.

4. Conclusions

In this paper it has been demonstrated that oblique flexural-gravity waves can be trapped
in a long ice sheet of finite width floating on deep water. It has also been shown that oblique
waves can be trapped in an open water lead between two semi-infinite floating ice sheets.
The calculation of edge wave solutions in both cases has involved the use of Fourier

transforms to formulate integral equations over the finite interval occupied by either the ice
sheet or the open water lead. The approach is not only simple to implement, it also has
certain attractive features when compared to other candidate methods including those based
on Green’s functions, modified residue calculus and eigenfunction matching (e.g. (16), (13),
(14)). For example, application of Green’s functions result in singular integral equations
and methods specific to finite depth result in having to find the roots of dispersion relations
in addition to matching solutions along artificial boundaries. In this paper it is shown
that expanding unknowns in the integral equations in an appropriate set of functions, the
numerical solution is shown to converge rapidly.
The key to this work has been the observation from the ice dispersion relation (1), that

wavelengths in ice sheets can be either greater or less than the corresponding wavelengths
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for gravity waves on an uncovered ocean surface. This feature was exploited on a deep
water assumption. It does, however, persist for all depths of fluid. For example, the shallow
water (or long wave) ice-covered dispersion relation is

(βκ4 + 1−Kδ)κ2h−K = 0 (69)

where h is the assumed small depth. Wavenumbers of propagating waves on water are
defined by k =

√

K/h, say. Then it can be shown from (69) that κ > k if K < K∗ and
vice versa where, now, K∗ = δh2/β. That is, the critical wave frequency has a different
dependence on δ and β than for deep water and one which includes fluid depth. By itself this
guarantees the existence of shallow water edge wave solutions in both cases (ice sheet/lead)
considered in this paper over all valid ranges of K.
The possibility of finding edge waves along the single straight edge of a semi-infinite

floating ice sheet has also be investigated but it has been shown numerically that no such
solutions exist.
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APPENDIX A

The functions wn(x)

In this section we derive solutions of the eigenproblem defined by

(

d2

dx2
− l2

)2

wn(x) = k4
nwn(x), |x| < 1 (A1)

with
w′′

n(±1)− νl2wn(±1) = 0, and w′′′

n (±1)− (2− ν)l2w′

n(±1) = 0 (A2)

and calculate various quantities associated with those solutions. First, solutions to (A1) and (A2)
which are symmetric about the origin are described by the functions

w2n(x) =
1

4

(

(k2
2n − (1− ν)l2) cosh

√

k2
2n + l2x

(k2
2n + (1− ν)l2) cosh

√

k2
2n + l2

+
cos
√

k2
2n − l2x

cos
√

k2
2n − l2

)

(A3)

where k2
2n are defined as solutions of

(k2
2n + (1− ν)l2)2

√

k2
2n − l2 tan

√

k2
2n − l2 = −(k2

2n − (1− ν)l2)2
√

k2
2n + l2 tanh

√

k2
2n + l2. (A4)
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Considering, first, the case where k2
2n ≥ l2 > 0, we solve for real positive values y of

−y tan y =
(y2 + νl2)2

(y2 + (2− ν)l2)2

√

y2 + 2l2 tanh
√

y2 + 2l2 ≡ fs(y). (A5)

Thus fs(0) = ν2l
√
2 tanh(l

√
2)/(2−ν)2 and fs(y) ∼ y as y → ∞ and simple graphical considerations

show that roots y = yn of (A5) lie in the ranges (n − 1

2
)π < yn < nπ for n = 1, . . . whilst

yn ∼ (n− 1

4
)π as n → ∞. It follows that k2

2n = l2 + y2
n for n = 1, . . . define an infinite sequence of

eigenvalue parameters.
Separately we need to consider the case 0 < k2n < l where (A5) changes to

(k2
2n + (1− ν)l2)2

√

l2 − k2
2n tanh

√

l2 − k2
2n = (k2

2n − (1− ν)l2)2
√

k2
2n + l2 tanh

√

k2
2n + l2. (A6)

Graphical considerations can again be used to show that there is just one root k2
0 lying between

(1− ν)l2 and l2. We note that k0 = 0 when l = 0.
Eigenmodes which are antisymmetric about the origin are given by

w2n+1(x) =
1

4





(k2
2n+1 − (1− ν)l2) sinh

√

k2
2n+1 + l2x

(k2
2n+1 + (1− ν)l2) sinh

√

k2
2n+1 + l2

+
sin
√

k2
2n − l2x

sin
√

k2
2n+1 − l2



 (A7)

where k2
2n+1 are defined as solutions of

(k2
2n+1+(1−ν)l2)2

√

k2
2n+1 − l2 cot

√

k2
2n+1 − l2 = (k2

2n+1−(1−ν)l2)2
√

k2
2n+1 + l2 coth

√

k2
2n+1 + l2.

(A8)
For k2

2n+1 > l2 we consider real positive values y satisfying

y cot y =
(y2 + νl2)2

(y2 + (2− ν)l2)2

√

y2 + 2l2 coth
√

y2 + 2l2 ≡ fa(y). (A9)

We see that the left-hand side tends to 1 as y → 0 whilst fa(0) = ν2l
√
2 coth(l

√
2)/(2 − ν)2 and

fa(y) is positive with fa(y) ∼ y as y → ∞. Graphical considerations now show that roots y = yn
lie in nπ < yn < (n+ 1

2
)π for n = 1, . . . whilst yn ∼ (n+ 1

4
)π as n → ∞. If fa(0) < 1 then a root

labelled y0 exists in (0, π/2). It follows that k2
2n+1 = l2 + y2

n over the range of values of n defined
by the above arguments.

If 0 < k2n+1 < l then (A8) changes to

(k2
2n+1+(1−ν)l2)2

√

l2 − k2
2n+1 coth

√

l2 − k2
2n+1 = (k2

2n+1−(1−ν)l2)2
√

k2
2n+1 + l2 coth

√

k2
2n+1 + l2

(A10)
Now graphical considerations can be used to show that there are no roots if fa(0) < 1 and that
if fa(0) > 1 then there exists a single root which we can call k2

1 and which lies between (1− ν)l2

and l2. When l = 0, k1 = 0. Thus k1 is a root which is defined to be a solution of (A8) or (A10)
depending on definitions of ν and l.

Eigenfunctions can be shown to be orthogonal by selecting eigenmodes and eigenvalues from
either the symmetric (µ = 0) or antisymmetric (µ = 1) sets and considering

(k4
2n+µ − k4

2m+µ)

∫ 1

−1

w2n+µ(x)w2m+µ(x) dx

=

∫

1

−1

(

d2

dx2
− l2

)2

w2n+µ(x)w2m+µ(x)−
(

d2

dx2
− l2

)2

w2m+µ(x)w2n+µ(x) dx = 0. (A11)
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The final equality follows after integrating by parts twice and using the boundary conditions (A2).
Since kn are distinct in each symmetric and antisymmetric sets, it follows that

∫

1

−1

w2n+µ(x)w2m+µ(x) dx = C2
2n+µδmn (A12)

where C2
n are easy to calculate although result in messy expressions which are not obviously

simplified. For completeness these turn out to be

C2
2n =

1

16

(k2
2n − (1− ν)l2)2

(k2
2n + (1− ν)l2)2

tanh
√

k2
2n + l2

[

−2l2

(k2
2n − l2)

√

k2
2n + l2

+

tanh
√

k2
2n + l2

(

−1 +
(k2

2n + l2)(k2
2n − (1− ν)l2)2

(k2
2n − l2)(k2

2n + (1− ν)l2)2

)

]

+
1

16

[

1 +
(k2

2n − (1− ν)l2)2

(k2
2n + (1− ν)l2)2

]

+
1

8

(k2
2n − (1− ν)l2)

(k2
2n + (1− ν)l2)

[

√

k2
2n + l2

k2
2n

tanh
√

k2
2n + l2

]

[

1− (k2
2n − (1− ν)l2)2

(k2
2n + (1− ν)l2)2

]

(A13)

which can be used regardless of the sign of k2
2n − l2. The expression for C2

2n+1 is the same as (A13)
above but with k2n replaced by k2n+1 and tanh replaced by coth. In the case l = 0, C0 = 1/2,
C1 = 1/6 and Cn = 1/8 for n ≥ 2.

Next, from the definition (A1) we consider the identity

k4
n

∫ 1

−1

wn(x)e
−iαx dx =

∫ 1

−1

(

d2

dx2
− l2

)2

wn(x)e
−iαx dx (A14)

and integrating by parts with the use of the boundary conditions (A2) we arrive at

(γ4−k4
n)

∫

1

−1

wn(x)e
−iαx dx = (α2+νl2)

[

w′

n(x)e
−iαx

]1

−1

+i(α3+(2−ν)l2α)
[

wn(x)e
−iαx

]1

−1

(A15)

where γ2 = α2 + l2. Using the definition of w2n(x) in (A3) along with the relation (A4) we find

W2n(α) ≡
∫ 1

−1

wn(x)e
−iαx dx =

k2
2n

(k2
2n + (1− ν)l2)(γ4 − k4

2n)
[

(α3 + (2− ν)l2α) sinα+
√

k2
2n + l2 tanh

√

k2
2n + l2

(

k2
2n − (1− ν)l2

k2
2n + (1− ν)l2

)

(α2 + νl2) cosα

]

. (A16)

Likewise, when we use w2n+1(x) in (A7) we find

W2n+1(α) ≡
∫ 1

−1

w2n+1(x)e
−iαx dx =

−ik2
2n+1

(k2
2n+1 + (1− ν)l2)(γ4 − k4

2n+1)
[

(α3 + (2− ν)l2α) cosα−
√

k2
2n+1 + l2 coth

√

k2
2n+1 + l2

(

k2
2n+1 − (1− ν)l2

k2
2n+1 + (1− ν)l2

)

(α2 + νl2) sinα

]

.

(A17)

APPENDIX B
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Cracks

It is easy to rework the analysis of §3 in the case of an infinitely-thin crack (i.e. no lead) between
two ice sheets. For symmetric edge wave solutions this leads to (27) being replaced by

φz(x, 0) = −φxz(0
+, 0)

[

2β

π

∫

∞

0

γ(α2 + νl2)

∆(α)
dα

]

(B1)

Unlike the solution (27) considered in §3, this expression has been derived by applying just one of
the two boundary conditions at the edge of the ice sheet. In order to apply the other, we need to
take two further derivatives. First,

φxz(x, 0) = φxz(0
+, 0)

[

1 +
2

π

∫

∞

0

K + γ(Kδ − 1− β(l4 + (2− ν)l2α)2)

∆(α)

sinαx

α
dα

]

(B2)

for x > 0 using the methods of §3, and then more straightforwardly,

φxxz(x, 0) = φxz(0
+, 0)

[

2

π

∫

∞

0

K + γ(Kδ − 1− β(l4 + (2− ν)l2α2))

∆(α)
cosαx dα

]

. (B3)

So imposing the final edge condition φxxz(0
+, 0)−νl2φz(0

+, 0) = 0 with (B1) and (B3) above gives

∫

∞

0

K + γ(Kδ − 1− β(1− ν)((1 + ν)l4 + 2l2α2))

∆(α)
dα = 0 (B4)

as the condition for a symmetric edge wave supported by an infinitely-thin crack.
In the case of antisymmetric edge wave solution in the presence of an infinitely-narrow crack we

find, using Fourier sine transforms that

φz(x, 0) = φz(0
+, 0)

[

2β

π

∫

∞

0

γ(α4 + (2− ν)l2α)

∆(α)

sinαx

α
dα

]

= φz(0
+, 0)

[

1 +
2

π

∫

∞

0

K + γ(Kδ − 1− β(l4 + νl2α2))

∆(α)

sinαx

α
dα

]

(B5)

for x > 0. This expression has been derived without imposing the condition φxxxz(0
+, 0) −

νl2φxz(0
+, 0) = 0 and to do this we first need

φxz(x, 0) = φz(0
+, 0)

[

2

π

∫

∞

0

K + γ(Kδ − 1− β(l4 + νl2α2))

∆(α)
cosαx dα

]

(B6)

and then

φxxz(x, 0) = φz(0
+, 0)

[

− 2

π

∫

∞

0

α2(K + γ(Kδ − 1− βl4))− βγνl2α4))

∆(α)

sinαx

α
dα

]

= φz(0
+, 0)

[

νl2 − 2

π

∫

∞

0

(α2 − νl2)(K + γ(Kδ − 1− βl4)) + 2βγνl4α2

∆(α)

sinαx

α
dα

]

(B7)

for x > 0. Finally, another x-derivative gives us

φxxxz(x, 0) = φz(0
+, 0)

[

− 2

π

∫

∞

0

2βγνl4α2 + (α2 − νl2)(K + γ(Kδ − 1− βl4))

∆(α)
cosαxdα

]

. (B8)

Using (B5) and (B7) into the condition φxxxz(0
+, 0) − (2− ν)l2φxz(0

+, 0) = 0 results, after some
work, in

∫

∞

0

(α2 + 2(1− ν)l2)(K + γ(Kδ − 1− βl4)) + ν2βγl4α2

∆(α)
dα = 0 (B9)
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Fig. A Symmetric edge wave dispersion relations showing (l− κ)/κ against κ for a narrow crack
in deep water with δ = 0.9, β = 65535 and ν = 0.3.

as the condition to be satisfied for antisymmetric edge waves.
Computations of the symmetric condition confirm what was commented on in (10) and computed

in (24) for finite water depth, which is that symmetric edge waves do exist for values of l fractionally
above the cut-off value of κ, as defined in (1). A curve showing this relation for deep water using
(B4) is shown in Fig. A, in which parameters corresponding to a 1m thick ice sheet are used. The
condition for antisymmetric edge waves is never satisfied.


