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In this paper we study the interaction of water waves with a surface-piercing truncated cylindrical meta-structure con-
sisting of two overlapping arrays of closely-spaced vertical thin plates. The fluid resonance promoted in the narrow
vertical channels formed by the cylindrical meta-structure is exploited by a novel design concept of the wave power
converter by covering the surface of the cylinder with an array of small cuboid buoys which float in the gaps between the
intersecting plate arrays. Each buoy is attached to its own spring and power take-off damping mechanism and the ver-
tical displacement of individual buoys is replaced by a continuous two-dimensional function of position which follows
from homogenisation of the plate/fluid structure of the cylinder. Effective medium equations and boundary conditions
are derived under both full depth-dependent theory and shallow-water theory, allowing semi-analytical methods to be
developed to investigate the wave scattering and wave energy absorption properties of this cylindrical meta-structure.
Results illustrate that the internal resonance of the cylindrical meta-structure can lead to significant wave power capture
across a broad range of frequencies.

I. INTRODUCTION

When water waves interact with a closely-spaced periodic
array of fixed rigid elements they can exhibit behaviour not
typically observed when marine structures have smooth sur-
faces. For example, in a series of recent papers1–5 periodic ar-
rays of thin vertical plates protruding from the base of a fluid
have been shown to produce refractive effects (including neg-
ative refraction) not possible with conventional bathymetry.
This is partly due to the contrast in lengthscales between the
wavelength and the spacing between elements of structure, but
also due to the anisotropy built into the design of the structure
allowing waves to experience different depths depending on
the wave heading. Adopting terminology used across other
areas of physics, this new type of offshore structure is de-
fined as a water wave meta-structure6. So-called cylindrical
meta-structure that are formed when the plate array extends
fully through the depth and is confined within a cylindrical
domain have been considered by Refs. 7 and 8. Apart from
its anisotropic scattering character (e.g. incident waves prop-
agating in directions aligned with the plate array experience
no scattering) it has been shown that the plate array structure
reduces the wave speed inside the cylinder leading to a res-
onant amplification of the elements in the system within the
cylinder which produces a strong lensing effect8.

In the field of fluid dynamics, meta-structures have recently
been applied to power extraction from water waves. Ref. 9
presented a two-dimensional example of the interaction of
surface gravity waves with a wave energy device consist-
ing of an array of periodic submerged harmonic oscillators.

a)jin.huang2023@outlook.com.

By redirecting and accelerating/decelerating the flow in inho-
mogeneous and anisotropic material, Ref. 10 designed a en-
ergy harvesting device to capture the kinetic energy of low-
speed water flow based on transformation hydrodynamics11.
In Ref. 7 a damped surface boundary condition was intro-
duced inside the cylinder to mimic the effect of a wave energy
converter (WEC) whereby it was shown that a single cylin-
drical meta-structure is capable of harnessing multiple times
the maximum theoretical wave power of a cylindrical device
of an equivalent size operating under rigid body motion (e.g.
Refs. 12 and 13). Two of the current authors have been work-
ing on a project to investigate how to develop this result by
replacing the surface damping condition by practical mechan-
ical mechanisms. In Ref. 14, the damping condition was re-
moved and power was instead generated by an arrangement
of opposing pairs of vertically buoyant hinged paddles dis-
tributed midway along each channel through the middle of the
structure of the cylinder. It was demonstrated that power well
in excess of the equivalent rigid body limits could be gener-
ated by a non-structured cylindrical device of the same size.
Quite remarkably, it was also shown that power capture char-
acteristics were relatively insensitive to the wave heading de-
spite the anisotropy of the cylindrical meta-structure design.

In this paper, we consider an alternative mechanical method
for generating useful power from a cylindrical meta-structure
subject to incident waves. The cylindrical meta-structure is
now formed by two overlapping pairs of plate arrays at right
angles to one another and submerged uniformly through the
surface of the fluid to different depths. The doubly-periodic
arrays of square section cavities that divide the surface of the
fluid within the cylinder are placed with floating buoys which
are attached to their own spring and damper, allowing power
to be generated through the vertical motion of the buoys. This
paper presents a theoretical model as a preliminary study into
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the use of a cylindrical meta-structure as a wave energy con-
verter. We have therefore aassumed an ideal fluid and ignored
turbulent and viscous losses due to the interaction of the fluid
with the structure.

This work has similarities to Refs. 15 and 16 who also
carried out a theoretical study on wave power extraction by
a compact array of small floating buoys absorbing power in
heave with spacings much shorter than the typical wavelength.
They showed that a high efficiency of wave energy conver-
sion can be achieved compared to the limits upon an equiv-
alent rigid cylinder and this can be maintained over a wide
range of frequencies. The reason for this is that the indepen-
dent motion of elements in the array allow energy to be cap-
tured from multiple Fourier components of the incident wave
as opposed to the first two components associated with the
heave and surge motion of the equivalent rigid cylinder (see
Ref. 17). The present work includes the additional complexity
of the plate array structure and can be seen as an extension of
the previous study of Ref. 18 who considered a single array of
bottom-mounted plates extending only partially through the
depth. The use of plate arrays to confine arrays of buoys to
extract energy through their vertical motion was also recently
proposed in Refs. 19 in a two-dimensional setting. They con-
sidered a single array of plates of increasing depth to develop
multiple closely-spaced fluid/mass resonances within the ar-
ray and numerically demonstrated impressive broadband en-
ergy capture. Their solution was represented by a coupled sys-
tem of integral equations associated with the unknown fluid
velocity across the gap under each vertical plate.

The mathematical approach employed here adopted com-
bines Refs. 15 and 18 using homogenisation methods to re-
place exact governing equations and boundary conditions that
apply on the microscale by effective medium equations and
conditions on the macroscale. In tandem with a full depth-
dependent description of the problem, we develop a shallow
water approximation, again using homogenisation methods
which results in a simpler and more numerically robust im-
plement and makes the role of the physical parameters in de-
termining wave propagation characteristics explicit. Indeed,
even after using a homogenisation approximation to govern-
ing equations, the solution to the full depth-dependent prob-
lem is numerically challenging with the effect of resonance
in the present problem adding to the difficulties reported in
Ref. 18.

The paper is arranged as follows. The modelling and as-
sumptions are described in Section II of the paper. Two Ap-
pendices describe the homogenisation approach that is used
to derive the effective equations, and these equations are pre-
sented at the beginning of Sections III and IV which describe
the full depth-dependent theory and the shallow water theory,
respectively. In Section V we describe two independent meth-
ods for calculating the power developed by the WEC device,
which are used alongside other results to validate the model
in Section VI. In Section VII we present a number of typical
cases to assess the efficacy of the proposed device as a WEC
including a comparison with the results of Ref. 15. Finally, a
summary of the work is given in Section VIII.

II. PROBLEM STATEMENT

As shown in Fig. 1, a structured cylinder of radius a con-
sists of two arrays of parallel vertical thin plates which are
overlapping and perpendicular to each other. The two arrays
are, respectively, submerged through the free surface to depths
dx and dy in water of constant depth h and density ρ . We as-
sume that the separation between two adjacent vertical plates,
L, is equal throughout both arrays and is small compared to the
typical wavelength, resulting in a two-dimensional periodic
array of identical open-ended vertical channels formed within
the cylinder through which the fluid is allowed to flow. Float-
ing on the surface of each of the square cross-section chan-
nels within the cylinder is a cuboid buoy with sides of length
L and draft d which is connected to its own linear damper
with damping rate, γ , and a linear spring with spring constant,
σ . The buoys are thus confined to moving in heave only (the
vertical direction).

The Cartesian coordinate system, Oxyz, is defined with its
origin, O, in the mean water surface, the Ox-axis and Oy-axis
aligned with the two arrays of plates submerged to depths dx
and dy respectively. The Oz-axis coincides with the vertical
axis of symmetry of the cylinder and is directed upwards. A
plane wave with the amplitude A and angular frequency ω is
incident at an angle β relative to the positive Ox-axis. Under
the action of waves, the buoys oscillate vertically and energy
is extracted via the damper. In our theory, we assume no hy-
drodynamical or mechanical losses. With no loss of general-
ity, we let dx ≤ dy since the incident wave angle is arbitrary.

Additionally the cylindrical coordinate system, Orθz, is
employed for mathematical convenience with x = r cosθ and
y = r sinθ . The entire fluid domain can be divided into an
outer region Ω1 = {r ≥ a,0 ≤ θ < 2π,−h ≤ z ≤ 0} and an
inner region Ω2 = {r < a,0 ≤ θ < 2π,−h ≤ z ≤ −d}. It
is convenient to further divide the inner cylindrical region
into three layers Ω21 = {r < a,0 ≤ θ < 2π,−dx ≤ z ≤ −d},
Ω22 = {r < a,0 ≤ θ < 2π,−dy ≤ z < −dx} and Ω23 = {r <
a,0 ≤ θ < 2π,−h ≤ z <−dy}.

Linearised theory is adopted under the assumption that the
incident wave amplitude is much smaller than the wavelength,
i.e. the wave steepness A/λ ≪ 1. Assuming that the fluid is
incompressible and inviscid, the velocity field u(x,y,z, t) =
(u,v,w) is governed by the mass conservation equation

∇ ·u = 0, (1)

and linearised momentum conservation equation

∂u
∂ t

=− 1
ρ

∇p, (2)

where p(x,y,z, t) is defined throughout as the hydrodynamic
pressure (i.e. in excess of the hydrostatic background pres-
sure, −ρgz, in which the accerlation due to the gravity g acts
in the negative z-direction).

In the outer region, the linearised kinematic and dynamic
conditions on the free surface of the fluid are

∂ζ

∂ t
= w

p = ρgζ

 on r > a, z = 0, (3)
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FIG. 1. (a) Sketch of the cylindrical meta-structure formed by two intersecting arrays of parallel vertical thin plates submerged to different
depths; (b) vertical view; (c) side view; (d) front view.

where ζ (x,y, t) is the free surface elevation. In the inner re-
gion, the vertical displacement of the buoys is represented
by a two-dimensional function ξ (x,y, t). This is a piecewise
constant on the spatial scale L of each square cell but, under
homogenisation, will eventually be regarded as a continuous
function of the macroscale variables x,y. Thus, the linearised
kinematic and dynamic conditions on the bottom of the buoy
can be written as

∂ξ

∂ t
= w(

M
∂ 2

∂ t2 + γ
∂

∂ t
+σ +ρg

)
ξ = p̄

 on r < a, z =−d,

(4)
where M = ρd represents the buoy mass per unit area (by the
Archimedes principle). Here, Eq. (4) applies in each cell of
the structure and p̄ is the mean pressure within each cell acting
over the base of the buoy occupying that cell. The presentation
alludes to the notion developed in the paper that Eq. (4) will
be applied as a continuous condition. Note that if we set M =
γ =σ = d = 0 the effect of the buoy will be “switched off” and
Eq. (4) reverts to Eq. (3) with ξ (x,y, t) representing the free
surface elevation. Moreover, the velocity field also satisfies
the condition

w = 0, on z =−h, (5)

representing no normal flow through the horizontal sea bed,

and

u ·n = 0, (6)

on the vertical plates; n is used to represent the normal into
the fluid on fixed surfaces.

If we further assume that the fluid motion is irrotational,
that is,

∇×u = 0, (7)

then there exists a velocity potential Φ(x,y,z, t) satisfying

u = ∇Φ, (8)

implying, from Eq. (1), that Φ satisfies Laplace’s equation in
the fluid and, from Eq. (2), that hydrodynamic pressure in the
fluid satisfies the linearised Bernoulli equation

p =−ρ
∂Φ

∂ t
. (9)

Since the separation of adjacent plates, L, is assumed to be
much smaller than the typical wavelength, i.e. ε = L/λ ≪ 1,
the method of multiple scales is applied to consider the effect
of microstructure. We will also assume that L/dx,L/dy ≪ 1
implying that the periodicity of the plate arrays is significantly
smaller than their depth of submergence.
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Appendices A and C outline the application of the multiple
scales approach in the case where the fluid depth is arbitrary
(ω2h/g = O(1)) and when the depth is small compared to the
wavelength or ω2h/g ≪ 1. The latter case is referred to as the
shallow water limit and is considered in Appendix C. Other-
wise we say that we are fully depth-dependent for which the
appropriate homogensation is performed in Appendix A.

III. FULL DEPTH-DEPENDENT THEORY

A. Governing equations and boundary conditions

We first present the effective governing equations and
boundary conditions satisfied by the leading-order velocity
potential after being subjected to homogenisation theory. The
detailed derivation is shown in A. Linearity of the govern-
ing equations has been used to assume the factorisation of a
time-harmonic variation of angular frequency ω proportional
to e−iωt . The superscript (0) has been dropped for conve-
nience and we have reverted to dimensional quantities. There-
fore, the time-independent velocity potential φ = φk(x,y,z) in
each respective region Ωk has been shown to satisfy

∇
2
φ1 = 0, in Ω1, (10)

and

∂ 2

∂ z2 φ2 = 0, in Ω21,(
∂ 2

∂y2 +
∂ 2

∂ z2

)
φ2 = 0, in Ω22,

∇2φ2 ≡
(

∂ 2

∂x2 +
∂ 2

∂y2 +
∂ 2

∂ z2

)
φ2 = 0, in Ω23.

(11)

Eq. (11) describes that the flow at different depths behaves
with different characteristics which are physically quite natu-

ral: in Ω21 the fluid is constrained to oscillate in z direction,
the flow component perpendicular to the plate is suppressed
in Ω22 and the flow under the cylinder is unconstrained.

The combined linearized kinematic and dynamic boundary
conditions can be expressed as

∂φ1

∂ z
= νφ1, on r ≥ a, z = 0, (12a)

and

∂φ2

∂ z
=

ν

1+ τ −νd
φ2, on r < a, z =−d, (12b)

where ν = ω2/g and

τ = (−iωγ +σ)/ρg, (13)

combines the effect of the spring and damper which are sepa-
rated in Eq. (12b) from the effect of the mass and hydrostatic
stiffness. Obviously, when τ = d = 0, the fluid has the free
surface in the inner region. The velocity potentials φk also
satisfy the no-normal flow condition

∂φk

∂ z
= 0, on z =−h. (14)

Moreover, at the fluid interface, r = a, between inner and outer
regions, continuity of pressure requires

φ1 (a,θ ,z) = φ2 (a,θ ,z) , 0 ≤ θ < 2π, −h < z <−dx,
(15)

whilst matching fluxes across r = a results in the piecewise
conditions

∂φ1 (a,θ ,z)
∂ r

=


0, −dx ≤ z ≤ 0,

sinθ
∂φ2 (a,θ ,z)

∂y
, −dy ≤ z <−dx,

∂φ2 (a,θ ,z)
∂ r

, −h ≤ z <−dy,

0 ≤ θ < 2π. (16)

The geometric factor sinθ arises from matching the inner flux
confined between parallel plates to the flux into the fluid re-
gion outside the cylinder through the circular boundary across
an approximated triangular region (see Ref. 20). Note that
there are no conditions relating to φ2 or its derivative at r = a
from within the overlapping plate region −dx < z <−d.

B. Expansions for the velocity potential

In the outer region, the velocity potential satisfying Eqs.
(10), (12a) and (14) can be expressed as

φ1 = φinc −
igA
ω

∞

∑
n=−∞

ineinθ A0nHn(kr)ψ0(z)

− igA
ω

∞

∑
n=−∞

ineinθ
∞

∑
j=1

A jnKn(k jr)ψ j(z), (17)
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where

φinc =− igA
ω

∞

∑
n=−∞

inein(θ−β )Jn (kr)ψ0(z), (18)

represents the incident wave and Jn, Hn and Kn denote, respec-
tively, the nth order Bessel function of the first kind, Hankel
function of the first kind and modified Bessel function of the
second kind. Also in the above, A jn are undetermined coeffi-
cients, k j are the roots of the dispersion equation

ω
2 =−gk j tank jh, (19)

such that k j ( j ≥ 1) are real while k0 =−ik and the wavenum-
ber k is real, and ψ j(z) are vertical eigenfunctions

ψ j(z) = N−1/2
j cosk j(z+h), (20)

with

N j =
1
2

(
1+

sin2k jh
2k jh

)
, (21)

satisfying the orthogonality relation

1
h

∫ 0

−h
ψ j(z)ψn(z)dz = δ jn. (22)

In the inner region, we will utilise the general expression of
the velocity potential proposed by Ref. 18 written as

φ2(r,θ ,z) =− igA
ω

∞

∑
q=0

∫
π

−π

Bq(t)eiκq(t)r cos(θ−t)Zq(z, t)dt =

− igA
ω

∞

∑
q=0

∫
π

−π

Bq(t)
∞

∑
n=−∞

inein(θ−t)Jn [κq(t)r]Zq(z, t)dt.(23)

This expression represents the potential as a sum over all
possible wavenumbers κq(t) integrated over all angles t ∈
[−π,π). Since the velocity potential φ2(r,θ ,z) is governed
by Eq. (11), the vertical function Zq(z, t) is expressed as a
piecewise function satisfying different equations in each of
the three intervals of z. Its final expression can be determined
by satisfying the boundary conditions (12b) and (14) and by
balancing the pressure and flux on the interfaces z =−dx and
z =−dy, leading to

Zq(z, t) =


νz+ τ +1, −dx ≤ z ≤−d,

Cq(z, t), −dy ≤ z <−dx,

Cq(−dy, t)
cosh [κq(z+h)]
cosh [κq(h−dy)]

, −h ≤ z <−dy,

(24)
in which

Cq(z, t) =
ν sinh [κq sin t(z+dx)]

κq sin t
+ (τ +1−νdx)cosh [κq sin t(z+dx)] , (25)

and κq = κq(t) are the roots of

tanh [κq(h−dy)] =

ν −κq(τ +1−νdx)sin t tanh [κq sin t(dy −dx)]

κq(τ +1−νdx)− (ν/sin t) tanh [κq sin t(dy −dx)]
.(26)

Note that Eq. (26) does not depend upon d, since the iner-
tial effect of the mass of the buoy is the same as the fluid it
displaces. As we proceed we find the dependence on d disap-
pears from all calculations, as we must therefore expect.

Eq. (26) is complicated and we should pick out special
cases. Thus, for t = 0, Eq. (26) is reduced to

κqh tanh [κq(h−dy)] =
νh

(τ +1−νdy)
, (27)

which is independent of dx. This is since the barriers of depth
dx are aligned with the x-axis and transparent to waves travel-
ling at an angle t = 0. Likewise, for t = π/2, Eq. (26), less
obviously becomes

κqh tanh [κq(h−dx)] =
νh

(τ +1−νdx)
, (28)

which is independent of dy. Finally, if dx = dy Eq. (26) re-
duces to Eq. (27) or (28) for all values of t. In this latter
special case, κq(t) are constant and Eq. (23) reduces to the
more familiar separation series

φ2(r,θ ,z) =− igA
ω

∞

∑
q=0

∞

∑
n=−∞

inbqnJn(κqr)Zq(z)einθ , (29)

in which

bqn =
∫

π

−π

Bq(t)e−int dt, (30)

represents unknown coefficients. Since Eqs. (27) and (28)
have the same form as Eq. (19) if τ is real, a conventional
method can be performed to find the roots kq(t), but for the
dispersion equation (26), the procedure becomes more com-
plicated and one robust approach is outlined in Appendix B.

C. Reduction to a system of equations

Now we have the expressions of the velocity potential in the
inner and outer regions. After substituting Eqs. (17) and (23)
into velocity matching condition (16), multiplying ψ j(z)e−inθ

on both sides, integrating over −h≤ z≤ 0 and 0≤ θ ≤ 2π and
applying Eq. (22) and the orthogonality of functions e−inθ , we
can obtain

1
2i

∞

∑
q=0

∫
π

−π

Bq(t)κqJn−1(κqa)sin te−i(n−1)tF(1)
q0 (t)dt

+
1
2i

∞

∑
q=0

∫
π

−π

Bq(t)κqJn+1(κqa)sin te−i(n+1)tF(1)
q0 (t)dt

+
∞

∑
q=0

∫
π

−π

Bq(t)κqJ′n(κqa)e−intF(2)
q0 (t)dt

=

{
kJ′n(ka)e−inβ +A0nkH ′

n(ka), j = 0,

A jnk jK′
n(k ja), j = 1,2, . . . ,

(31)
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where standard recurrence relations for Bessel functions have
been used (see Ref. 21, §9.1.27) and

F(i)
q j (t) =


1
h

∫ −dx

−dy

Zq(z, t)ψ j(z)dz, i = 1,

1
h

∫ −dy

−h
Zq(z, t)ψ j(z)dz, i = 2,

(32)

which can be expressed explicitly.
Similarly, we can apply pressure matching condition (15)

to the velocity potentials given in Eqs (17) and (23), multiply
on equation both sides by ψm(z)e−inθ and integrate over the
regions of validity. The orthogonality of functions e−inθ still
exists but the orthogonality in the vertical direction no longer
satisfies since the pressure is continuous only in −h ≤ z ≤
−dx. Thus, we have[

Jn(ka)e−inβ +A0nHn(ka)
]

E0k +
∞

∑
j=1

A jnKn(k ja)E jm

=
∞

∑
q=0

∫
π

−π

Bq(t)e−intJn(κqa)
[
F(1)

qm (t)+F(2)
qm (t)

]
dt, (33)

where

E jm =
1
h

∫ −dx

−h
ψ j(z)ψm(z)dz, (34)

which also can be expressed explicitly.
Then, after substituting Eq. (31) into Eq. (33) we can obtain

an equation system related to the unknown functions Bq(t)

∞

∑
q=0

∫
π

−π

Bq(t)Mmnq(t)eintdt =
2ie−inβ E0m

πkaH ′
n(ka)

, (35)

where

Mmnq(t) = Jn(κqa)
[
F(1)

q0 (t)+F(2)
q0 (t)

]
+

iκq sin t
2

[
Jn−1(κqa)eit + Jn+1(κqa)e−it

]
G(1)

mnq

− κq(t)J′n(κqa)G(2)
mnq, (36)

and

G(i)
mnq =

Hn(ka)E0m

kH ′
n(ka)

F(i)
q0 (t)+

∞

∑
j=1

Kn(k ja)E jm

k jK′
n(k ja)

F(i)
q j (t). (37)

Note that the series in Eq. (37) decays like O( j3) which allows
us to make efficient and accurate computations.

In order to solve Eq. (35) for the unknowns Bq(t), we take
advantage of the 2π-periodicity of Mmnq(t) and expand it in
its Fourier series as

Mmnq(t) =
1

2π

∞

∑
p=−∞

Mmnpqe−i(p+n)te−iκq(t)a, (38)

such that

Mmnpq =
∫

π

−π

Mmnq(t)eiκq(t)aei(p+n)tdt, (39)

where the scale factor e−iκq(t)a is introduced to balance the
increasingly exponential behaviour of the functions Jn(κqa)
for q≥ 1 with the aim of suppressing the influence of rounding
error on numerical results. Substituting Eq. (38) into Eq. (35)
and truncating the infinite system of equations results in

N

∑
p=−N

M

∑
q=0

bpqMmnpq =
2ie−inβ E0m

πkaH ′
n(ka)

, (40)

for m = 0,1,2, . . . ,M (angular mode truncation) and n =
−N,−N +1, . . . ,N (vertical mode truncation), where

bpq =
1

2π

∫
π

−π

Bq(t)e−ipte−iκq(t)adt, (41)

with

Bq(t) =
N

∑
p=−N

bpqeipteiκq(t)a. (42)

IV. SHALLOW WATER THEORY

A. Governing equation and boundary conditions

In this section, we apply shallow water theory to con-
sider the interaction of water waves with our cylindrical meta-
structure. The detailed derivation of the linear homogenised
governing equation is shown in Appendix C. Returning to di-
mensional variables and considering motion with a time fac-
tor of e−iωt assumed, the time-independent surface elevation
η(x,y) outside the cylinder satisfies

h∇
2
hη +νη = 0, in r > a, (43)

and the time-independent buoy elevation ξ (x,y) inside the
cylinder (assuming constant properties of the cylinder in the
vertical direction) satisfies

∇h · (h∇hξ )+
ν

1+ τ
ξ = 0, in r < a. (44)

The wavenumber, k, in shallow water satisfies ν = k2h which
is the kh → 0 limit of the dispersion equation (19) for j =
0. Also, τ is defined in Eq. (13) and the two-dimensional
diagonal tensor h is, from Eq. (C22) in dimensional form,

h=

(
h−dy 0

0 h−dx

)
. (45)

The physical conditions that apply at the interface of inner
and outer regions are that the pressure and depth-averaged flux
normal to the circular boundary r = a are continuous. In terms
of our variables, these require

η = ξ , (46)

and

∂η

∂ r
=

h−dx sin2
θ −dy cos2 θ

h
∂ξ

∂ r

+
(dy −dx)sinθ cosθ

ah
∂ξ

∂θ
, (47)

on r = a for 0 ≤ θ < 2π (see Refs. 4 and 18 for a similar
application of shallow water matching conditions).
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B. Expansion, matching and system of equations

In the outer region Ω1, the elevation satisfying Eq. (43) can
be written as

η(r,θ) = A
∞

∑
n=−∞

ineinθ

[
Jn(kr)e−inβ +AnHn(kr)

]
, (48)

while in the inner region Ω2, the elevation satisfying Eq. (44)
can be expressed as

ξ (r,θ) = A
∫

π

−π

B(t)eiκ(t)r cos(θ−t) dt

= A
∫

π

−π

B(t)
∞

∑
n=−∞

inein(θ−t)Jn [κ(t)r]dt, (49)

where

κ(t) =

√
ν

(1+ τ)(h−dx sin2 t −dy cos2 t)
. (50)

It can readily be confirmed that Eq. (50) is the ν → 0 limit
of Eq. (26) and the wavenumber is now explicit, rather than
implicit and requiring roots to be determined numerically. Be-

sides, Eq. (50) inherits the properties of Eq. (26): for exam-
ple, κ(t) is independent of the angle t when dx = dy which is
implied by geometric symmetry.

Applying the matching conditions at r = a, and using the
orthogonality of functions einθ over 0 ≤ θ < 2π , we obtain

Jn(ka)e−inβ +AnHn(ka) =
∫

π

−π

B(t)e−intJn(κa)dt, (51)

and

kJ′n(ka)e−inβ +AnkH ′
n(ka) =

∫
π

−π

B(t)e−int
κJ′n(κa)dt +

dy

2h

∫
π

−π

κB(t)cos te−int
[
−Jn−1(κa)eit + Jn+1(κa)e−it

]
dt +

idx

2h

∫
π

−π

κB(t)sin te−int
[
Jn−1(κa)eit + Jn+1(κa)e−it

]
dt.(52)

Eliminating An between Eqs. (51) and (52) gives∫
π

−π

B(t)Mn(t)e−intdt =
2i

πka
e−inβ , (53)

where

Mn(t) =
∫

π

−π

[
Jn(κa)H ′

n(ka)− κ

k
J′n(κa)Hn(ka)

]
B(t)e−intdt

+
1

2kh
Hn(ka)

∫
π

−π

κdyB(t)cos te−int
[
Jn−1(κa)eit − Jn+1(κa)e−it

]
dt

+
1

2ikh
Hn(ka)

∫
π

−π

κdxB(t)sin te−int
[
Jn−1(κa)eit + Jn+1(κa)e−it

]
dt.

(54)

Since Mn(t) = Mn(t + 2π), we expand Mn(t) in its Fourier
basis

Mn(t) =
1

2π

∞

∑
p=−∞

Mnpe−i(p+n)t , (55)

from which follows that

Mnp =
∫

π

−π

Mn(t)ei(p+n)t dt. (56)

Substituting Eq. (55) into Eq. (53) and truncating the infinite
system of equations, we obtain

N

∑
p=−N

bpMnp =
2i

πka
e−inβ , (57)

for n =−N,−N +1, . . . ,N, where

bp =
1

2π

∫
π

−π

B(t)e−ipt dt, (58)

with

B(t) =
∞

∑
p=−∞

bpeipt . (59)

V. WAVE POWER ABSORPTION

The mean power absorbed by a wave energy device can
usually be evaluated using two independent methods which
makes it a useful tool for checking the accuracy of the numeri-
cal scheme. The first method involves balancing the incoming
and outgoing energy flux far from the device and we call this
the far-field method. Thus integrating the time-averaged prod-
uct of pressure and velocity over the surface, SR, of a cylinder
of large radius R extending through the depth, h, gives the
mean power as

Pf =
ωρ

2
lim

R→∞
Im
[∫∫

SR

φ1
∂φ ∗

1
∂ r

dS
]
, (60)

and the asterisk denotes complex conjugation. After substi-
tuting Eq. (17) or (48) into the far-field expression (60) and
exploiting the theorem of stationary phase (see, e.g. Ref. 22),
it can be expressed as

Pf =−
2ρgA2cg

k

∞

∑
n=0

{
Re[A0neinβ ]+ |A0n|2

}
, (61)
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where cg = (ω/2k)(1+ 2kh/sinh2kh) is the group velocity;
A0n is replaced with An and cg = ω/k if shallow water theory
is applied.

The second method is related to the first by connecting the
boundary SR through the fluid domain to the internal boundary
representing the underside of the floating buoys using Green’s
second identity. Once this is done carefully using the dif-
ferent governing equations in the different subdomains and
the boundary matching conditions that define the problem, we
find that the mean power calculated by the near-field method
is given by

Pn =−ωρ

2
Im
[∫ a

0

∫ 2π

0
φ2

∂φ ∗
2

∂ z
r dθ dr

]
z=−d

. (62)

The can be interpreted as the time-averaged rate of working of
the fluid pressure on the motion of the buoys. Using Eq. (12b)
allows us to write

Pn =
ν2γ

2

∫ a

0

∫ 2π

0
|φ̃2(r,θ)|2r dθ dr, (63)

where, from Eqs. (23) and (24) in −dx < z < −d, we have
factorised the z-dependence from the integral over t enabling
us to write

φ2(r,θ ,−d) = (1+ τ −νd)φ̃2(r,θ), (64)

and the subsequent simplification renders the final expression
in Eq. (63) independent of d, in accordance with earlier re-
marks and with the computation of Eq. (60).

It is now possible to use either Eq. (23) or (49) in Eq. (63),
and the final expression for Pn can be expressed explicitly.
However, its numerical calculation is time-consuming since
the expression includes a triple summation and a double inte-
gration for full-depth theory and includes a double summation
and a double integration under shallow water theory (when φ2
is replaced by ξ ). In spite of the complexity of Eq. (63), it
does provide us with an additional check on Eq. (61) to assess
the accuracy of numerical calculation.

The capture width, W , defined as the width of the incoming
wavefront that contains the same amount of power as that ex-
tracted by the WEC (e.g. Ref. 13) can be used as an indicator
of effectiveness of wave power extraction written as

W =
Pf/n

Pinc
, (65)

where Pinc =
1
2 ρgA2cg represents the incident wave power per

unit width of the wave crest. Another important measure that
determines the economical performance of WEC is the cap-
ture width ratio, W/2a, obtained by dividing the capture width
by the characteristic dimension (in this case, the diameter) of
the device.

VI. VALIDATION

We first examine the convergence characteristics for the nu-
merical scheme of the full depth-dependent theory given in
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0.4

0.6

0.8

W
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ndy
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0.0

0.2
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ndy

 N=4
 N=8
 N=12

(b)

FIG. 2. The convergence of capture width ratio W/(2a) for a cylin-
drical meta-structure of a/h = 0.5, dx/h = 0.1 and dy/h = 0.2 with
γ/(ρ

√
gh) = 0.2 and σ/ρg = 0.2 at β = π/4: (a) N = 8; (b) M = 8.

Section III by varying the parameters M and N representing
the number of angular and depth modes retained in the sys-
tem of equations Eq. (40). A cylinder of radius a/h = 0.5
with the two arrays of plates having the depths of submer-
gence dx/h = 0.1 and dy/h = 0.2 subject to incident waves
propagating at β = π/4 is considered. For the purposes of il-
lustration, we choose a damping γ/(ρ

√
gh) = 0.2 and a spring

σ/ρg = 0.2 as representative values of a real device. Fig. 2
shows the variation of the capture width ratio, W/(2a), calcu-
lated using the far-field method against the non-dimensional
wavenumber νdy. In Fig. 2(a), we fix N = 8 and so illustrate
convergence with increasing M. As the frequency increases,
more terms are typically required to adequately model the
evanescent waves. In Fig. 2(b), we now fix M = 8 and show
that convergence with increasing N is rapid.

Fig. 3 presents the comparison of the wave power evaluated
by the near-field and far-field expressions. Here we set both
truncation parameters N and M equal to 8 and two methods
are shown to agree with a high degree of accuracy.

We further validate our numerical model by considering a
special case where the geometry of the cylinder is unchanged
but the damping rate and spring constant are set to zero (i.e.
τ = 0) which means the surface of fluid within the cylinder
is subject only to gravity. This allows us to compare the
present results with those computed using the boundary ele-
ment method proposed by Ref. 23 in which the scattering of
multiple discrete vertical barriers with infinitesimal thickness
is considered. As Ref. 24 has pointed out, the homogenisation
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FIG. 3. Comparison of the wave power evaluated by the near-field
and far-field methods for a cylindrical meta-structure of a/h = 0.5,
dx/h = 0.1 and dy/h = 0.2 with γ/(ρ

√
gh) = 0.2 and σ/ρg = 0.2 at

β = π/4.

method can serve as a good approximation to large discrete
arrays of plates when the separation of two adjacent plates
L/dy < 0.5 if νdy ≲ 0.4. Our boundary element method was
used to calculate wave interaction with 24 plates in both x and
y directions. Fig. 4 plots the contour of wave amplitude in the
wave field. It illustrates that the homogenisation method ac-
curately captures the fluid motion in both interior and exterior
regions. Specifically, compared with the boundary element
method, results from homogenisation slightly overpredict the
wave amplitudes within the cylinder and the free surface ele-
vation is not continuous at the interface of interior and exterior
regions (see subplots (a) and (c)) since no pressure continuity
condition is imposed on −dx < z < 0 (see Eq. (15)). On the
other hand, in the boundary element method, there should be
discontinuities in the surface elevation across each of the 48
plate elements in the interior domain since each plate is ex-
actly described in the numerical computation. However, these
are not evident in Fig. 4. Therefore, this also provides a justi-
fication for the homogenisation approach which assumes that
the quantities vary continuously in the effective medium.

Next, a comparison is made between full depth-dependent
theory and shallow water theory. Both are homogenisation
approximations and we expect good agreement for values of
νh ≪ 1. A cylinder with the same settings used for Fig. 3 is
considered in Fig. 5 which plots curves of the capture width
ratio W/(2a) versus the non-dimensional wavenumber νdy.
The results show increasing agreement as νh → 0, as ex-
pected. The corresponding pressure distribution on the bot-
tom of the buoy at νdy = 0.1 (corresponding to νh = 0.5) is
given in Fig. 6 (note the compressed vertical scale). Since a
long wave is considered, the hydrodynamic pressure is almost
unchanged in the array.

The wave amplitude for the same cylinder given above but
without internal buoys at νdy = 0.1 is plotted in Fig. 7. Al-
though results from these two theories are similar, the full
depth-dependent theory predicts larger wave amplification in
and around the cylinder. This may be because the first-order
shallow water theory does not include the inertial effects of
the fluid or floating buoy in the internal domain −d < z < 0

(see the neglect of M in Appendix C). Indeed, with τ = 0, the
effective shallow water governing equation Eq. (44) and effec-
tive boundary condition Eq. (47) are identical to Ref. 18 for a
bottom-mounted structured cylinder with the reduced depths
h− dy and h− dx replacing the plate submergence depths D
and d in Ref. 18.

VII. RESULTS

In this section we focus on the operation of the cylindrical
meta-structure as a WEC device and consider a range of pa-
rameters which are indicative of the typical performance of
what we imagine to be a realistic device and wave conditions.
In particular, the choice dy/h = 0.2 and a/h = 0.5 is sugges-
tive of a device of 10 m in radius having plates submerged
to a depth 4 m. The maximum upper value of νdy = 1 used
in the plots is then suggestive of a minimum wavelength of
approximately 25 m.

First, Fig. 8 plots the contour of wave scattering of three
cylindrical meta-structures of a/h = 0.5 and dy/h = 0.2 with
different values of dx for an incident wave angle β = π/4
when νdy = 0.4 and τ = 0. From Appendix B, we have known
that as dx approaches dy the wavelength in the structure will
decrease and the oscillation within the cylinder becomes in-
creasingly strong. Thus, Fig. 8(c) shows a large wave am-
plitude in the undamped cylindrical meta-structure, which is
close to three times the incident wave amplitude.

Curves of power, represented by the capture width ratio
W/2a, generated by the same three cylindrical meta-structures
used in Fig. 8 but with constrained buoys at three different
incident wave angles β is shown in Fig. 9. For the par-
ticular spring and damper parameters γ/(ρ

√
gh) = 0.2 and

σ/ρg = 0.2, dx has limited influence on the generated power
when the incident wave angle is perpendicular to the deeper
array of plates at low frequencies while for higher frequencies
power is increased by reducing dx. As the incident wave angle
β increases, the incident wave direction is gradually aligned
with the array of plates in the y direction. As this happens, the
value of dx has a greater influence and more power is extracted
at low frequencies as the value of dx is increased, although in-
terestingly at higher frequencies results again suggest a lower
value of dx is optimal. Note that when dx = dy the wave power
extraction is independent of the incident wave direction since
the description of the structured cylinder under homogenisa-
tion is axisymmetric.

The results of shallow water theory in the range of vdy ∈
[0,0.5] are also plotted in Fig. 9 for comparison. We can see
that the wave power is little affected by dx. When dx/h = 0
and β = π/2, the results from shallow water theory present a
good prediction on wave power extraction since the incident
wave angle is parallel to the plates such that the water depth
becomes a less important factor.

Fig. 10 shows the corresponding distribution of buoy verti-
cal displacement based on the full depth-dependent theory at
β = π/4 and νdy = 0.4. As expected, amplitudes of motion
on the waveward side are larger than those at the leeward side,
but these remain at the same order as the incident wave am-
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FIG. 4. Comparison of wave amplitude computed using full depth-dependent homogenisation theory (a,c) and a boundary element method for
a discrete plate array (b,d) for a cylindrical meta-structure of a/h = 0.5, dx/h = 0.1 and dy/h = 0.2 with τ = 0 at β = π/4: (a,b) νdy = 0.2;
(c,d) νdy = 0.4.
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FIG. 5. Comparison of capture width ratio, W/(2a), for full depth-
dependent theory (F) and shallow water theory (S) for a cylindri-
cal meta-structure of a/h = 0.5, dx/h = 0.1 and dy/h = 0.2 with
γ/(ρ

√
gh) = 0.2 and σ/ρg = 0.2 at β = π/4.

plitude. When dx = 0, the contours are roughly aligned with
the remaining single array of plates. As dx approaches dy, the

contours become increasingly parallel to the direction of the
incident wave crest.

Then, the curves of wave power extracted from two cylin-
drical meta-structures of a/h = 0.5 with different plate sub-
mergence at β = π/4 are shown in Fig. 11. The settings of
spring and damping are the same above, i.e. γ/(ρ

√
gh) = 0.2

and σ/ρg = 0.2. It shows that when the plates submerge to
a deeper depth more wave power is generated at low frequen-
cies but the situation is reversed at high frequencies. Besides,
for the case of dh/h = 2dx/h = 0.4, the critical frequency oc-
curs at νch = 3.0. Since the inner free surface is covered by
the buoys, the resonance is suppressed by the damping mech-
anism.

Next, we consider the effect of damping rate γ and spring
constant σ on the efficiency of wave power extraction. Fig. 12
shows the capture width ratio W/(2a) for a cylindrical meta-
structure of a/h = 0.5, dx/h = 0.1 and dy/h = 0.2 at β =
π/4 with different damping rates and spring constants. In
Fig. 12(a) where γ/(ρ

√
gh) = 0.4 is fixed the capture width

ratio is shown to increase with decreasing spring constant,
suggesting that fixing additional springs to the buoys may be
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gh) = 0.2 and σ/ρg = 0.2 at νdy = 0.1 and β = π/4.

-4 -2 0 2 4
-4

-2

0

2

4

y/
a

x/a

0.96

0.98

1.00

1.02

1.04

1.06
|h|/A

-4 -2 0 2 4
-4

-2

0

2

4(b)

y/
a

x/a

(a)

FIG. 7. Comparison of wave amplitude between full depth-dependent theory (a) and shallow water theory (b) for a cylindrical meta-structure
of a/h = 2.0, dx/h = 0.1 and dy/h = 0.2 with τ = 0 at νdy = 0.1 and β = π/4.

-4 -2 0 2 4
-4

-2

0

2

4 (c)(b)

y/
a

x/a

0.0

0.5

1.0

1.5

2.0

2.5

3.0
|h|/A

(a)

-4 -2 0 2 4
-4

-2

0

2

4

y/
a

x/a
-4 -2 0 2 4

-4

-2

0

2

4

y/
a

x/a

FIG. 8. Wave amplitude for a cylindrical meta-structure of a/h = 0.5 and dy/h = 0.2 with τ = 0 at β = π/4 and νdy = 0.4: (a) dx/h = 0.0;
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FIG. 9. The variation of wave power generated by a cylindrical meta-
structure of a/h = 0.5 and dy/h = 0.2 with γ/(ρ

√
gh) = 0.2 and

σ/ρg = 0.2: (a) β = 0; (b) β = π/4; (c) β = π/2. (F: full depth-
dependent theory; S: shallow water theory).

unnecessary for the proposed scheme. In Fig. 12(b) where the
spring constant is fixed at σ/ρg = 0.2, we see that different
damping parameters work best at different frequencies.

Lastly, we present the curves of wave power extraction, rep-
resented by the capture width kW in Fig. 13(a) and the cap-
ture width ratio W/2a in Fig. 13(b), against non-dimensional
wavenumber νh for a cylindrical meta-structure with plate
depths set at dx/h = 0.1 and dy/h = 0.2 with γ/(ρ

√
gh) = 0.5

and σ/ρg = 0.0 at β = π/4. For sufficiently low frequencies,
the non-dimensional capture width, kW , and capture width ra-
tio, W/(2a), increase with the radius of the cylindrical meta-
structure. Ref. 12 was one of a number of papers who si-
multaneously proved a theoretical limit of kW = 1 for an ax-
isymmetric device of any size absorbing in heave. The re-

sults therefore demonstrate that our proposed WEC can ex-
ceed this value across a wide range of frequencies: for exam-
ple, kh ≳ 1.0 when a/h = 1 or kh ≳ 0.6 when a/h = 2.0. In
Fig. 13(b) we have superimposed the results of Ref. 15 who
considered a power absorption from a compact array of float-
ing buoys operating in heave. Although the designs are clearly
not the same, comparisons can be made since both consider
the wave power absorption from a array of small buoys ar-
ranged in a circular array. To ensure the comparison is fair,
the same damping ratio and spring constant have been cho-
sen as in Ref. 15. The results illustrate that the present WEC
appears to exploit the resonance promoted by the structured
plate array, which is especially strong at low frequencies.

VIII. CONCLUSION

In this paper, we have considered a cylindrical wave en-
ergy device consisting of two intersecting arrays of identical
thin vertical plates which are immersed through the surface at
right angles to one another and submerged to different depths.
Floating buoys connected to springs and dampers are placed
within each of the narrow vertical channels formed by the
overlapping plate array and operate as wave energy absorbers.
This WEC design falls into the minor “Many-body systems”
classification of WEC according to the authoratitive review of
Ref. 25. Although few concepts currently fall within this cat-
egory the present work in conjunction with the contributions
of, for example, Refs. 15 and 19 highlight the potential that
such devices offer, which is far in excess of a cylinder of the
same size operating in rigid body motion.

The device could be operated in shallow or deep water and
we have developed approximate homogenisation methods to
study its operation in both settings. The advantages of us-
ing shallow water theory are that numerical results are more
robust and efficient to compute and the role of physical pa-
rameters, such as the depths of submergence of the plates, are
easier to identify. Additionally, it is possible to use shallow
water equations to explore the use of plate arrays of slowly
varying depth within the cylinder, something we have not pur-
sued here. Results have shown shallow water theory to be
useful but limited when compared to the more accurate, com-
plicated and numerically challenging fully-depth dependent
homogenisation model. This model has been validated in dif-
ferent ways including comparison with results from boundary
element method computations made for an exact description
of the plate arrays.

Numerical results for the operation of the cylinder as a
WEC have been used to assess its potential by considering the
influence of the key geometric and wave parameters on the
operation of the device. The general conclusions are as fol-
lows: (i) the plate arrays are useful in enhancing the capture
of energy from low frequency waves; (ii) tuned springs are
not required for optimal power absorption; (iii) larger diame-
ter cylinders both increase the capture with ratio and move its
peak to lower wave frequencies; (iv) there is some directional
dependence to the device, but it appears to be relatively weak
at low frequencies.
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FIG. 10. The vertical displacement of buoys for a cylindrical meta-structure of a/h= 0.5 and dy/h= 0.2 with γ/(ρ
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FIG. 11. The variation of wave power generated by cylindrical
meta-structures of a/h = 0.5 with different plate submergence for
γ/(ρ

√
gh) = 0.2 and σ/ρg = 0.2 at β = π/4.

The modelling has been performed under the assumption
of no hydrodynamical or mechanical losses and it is not clear
if viscosity and/or turbulence shed from the edge of the thin
plates will have a significant effect on our predictions. Exper-
imental testing of this device is planned and will allow us to
assess these issues.
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Appendix A: Derivation of governing equations and boundary
conditions under full depth-dependent theory

In this Appendix, we will present a detailed derivation of
effective governing equations and boundary conditions using
a homogenisation approach, without making any assumptions
about the depth of the fluid. Since homogenisation is a spatial
operation, we could retain full-time dependence in the deriva-
tion below. But we only make single-frequency computations
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FIG. 13. The variation of wave power extraction for a cylindri-
cal meta-structure of dx/h = 0.1, dy/h = 0.2 with γ/(ρ

√
gh) = 0.5

and σ/ρg = 0.0 at β = π/4 against non-dimensional wavenumber
νh: (a) non-dimensional capture width kW ; (b) capture width ra-
tio W/(2a) (Comparison between the present model (P) and Ref. 15
(G&M)).

and are in the interests of simplifying the presentation of the
method, so we first let Φ(x,y,z, t) = Re{φ(x,y,z)e−iωt}. Sim-
ilar factorisations of time can be applied to all other time-

dependent functions such that the full problem outlined in
Section II may be posed entirely in terms of φ with

∇
2
φ = 0, in the fluid, (A1)

the combined kinematic and dynamic conditions

∂φ

∂ z
−νφ = 0, on z = 0, r > a, (A2)

and

∂φ

∂ z
=

ν

1+ τ −νd
φ̄ , on z =−d, r < a, (A3)

where ν = ω2/g and τ = (−iωγ +σ)/ρg,

∂φ

∂ z
= 0, on z =−h, (A4)

and n ·∇φ = 0 on all vertical sides of the structured plate array.
Our depth assumption translates to νh = O(1). In Eq. (A3),
φ̄ represents the spatial average of φ across a single cell, fol-
lowing the definition of p̄ introduced in Eq. (4).

In Ω21, since there are two intersecting arrays of closely
spaced parallel plates, we introduce the multiple scales

x = LX +λx′, y = LY +λy′, z = hz′, (A5)

where (x′,y′,z′) are the macroscopic field variables while
(X ,Y ) are microscopic field variables based on a single cell
such that 0 ≤ X ≤ 1 and 0 ≤ Y ≤ 1. Simultaneously, we shall
define ε = L/λ and expand variables as

φ(x,y,z) = φ
(0)(x,y,z;X ,Y )+ εφ

(1)(x,y,z;X ,Y )

+ ε
2
φ
(2)(x,y,z;X ,Y )+ . . . . (A6)

From Eq. (A1) we have

[(
∂ 2

∂X2 +
∂ 2

∂Y 2

)
+2ε

(
∂ 2

∂x′∂X
+

∂ 2

∂y′∂Y

)
+ ε

2
(

∂ 2

∂x′2
+

∂ 2

∂y′2
+

λ 2

h2
∂ 2

∂ z′2

)](
φ
(0)+ εφ

(1)+ . . .
)
= 0, (A7)

and λ/h is assumed to be O(1). From Eq. (A3), we have

∂

∂ z′
(φ (0)+ εφ

(1)+ . . .) =

νh
1+ τ −νd

∫ 1

0

∫ 1

0
(φ (0)+ εφ

(1)+ . . .)dXdY, (A8)

on z = −d/h. The velocity potential also satisfies the no-
normal flow condition on either side of each plate, which im-

plies that

(
∂

∂X
+ ε

∂

∂x′

)
(φ (0)+ εφ

(1)+ . . .) = 0, on X = 0,1,(
∂

∂Y
+ ε

∂

∂y′

)
(φ (0)+ εφ

(1)+ . . .) = 0, on Y = 0,1.

(A9)

We can easy confirm that the zero-order velocity potential
is independent of X and Y (i.e. φ (0) = φ (0)(x′,y′,z′)) due to
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the fact that∫∫
Ω

|∇Hφ
(0)|2dXdY =∫

∂Ω

φ
(0)N ·∇Hφ

(0)dS−
∫∫

Ω

∇
2
Hφ

(0)dXdY = 0,(A10)

after use of Eqs. (A7) and (A9), where ∇H = (∂/∂X ,∂/∂Y ),
Ω = {0 ≤ X ≤ 1,0 ≤ Y ≤ 1}, ∂Ω is the boundary of Ω and N
is the unit normal in terms of (X ,Y ) variables out of Ω.

At O(ε), we have from Eq. (A7)(
∂ 2

∂X2 +
∂ 2

∂Y 2

)
φ
(1) =−2

(
∂ 2

∂x′∂X
+

∂ 2

∂y′∂Y

)
φ
(0) = 0,

(A11)
again and

∂

∂X
φ
(1) =− ∂

∂x′
φ
(0), on X = 0,1,

∂

∂Y
φ
(1) =− ∂

∂y′
φ
(0), on Y = 0,1.

(A12)

After applying the method of separation of variables, we can
obtain the expression of the first-order velocity potential

φ
(1) =−∂φ (0)

∂x′
X − ∂φ (0)

∂y′
Y + f (x′,y′,z′), (A13)

where f (x′,y′,z′) is an arbitrary function of the macroscopic
coordinates.

Finally, we consider the second-order problem O(ε2) and
Eq. (A7) gives us(

∂ 2

∂X2 +
∂ 2

∂Y 2

)
φ
(2) =−2

(
∂ 2

∂x′∂X
+

∂ 2

∂y′∂Y

)
φ
(1)

−
(

∂ 2

∂x′2
+

∂ 2

∂y′2
+

λ 2

h2
∂ 2

∂ z′2

)
φ
(0)

=

(
∂ 2

∂x′2
+

∂ 2

∂y′2
− λ 2

h2
∂ 2

∂ z′2

)
φ
(0), (A14)

where Eq. (A13) has been used, and

∂

∂X
φ
(2) =− ∂

∂x′
φ
(1), on X = 0,1,

∂

∂Y
φ
(2) =− ∂

∂y′
φ
(1), on Y = 0,1.

(A15)

Integrating Eq. (A14) over 0 ≤ X ≤ 1 and 0 ≤ Y ≤ 1 and
applying the boundary condition (A15) with Eq. (A13), we
finally obtain

∂ 2

∂ z′2
φ
(0) = 0, −dx/h < z′ <−d/h, (A16)

as the governing equation for the leading-order problem sub-
ject to the boundary condition

∂φ (0)

∂ z′
=

νh
1+ τ −νd

φ
(0), on z′ =−d/h, (A17)

from Eq. (A8) at O(ε0).
In Ω22, a similar procedure can be performed. Since the

fluid is only separated by the vertical plates aligned in the y
direction, we rescale with

x = LX +λx′, y = λy′, z = hz′, (A18)

with the understanding that the Y dependence is dropped from
the corresponding expansion in Eq. (A6) and we can follow
the same process to give the leading order governing equation(

∂ 2

∂y′2
+

λ 2

h2
∂ 2

∂ z′2

)
φ
(0) = 0, (A19)

again for φ (0) = φ (0)(x′,y′,z′).
For the leading-order governing equation in Ω23 or outer

region Ω1 we have no need to introduce a microscale, so the
leading order governing equation remains as Eq. (A1) and the
bottom condition Eq. (A4) also applies without change.

A careful analysis of the two intermediate region close to
z = −dx and z = −dy on the interface between Ω21 and Ω22
and between Ω22 and Ω23 which involves rescaling z on the
lengthscale L via z =−dx,y+LZ reveals that, at leading order,
φ
(0)
z and φ (0) are continuous across z = −dx,y. Readers are

directed to Ref. 5 for details of the application of this process
in a similar problem.

Appendix B: Numerical procedure for solving dispersion
equation (26)

In the numerical process of finding the roots of Eq. (26),
we first solve the equation with Im[τ] = 0, and all roots now
locate on the real or imaginary axis. For a general value of t,
there are two sequences of discrete roots satisfying Eq. (26).
That is, if κq(t) is a root of Eq. (26) then so is −κq(t). Since
t is integrated over all angles, −π ≤ t < π , the real positive
root κ0(t) representing the propagating wave and an infinite
number of pure imaginary roots κq(t) = iκ̂q(t) on the positive
imaginary axis representing the evanescent waves need to be
considered. Furthermore, it can be observed from Eq. (26)
that κq(−t) = κq(t) and κq(π − t) = κq(t) which confine us to
find the roots κq(t) only in the range of t ∈ [0,π/2] and helps
reduce the numerical effort.

From Eq. (27), we can see that the real root κ0(t) will tend
to infinity as νdy → 1+Re[τ] and only exists for 0 ≤ t ≤ π/2
when νdy < 1+Re[τ], which means that waves do not propa-
gate within the inner region when ν > νc and νcdy = 1+Re[τ]
defined as the critical frequency. This issue has been the sub-
ject of a separate paper by the authors (see Ref. 24).

After determining the positions of roots for each t ∈ [0,π/2]
when Im[τ] = 0, we consider τ to be a complex number: the
buoys are now resisted by the damper. As soon as τ takes on
an imaginary component, all the roots κq(t) move off the real
or imaginary axis into the complex plane. We can take the root
at Im[τ] = 0 as the initial value (denoted as κ0

q (t)), and obtain
the final result by taking the imaginary part of τ into account.
For efficient calculation, a self-adaptive method is adopted as
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follows: (i) We take κ0
q (t) as an initial value and obtain a new

root κ1
q (t) after iteration; (ii) if |(κ1

q (t)−κ0
q (t))/κ0

q (t)| is less
than a threshold ∆κ (which can guarantee that for a certain q
the root does not jump to other branches (see Fig. B2)), κ1

q (t)
is the root of Eq. (26) and the calculation stops – otherwise,
we solve Eq. (26) with the imaginary part of τ taking the value
on the midpoint of the interval [0, Im[τ]] to get κ2

q (t); (iii) if we
still have |(κ2

q (t)−κ0
q (t))/κ0

q (t)|> ∆κ , the interval is halved
again until the termination condition is satisfied – otherwise,
we will take κ2

q (t) as an initial value and repeat procedure (i)
on the interval [Im[τ]/2, Im[τ]].

It should be noted that when frequency approaches the
critical frequency νc, under certain conditions (for example
t = 0) much computational effort is required to determine
κ0(t) since the real initial value for the q = 0 root tends to
infinity. Besides, since the real initial root no longer exists
when vdy > 1+Re[τ], we do not have the corresponding initial
value to find κ0(t) in the complex plane. In order to overcome
these two issues, the roots of Eq. (26) at the relatively low fre-
quency can be taken as the initial values, and obtain the final
result also by a similar self-adaptive method with increasing
the frequency. Generally, the above numerical method is ro-
bust.

In order to illustrate the above procedure, a case is exam-
ined. First, τ is taken to zero, and Fig. B1 presents that the
variation of the real root κ0(t) for t = π/4 and t = π/2 against
frequency ν with a fixed value of dy/h = 0.2 and three differ-
ent values of dx/h. It should be noted that since Eq. (26) will
be reduced to Eq. (27) when t = 0 or dx = dy, all the curves of
κ0(0) for three cases are the same as the black dot dash line in
Fig. B1 (a) or (b). For a certain t, the real root, κ0(t), increases
with the frequency until νdx = 1 since the real root exists only
when νdx < 1 as mentioned above. Besides, when dx tends to
dy, κ0(t) quickly become a large value at high frequencies. It
indicates that a very small wavelength appears and results in a
large resonant amplification in the cylindrical meta-structure,
which may violate the underlying assumption that the plate
spacing is much smaller than the wavelength.

Further, if τ has an imaginary part κq(t) will go into the
complex plane. In Fig. B2, we let σ = 0 and γ/(ρ

√
gh) = 0.2

and present the locations of the first four root κq(π/4) (q =
0,1,2,3) at each step as Im[τ] increases from zero. κq(π/4)
starts from the real or imaginary axis and moves to a certain
point in the complex plane. It also can be seen that since a
self-adaptive method is performed the final result can be de-
termined after only a few steps which set the stage for efficient
computation within the whole code.

Appendix C: Derivation of governing equation for the shallow
water theory

In this section, we also apply the homogenisation method
to consider the interaction of water waves with the cylindrical
meta-structure under a shallow water approximation. In ad-
dition to the assumptions given in Section II, we should fur-
ther assume that the water depth h is small compared to the
wavelength λ , i.e. µ = h/λ ≪ 1. Additionally, the spacing
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FIG. B1. The variation of the real root κ0(t) of the dispersion equa-
tion (26) with τ = 0 and dy/h = 0.2: (a) t = π/4; (b) t = π/2.
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FIG. B2. The paths of the first four root κq(π/4) (q = 0,1,2,3)
as Im[τ] increases from zero for νdy = 2.5, dy/h = 0.2, σ = 0 and
γ/(ρ

√
gh) = 0.2.

of plates should be sufficiently small compared to the water
depth, i.e. L/h ≪ 1, and we specifically require ε = O(µ2).

Although we treat various quantities including the depths
h, dx and dy as fixed in the derivation below, a more gen-
eral derivation (e.g. see Ref. 4) allows these (in addition to
mechanical parameters M , σ and γ) to be functions of the
macroscopic variables x,y. Shallow water theory is thus more
versatile than the full-depth theory and for this reason we have
chosen to retain explicit time dependence, rather than factoris-
ing a single frequency component as we did in Appendix A.

We first nondimensionalize the variables in the governing
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equations and boundary conditions given in Section II as

(h,dx,dy) = h(1,d′
x,d

′
y), ξ = Aξ

′, p = ρgAp′,

uh = (A/h)
√

ghu′
h, w = (A/λ )

√
ghw′, t = (λ/

√
gh)t ′,

M = (ρλ
2/h)M ′, γ = (ρλ

√
g/h)γ ′, σ = ρgσ

′,
(C1)

where A is a wave amplitude which has been assumed to be
sufficiently small compared to other lengthscales to allow the
neglect of non-linear terms in the governing equations and
boundary conditions presented in Section II. We have also
written u = (uh,w) such that uh = (u,v). We note that since
M = ρd and d < h then M ′ = O(µ2) = O(ε) and we there-
fore write M ′ = εM ′′.

In Ω21, we introduce multiple scales in the horizontal coor-
dinates scaled by

x = LX +λx′, y = LY +λy′, z = hz′, (C2)

and expand variables in the parameter ε = L/λ ≪ 1 with

{u′, p′} = {u, p}(0)(x,y,z, t;X ,Y )

+ ε{u, p}(1)(x,y,z, t;X ,Y )+ . . . , (C3)

and since the buoy elevation is constant in each cell,

ξ
′ = ξ

(0)(x,y,z, t)+ εξ
(1)(x,y,z, t)+ . . . . (C4)

For clarity we drop the primes on the both dependent and inde-
pendent variables hereafter. The mass conservation equation
(1) can be written as

∇H · (u(0)
h + εu(1)

h + . . .)+ ε∇h · (u
(0)
h + εu(1)

h + . . .)

+ε
∂

∂ z
(w(0)+ εw(1)+ . . .) = 0, (C5)

where we have use the notation ∇H = (∂/∂X ,∂/∂Y ) and
∇h =(∂/∂x,∂/∂y). The momentum equation (2) is expressed
as

∂

∂ t
(u(0)

h + εu(0)
h + . . .) =−

(
1
ε

∇H +∇h

)
(p(0)+ ε p(1)+ . . .),

ε
∂

∂ t
(w(0)+ εw(1)+ . . .) =− ∂

∂ z
(p(0)+ ε p(1)+ . . .),

(C6)
where ε = O(µ2) has been applied. The corresponding
boundary conditions (linearised) on z =−d/h are

∂

∂ t
(ξ (0)+ εξ

(1)+ . . .) = w(0)+ εw(1)+ . . . , (C7)

and (
εM ′′ ∂ 2

∂ t2 + γ
′ ∂

∂ t
+σ

′+1
)
(ξ (0)+ εξ

(1)+ . . .)

=
∫ 1

0

∫ 1

0

(
p(0)+ ε p(1)+ . . .

)
dX dY, (C8)

with [
(uh,w)(0)+ ε(uh,w)(1)+ . . .

]
·N = 0, (C9)

on X = 0,1, 0 < Y < 1 and on Y = 0,1 for 0 < X < 1 where
N is the unit normal in (X ,Y ) variables on those four sides.
Additionally, we use Eq. (7) which, at leading order, gives the
conditions

∇Hw(0) = 0, and
∂u(0)

∂Y
− ∂v(0)

∂X
= 0. (C10)

We continue by considering terms at O(ε0) and making use of
Eq. (C10) to show that w(0) = w(0)(x,y,z, t) and by using Eq.
(C5) with Eqs. (C9) and (C10) to deduce that

u(0) = v(0) = 0. (C11)

Next the terms at the order O(ε) in Eq. (C5) integrated over
0 < X < 1 and 0 < Y < 1 and applying Eq. (C9) result in

∂w(0)

∂ z
= 0, (C12)

so that now w(0) = w(0)(x,y, t). From the kinematic boundary
condition in Eq. (C7), we have

w(0)(x,y, t) =
∂ξ (0)

∂ t
. (C13)

Taking the leading order terms in Eq. (C6) we see that p(0) =
p(0)(x,y, t). Using this in the dynamic boundary condition in
Eq. (C8), we can obtain

p(0)(x,y, t) =
(

γ
′ ∂

∂ t
+σ

′+1
)

ξ
(0)(x,y, t). (C14)

In the region Ω22 occupied by plates parallel to the y-axis,
we can apply the same treatment to the governing equations
and boundary conditions, after replacing the scaling in Eq.
(C2) by

x = LX +λx′, y = λy′, z = hz′, (C15)

and correspondingly drop the dependence on Y from the de-
pendent variables. We can deduce that u(0) is independent of
the microscopic coordinate X . Besides, we also have

∂u(1)

∂X
+

∂v(0)

∂y
+

∂w(0)

∂ z
= 0, (C16)

and

∂ p(0)

∂y
+

∂v(0)

∂ t
= 0. (C17)

From the vertical component of momentum, p(0) is indepen-
dent of z and so from Eq. (C17) we can see v(0) = v(0)(x,y, t).
Thus, after integrating Eq. (C16) across 0 < X < 1 and over
−dy/h < z <−dx/h, we have

dy −dx

h
∂v(0)

∂y
= w(0)(x,y,−dy/h, t)−w(0)(x,y,−dx/h, t),

(C18)
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where w(0) is independent of X as a consequence of the lead-
ing order contribution from the irrotationality condition Eq.
(7) under the multiple scales expansion.

Analogously, in Ω23 which is the lower fluid region and free
from barriers we do not require multiple scales and now the
leading order contributions to the momentum equation pro-
vide us with

∇h p(0)+
∂

∂ t
u(0)

h = 0, and
∂ p(0)

∂ z
= 0, (C19)

such that p(0) = p(0)(x,y, t) and hence also u(0) = u(0)(x,y, t)
and v(0) = v(0)(x,y, t). Thus, if we integrate the mass conser-
vation equation over −1 < z <−dy/h, we obtain

w(0) (x,y,−dy/h, t) =−
(

1−
dy

h

)(
∂u(0)

∂x
+

∂v(0)

∂y

)
,

(C20)
where the boundary condition of no-normal flow on the sea
bed has been applied.

Matching conditions across the interfacs z = −dx/h and
z = −dy/h can be considered carefully using methods de-
scribed in Ref. 4 and result in the requirement that the leading
order pressure and normal component of velocity should be
continuous across both interfaces. This information first al-
lows us to connect Eqs. (C13), (C18) and (C20) to result in

∂ξ (0)

∂ t
=−∇h ·

(
h′u(0)

h

)
, (C21)

where

h′ =

(
1−dy/h 0

0 1−dx/h

)
, (C22)

is a two-dimensional tensor. Secondly, connecting p(0) from
Eqs. (C14) and (C19) gives

∂

∂ t
u(0)

h =−∇h

(
γ
′ ∂

∂ t
+σ

′+1
)

ξ
(0). (C23)

Combining Eq. (C21) with Eq. (C23) and eliminating the
leading-order horizontal velocity u(0)

h , we can get

∂ 2

∂ t2 ξ
(0) = ∇h ·

[
h′∇h

(
γ
′ ∂

∂ t
+σ

′+1
)

ξ
(0)
]
. (C24)

The governing equation in Ω1 can be obtained by letting
γ = σ = dx = dy = 0 in Eq. (C24) which reduces to the stan-
dard shallow water equation over constant depth h. Despite
setting h, γ , σ , dx and dy to constant values in the present
study, the same governing equation can be shown to hold
when these are allowed to vary on the scale of the wavelength.
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