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A motion trapping structure can be defined as a freely-floating structure under natural or
externally applied restoring forces, on or below the free surface of a heavy fluid extending
to infinity in at least one direction, which generates a persistent local time-harmonic
oscillation of the fluid of finite energy at a particular frequency, due to its own motion
at that frequency. Such an oscillation is termed a motion trapped mode. In this paper
it is shown, using accurate numerical computations, that a submerged circular cylinder
making forced time-harmonic two-dimensional heave or sway motions of small amplitude
in a fluid of either finite or infinite depth, is capable of creating a local flow field in which
no waves radiate to infinity at particular frequencies and depths of submergence of the
cylinder. By tethering such a buoyant cylinder to the bottom of a fluid of finite depth,
using a vertical inelastic mooring line, it is shown, by suitable choice of buoyancy and
length of tether, how the cylinder, moving freely under its mooring forces, can operate
as a motion trapping structure. Such a cylinder would, if displaced from its equilibrium
position and let go, ultimately oscillate indefinitely at the trapped mode frequency. This
simple geometry is the first example of a submerged isolated motion trapping structure
free to move under its natural mooring forces.

1. Introduction

When a rigid body makes small simple harmonic oscillations in a single mode of either
translation or rotation in a fluid of infinite extent, it experiences an opposing force or
moment exactly out of phase with its acceleration. Its motion can therefore be regarded
as taking place in vacuo provided the mass or inertia of the body is augmented by an
added mass or added inertia which takes account of the presence of the fluid. If the
body undergoes small oscillations in a heavy fluid which is bounded by a horizontal
free surface which extends to infinity the situation is more complicated. Now, the body,
whether partially or totally immersed in the fluid, creates a disturbance on the free
surface in the form of waves of the same frequency as the body motion, which in general
radiate away from the body to infinity. The force on the body due to the fluid is no longer
exactly out of phase with the acceleration of the body but has a component exactly out
of phase with the linear or angular velocity of the body which is responsible for the work
done in generating the radiated waves. Thus in order to incorporate the effect of the fluid
into the equation of motion of the body as before, in addition to including an added mass
or added inertia term, a radiation damping term proportional to the linear or angular
velocity of the body is also needed.

These frequency-dependent hydrodynamic coefficients are widely used in ship hydro-
dynamics and sophisticated numerical methods have been developed for computing them.
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Various properties of these coefficients can be proved including the result that the damp-
ing coefficient is non-negative. That it should be positive is not surprising since this
simply reflects the fact that waves generated by the body motion travel away from the
body and energy is transported to infinity. What is more surprising is that the damping
coefficient can actually vanish at a particular frequency so that no net work is done over
a cycle and no waves radiate away, although there is still a local wave field. Examples
of this exist in both two and three dimensions. For example Kyozuka & Yoshida (1981)
used axisymmetric wave potentials which did not radiate to infinity to construct ax-
isymmetric partially-immersed bodies which were ‘wave-free’ when making small forced
vertical (heave) oscillations. The shape of the bodies was narrower near the free surface
than below so that the waves created by the deeper part of the bodies was capable of
cancelling those made by the narrower part near the free surface. In two dimensions the
simplest shape which exhibits zero damping at a given wavenumber is a thin vertical
strip rolling about a point which varies with the wavenumber but always lies above the
mid-point of the strip. Again this is to enable the waves created by the longer part of the
strip below the point of rotation to cancel the waves created by the shorter part above
the point of rotation and closer to the surface. This was illustrated in finite depth by
Evans & Porter (1996) and also follows from the early explicit results of Ursell (1948)
in infinite fluid depth. In fact for any partially or totally submerged two dimensional
cylinder which is symmetric about a vertical line, there exists a point of rotation on the
line, either within or external to the cylinder, for which the wave radiation vanishes at
a particular wavenumber. This follows from the Newman (1976) relations which show
that the waves radiated to either infinity by such a cylinder have the same phase in
both sway and roll. It follows that a linear combination of the two motions involving two
real coefficients can be found such that the far-field wave amplitude vanishes. But such
a combination is simply equivalent to a single roll motion about a point on the line of
symmetry.

In the next section we shall present new results for a single totally submerged two-
dimensional cylinder which exhibits zero damping in either forced heave or sway motions.
In section 3 we introduce the idea of a motion trapping structure and show how the
submerged cylinder described in section 2 can be moored in a natural way to provide
the first example of a single body motion trapping structure free to move under natural
restoring forces.

2. Vanishing of the radiation damping for a submerged cylinder

An example of a submerged body which exhibits zero damping is given by a two-
dimensional submerged circular cylinder moving in either heave or sway. In infinitely deep
fluid the scattering and radiation problems for this geometry display many remarkable
features. Thus Dean (1948) showed that the reflection coefficient arising when a plane
wave is incident on the fixed cylinder vanishes for all frequencies, cylinder radii, and
depth of submergence, a result made rigorous by Ursell (1950). Subsequently Ogilvie
(1963) in a long detailed paper considered the radiation problem also and showed inter

alia that the far field wave amplitude, added mass and radiation damping coefficients
at each frequency were identical in heave and sway. As a consequence he showed that
a cylinder constrained to make small circular motions about its centre generated waves
in one direction only on the free surface, a phenomenon which subsequently formed the
basis for a wave energy absorbing device (Evans et al. 1979). He also showed that the
added mass could become negative for small submergences, a phenomenon which arises
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Figure 1. Dimensionless radiation damping ν against Ka = ω2a/g for a cylinder, radius a,
whose centre is submerged to a depth f , making small amplitude heave or sway motions. Different
curves correspond to a/f = 0.95, 0.9, 0.85, 0.8, 0.75, 0.7.

whenever the potential energy exceeds the kinetic energy of the fluid (Falnes & McIver
1985).

One phenomenon which was overlooked by Ogilvie was the vanishing of the radiation
damping in heave or sway at certain frequencies also at small values of the submergence.
A close scrutiny of Ogilvie’s curves suggests that this appears to be the case but he is
reluctant to draw that conclusion stating only that “Of course this coefficient (ν, the
radiation damping) is always positive although its value is very small for certain small
values of the depth (of submergence)”. We have recomputed the results of the radiation
problem and confirmed to a high degree of accuracy that the radiation damping does
indeed vanish at certain frequencies. In figure 1, we show a plot of the dimensionless
radiation damping coefficient ν against the dimensionless frequency parameter Ka ≡
ω2a/g, (ω being the angular frequency and g gravitational acceleration) for different
values of a/f between 0.95 and 0.7 where a is the cylinder radius and f is the depth
of submergence of its centre. Because the fluid depth is infinite, the curves apply to
both heave and sway oscillations, and are calculated using the systems of equations
described in the Appendix, with ν ≡ νj , j = h, s. The use of a logarithmic scale on the
vertical axis manifests the zeroes of ν by vertical spikes approaching the Ka axis. These
cusp-like features in the curves at zeroes of ν contrast with the curves of ν on the log
scale approaching the axis at an angle suggesting an exponential decay in ν. For example,
computations show that when a/f = 0.95, ν vanishes for Ka = 1.50394 and Ka = 5.9988
and when a/f = 0.9, the corresponding values are Ka = 2.16016 and Ka = 9.7115.

In figure 2, the added mass for heave and sway in infinite depth is shown, over a much
smaller range of Ka. These curves exhibit less interesting behaviour, although it can be
seen how the added mass can become negative for cylinders close to the free surface.

The numerical results in figure 1, indicating the presence of zeroes of ν, are indepen-
dently supported by the following robust numerical evidence. At those frequencies for
which ν = 0, there are no waves radiating to infinity and so the boundary-value problem
for the velocity potential, φ, which is defined to satisfy a real kinematic boundary con-
dition on the cylinder surface, is identical to that for φ, its complex conjugate. In this
case, without loss of generality, we may consider φ to be real and in the construction of
the solution for φ we need only use the real part of the cylinder multipoles provided we
ensure finally that there are indeed no waves radiated to infinity. It follows from (A.2)
that the real expansion coefficients, bm, say, will satisfy the following real infinite system
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Figure 2. Dimensionless added mass µ against Ka = ω2a/g, for the same arrangement as in
figure 1. Values of a/f range from 0.95 to 0.7 with linestyles corresponding to those in figure 1.

of equations,

−
bm

m
+

∞
∑

n=1

bn<{Amn} = −δm1, m = 1, 2, . . . (2.1)

where Amn refers to either heave or sway in either finite or infinite depth fluid. The wave
field at infinity now arises from the pole of the integrand in the real Principal Value
integral in the definition of Amn and is a standing wave whose amplitude is proportional
to the real quantity

S =

∞
∑

m=1

(−Ka)m

m!
bm

where the bm satisfy (2.1) above and K needs to be replaced by k the real positive root
of K = k tanh kh, in finite fluid depth, h. Thus, a zero of radiation damping corresponds
to S = 0, and plotting S as a function of the frequency parameter, Ka, for fixed values of
a/f generates curves which cross the Ka axis at exactly those values predicting ν = 0 in
figure 1. Furthermore, the crossing of the Ka axis by the curve of S against Ka is robust
to changes in the accuracy of the numerical scheme. Note from (A.2) that when S = 0,
and ν = 0, the coefficients am are clearly real. The technique described above was first
used by the authors in a related problem involving the determination of sloshing trapped
modes above the cut-off near a fixed vertical cylinder on the centre-line of a narrow wave
tank (see Evans & Porter 1998).

The method described above is used to plot, in figure 3, the location of zeroes of ν
in (Ka, a/f)-parameter space in infinite depth fluid. It can be seen that the number of
zeroes increases as a/f tends towards unity. We have been unable to extend the range
of accurate results beyond those shown in figure 3 on account of numerical difficulties
in obtaining accurate results. For example, for large Ka and small a/f , ‘background’
values of ν are extremely small and locating zeroes requires some quite subtle and high
precision computing, whilst for a/f very close to unity, large truncation sizes are required
and matrix inversion becomes ill-conditioned. Although the range of results is limited,
it is tempting to conclude from figure 3 that a zero of damping exists for all values
of a/f and that the number of zeroes increases indefinitely as the cylinder approaches
the free surface. Our numerical results indicate zeroes persist for a/f as small as 0.3,
although these zeroes are difficult to resolve from background values of ν of the order of
10−40. Indeed, figure 3 is reminiscent of the dispersion curves (McIver & Evans 1985) for
edge waves along the top of a long submerged horizontal circular cylinder, where it was
shown numerically that the number of edge waves increased indefinitely with decreasing
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Figure 3. Location of zeroes of ν in (Ka, a/f)-parameter space.

submergence, whilst as the submergence is increased the number of edge waves reduced
to just one.

We have also repeated the calculation in finite fluid depth, h, using the extension of the
multipole method described in, for example, Linton & McIver (2001) and we have found
zeroes of damping for each depth (for a cylinder sufficiently close to the free surface).
In this case the sway and heave damping and added mass coefficients are no longer the
same but the curves are qualitatively similar to figures 1 and 2, with the effect of finite
depth being small even for a/h = 0.4 (a cylinder occupying 80% of the depth). As for
the case of infinite depth fluid, the same technique described above was used to provide
robust numerical confirmation of the zeroes of ν.

3. Motion trapping structures

A sloshing trapping structure is a fixed structure which supports a local oscillation
or trapped mode at a particular frequency in an unbounded fluid with a free surface.
A variety of trapped modes exist in both two and three dimensions. For a review, see
Evans & Kuznetsov (1997). In contrast, a motion trapping structure is a structure which
supports a trapped mode whilst oscillating freely at that frequency. In the absence of
viscosity such a body would oscillate at that frequency indefinitely with no wave energy
being radiated away to infinity. McIver & McIver (2006) have derived the conditions
which need to be satisfied for a motion trapping structure. They are that both the
radiation damping and any linear damping due to external mooring forces should be
zero and also that there should be a balance between the inertia forces on the body,
including those due to the surrounding fluid, and any linearised restoring forces, such
as hydrostatic forces and any linear external mooring forces. Thus in both two or three
dimensions the condition is

(M + a(ω))ω2 = λ (3.1)

where ω/2π is the wave frequency for which zero radiation damping occurs, M is the
mass or inertia of the body, a(ω) its added mass or added inertia, and λ > 0 is the
constant multiplying the linear or angular displacement of the body.

McIver & McIver (2006) were mainly concerned with freely-floating two-dimensional
sections in heave motion without mooring forces so that λ arose purely from the hy-
drostatic restoring force. By means of an elegant application of Green’s theorem they
showed that, in fluid of infinite depth and with the radiation damping zero at a partic-
ular frequency, the second condition was satisfied at that frequency if and only if the
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potential function describing the motion had a vanishing dipole moment in the far field.
This enabled them to adapt an inverse method used by McIver (1996) in constructing
sloshing trapping structures to produce examples of motion trapping structures in two
dimensions in the form of partially immersed heaving cylinders and their mirror images.
All of their examples involved an internal free surface between the sections. They also
constructed an example of a freely surging structure having three elements separated by
two internal free surfaces. In a subsequent paper (McIver & McIver 2007) they extended
the method to construct a three-dimensional heaving partially immersed motion trap-
ping structure with a vertical axis of symmetry which encloses an internal free surface.
Recently Evans & Porter (2007) have shown how, in two dimensions, ‘mirror image’ pairs
of motion trapping structures can be constructed in certain parameter ranges close to
frequencies at which a single element of the pair moving freely on its own is able to
totally reflect an incident wave at a particular frequency. Simple geometric examples in-
clude a pair of heaving rectangular cylinders and a pair of swaying submerged tethered
buoyant circular cylinders in both cases either moving in or exactly out of phase. The
authors have also produced a motion trapping structure in three dimensions in the form
of a floating thick-walled cylindrical shell of rectangular cross-section. A fuller and more
widely-available description of these results is in preparation.

In either two or three dimensions, if there is assumed to be an external linear mooring
restoring force in addition to any possible hydrostatic force, to balance the inertia forces,
the construction of motion trapping structures is made easier. Thus using the same
method as McIver & McIver (2006), Newman (2007) assumes the presence of a linear
restoring mooring force represented by the dimensionless coefficient κ. With κ = 0 the
structure is free from mooring forces and the family of motion trapping structures of
McIver & McIver (2006) are recovered, whilst if κ → ±∞ the structure is fixed and
sloshing trapping modes are recovered. For κ > 0 the external force is opposing the motion
whilst for κ < 0 the external force is driving the motion. In both cases Newman (2007)
shows how new different motion trapping structures can be produced. Most of these
cases involve pairs of bodies having an internal free surface between them. Significantly,
however, he shows that it is possible, using a restoring force κ > 0 to construct a single
body structure exhibiting motion trapped modes. The same method could be used to
construct a single axisymmetric motion trapping structure using the wave free heaving
bodies constructed by Kyozuka & Yoshida (1981) and imposing an artificial restoring
force represented by κ to satisfy the second condition for trapping.

A simple geometry in two dimensions to which this method could be applied is afforded
by the rolling strip described in the Introduction in either finite or infinite fluid depth.
We assume that the strip is constrained to rotate about a point along its length above
its mid-point and its rolling motion is resisted by an externally imposed linear couple
opposing the motion. It is known that we can identify a wavenumber or frequency at
which the radiation damping is zero. Then a motion trapped mode will exist if (3.1) is
satisfied at that frequency. Thus in this example, ω is the frequency for which the roll
radiation damping vanishes, M is the (small) moment of inertia of the strip about the
point of rotation, a(ω) is the added inertia in roll due to the fluid at the zero damping
frequency, and the left-hand-side of the equation is positive for all frequencies. For a thin
strip there is no hydrostatic force so if we choose the positive constant λ multiplying the
roll amplitude to satisfy (3.1) we shall have constructed a motion trapping structure.

It is clear that all the examples described so far of single body motion trapping struc-
tures require an artificial externally imposed restoring force to satisfy one of the condi-
tions for trapping modes. In what follows we present the main result of the paper which
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is the construction of a single, submerged, motion trapping structure which is free to
move under natural mooring constraints.

We have shown that a submerged horizontal circular cylinder in sway or heave mo-
tions exhibits zeroes of radiation damping as illustrated in figure 1 when the cylinder
is sufficiently close to the free surface. But if the cylinder is buoyant and tethered to
the bottom in finite depth of fluid (or to a fixed point in infinite depth of fluid) by an
inelastic mooring line, then any small sway motion of the cylinder will be opposed by
a natural restoring force due to the horizontal component of the tension in the cable.
Evans & Linton (1989) use the same idea as a possible submerged active breakwater.
More specifically, the cylinder motion is the sum of the velocity of its centre, which for
small motions is a linear sway motion, plus an angular velocity about its centre which
does not influence the fluid field. The required condition for a motion trapped mode is
given by (3.1) where in this particular case, ω/2π is the wave frequency for zero radiation
damping in sway, M is the mass of the cylinder, a(ω) its sway added mass and λ is the
constant multiplying the sway displacement of the cylinder. It is straightforward to show
that the tension in the mooring line is T = M(1 − s)g/s where s is the specific gravity
of the cylinder so that

λ = T/l = M(1 − s)g/sl (3.2)

where l is the length of the mooring line from which it follows that

l/a = (Ka)−1(1 − s)/(µ + s) (3.3)

for a trapped mode, where µ = <{a(ω)/M} is the dimensionless sway added mass of the
cylinder and K = ω2/g. Note that µ depends on Ka and a/f where f is the depth of
submergence of the centre of the cylinder, and also a/h if the fluid is of finite depth, h.

The procedure for determining a motion trapped mode now follows from (3.3) for
a cylinder in infinite depth fluid. For a fixed depth of submergence, a/f = 0.95, the
computations leading to figures 1 and 2 provide values of Ka for which the sway damping
vanishes and of the sway added mass µ at those values. With the specific gravity chosen,
(3.3) now determines the required length of mooring line for a trapped mode. For example
for a highly buoyant cylinder with s = 0, l/a = 2.27 for a trapped mode. Larger values
of Ka for which zero damping occurs give rise to required values of l < a which are less
interesting. One drawback is the need to tether the cylinder in some artificial way since
the fluid is infinite. However the same equation (3.3) applies in finite depth of fluid and
we can seek a trapped mode when the cylinder is tethered to the bottom provided we
satisfy the extra condition l + f = h. Thus with f and h fixed, we are no longer free to
choose l to satisfy (3.3). Instead we write (3.3) in the form

s = (1 − µKl)/(1 + Kl) (3.4)

where the right-hand-side is determined from the chosen values of a/h, f/a, and hence
l/a, and the values of Ka and µ for which the sway radiation damping vanishes for the
cylinder in depth h of fluid.

Figures 4 and 5 give results for the parameters needed to generate motion trapped
modes for a cylinder tethered to the bottom of a fluid of constant finite depth h, and
show the variation of both specific gravity, s, and dimensionless frequency parameter Ka
with l/a. This is done for a range of values of submergence parameter, a/f . It appears
from figure 4 that we must have a/f > 0.92 to obtain a trapped mode with both s ≥ 0
(so the cylinder is buoyant) and l/a > 1 (a geometrical constraint), and also that as the
cylinder approaches the free surface, the range of possible values of s and l/a is widened.
The ratio a/h can be determined from a/h = 1/((a/f)−1 + (l/a)).
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4. Conclusion

Accurate computations of the hydrodynamic characteristics of a heaving or swaying
submerged two-dimensional horizontal circular cylinder in infinite fluid depth, first com-
puted by Ogilvie (1963), have shown that when the cylinder is sufficiently close to the
free surface there exist frequencies for which both the heave and sway radiation damping
coefficients, identical in an infinite fluid, vanish. This would appear to be a new result
overlooked until now and further computations have shown it to be true also in finite
depth where the sway and heave radiation damping coefficients are different and vanish
at different frequencies. By tethering such a buoyant cylinder using an inelastic mooring
line it has been shown that for frequencies at which the sway radiation damping coef-
ficient vanishes, it is possible to choose the buoyancy and length of mooring to ensure
that the second condition for motion trapped modes to exist is satisfied. This is the first
example of a submerged isolated motion trapping structure free to move under its natural
mooring forces. It follows that with both conditions satisfied, when such a cylinder is dis-
placed horizontally from its equilibrium position and then released, the eventual motion
of the cylinder would, in the absence of viscous effects, be a simple harmonic motion at
the trapping frequency. It would be of interest to verify this phenomenon experimentally
in a narrow wave tank.
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Appendix

The radiation and scattering of waves by a submerged horizontal two-dimensional
circular cylinder has been considered by a number of authors. The definitive approach was
due to Ursell (1950) who used the method of multipoles, which he originally developed for
the solution of the heaving problem of a half-immersed circular cylinder (Ursell 1949).
He considered the scattering of an incident wace by a fixed cylinder and the waves
created by given pulsations of the cylinder. Ogilvie (1963) generalized this to include
computations of added mass and damping coefficients whilst Linton & McIver (2001)
describe the method applied to fluid of finite depth. The method in all cases reduces
to solving an infinite system of algebraic equations which are rapidly convergent except
when the cylinder is very close to the free surface. For details of the formulation, see the
above references. Here we restrict ourselves to presenting the infinite system that results
from consideration of both finite and infinite fluid depth and show how their solutions
are used to find the reqired added mass and damping coefficients.

The added-mass and radiation damping coefficients, non-dimensionalised by M and
Mω respectively, for a cylinder in heave (h) and sway (s) are µj and νj , j = h, s respec-
tively, and defined by

µj + iνj = −1 + 2aj
1, j = h, s (A.1)

in terms of complex quantities aj
1 which are the first elements of the infinite set of

coefficients {aj
n}, n = 1, 2, . . . satisfying the following infinite systems of equations

−aj
m

m
+

∞
∑

n=1

aj
nAj

mn = −δm1, (A.2)

where δm1 = 1 if m = 1, zero otherwise. In infinite depth, the two systems above for
heave and sway are identical, since the matrix coefficients are equal:

Aj
mn =

(−Ka)m+n

m!n!

[
∫

∞

0

−
(t + 1)

(t − 1)
tm+n−1e−2Kftdt + 2πie−2Kf

]

(the integral is of Principal Value type). In terms of elementary functions, the right-hand
side above equates (see Evans et al. 1979) to

(−Ka)m+n

m!n!

[

(m + n − 1)!

(2Kf)m+n
+ 2

m+n−1
∑

r=1

(r − 1)!

(2Kf)r
+ 2e−2Kf (πi − Ei(2Kf))

]

,

where Ei(·) is an exponential integral.
In water of finite depth, h, the two systems in (A.2) differ, with

Ah
mn =

(−Ka)m+n

n!m!

[
∫

∞

0

−
tm+n−1gm,n

(t − 1) − e−2Kht(t + 1)
dt +

πi(k/K)m+n

4khN0

fm,n

]

(A.3)

and

As
mn =

(−Ka)m+n

n!m!

[
∫

∞

0

−
tm+n−1gm+1,n+1

(t − 1) − e−2Kht(t + 1)
dt +

πi(k/K)m+n

4khN0

fm+1,n+1

]

(A.4)

where

gm,n(t; Kh, Kf) = (t+1)[e−2Kft+((−1)n+(−1)m)e−2Kht]+(−1)m+n(t−1)e2Kfte−2Kht

and

fm,n(kh, kf) = e2kh−2kf + (−1)n + (−1)m + (−1)m+ne2kf−2kh

whilst k is defined by K = k tanh kh and N0 = 1

2
(1 + sinh 2kh/2kh). The pole in (A.3),
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(A.4) is located at t = k/K and the integrands are exponentially decaying at infinity.
Linton & McIver (2000) show how to compute Principal Value integrals for which a
standard Gaussian quadrature routine is used.

The infinite system of equations in (A.2) is approximated numerically by truncation. If
a/f � 1 and Ka is not excessively large a high degree of accuracy can be achieved with
very few terms (less than five). As a/f → 1 and/or Ka is large an increasing number of
terms are required to achieve the same accuracy.
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