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Abstract

The diffraction of long-crested incident waves propagating within a thin flexible elastic sheet
floating on water by narrow cracks is considered. The cracks are straight and each of finite length
and must be parallel to one another. This arrangement lends itself to the use of Fourier transform
methods, which allows the solution to a simpler problem to be used. For N cracks, 2N coupled
integral equations results for 2N unknown functions related to the jump in displacement and
slope across each crack as a function of distance along the cracks. These integral equations are
hypersingular but, in approximating their solution using Galerkin’s method, a judicious choice
of trial function provides maximum simplification in the algebraic equations which result.

Numerical results focus on the diffracted wave amplitudes, the maximum displacement of
the elastic sheet and the stress insensity factor at the ends of the cracks. For two side-by-side
cracks, large resonant motion can occur in the strip between the cracks.

1 Introduction

The present work is the continuation of a sequence of papers by the authors aimed at modelling
the effect of cracks in large ice floes on incident flexural waves within the ice.

Early work by Press & Ewing (1951) confirmed experimentally the existence of dispersive flexu-
ral waves travelling in large sheets of ice floating on water. They developed a formula for determin-
ing the velocity of these using the coupling conditions between the ice, modelled by a thin elastic
sheet, and the water beneath. Observations by Robin (1963) that large ice floes do indeed bend
to allow waves to propagate through them has prompted a number of authors to consider further
problems using this model and considerable progress has been made in understanding the extent of
wave propagation through ice using this model despite the complexity of the governing equations.
For an extensive survey article, see Squire et al (1995).

One of the earliest approaches can be found in Stoker (1957) who used the shallow water
equations to determine the reflection and transmission of a surface gravity wave by a thin freely-
floating elastic sheet of finite extent. Wave solutions in the water regions were matched at the
edges of the sheet with solutions of the sixth-order ordinary differential equation governing the
sheet displacement, using continuity and free edge conditions. Shortly afterwards, Evans & Davies
(1968) considered the scattering of obliquely-incident water waves by a semi-infinite thin elastic
sheet floating on water of finite depth, using the full linear water wave theory. They used the
Wiener-Hopf method to obtain an explicit solution but the complicated fifth-order differential
operator satisfied by the velocity potential on the sheet arising from the coupling of the sheet
displacement and water velocity, prevented detailed numerical calculations from being made.

Further simpler models describing waves in ice continued to be developed, primarily by re-
searchers in New Zealand, but it was the possibility of constructing massive floating runways in
Japan which led to a dramatic increase in activity in the general area of VLFS (very large floating
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structures) and in particular in developing good mathematical models of the bending of structures
in waves. The work of Evans & Davies (1968) was revisited by a number of authors including
Chung & Fox (2002), Balmforth & Craster (1999) and Tkacheva (2001), whilst numerical results
were obtained for scattering by finite elastic sheets by Hermans (2004). An indication of the re-
newed interest in the field is the existence of a sequence of symposia on hydroelasticity in marine
enviroments. See, for example, Eatock Taylor (2003).

Problems involving cracks in an elastic sheet floating on water have been considered by a
number of authors. Cracks are clearly important in influencing the rate at which ice floes break
up under wave action, and they have the added attraction of yielding to exact mathematical
analysis in certain cases, in contrast to problems involving finite open water regions or finite elastic
plates. The simplest such problem is the infinitely-long straight-line crack in a floating elastic sheet
entirely covering the water surface. A number of authors have considered the scattering of incident
flexural waves by such a crack, including Squire & Dixon (2000), Williams & Squire (2002) and
the present authors (Evans & Porter (2003)) who solved the problem using full linear theory in
finite water depth and obliquely-incident waves. The solution can be shown to depend upon two
fundamental quantities, namely the jump in displacement and slope across the free edges of the
crack. In a subsequent paper (Porter & Evans (2005)) the authors showed how the method could be
extended to multiple cracks, the solution now determined by an algebraic system of 2N equations
for quantities related to the jump in slope and displacement at each of the N cracks.

In the present work we consider the more difficult and more relevant problem of the scattering
of flexural waves by a finite number of straight-line cracks, each of finite length. The problem now
no longer admits an explicit solution but requires the solution of integral equations for the unknown
jumps in slope and displacement which are now functions defined along the length of the cracks.

In previous work on infinitely-long cracks in elastic plates over water the wave energy must be
transmitted across the crack through the water region. No such mechanism for transmission of
wave energy is available in the corresponding problem of an elastic sheet in vacuo. However, in the
problem involving a finite length crack, as considered in this paper, there is a non-trivial equivalent
problem in the simpler in vacuo case. Thus Andronov and Belinsky (1995), subsequently denoted
by AB95, have considered precisely this problem, namely the scattering of plane incident flexural
waves by a finite straight-line crack in an elastic plate of infinite extent. Despite this similarity, the
presence of the water region below the sheet in the present problem allows the direct transmission
of wave energy to the leeward side of the crack. For an elastic sheet in vacuo as considered by
AB95, wave energy is transmitted to the leeward side of the crack solely by diffraction from the
edges of the crack.

Advantage is taken of the ideas behind the approach of AB95 in the more complicated problem
considered here, and it is remarkable how similar much of the analysis is in the single crack case.
Thus their approach, like ours, is based on the use of Fourier transforms aligned with the direction
of the crack. An added complication introduced here is that we consider multiple parallel cracks
whilst AB95, by concentrating on a single crack were able to consider simpler symmetric and anti-
symmetric components of the problem each defined in a half-plane. It is not possible to make such
a decomposition in the more general problem treated here, and so there is a significant departure
from the work of AB95 early on in the analysis. In this respect, the foundation of the solution
presented here uses recent work of Porter & Evans (2005) who provided a solution for multiple
parallel cracks of infinite length which, as discussed, has no analogue in the problem considered by
AB95.

In section 2, we provide a statement of the linearised boundary-value problem, and discuss
conditions which apply along the cracks and at infinity. In the main part in section 3, coupled
integral equations are derived for functions which are related to the jumps in slope and displacement
across each crack. Although the analysis is more complicated than in AB95, a vital part of this
derivation is to show that the resulting integral equations are hypersingular (that is, the kernel
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has a component which is two or more derivatives of a logarithm). This property is evidently a
consequence of the nature of the solution at the ends of the cracks. Details of a numerical solution
based upon the Galerkin procedure is presented in section 4, which again draws upon the work of
AB95, especially on the resolution of the hypersingular nature of the integral operators. In sections
5 and 6, respectively, expressions for the far-field diffraction coefficients and stress intensity factors
are derived. The latter quantities are of particular interest, as they provide a measure of the
likelihood that dynamic fracture occurs in the elastic sheet. Results are presented and discussed
in section 7 and the paper is concluded in section 8, where further generalisations to the present
work are considered.

2 Formulation of the problem

A flexural-gravity wave propagates from infinity within an isotropic elastic plate of constant thick-
ness d and density ρp, with Young’s modulus E and Poisson’s ratio ν. The wave propagates with
wavelength λ at an angle θinc with respect to the positive x axis, where (x, y, z) are cartesian
coordinates with z measured vertically upwards and z = 0 coinciding with the lower surface of
the undisturbed plate. The plate rests on a fluid of density ρw and constant depth h. The elastic
plate contains an arbitrary number of narrow straight cracks each of finite length which diffract
the incident wave. The cracks are parallel to one another and occupy the set L = ∪N

i=1Li where
Li = {x = ci, a

−
i < y < a+

i } for i = 1, . . . , N .
When in motion, the lower surface of the plate is described by z = ζ(x, y, t) where t represents

time. Under the usual assumptions of linearised theory, that the fluid is inviscid and incompressible
and that the flow is irrotational and undergoes small amplitude motions, there exists a velocity
Φ(x, y, z, t) such that

∇2Φ = 0, in the fluid (2.1)

where ∇ = (∂/∂x, ∂/∂y, ∂/∂z) with Φz = 0 on z = −h. Within the fluid, the linearised version of
Bernoulli’s equation for the pressure p(x, y, z) is

p = pa + ρpgd− ρwΦt − ρwgz, −h < z < ζ (2.2)

where g is gravitional acceleration and pa is constant atmospheric pressure.
The motion of the plate is described using thin plate, or Kirchhoff, theory in which plate

properties are averaged across the thickness of the plate and is due to the difference in pressure
across it, so that (Timoshenko & Woinowsky-Krieger (1959))

p|z=ζ = pa + ρpgd+D∇4
hζ + ρpdζtt (2.3)

where D = Ed3/(12(1 − ν2)) is the flexural rigidity of the elastic plate and ∇h = (∂/∂x, ∂/∂y).
Combining (2.2) on z = ζ with (2.3) and linearising about z = 0 gives

D∇4
hζ + ρpdζtt + ρwΦt + ρwgζ = 0, on z = 0. (2.4)

The kinematic condition, linearised about z = 0 provides additional coupling between the fluid and
the plate with

ζt = Φz, on z = 0. (2.5)

The assumption of a time harmonic motion of angular frequency ω so that Φ(x, y, z, t) = <{−iωφ(x, y, z)e−iωt}
and ζ(x, y, t) = <{η(x, y)e−iωt} reduces (2.4) and (2.5) to

(Lφ)(x, y) ≡ (β∇4
h + 1 − δ)η − κφ|z=0 = 0 (2.6)

where
η = φz|z=0 (2.7)
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and β = D/ρwg, δ = (ρp/ρw)κd and κ = ω2/g, whilst

∇2φ = 0, −h < z < 0 (2.8)

and
φz = 0, on z = −h. (2.9)

Equations (2.6) and (2.7) hold wherever η is continuous which excludes the cracks where the
boundary conditions are enforced to ensure vanishing of bending moments and shearing stresses.
These are given by (Timoshenko & Woinowsky-Krieger (1959))

(Bη)(x, y) ≡ ηxx + νηyy → 0,

(Sη)(x, y) ≡ ηxxx + ν1ηxyy → 0,

}

x→ c±i , a
−
i < y < a+

i (2.10)

where ν1 = 2 − ν. The functions (Bη)(x, y) and (Sη)(x, y) are continuous away from the cracks
and, on account of (2.10), are therefore continuous for all x, y in the plane. In particular, we note
the jump conditions

[(Bη)]i = [(Sη)]i = 0, −∞ < y <∞ (2.11)

which will be needed later, where we have introduced the notation

[u]i = lim
x→c+

i

{u(x, y)} − lim
x→c−

i

{u(x, y)}.

There are further conditions that apply at the ends of the cracks. Thus from AB95 or Norris &
Wang (1994) it is known that

[η]i ∼ (±(a±i − y))3/2 and [ηx]i ∼ (±(a±i − y))1/2, as y → a±i (2.12)

the limit being taken from within the crack.
The incident wave, which propagates in the direction θinc with respect to the positive x-axis is

defined by
φ0(x, y, z) = eim0xeil0yY0(z)

with corresponding plate elevation

η0(x, y) = eim0xeil0yY ′
0(0) (2.13)

where Y0(z) = cosh γ0(z + h) and

m0 = γ0 cos θinc and l0 = γ0 sin θinc. (2.14)

Here, γ0 = 2π/λ is the wavenumber of the incident wave and is determined as the unique positive
root of the dispersion relation

K(γ) ≡ (βγ4 + 1 − δ)γ sinhγh− κ cosh γh = 0 (2.15)

In addition to γ0, there are four (generally) complex roots γ = ±p ± iq, where p, q > 0, the two
having positive imaginary parts being labelled γ−1 = p + iq and γ−2 = −p + iq and an infinite
sequence of pure imaginary roots, ±γn, n = 1, 2, . . . arranged such that 0 < ={γn} < ={γn+1}.
The distribution of the roots is described in Evans & Davies (1968) or Squire et al (1995). For
certain (unphysical) parameters the four complex roots may all become pure imaginary. A detailed
analysis is given by Williams (2005).

The relation (2.15) is derived by separating variables for a plate with no cracks which yields
solutions of the form

e±iγnxYn(z) where Yn(z) = cosh γn(z + h) (2.16)

assuming, without loss of generality, no variation in the y-direction.
The diffracted part of the wave field satisfies the Sommerfeld radiation condition,

r1/2(ur − iγ0u) → 0, as r = (x2 + y2)1/2 → ∞ (2.17)

for both u = ηd ≡ η−η0 and u = φd ≡ φ−φ0, the latter holding for each fixed depth in z ∈ [−h, 0].
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3 Derivation of integral equations

We introduce the Fourier transforms

φ̄(x, l, z) =

∫ ∞

−∞
φ(x, y, z)e−ilydy (3.1)

with inverse

φ(x, y, z) =
1

2π

∫ ∞

−∞
φ̄(x, l, z)eilydl.

and

φ̃(k, l, z) =

∫ ∞

−∞
(φ̄(x, l, z) − φ̄0(x, l, z))e

−ikxdx (3.2)

with inverse

φ̄(x, l, z) = φ̄0(x, l, z) +
1

2π

∫ ∞

−∞
φ̃(k, l, z)eikxdk.

where φ̄0 is the transform in y of the incident wave potential and we are not concerned with
evaluating this in what follows. Functions and operators with bars or tildes will henceforth denote
that they have been transformed according to (3.1) and (3.2).

Taking transforms in y in (2.6)–(2.9) gives

φ̄xx + φ̄zz − l2φ̄ = 0, −h < z < 0, −∞ < x <∞

with
φ̄z = 0, on z = −h

and

(L̄φ̄)(x, l) =

(

β

(

∂2

∂x2
− l2

)2

+ 1 − δ

)

η̄ − κφ̄|z=0 = 0, −∞ < x <∞ (3.3)

where
η̄ = φ̄z|z=0

Crucially in what is to follow, since (2.11) applies over all y (on the cracks and their extensions to
infinity), we preserve the jump conditions in transform space, implying that

[(B̄η̄)(x, l)]i = [(S̄ η̄)(x, l)]i = 0, for −∞ < l <∞ (3.4)

for i = 1, . . . , N where

(B̄η̄)(x, l) = η̄′′ − νl2η̄, and (S̄ η̄)(x, l) = η̄′′′ − ν1l
2η̄′ (3.5)

and where the primes denote differentiation with respect to x. Applying transforms in x now gives

φ̃zz − γ2φ̃ = 0, −h < z < 0

where γ2 = k2 + l2 and φ̃z = 0 on z = −h which implies that

φ̃(k, l, z) = A(k, l) cosh γ(z + h). (3.6)

The steps that follow represent the crux of the method. We take a different approach to that
of AB95 who used the geometric symmetry of a single crack to decompose the problem into two
separate problems in which various conditions were satisfied automatically by the decomposition.
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Defining η̃ = φ̃z|z=0 and applying (3.2) to (3.3) now gives

0 =

∫ ∞

−∞
(L̄(φ̄− φ̄0))(x, l)e

−ikxdx = (βγ4 + 1 − δ)η̃ − κφ̃|z=0 + βI(k, l) (3.7)

where

I(k, l) =

∫ ∞

−∞

{(

(

∂2

∂x2
− l2

)2

(η̄ − η̄0)

)

G−

(

(

∂2

∂x2
− l2

)2

G

)

(η̄ − η̄0)

}

dx

and we have used the abbreviation G = e−ikx. Notice that (3.7) has been arranged such that
the second term in the integral I cancels the leading term, βγ4η̃. This leaves an integral I which
has a structure reminiscent of Green’s identity (G is introduced to highlight this connection), but
which does not vanish identically on account of the discontinuous nature of the function η̄ and
its derivatives. Hence, the integral I must be calculated by dividing the range of integration
over discrete intervals which exclude the values x = ci, at which η̄ and its derivatives possess
discontinuities, before then taking limits. This process results, after integration by parts, in

I(k, l) =

N
∑

i=1

{

[η̄′′′G−G′′′η̄]i − [η̄′′G′ −G′′η̄′]i − 2l2[η̄′G−G′η̄]i
}

where the fact that η̄0 and its derivatives in x are continuous functions has been used.
The contribution from the limits as |x| → ∞ in the integral have been set to zero by assuming

a small negative imaginary part in the frequency which will eventually tend to zero. This has the
effect of moving the real wavenumber k0 into the upper-half complex plane, ensuring that η̄ − η̄0

decays exponentially as |x| → ∞.
Using the transformed jump conditions (3.4) with (3.5) to eliminate η̄ ′′′ and η̄′′ gives

I(k, l) =
N
∑

i=1

{

(G′′ − νl2G)x=ci
[η̄′]i − (G′′′ − ν1l

2G′)x=ci
[η̄]i
}

(3.8)

after some rearrangement in which the relation ν + ν1 = 2 and the fact that G and its derivatives
are continuous for all x are used. Using the definition of the operators B̄ and S̄ in (3.8) gives

I(k, l) =
N
∑

i=1

{

(B̄G)(ci, l)P̄i(l) − (S̄G)(ci, l)Q̄i(l)
}

(3.9)

where we have introduced the functions P̄i(l) = [η̄′]i, Q̄i(l) = [η̄]i, for i = 1, 2, . . . , N . Thus, I(k, l)
depends upon the lateral position, ci of each crack in an explicit way, but also the length of each
crack implicitly through the functions P̄i(l) and Q̄i(l), which are the Fourier transforms of the
jumps in the gradient and elevation along x = ci.

We note from the definition of G = e−ikx that

(B̄G)(ci, l) = −(k2 + νl2)e−ikci ,

(S̄G)(ci, l) = ik(k2 + ν1l
2)e−ikci.

}

Using (3.6) in (3.7) gives
A(k, l) = βI(k, l)/K(γ),

where K(γ) is given by (2.15) and I(k, l) is given by (3.9) and so

φ̄(x, l, z) =
β

2π

∫ ∞

−∞

cosh γ(z + h)

K(γ)
I(k, l)eikxdk. (3.10)
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At this point it is convenient to define the related function

χ̄(x, l, z) =
1

2π

∫ ∞

−∞

cosh γ(z + h)

K(γ)
eikxdk (3.11)

and are reminded that the small imaginary part in the frequency has moved the poles (for l < γ0)
at k0 and −k0 into the upper- and lower-half planes respectively, where

γ2
n = k2

n + l2, n = −2,−1, 0, 1, . . .

and γn are the zeros of K(γ), as defined by (2.14). By deforming the contour of integration into
the upper-half plane for x > 0 and into the lower-half plane for x < 0, the integral in (3.11) can be
expressed as an infinite series, thus

χ̄(x, l, z) = i
∞
∑

n=−2

Y ′
n(0)Yn(z)

2knCn
eikn|x|

where Cn = 1
2(κh + (5βγ4

n + 1 − δ)(Y ′
n(0))2) and Yn(z) are the depth eigenfunctions defined by

(2.16). In this derivation, we have used the relation K ′(γn) = −K ′(−γn) = 2knCn/Y
′
n(0).

It can be noticed that the function χ which gives rise to χ̄ in (3.11) represents a fundamental
point source on the elastic-plate loaded free surface.

It is now straightforward to show, by taking (3.10) with (3.9), that

φ̄(x, l, z) = φ̄0(x, l, z) +

N
∑

i=1

{

ψ̄s(x− ci, l, z)P̄i(l) + ψ̄a(x− ci, l, z)Q̄i(l)
}

where we have defined

ψ̄s(x, l, z) = β(B̄χ̄)(x, l, z) and ψ̄a(x, l, z) = −β(S̄χ̄)(x, l, z).

In terms of infinite series, we have

ψ̄s(x, l, z) = iβ

∞
∑

n=−2

gnY
′
n(0)

2knCn
Yn(z)eikn|x|

and

ψ̄a(x, l, z) = −iβsgn(x)

∞
∑

n=−2

hnY
′
n(0)

2knCn
Yn(z)eikn|x|

where sgn(x) is the signum function and

gn = −(νl2 + k2
n), and hn = −ikn(ν1l

2 + k2
n).

The suffices s and a have been chosen since it can easily be seen that the functions ψ̄s and ψ̄a are
symmetric and antisymmetric (respectively) about x = 0.

We are now in a position to make the inverse transform in y. Thus

φ(x, y, z) = φ0(x, y, z) +
1

2π

N
∑

i=1

∫ ∞

−∞

{

ψ̄s(x− ci, l, z)P̄i(l) + ψ̄a(x− ci, l, z)Q̄i(l)
}

eilydl. (3.12)

Integral equations for the functions Pi(t) and Qi(t), i = 1, 2, . . . , N are now obtained by applying
the free edge conditions (2.10) before using convolution to invert the transform. Since the expression
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for φ(x, y, z) in (3.12) has the jump conditions (2.11) already incorporated, these edge conditions
need only be applied from one of the two sides. Thus, we have

−(Bη0)(cj , y) =
1

2π

N
∑

i=1

∫ ∞

−∞

{

P̄i(l)K̄s(dji, l) + Q̄i(l)K̄a(dji, l)
}

eilydl, y ∈ (a−j , a
+
j ) (3.13)

where dji = cj − ci and

K̄s(dji, l) = (B̄w̄s)(dji, l) = iβ

∞
∑

n=−2

g2
n(Y ′

n(0))2

2knCn
eikn|dji|

K̄a(dji, l) = (B̄w̄a)(dji, l) = −iβsgn(dji)

∞
∑

n=−2

gnhn(Y ′
n(0))2

2knCn
eikn|dji|























(3.14)

and we have written w̄s,a(x, l) = ∂ψ̄s,a/∂z|z=0. Application of the zero-stress condition similarly
gives

−(Sη0)(cj , y) =
1

2π

N
∑

i=1

∫ ∞

−∞

{

P̄i(l)L̄s(dji, l) + Q̄i(l)L̄a(dji, l)
}

eilydl, y ∈ (a−j , a
+
j ) (3.15)

where

L̄s(dji, l) = (S̄w̄s)(dji, l) = iβsgn(dji)

∞
∑

n=−2

gnhn(Y ′
n(0))2

2knCn
eikn|dji|,

L̄a(dji, l) = (S̄w̄a)(dji, l) = −iβ
∞
∑

n=−2

h2
n(Y ′

n(0))2

2knCn
eikn|dji|.























(3.16)

The case of dji = 0 will be treated shortly. At this point we remark that equations (3.13) and (3.15)
represent integral equations for the functions P̄i(l), Q̄i(l) for −∞ < l <∞. However, these integral
equations are not in a particularly suitable form for computation. In particular, the behaviour of
the unknown functions P̄i(l), Q̄i(l) for large |l| are not known at this stage.

Instead, we will derive an alternative set of integral equations which are more amenable to
numerical methods. In order to do so, we need to analyse the convergence of the series which define
K̄s,a(dji, l) and L̄s,a(dji, l) and their behaviour for large |l| which is required to interpret the inverse
transforms of these functions correctly.

First, we make the definition kn = iµn where µn = (l2 − γ2
n)1/2 when |l| > γn. Then it is clear

that for dji 6= 0, all series occurring in (3.14) and (3.16) are exponentially convergent as |l| → ∞.
Therefore, we concentrate on the case when j = i and dji = 0. In this case, we may write

K̄s(0, l) = β
∞
∑

n=−2

g2
n

2µn
τ(γn)

L̄a(0, l) = −β

∞
∑

n=−2

h2
n

2µn
τ(γn)























(3.17)

where it was shown in the Appendix of Evans & Porter (2003) that

τ(γn) =
(Y ′

n(0))2

Cn
= O(n−8), as n→ ∞

which ensures that the series in (3.17) are convergent. We also note that gn = (l2(1− ν)− γ2
n) and

hn = µn(l2(1 − ν) + γ2
n). Also, the following identities were proved in the Appendix of Evans &
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Porter (2003),

∞
∑

n=−2

τ(γn) = 0,

∞
∑

n=−2

γ2
nτ(γn) = β−1 and

∞
∑

n=−2

γ4
nτ(γn) = 0. (3.18)

In addition to (3.17), it can be shown from (3.14) and (3.16), after some algebra, that

K̄a(0, l) = −L̄s(0, l) = β

∞
∑

n=−2

(γ4
n − (1 − ν)2l4)

2
τ(γn) = 0

using (3.18). Returning to (3.17), it can be shown that

g2
n

µn
= (1 − ν)2l2|l|

(

1 −

(

3 + ν

1 − ν

)

γ2
n

2l2
+ C(ν)

γ4
n

l4
+O

(

1

l6

))

, as |l| → ∞, fixed n (3.19)

for some function C(ν) that we do not need to calculate. Using this in (3.17) with the identities
(3.18) shows that

K̄s(0, l) ∼ − 1
4(3 + ν)(1 − ν)|l| +O(1/|l|3), as |l| → ∞.

Some care is required in taking this limit. Briefly, the summation in (3.17) must be divided into
two parts, defined by the size of |l|, estimating the second half to be O(1/|l|5) before taking the
limit |l| → ∞.

A similar procedure for L̄a(0, l) gives

L̄a(0, l) ∼ − 1
4(3 + ν)(1 − ν)l2|l| +O(1/|l|), as |l| → ∞.

Thus we define

K̄s(0, l) = −σ|l| + K̄ ′
s(0, l), L̄a(0, l) = −σl2|l| + L̄′

a(0, l), (3.20)

where σ = 1
4(3 + ν)(1 − ν) and where K̄ ′

s(0, l) ∼ O(1/|l|3) and L̄′
a(0, l) ∼ O(1/|l|) as |l| → ∞. The

form of (3.20) is in exactly the same form as in AB95 where a similar procedure was used. Although
this is perhaps to be expected, the asymptotic result in AB95 was explicit from their formulation.
In contrast, however, the derivation of the asymptotic results here for the more complicated case
of an elastic plate bounded by a fluid has required some detailed analysis.

It follows that the inverse transforms may be written as

Ks(0, y) = −
σ

π

d2

dy2
ln |y| +K ′

s(0, y), La(0, y) =
σ

π

d4

dy4
ln |y| + L′

a(0, y)

where

Ks,a(x, y) =
1

2π

∫ ∞

−∞
K̄s,a(x, l)e

ilydl

with corresponding definitions for Ls,a(x, y), K
′
s(x, y) and L′

a(x, y). It is also readily shown that
K ′

s(0, y) ∼ |y|3 and L′
a(0, y) ∼ |y| as y → 0. We note that the functions Ks,a(x, y) are not known

explicitly and will effectively be inverted numerically as part of the numerical scheme (see later
equations (4.8)–(4.10)).

Returning to (3.13) and (3.15), we can implement the convolution theorem to give

f(cj, y) = −
σ

π

d2

dy2

∫ a+

j

a−

j

Pj(t) ln |y − t|dt+

∫ a+

j

a−

j

Pj(t)K
′
s(0, y − t)dt

+
N
∑

i=1
6=j

∫ a+

i

a−

i

{Pi(t)Ks(dji, y − t) +Qi(t)Ka(dji, y − t)} dt, y ∈ (a−j , a
+
j ) (3.21)
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and

g(cj , y) =
σ

π

d4

dy4

∫ a+

j

a−

j

Qj(t) ln |y − t|dt+

∫ a+

j

a−

j

Qj(t)L
′
a(0, y − t)dt

+

N
∑

i=1
6=j

∫ a+

i

a−

i

{Pi(t)Ls(dji, y − t) +Qi(t)La(dji, y − t)} dt, y ∈ (a−j , a
+
j ) (3.22)

both for j = 1, 2, . . . , N , where

f(cj, y) = −(Bη0)(cj , y), and g(cj , y) = −(Sη0)(cj , y).

Also,

Pi(y) ≡ [ηx]i =
1

2π

∫ ∞

−∞
P̄i(l)e

ilydl and Qi(y) ≡ [η]i =
1

2π

∫ ∞

−∞
Q̄i(l)e

ilydl

for i = 1, 2, . . . , N represent the jumps in the gradient and elevation across each of the N cracks
which are clearly zero if y 6∈ (a−i , a

+
i ).

We remark here that, when i 6= j but dji = 0 as would occur in the case of distinct parallel
cracks, there is no singular behaviour in the corresponding kernels of the integral operators and no
special attention is required.

The 2N coupled integral equations in (3.21) and (3.22) for the 2N unknowns Pi(t), Qi(t),
i = 1, 2, . . . , N are in a suitable form for computation. We remark that when there is only one
crack, the pair of integral equations decouple into one for P1(t) and one for Q1(t).

Finally, we note from the definition of η0 in (2.13) that

f(cj , y) = (m2
0 + νl20)e

im0cjY ′
0(0)e

il0y (3.23)

and
g(cj , y) = im0(m

2
0 + ν1l

2
0)e

im0cjY ′
0(0)e

il0y (3.24)

where m0 and l0 are defined by (2.14).

4 Approximation to solution of the integral equations

Guided by the analysis describing the local behaviour at the ends of cracks resulting in (2.12) we
assume the following representations for the unknowns in (3.21) and (3.22)

Pi(t) =
1

s3i

∞
∑

n=0

a(i)
n

einπ/2

(n+ 1)
p(i)

n (t), t ∈ (a−i , a
+
i ) (4.1)

and

Qi(t) =
2

s4i

∞
∑

n=0

b(i)n

einπ/2

(n+ 1)(n+ 2)(n+ 3)
q(i)n (t), t ∈ (a−i , a

+
i ) (4.2)

where
p
(i)
n (t) = {(a+

i − t)(t− a−i )}1/2Un((t− ti)/si)

q
(i)
n (t) = {(a+

i − t)(t− a−i )}3/2C
(2)
n ((t− ti)/si)

}

and where si = 1
2 (a+

i − a−i ) and ti = 1
2(a+

i + a−i ) define the half-length and midpoint, respectively,

of the ith crack. See figure 1. The coefficients a
(i)
n , b

(i)
n , for i = 1, 2, . . . , N are to be determined
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and p
(i)
n (t), q

(i)
n (t) are weighted test functions defined in terms of Un(x) ≡ C

(1)
n (x) and C

(2)
n (x)

being the Chebychev polynomial of the second kind and the ultraspherical Gegenbauer polynomial,
respectively. These are orthogonal polynomials which satisfy the orthogonality relationships

∫ a−

i

a+

i

p(i)
n (t)Um((t− ti)/si)dt = 1

2πs
2
i δmn;

∫ a+

i

a−

i

q(i)n (t)C(2)
m ((t− ti)/si)dt = 1

8πs
4
i (m+ 3)(m + 1)δmn.

The extra normalising factors are included in (4.1) and (4.2) for later algebraic convenience and
also to ensure that Pi(t) and Qi(t) are dimensionally correct.

Similar expansions were used by AB95, who also noted that the functions Un(x) and C
(2)
n (x)

may be regarded as the eigenfunctions of the singular parts of the integral equations in the sense
that they satisfy

d2

dy2

∫ a+

i

a−

i

ln |y − t|p(i)
n (t)dt = π(n+ 1)Un((y − ti)/si) (4.3)

and
d4

dy4

∫ a+

i

a−

i

ln |y − t|q(i)
n (t)dt = −π(n+ 3)(n+ 2)(n+ 1)C (2)

n ((y − ti)/si) (4.4)

for y ∈ (a−i , a
+
i ) (note that AB95 have omitted a minus sign in error in their version of (4.4)).

In what follows, we will also make use of the results

∫ a+

i

a−

i

eiltp(i)
n (t)dt =

eiltieinπ/2(n+ 1)πs2i
lsi

Jn+1(lsi) (4.5)

and
∫ a+

i

a−

i

eiltq(i)n (t)dt =
eiltieinπ/2(n+ 3)(n+ 2)(n+ 1)πs4

i

2(lsi)2
Jn+2(lsi). (4.6)

(see for example, Gradshteyn & Ryzhik (1981)) where Jn(z) is the Bessel function.
A Galerkin method is used to transform the coupled integral equations (3.21) and (3.22) into a

coupled linear system of algebraic equations for the coefficients a
(i)
n , b

(i)
n . To summarise this process,

we substitute (4.1) and (4.2) into (3.21) and (3.22), multiply through the first of these by p
(j)
m (y)

and the second by q
(j)
m (y) and integrate over a−j < y < a+

j .
Thus, after substituting (4.1) and (4.2) into (3.21) we find that

f(cj , y) = −
σ

s3j

∞
∑

n=0

a(j)
n einπ/2Un((y − tj)/sj) +

1

2sj

∞
∑

n=0

a(j)
n

∫ ∞

−∞
K̄ ′

s(0, l)e
il(y−tj ) Jn+1(lsj)

lsj
dl

+

N
∑

i=1
6=j

1

2si

∞
∑

n=0

a(i)
n

∫ ∞

−∞
K̄s(dji, l)e

il(y−ti)Jn+1(lsi)

lsi
dl

+

N
∑

i=1
6=j

1

2

∞
∑

n=0

b(i)n

∫ ∞

−∞
K̄a(dji, l)e

il(y−ti)
Jn+2(lsi)

(lsi)2
dl

11
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Figure 1: Definition of geometrical parameters used to define the ith crack

where (4.3)–(4.6) have been used. After multiplying through by p
(j)
m (y) and integrating over a−j <

y < a+
j we find, after considerable algebra, that

F (j)
m =

−σ

(m+ 1)
a(j)

m +

∞
∑

n=0

a(j)
n K

′(j)
s,(mn) +

N
∑

i=1
6=j

∞
∑

n=0

(

a(i)
n K

(ij)
s,(mn) + b(i)n K

(ij)
a,(mn)

)

(4.7)

for j = 1, 2, . . . , N , m = 0, 1, . . .. Here,

K
′(j)
s,(mn)

=

∫ ∞

−∞
{sjK̄

′
s(0, l)}

Jn+1(lsj)Jm+1(lsj)

(lsj)2
d(lsj) (4.8)

K
(ij)
s,(mn) =

∫ ∞

−∞
{sjK̄s(dji, l)}e

il(tj−ti)
Jn+1(lsi)Jm+1(lsj)

(lsi)2
d(lsj) (4.9)

and

K
(ij)
a,(mn) =

∫ ∞

−∞
{s2jK̄a(dji, l)}e

il(tj−ti)
Jn+2(lsi)Jm+1(lsj)

(lsi)2(lsj)
d(lsj) (4.10)

where the terms in braces are non-dimensional. Also,

F (j)
m =

2sje
−imπ/2

π(m+ 1)

∫ a+

j

a−

j

f(cj, y)p
(j)
m (y)dy

= 2s3j(m
2
0 + νl20)Y

′
0(0)ei(m0cj+l0tj)

Jm+1(l0sj)

(l0sj)
(4.11)

using the definition of f(cj , y) in (3.23) and (4.5).
We follow the same steps for the treatment of (3.21). Thus, substitution of (4.1) and (4.2) gives,

after some tidying up

g(cj , y) = −
2σ

s4j

∞
∑

n=0

b(j)n einπ/2C(2)
n ((y − tj)/sj) +

1

4

∞
∑

n=0

b(j)n

∫ ∞

−∞
L̄′

a(0, l)e
il(y−tj ) Jn+2(lsj)

(lsj)2
dl

+
N
∑

i=1
6=j

1

2si

∞
∑

n=0

a(i)
n

∫ ∞

−∞
L̄s(dji, l)e

il(y−ti)
Jn+1(lsi)

lsi
dl
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+

N
∑

i=1
6=j

1

2

∞
∑

n=0

b(i)n

∫ ∞

−∞
L̄a(dji, l)e

il(y−ti)
Jn+2(lsi)

(lsi)2
dl

Multiplication by q
(j)
m (y) and integration over a−j < y < a+

j results in

G(j)
m = −

σ

(m+ 2)
b(j)m +

∞
∑

n=0

b(j)n L
′(j)
a,(mn) +

N
∑

i=1
6=j

∞
∑

n=0

(

a(i)
n L

(ij)
s,(mn) + b(i)n L

(ij)
a,(mn)

)

(4.12)

for j = 1, 2, . . . , N , m = 0, 1, . . . where

L
′(j)
a,(mn) =

∫ ∞

−∞
{s3j L̄

′
s(0, l)}

Jn+2(lsj)Jm+2(lsj)

(lsj)4
d(lsj) (4.13)

L
(ij)
s,(mn) =

∫ ∞

−∞
{s2j L̄s(dji, l)}e

il(tj−ti)
Jn+1(lsi)Jm+2(lsj)

(lsi)2(lsj)
d(lsj) (4.14)

and

L
(ij)
a,(mn) =

∫ ∞

−∞
{s3j L̄a(dji, l)}e

il(tj−ti)
Jn+2(lsi)Jm+2(lsj)

(lsi)2(lsj)2
d(lsj) (4.15)

As before, the braces include non-dimensional quantities. Finally,

G(j)
m =

4sje
−imπ/2

π(m+ 1)(m+ 2)(m+ 3)

∫ a+

j

a−

j

g(cj , y)q
(j)
m (y)dy

= 2is4jm0(m
2
0 + ν1l

2
0)Y

′
0(0)e

i(m0cj+l0tj)
Jm+2(l0sj)

(l0sj)2
(4.16)

using the definition of g(cj , y) in (3.24) and (4.6).
In terms of numerical implementation, advantage can be taken of various symmetry relations

including s4iK
(ij)
s,(mn) = −(−1)m+ns4jK

(ji)
s,(nm), and s4iL

(ij)
s,(mn) = (−1)m+ns4jK

(ji)
a,(nm) for example, which

follow from relations (3.14), (3.16).
Notice also that the positioning of each crack, with centres (ci, ti) occur as differences in ex-

ponentials in the combinations eikn|cj−ci|eil(tj−ti). This means that the i 6= j terms essentially
contain information about the relative distance and orientation of each of the cracks with respect
to one another rather than each to some fixed origin of reference, whilst the sizes of the cracks
appear separately as other multiplying terms. This, of course, is not surprising and it allows one
to identify the wave interaction effects between each pair of cracks from these terms. In particular,
one might be inclined to make a simplifying approximation, akin to the well-known wide-spacing
approximation, in which only the propagating wave modes are retained in the interaction between
two ‘widely’ separated cracks. In this case it is clear that one disgards all but the n = 0 mode in
the infinite sums which define the transform functions K̄s,a(dji, l), L̄s,a(dji, l). However, there is
little to be gained by such a procedure as there is no further analytic progress that could be made
and the numerical savings are not especially significant.

5 Far-field diffracted wave amplitudes

The first task here is to represent the transforms of the functions Pi(y) and Qi(y) in terms of the

coefficients a
(i)
n and b

(i)
n introduced in (4.1) and (4.2). Thus, we find using (4.5) that

P̄i(l) =

∫ a+

i

a−

i

Pi(y)e
−ilydy = e−ilti

π

si

∞
∑

n=0

a(i)
n

Jn+1(lsi)

lsi
(5.1)
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and using (4.6) that

Q̄i(l) =

∫ a+

i

a−

i

Qi(y)e
−ilydy = e−iltiπ

∞
∑

n=0

b(i)n

Jn+2(lsi)

(lsi)2
. (5.2)

Far away from the cracks, the wave field is a superposition of the incident plane wave, φ0, and
components of the diffracted field from each of the cracks. Thus we write the latter part as

φd(r, θ, z) = φ− φ0 ∼

N
∑

i=1

(

Ui(r, θ) + Vi(r, θ)
)

Y0(z), as r → ∞ (5.3)

where r = (x2 + y2)
1

2 and x = r cos θ, y = r sin θ. Here, we have anticipated the fact that only the
terms proportional to Y0(z) will contribute to the wave field at large distances and written

Ui(r, θ) ≡ Ui(ri, θi) = lim
ri→∞

iβY ′
0(0)

4πC0

∫ ∞

−∞

g0
k0

eilti P̄i(l)e
ik0ri| cos θi|eilri sin θidl (5.4)

and

Vi(r, θ) ≡ Vi(ri, θi) = lim
ri→∞

−iβY ′
0(0)

4πC0

∫ ∞

−∞

h0

k0
eiltiQ̄i(l)sgn(x− ci)e

ik0ri| cos θi|eilri sin θidl (5.5)

and defined x−ci = ri cos θi, y−ti = ri sin θi. These represent polar coordinates based on the centre
of the ith crack (see figure 2). There is clearly a relationship between the global polar coordinate
system (r, θ) and each of the local coordinate systems (ri, θi), i = 1, 2, . . . , N but we do not need
to know these explicitly. Instead, we note that as r → ∞

θi → θ, and ri → r −Ri cos(αi − θ) (5.6)

where Ri = (c2i + t2i )
1

2 , αi = tan−1(ti/ci). As a passing remark, note that the argument of the
exponentials in (4.11) and (4.16), namely i(m0cj + l0tj) can now be written as iγ0Rj cos(αj − θinc)
where (2.14) has been used and θinc is the incident wave angle.

Returning to (5.4) and (5.5), we note the symmetry relations Ui(ri, θi) = Ui(ri, π − θi) and
Vi(ri, θi) = −Vi(ri, π − θi), which means that each expression needs only be considered for − 1

2π <
θi <

1
2π.

We make the change of variable l = γ0 sinw, implying that k0 = γ0 cosw, where w is a complex
number. Then, for example in (5.4), we have

Ui(ri, θi) = lim
ri→∞

−iβY ′
0(0)

4πC0

∫

C
γ2
0(cos2w + ν sin2w)eiγ0ti sinwP̄i(γ0 sinw)eiγ0ri cos(θi−w)dw

and the contour C is comprised of the three straight line segments C1∪C2∪C3 where C1 := {−1
2π+θi <

w < −1
2π + θi + i∞}, C2 := {−1

2π + θi < w < 1
2π + θi}, and C3 := {1

2π + θi − i∞ < w < 1
2π + θi}.

As ri → ∞, the dominant contribution to the integral is from the saddle point at w = θi which is
calculated by steepest descent to give

Ui(ri, θi) =

(

2π

γ0ri

)1/2

eiγ0ri−iπ/4

{

−iβY ′
0(0)

4πC0
γ2
0(cos2 θi + ν sin2 θi)e

iγ0ti sin θi P̄i(γ0 sin θi)

}

.

A similar analysis for Vi(ri, θi) shows that

Vi(ri, θi) =

(

2π

γ0ri

)1/2

eiγ0ri−iπ/4

{

−
βY ′

0(0)

4πC0
γ3
0 cos θi(cos

2 θi + ν1 sin2 θi)e
iγ0ti sin θiQ̄i(γ0 sin θi)

}

.
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Bringing these results together in (5.3) using (5.6) gives

φd(r, θ, z) ∼

(

2π

γ0r

)1/2

eiγ0r−iπ/4Y0(z)A(θ), as r → ∞ (5.7)

where the diffraction coefficient is defined as

A(θ) =
βγ2

0Y
′
0(0)

4πC0

N
∑

i=1

{

− i(cos2 θ + ν sin2 θ)eiγ0ti sin θP̄i(γ0 sin θ)

−γ0 cos θ(cos2 θ + ν1 sin2 θ)eiγ0ti sin θQ̄i(γ0 sin θ)
}

e−iγ0Ri cos(αi−θ). (5.8)

This expression can be posed in terms of the coefficients a
(i)
n and b

(i)
n after substituting from (5.1)

and (5.2) whence it can be noticed that the resulting expressions can be written in terms of Ri and
αi and not explicitly on ti.

5.1 An energy relation

An expression for representing conservation of energy can be found by using Green’s identity with
the function φ and φ∗. A lengthy calculation leads to

Σ =
1

2π

∫ 2π

0
|A(θ)|2dθ = −

1

π
<{A(θinc)} (5.9)

where Σ is often referred to as the scattering cross-section. The result (5.9) is well-known and
applies in many wave scattering theories (e.g. in optics, acoustics, electromagnetics) where it is
referred to as an ‘optical theorem’. In the context of thin elastic plates under fluid loading the
optical theorem has been derived by, for example, Belinsky & Kouzov (1980), Belinsky (1982) and
more recently by Norris & Vermula (1995).

6 Stress intensity at the edges of the cracks

An important quantity in determining the possibility of dynamic fracture at one end of a crack
is the stress intensity factor (see, for example, Hertzberg (1996)). According to the mathematical
model, the stress at the tip of the crack is unbounded, although the model does not allow for
the plastic deformation which occurs at the edge of the crack. Thus, the stress intensity factor is
defined by

K±
i = lim

y→a±

i

√

±2π(y − a±i )σx(ci, y)

where σx(ci, y) is the lateral stress along x = ci and the limits are approached from below a−i and
above a+

i (i.e. from within the elastic plate). If the value of K±
i exceeds a particular critical value,

usually determined experimentally, then it is likely that there will be a fracture occur at the tip of
the crack. Here, the stress is given by (Timoshenko & Woinowsky-Krieger (1959))

σx =
Ed

2(1 − ν2)

(

ν
∂2η

∂x2
+
∂2η

∂y2

)

.

On account of the definition of K±
i , it is only the most singular part of the stress which contributes.

In a similar manner to the development of the integral equations seen earlier, we find after lengthy
algebra that

σx(ci, y) ∼
3Ed(1 − ν)

8(1 + ν)

(

−
1

π

d2

dy2

∫ a+

i

a−

i

ln |y − t|Pi(t)dt

)
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plus bounded terms. Using the expansion for Pi(t), changes of variables in y and t, and the result
(see, for example, AB95) valid for |y| > 1

−
1

π

d2

dy2

∫ 1

−1
ln |y − t|(1 − t2)1/2Un(t)dt =

|y|

(1 − y2)1/2
Un(y)

+sgn(y)(1 − y2)1/2U ′
n(y) − 1

2 (n+ 1)Un(y)

it can be shown that

K±
i = i

√

π

si

(

3Ed(1 − ν)

8s2i (1 + ν)

) ∞
∑

n=0

a(i)
n e±inπ/2. (6.1)

7 Numerical results

Results are obtained by computing coefficients a
(i)
n , b

(i)
n from the truncated version of the coupled

infinite system of equations in (4.7) and (4.12). The truncation size reflects the number of terms
used in the expansion of the functions representing the jumps in gradient and elevation across the
crack. These functions have been chosen to incorporate the correct behaviour at the ends of the
crack, and therefore only a small number of terms are needed for a high degree of accuracy in
quantities of interest. The number of terms required depends upon the incident wavenumber γ0

and the length of the crack 2si, i = 1, . . . , N ; larger values of γ0si require more terms than smaller
values. Typically, only five terms are required, and in the most extreme cases considered here ten
terms are used, with a view to achieving at least three decimal places accuracy in quantities of
interest at all times. The equations (4.7) and (4.12) require the computation of infinite integrals,
all of which can be transformed into semi-infinite integrals. The convergence of these integrals can
also be calculated using the asymptotics of Bessel functions for large argument, along with the large
|l| asymptotics for the infinite sums, previously discussed in relation to determining the inversion
of the Fourier transforms in section 3. Thus, integrals can be accurately and efficiently calculated
by truncation to an appropriate upper limit.

The energy relation (5.9) is successfully used as a check of the accuracy of computed results,
though the integral defining the left-hand side of (5.9) must inevitably be approximated. Indication
from numerical experiments suggests that (5.9) is automatically satisfied by the formulation and
should not be used as an indication of convergence of the results as a function of truncation size.
This is a common feature of problems posed in terms of integral equations and approximated using
Galerkin methods (see Porter (1995) for example).

For all results presented, the following values for physical parameters are used: E = 5× 109Pa,
ν = 0.3, ρw = 1025kgm−3, ρp = 925.5kgm−3, g = 9.81ms−2, d = 1m, h = 40m. Varying the
ice thickness or the water depth leads to the same qualitative behaviour in the results (see Evans
& Porter (2003) for example). The range of wavelengths to be considered varies from λ = 50m
to λ = 200m, which translates into a range of (non-dimensional) incident wavenumbers from
γ0d = 0.1256 to γ0d = 0.0314 respectively. These parameter values are within the range for ice
sheets suggested by Squire et al (1995).

The first case we consider is the simplest, being wave interaction with a single crack. For
illustrative purposes we take the crack to be 200m in length, the same length as the maximum
wavelength and four times the shortest wavelength considered. In order to illustrate as much
qualitative behaviour as possible, we present in figures 2-3 three-dimensional plots, each measuring
the modulus of the diffraction coefficient, |A(θ)| as a function of observation angle θ and one other
variable. In the first set of two figures 2(a,b) we show the variation in |A(θ)| with γ0d for the
case of (a) θinc = 0◦ (hereafter referred to as “beam” incidence) and (b) θinc = 90◦ (referred to as
“head” incidence). In each case, only half of the θ range is required as there is symmetry with θ
in |A(θ)|. As expected, there is significantly more energy diffracted under beam incidence than for
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head incidence, and this energy is mainly propagated in the directions around θ = 0 and θ = π.
For head incidence, the diffracted wave energy has a more complex structure as a function of θ,
especially as the wavenumber γ0d is increased.
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Figure 2: The diffraction coefficient, |A(θ)|, as a function of γ0d for a crack of length 200m with
(a) θinc = 0◦ and (b) θinc = 90◦.

In figures 3(a),(b) we show the variation of |A(θ)| as a function of θ with varying θinc for values
of (a) γ0d = 0.0628 (λ = 100m) and (b) γ0d = 0.1256 (λ = 50m). In each case, only the range
0◦ ≤ θinc ≤ 90◦ (from beam incidence around to head incidence) needs to be considered due to the
symmetries in the geometry. In both figures, the most wave energy is diffracted along the directions
θ = θinc and θ = π − θinc which correspond to the reflected and transmitted wave angles for an
infinitely long crack. At the higher frequency (figure 3), the diffracted wave energy is more focussed
along these lines, as might be expected.

A snapshot in time of the plate elevation for the diffracted part of the wave, ηd is given in
figures 4, 5 in the case of a single crack. The total wave field requires the superposition of the
incident wave field ηinc, which is assumed to have unit amplitude. In both cases, symmetry in
the diffraction wave pattern means that only half the plate needs to be plotted, and this allows
us to illustrate the elevation of the plate along the cracks. In figure 4, we consider high-frequency
beam incidence upon a crack of length 50m. Most of the diffracted wave energy is along θ = 0 and
θ = 180◦. The maximum plate elevation occurs along each side of the crack, and in this example
is over three times the amplitude of the incidence wave.

In figure 5 a crack of length 200m is under head incidence and now we can observe the plate
elevation along the edge of the crack x = 0, −100 < y < 100. Here, the plate elevation is
symmetrical about x = 0. The feature to note here, common in a range of similar examples
computed numerically, is the large peaks in the plate elevation at the two ends of the cracks. The
diffracted wave energy is scattered over a range of angles, with very little reflected back towards
the source.

There are many different configurations of cracks that we might consider. With two cracks, the
most interesting effects occur when one crack is placed directly behind the other, as this introduces
the possibility of resonance in the strip between the two cracks. To illustrate this effect, in figure 6
we consider the case of beam incidence upon two cracks, both 100m in length, with ti = 0 and when
separated by various distances b = c2 − c1 ranging from 40m down to just 2.5m. The maximum
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Figure 3: The diffraction coefficient, |A(θ)|, as a function of θinc for a crack of length 200m with
(a) γ0d = 0.0628 and (b) γ0d = 0.1256.
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Figure 4: Snapshot of diffracted part of the plate elevation for a crack, length 100m, under beam
incidence, γ0d = 0.1256 (λ = 50m).

plate elevation occurs along y = 0 and between the two cracks (illustrated, for example, in figure 7
for a separation of 20m) and this is plotted in figure 6 as γ0d is varied. As the separation between
the cracks is reduced, a primary peak in the resonant amplitude is formed which increases in size
dramatically. A secondary peak also forms at higher values of γ0d, but only for closely-separated
cracks. Perhaps the most interesting aspect of these plots is the size of the resonant amplitude for
fairly modest separations and also the broadness of the peak over a large range of values of γ0d.
For example, with b = 10m, the maximum amplitude of the plate between the cracks is over four
times the incident wave amplitude for all wavelengths between 50m and 110m.

The modulus of the stress intensity factor (SIF), |K±
1 | associated with the ends of the cracks for

a single crack as a function of wavenumber γ0d is plotted in figure 8. The SIF is dimensional and
the large values taken by |K±

1 | in figure 8 is due mainly to the its dependence on Young’s modulus,
E. In figure 8(a) the dependence of the SIF on crack length is shown for symmetric beam-incident
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Figure 5: Snapshot of diffracted part of the plate elevation for a crack, length 200m, under head
incidence, γ0d = 0.1256 (λ = 50m).
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Figure 6: The maximum plate elevation |ηmax| as a function of wavenumber γ0d for two aligned
parallel cracks, each of length 100m under beam incidence and various spacings, b = c2 − c1 (shown
against curves).
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Figure 7: Snapshot of diffracted part of the plate elevation for two aligned parallel cracks, length
100m, separated by 20m under beam incidence at resonance, γ0d = 0.0628, (λ = 100m).

waves. As expected, the SIF associated with each crack tip rapidly becomes independent of the
length of the crack as it is increased. This is more apparent at larger values of γ0d (smaller
wavelengths), again as expected. This result might allow us to speculate that, for the particular
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set of parameters being considered in this numerical experiment, the response at the centre of a
crack of length 100m would be close to that for an infinitely long crack.

In figure 8(b) the effect of the incident wave angle on the SIF at the near and far ends of a
single crack of fixed length 100m is shown. At beam incidence, the SIF at the two ends of the crack
are, of course, identical.
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Figure 8: The stress insensity factors associated with crack tips as γ0d varies for: (a) a single
crack of length 25m (solid), 50m (long dash), 100m (dotted) under beam incidence; (b) a crack of
length 100m for beam incidence (solid line), 45◦ incidence (dashed lines - upper/lower lines near/far
cracks) and head incidence (dotted lines - upper/lower lines are near/far cracks).

Finally, in figure 9 we show illustrative results for four cracks, in this case randomly arranged
and under oblique incidence; see figure caption for details. A plan view shows a snapshot in time of
the diffracted wave relief as different shades of black of white. The incident wave angle is 45◦, and
it can be seen that the primary scattering angles, as expected, for this relatively high-frequency
wave is at 45◦ and 135◦. This is because a dominant part of the wave diffraction is wave reflection
from, and transmission beyond, the cracks. A lesser component of the wave diffraction is due to
the end effects of the cracks.

8 Conclusion

In this paper we have shown how the problem of wave scattering of an incident plane wave by narrow
straight-line cracks in an elastic sheet floating on water can be formulated in terms of integral
equations for functions related to the jumps in slope and displacement across the cracks. These
integral equations are shown to have hypersingular kernels. The numerical method for computing
their solution uses a Galerkin approach in conjunction with certain orthogonal functions. These
functions incorporate the physical nature of the solution at the ends of the crack, as well as allowing
explicit integration of the singular components of the integral equations.

The current problem is a significant extension of the large body of previous work which has
considered the two-dimensional problem of wave transmission beyond infinitely long straight-line
cracks, in that the effect of crack terminations on wave propagation are included. Simple expressions
have been derived for the stress intensity factors associated with the ends of the cracks. These
factors are important in determining the onset of fracture, which may occur once the factors exceed
an experimentally determined critical value.

The canonical problem involving crack terminations is one in which waves are incident upon a
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Figure 9: Plan view relief snapshot of the diffracted part of the plate elevation for four cracks
(c1 = 0m, t1 = 0m, s1 = 75m; c2 = 60m, t2 = 50m, s2 = 100m; c3 = 100m, t3 = −40m, s2 = 25m;
c4 = 120m, t4 = 10m, s4 = 125m) with γ0d = 0.141 under oblique incidence θinc = 45◦.

crack of semi-infinite extent. Here, an analogous problem exists in the in vacuo case, namely the
scattering of flexural waves by a semi-infinite crack in an elastic sheet, and has been previously
been considered by Norris & Wang (1994). They used a Wiener-Hopf approach in the solution of
the problem and paid particular attention to the wave energy which is fed into the form of ‘edge
waves’ which propagate to infinity along the free edges of the crack. Such edge waves are well-
known and explicit for a plate in vacuo, and analogous edge waves for a crack in an elastic plate
over water were shown to exist numerically by Evans & Porter (2003). Thus, there remains the
possibility of extending the work of Norris & Wang (1994) to the case of an elastic sheet having
a semi-infinite crack bounded below by fluid. Preliminary work suggests that the solution of this
problem is requires a Wiener-Hopf split function not defined explicitly, but as a parameter in the
integrand of a Fourier-type integral which greatly complicates the solution.

A further generalisation of the current work involves the scattering of waves by cracks of arbi-
trary shape and orientation. Here, analytic progress has been made by the authors and this will
take the form of a subsequent publication, although some preliminary details of the method have
previously been reported in Porter & Evans (2004).
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