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Summary

In this paper connections are made between the solutions of two water wave scattering

problems, namely the diffraction of oblique waves by a thin vertical barrier with gaps and the

complementary problem where the barriers are interchanged with the gaps. It is shown that

the potential everywhere for the barrier problem is expressible in terms of the potential for the

gap problem and a connection potential also associated with gaps in barriers. As a result the

reflection coefficients are also shown to be connected.

The theory is illustrated in two ways. First, by analytically deriving Ursell’s (1947)

explicit result for a surface-piercing barrier in infinite depth from Dean’s (1945) explicit result

for a submerged barrier in infinite depth. Secondly, numerical results for complementary

arrangements of barriers and gaps in finite depth and under oblique wave incidence are

presented.

This paper is dedicated to the memory of Prof. Fritz Ursell who died in 2012.

1. Introduction

In the classical linearised theory of water waves only a few explicit solutions are known. One

important class of problems having this feature involve thin vertical barriers in deep water where

the fluid motion is two-dimensional. Thus, Dean (1945) first solved the problem of time-harmonic

waves normally-incident on a vertical barrier extending vertically downwards from a point below the

free surface using complex variable methods. Shortly afterwards, Ursell (1947) derived the solution

to the geometrically complementary problem of a vertical barrier extending upwards through the

free surface from a point below the free surface. Ursell (1947) used a different method of solution

to that of Dean (1945), based on Havelock’s (1929) wavemaker theory involving integral transforms

and was able to invert the integral equations that result. Ursell was also able to rederive the Dean

solution using this approach.

In both Ursell and Dean problems, the reflection coefficients were shown to be expressible

in terms of simple combinations of modified Bessel functions of argument 2πa/λ, the only

dimensionless parameter in the problem expressing the ratio of wavelength λ of surface waves

to a the distance below the surface of the end of the barrier. Despite the similarity in these two

expressions (repeated in this paper in equations (4.2) and (4.4)) there is no obvious connection

between these two problems.

Later, various authors derived more complicated explicit solutions to vertical barrier problems

in deep water. These included Lewin (1963), Mei (1966), Evans (1970) and Porter (1974) who

considered scattering problems for finite barriers and finite gaps in barriers. Also of note is the

work of Ursell (1948) who considered radiation by forced oscillations of vertical barriers. Mandal

& Chakrabati (2000) provide an exhaustive catalogue of the work in this area and outline various

methods that can be used to solve these and related problems.
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When the fluid motion is not two-dimensional (for example when incident waves are obliquely

incident upon vertical barriers), or when the fluid depth is no longer infinite, explicit solutions fail to

exist and must be approximated. For example, Evans & Morris (1972) ingeniously used the explicit

solutions of Ursell (1947) in a variational approximation to derive upper and lower bounds on the

modulus of the reflection coefficients for oblique wave incidence upon surface piercing barriers in

deep water.

For the most general case of finite depth and oblique incidence, solutions are most easily

expressed in terms of eigenfunctions expansions. The most powerful application of this approach

is outlined in Porter & Evans (1995) who used matching of these separation solutions either side of

an arrangement of vertical barriers and gaps to formulate integral equations for unknown functions

related to physical quantities. A variational approach equalivalent to the Galerkin method in which

the unknown functions are expanded in a finite series of prescribed function which incorporate

physical properties of the fluid flow was shown to lead to accurate and efficient numerical results

in addition to furnishing upper and lower bounds on various quantities such as the modulus of the

reflection coefficient.

The purpose of the present paper is to consider wave scattering by vertical barriers with gaps and

to connect those solutions with the solutions to the complementary problem in which the barriers

and gaps are interchanged. For example, we shall demonstrate that it is possible to connect the

reflection coefficients from Dean’s (1945) problem to Ursell’s (1947) problem.

The basis for this connection stems from an application of the ideas used in physics referred to

as Babinet’s principle (see Babinet (1837)). Thus, in optics, it can be shown that wave scattering

by a thin plane rigid screen with a hole can be related to a combination of solutions involving

waves incident on a plane screen which occupies the region formerly being the hole. An application

of Babinet’s principle to the two-dimensional wave equation for oblique waves interacting with

infinitely long barriers with gaps and the complementary problem of a finite length barrier is given

in Linton & McIver (2000). There is it shown that solutions of one problem for a particular incident

wave angle is a combination of the solution to complementary problem at the same wave angle

and two additional solutions for waves incident at different angles. In the present paper these ideas

are translated to a domain governed by Laplace’s equation bounded by a free surface. The main

difference here is that that the extra potential(s) that is needed here to connect the two problems

is defined in terms of a non-physical forcing, as opposed to waves incident from a different wave

angle.

In section 2 we outline the governing equations for scattering of waves by vertical barriers. In

section 3 it is shown how the velocity potentials describing the fluid motion for two complementary

arrangements of barriers and gaps can be connected through the definition of a so-called connection

potential. In Sections 4 and 5 we demonstrate how this theory works in two examples. In the

first case it is shown explicitly how the Ursell potential can be constructed from the Dean potential

through the derivation of a Dean-type connection potential. In the second case, we show how the

methods of Porter & Evans (1995) can be extended to connect solutions to two complementary

barrier problems numerically.

2. Scattering of waves by vertical barriers

Cartesian coordinates are defined with the origin in the mean free surface and y pointing vertically

downwards. The fluid is either of infinite depth of constant finite depth, h. A thin barrier extending

uniformly in the z direction occupies the interval y ∈ B of the plane x = 0 and the gap in the barrier

occupies the interval y ∈ G.
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Plane monochromatic waves of radian frequency ω are incident from x > 0 on the barriers and

propagate at an angle θ with respect to the plane z = 0.

Under the usual assumptions of inviscid linearised water wave theory the fluid motion can be

described by a velocity potential which can be written as ℜ{Φ(x, y)eilze−iωt} where l = k sin θ
and k is the wavenumber of the incident wave determined from the dispersion relation

ω2/g ≡ K = k tanh kh, (finite depth)

K = k, (infinite depth).
(2.1)

In the above g is gravitational acceleration. In the reduced two-dimensional setting, the complex-

valued potential Φ(x, y) satisfies the equations

Φxx +Φyy − l2Φ = 0, y > 0 (2.2)

with

KΦ+ Φy = 0, on y = 0 (2.3)

and
Φy = 0 on y = h, (finite depth)

|∇Φ| → 0, as y → ∞, (infinite depth).
(2.4)

We must also impose no-flow conditions on the barrier

Φx(0
±, y) = 0, y ∈ B (2.5)

and specify a radiation condition. We represent, with φ0(x, y), a wave travelling in the positive

x-direction; then φ0(−x, y) is a wave travelling in the negative x-direction. We note that

φ0(x, y) = eiαx coshk(y − h), (finite depth)

φ0(x, y) = eiαxe−Ky, (infinite depth)
(2.6)

where α = k cos θ and for normal incidence α = k.

For a wave incident from x = ∞

Φ(x, y) ∼

{
φ0(−x, y) +Rφ0(x, y), x→ ∞
Tφ0(−x, y), x→ −∞

(2.7)

where R and T are the reflection and transmission coefficients. It can easily be shown that

Φ(x, y) =

{
φ0(x, y) + φ0(−x, y) + φ(x, y), x > 0
−φ(−x, y), x < 0

(2.8)

where φ(x, y) is defined in x > 0 and satisfies (2.2), (2.3) and (2.4) in addition to the boundary

conditions

φx(0, y) = 0, y ∈ B, φ(0, y) + φ0(0, y) = 0, y ∈ G (2.9)

which result from imposing (2.5) on Φ and continuity of Φ(x, y) across x = 0 when y ∈ G, based

on the decomposition (2.8). Under this definition

φ(x, y) ∼ (R− 1)φ0(x, y), as x→ ∞ (2.10)

with T = R− 1.

With r a local measure of the distance from any barrier edge immersed in the fluid, we also

require

|∇φ| ∼ r−1/2, as r → 0. (2.11)
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3. Complementary problems and connection potentials

We consider two separate problems and let φ ≡ φu represent a potential for a barrier occupying

y ∈ Bu and a gap in the barrier occupying y ∈ Gu. In a second problem, φ ≡ φd for a barrier

occupying y ∈ Bd = Gu and a gap occupying y ∈ Gd = Bu. Thus, in the two problems the

positions of the barriers and the gaps are reversed. Associated with each of these two problems,

reflection coefficients, R, are labelled Ru and Rd.

It is the purpose in what follows to connect φu/d with φd/u and Ru/d with Rd/u (the notation

Xu/d implying Xu or Xd).

We will imagine that the u-problem represents a barrier directed up through the free surface from

a point (0, a) below the surface and the d-problem represents a barrier directed down to the bottom

of the fluid from the same point (0, a) below the surface. The methods described herein can be

extended to more complex complementary arrangements of barriers.

We relate the potentialsφu andφd through the introduction of new potentialsψu andψd satisfying

(2.2), (2.3) and (2.4). This is done by writing

φu/d(x, y) + φ0(x, y) = iα−1

(
φd/ux (x, y) +Ad/uψd/u

x (x, y)
)

(3.1)

where Ad/u is a constant. Then on y ∈ Gu/d, the left-hand side of (3.1) is zero according to (2.9)

whilst the first term on the right-hand side of (3.1) is also zero from (2.9) since Gu/d = Bd/u. So it

must be that

ψd/u
x (0, y) = 0, on y ∈ Bd/u. (3.2)

Now we take the x-derivative of (3.1) and use the governing equation (2.2) before setting x = 0 to

write

φu/dx (0, y) + φ0x(0, y) = −iα−1

(
d2

dy2
− l2

)(
φd/u(0, y) +Ad/uψd/u(0, y)

)
. (3.3)

We consider this equation on y ∈ Bu/d = Gd/u where φ
u/d
x (0, y) = 0 and φd/u(0, y) = −φ0(0, y)

from (2.9). The definition of φ0 given in (2.6) and satisfying (2.2) means that

(
d2

dy2
− l2

)
φ0(0, y) = −iαφ0x(0, y) (3.4)

and it follows from (3.3) that

(
d2

dy2
− l2

)
ψd/u(0, y) = 0, y ∈ Gd/u. (3.5)

This second order differential equation may be integrated up and, assuming (as we have) that Gd/u

intersects with either the top or the bottom of the fluid, boundary conditions (2.3) or (2.4) apply and

thus we may write its general solution as

ψd/u(0, y) = fd/u(y), y ∈ Gd/u (3.6)

where the function fd/u(y) will be specified later according to the particular problem being
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considered. An arbitrary integration constant is not included in the definition of fd/u(y) since it is

accounted for by the constant Ad/u in (3.1). This constant is determined by applying the condition

lim
r→0

r1/2
(
φd/ux (x, y) +Ad/uψd/u

x (x, y)
)
= 0, where r = (x2 + (y − a)2)1/2 (3.7)

which follows from (3.1) since φu/d(x, y) is bounded as r → 0.

We have shown in (3.1) that φu/d can be expressed in terms of the sum of the x-derivative of φd/u

and a ‘connection’ potential ψd/u(x, y) satisfying the same homogeneous Neumann condition (3.2)

as φd/u(x, y) on the barrier but with different Dirichlet conditions described by (3.6). The problem

for ψd/u(x, y) describes a potential in which waves are radiated to infinity and so we write

ψu/d(x, y) ∼ R̃u/dφ0(x, y), x→ ∞ (3.8)

where R̃u/d ∈ C is a radiated wave amplitude to be determined.

Using the far-field asymptotic form designated to each term in (3.1) and letting x→ ∞ gives

Ru/d = 1−Rd/u −Ad/uR̃d/u (3.9)

and this demonstrates that the reflection coefficients from one problem may be expressed in terms

of the complementary problem. We note in passing that repeated use of (3.9) implies that

AdR̃d = AuR̃u (3.10)

although this relation appears to have no particular practical importance.

4. Calculations for infinite depth and normal incidence

As an example of the theory, we shall make a connection between two complementary problems in

infinite depth and under normal wave incidence for which explicit solutions exist. Here, from (2.6),

φ0(x, y) = eiKxe−Ky, l = 0 and α = k = K .

In this example, φu will refer to the Ursell (1947) barrier potential for a surface-piercing barrier

submerged to a depth a below the surface in which Bu = (0, a) and Gu = (a,∞). Thus, from

Ursell (1947) we have

φu(x, y) + φ0(x, y) = C

(
πI1(Ka)e

iKx−Ky +

∫ ∞

0

L(k, y)J1(ka)e
−kx

(k2 +K2)
dk

)
(4.1)

using standard notation for Bessel functions and where L(k, y) = k cos ky − K sin ky and C =
(πI1(Ka) + iK1(Ka))

−1. Then

Ru = πI1(Ka)C =
πI1(Ka)

πI1(Ka) + iK1(Ka)
. (4.2)

Next, φd refers to the Dean (1945) potential for a barrier extending from the depths to a point a
below the surface in which Bd = (a,∞) and Gd = (0, a). Ursell (1947) redrived Dean’s potential,

expressible as

φd(x, y) + φ0(x, y) = B

(
K0(Ka)e

iKx−Ky −

∫ ∞

0

L(k, y)J0(ka)e
−kx

(k2 +K2)
dk

)
(4.3)



6 R. PORTER AND D. V. EVANS

where B = (K0(Ka) + iπI0(Ka))
−1 and

Rd = K0(Ka)B =
K0(Ka)

K0(Ka) + iπI0(Ka)
. (4.4)

For the connection potential, solving (3.5) with l = 0, gives (3.6) which, taking into account the

conditions (2.3) and (2.4), is

ψd(0, y) = 1−Ky, y ∈ Gd, and ψu(0, y) = 1, y ∈ Gu. (4.5)

We shall derive now the connection potential ψd(x, y) from first principles and confirm that

together with the knowledge of the Dean potential (4.3) and the corresponding reflection coefficient

(4.4) it can be used to derive the Ursell potential (4.1) and its reflection coefficient (4.2) using the

relations (3.1) and (3.9). For this problem, Gd = (0, a) and Bd = (a,∞). The methods outlined

below for the calculation of ψd are similar to those used by Ursell (1947) to find φd.

The most general potential satisfying (2.2), (2.3), (2.4) and (3.8) is written, using the integral

transform of Havelock (1929),

ψd(x, y) = R̃deiKx−Ky +
2

π

∫ ∞

0

Ad(k)L(k, y)e−kx

k(k2 +K2)
dk, (4.6)

where R̃d and Ad(k) are unknowns. We define

Ud(y) ≡ ψd
x(0, y) = iKR̃de−Ky −

2

π

∫ ∞

0

Ad(k)L(k, y)

(k2 +K2)
dk (4.7)

which is zero when y ∈ Bd (y > a) on account of (3.2). Using Havelock’s (1929) inversion theorem

R̃d = −2i

∫ a

0

Ud(y)e−Ky dy, and Ad(k) = −

∫ a

0

Ud(y)L(k, y) dy (4.8)

where use has been made of Ud(y) = 0 for y > a to restrict the integration interval to (0, a). It

follows from substition of Ad(k) from (4.8) into (4.6) and the imposition of (4.5) that

∫ a

0

Ud(t)K(y, t)dt = g(y), y ∈ (0, a) (4.9)

where

K(y, t) =
1

π

∫ ∞

0

L(k, t)L(k, y)

k(k2 +K2)
dk (4.10)

and with

g(y) = 1

2

(
R̃de−Ky +Ky − 1

)
. (4.11)

Following the method used by Ursell (1947) for the scattering problem this integral equation may

be transformed by first defining the differential operators

D±

y ≡
d

dy
±K (4.12)
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which allows us to write L(k, y) = D−
y (sin ky). It follows from the definition (4.10) that

K(y, t) = D−

y D
−

t

(
1

π

∫ ∞

0

sin ky sin kt

k(k2 +K2)
dk

)
(4.13)

and hence

D+
y (K(y, t)) = −D−

t

(
1

π

∫ ∞

0

sin ky sin kt

k
dk

)
= −

1

2π
D−

t

(
ln

∣∣∣∣
y + t

y − t

∣∣∣∣
)

(4.14)

(see Gradshteyn & Ryzhik (1980, §3.741, equation 1)).

Thus, for y ∈ (0, a) we have

D+
y

(∫ a

0

Ud(t)K(y, t) dt

)
= −

1

2π

∫ a

0

Ud(t)D−

t

(
ln

∣∣∣∣
y + t

y − t

∣∣∣∣
)

dt

=
K

2π

[
ln

∣∣∣∣
y + t

y − t

∣∣∣∣
∫ t

a

Ud(s) ds

]a

0

−
1

2π

∫ a

0

V d(t)
d

dt
ln

∣∣∣∣
y + t

y − t

∣∣∣∣ dt

(4.15)

after integration by parts, where we have defined

V d(y) = Ud(y) +K

∫ y

a

Ud(t) dt. (4.16)

The free term in (4.15) evaluates to zero. Notice that limy→a(U
d(y)− V d(y)) = 0 and that V d(y)

has the same singular behaviour as Ud(y) near y = a and is bounded near y = 0.

It follows from (4.15) and (4.9) that

D+
y

(∫ a

0

Ud(t)K(y, t) dt

)
= −

1

2π

∫ a

0

2yV d(t)

y2 − t2
dt = D+

y (g(y)). (4.17)

Thus ∫ a

0

V d(t)

y2 − t2
dt = −π(g′(y) +Kg(y))/y, y ∈ (0, a). (4.18)

For the particular g(y) given by (4.11) in this case −(g′(y) +Kg(y))/y = − 1

2
K2 so that V d(y)

satisfies ∫ a

0

V d(t)

y2 − t2
dt = − 1

2
πK2, y ∈ (0, a). (4.19)

Equation (4.19) is a special case of the general integration equation

∫ a

0

µ(t)

y2 − t2
dt = λ(y), y ∈ (0, a) (4.20)

whose solution, for suitable λ(y), and where (a2− t2)1/2µ(t) is bounded near t = a, can be shown,

using a simple change of variables in a similar result in Ursell (1947) applied to the interval (a,∞)
instead of (0, a), to be

µ(t) =
1

(a2 − t2)1/2

(
D +

4

π2

∫ a

0

λ(y)y2(a2 − y2)1/2

y2 − t2
dy

)
, y ∈ (0, a) (4.21)
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where D is an arbitrary constant. Application of this general inversion formula to (4.19) gives

V d(t) =
1

(a2 − t2)1/2

(
D −

2K2

π

∫ a

0

y2(a2 − y2)1/2

y2 − t2
dy

)
, y ∈ (0, a) (4.22)

and elementary integration results in

V d(t) =
D

(a2 − t2)1/2
−K2(a2 − t2)1/2, t ∈ (0, a). (4.23)

The constant, D, in the solution (4.23) originates from the transformation of the original integral

equation (4.9) into (4.18) through the use of the differential operator D+
y in (4.17). Some work is

now needed to eliminate this constant.

First we make use of an integral identity between Ud(t) and V d(t), which is easily established

from the relation (4.16) and integration by parts, to obtain

∫ a

0

L(k, t)Ud(t)dt = k

∫ a

0

V d(t) cos kt dt = 1

2
π
(
kDJ0(ka)−K2aJ1(ka)

)
. (4.24)

The final step in the above follows after using (4.23) and standard integral identities

∫ a

0

cos(ky)

(a2 − y2)1/2
dy = −

πJ0(ka)

2
and

∫ a

0

(a2−y2)1/2 cos(ky)dy =
πaJ1(ka)

2k
. (4.25)

(e.g. McLachlan (1961, p.202 equation 177)). It follows from using (4.24) in (4.9)–(4.11) that

R̃de−Ky +Ky − 1 = D

∫ ∞

0

J0(ka)L(k, y)

(k2 +K2)
dk −K2a

∫ ∞

0

J1(ka)L(k, y)

k(k2 +K2)
dk, y ∈ (0, a).

(4.26)

With some effort (see Appendix A), further integral relations can be established. In particular from

(A.2) ∫ ∞

0

J0(ka)L(k, y)

(k2 +K2)
dk = e−KyK0(Ka) (4.27)

and from (A.5) ∫ ∞

0

J1(ka)L(k, y)

k(k2 +K2)
dk =

(1−Ky)

K2a
−
K1(Ka)e

−Ky

K
. (4.28)

Substituting these into (4.26) we find that the terms 1 −Ky on each side of the equation cancel to

leave

R̃d = DK0(Ka) +KaK1(Ka) (4.29)

which determines D (in terms of R̃d). An expression for R̃d follows from the first equation in (4.8)

which can be written using the relation between Ud and V d in (4.16) and integration by parts as

R̃d = −2i

∫ a

0

cosh(Ky)V d(y)dy = −iπ (DI0(Ka)−KaI1(Ka)) (4.30)

and the final step comes from susbtitution of (4.23) and use of the results (4.25) with k replaced by

iK .
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Equations (4.29) and (4.30) may be combined to give

R̃d = iπKa (I0(Ka)K1(Ka) + I1(Ka)K0(Ka))B, and D = i
BKa

C
, (4.31)

where B and C are factors defined following (4.1) and (4.3).

We are almost in a position to determine Ru from (3.9) but first need to calculate Ad from (3.7).

It can be shown (see Ursell (1947)), en route to the derivation of the Dean potential φd, that

φdx(0, y) ∼
B

(a2 − y2)1/2
, as y → a. (4.32)

It follows from the comments that follow (4.16) and from (4.23) and the relation Ud(y) ≡ ψd
x(0, y)

that

ψd
x(0, y) ∼

D

(a2 − y2)1/2
, as y → a. (4.33)

Thus, from (3.7) we require AdD +B = 0 and so (3.9) becomes

Ru = 1−Rd +BR̃d/D

= B(iπI0(Ka) + R̃d/D)

= Bπ (iI0(Ka) + C(I0(Ka)K1(Ka) + I1(Ka)K0(Ka))) = πI1(Ka)C (4.34)

using (4.4), (4.31) and the definitions of C and B. This is the Ursell result, (4.2).

To derive the Ursell potential, φu, from (3.1) we first use (4.3) and (4.6), (4.8) and (4.24) to show

that

φd(x, y)+Adψd(x, y) =
(
BK0(Ka) +AdR̃d − 1

)
eiKx−Ky+K2aAd

∫ ∞

0

L(k, y)J1(ka)e
−kx

k(k2 +K2)
dk

(4.35)

where the resulting integral involving J0(ka) vanishes since AdD + B = 0. It can be shown

BK0(Ka) +AdR̃d = iCK1(Ka) so that, from (4.3),

φu(x, y) + eiKx−Ky = iK−1 ∂

∂x

(
φd(x, y) +Adψd(x, y)

)

= (1− iCK1(Ka))e
iKx−Ky − iKaAd

∫ ∞

0

L(k, y)J1(ka)e
−kx

(k2 +K2)
dk

= C

(
πI1(Ka)e

iKx−Ky +

∫ ∞

0

L(k, y)J1(ka)e
−kx

(k2 +K2)
dk

)
(4.36)

since −iKaAd = C. This is precisely the Ursell potential given by (4.1).

4.1 Remarks

In the example illustrated above, the Ursell potential and the corresponding reflection coefficient

for a surface-piercing barrier have been derived from the Dean potential and a connection potential

defined by a Dean-type problem which is solved using methods which apply to the solution to

Dean’s problem for a barrier extending downwards to infinity.
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We could equally have derived the connection potential ψu(x, y) and used it in conjunction with

the Ursell potential to derive the Dean potential. This has been confirmed by the authors but has not

been included in this paper as it involves lengthy calculations similar to those already presented.

The particular solution method used here focuses on inverting an integral equation for an

unknown function Ud(y) for y ∈ Gd, relating to the horizontal component of the velocity across

the gap above the submerged barrier. It is interesting to note that this is not the only approach that

can be used for solving the Dean problem and the related Dean connection potential problem. An

alternative approach involves formulating integral equations for the unknown potentialsφd(0, y) and

ψd(0, y) along y ∈ Bd, the length of the barrier. Thus, the authors have also solved these integral

equations and used the solutions that result to connect Dean and Ursell solutions via connection

potentials. Again the details are lengthy and have not been included here. However, we shall return

to this comment in Section 5.2.

5. Finite depth calculations

In this section we outline how the connection potentials and relations between reflection coefficients

apply when the solution cannot be solved exactly and relies ultimately upon numerical solutions.

In what follows, we adopt and then develop the methods of Porter & Evans (1995). It helps to first

outline the solution method for the scattering potentials before considering the connection potential.

A propagating wave in finite depth referred to in (2.6), is written

φ0(x, y) = eiαxϕ0(y) (5.1)

where α2 = k2 − l2 = k cos θ in terms of the incident wave angle θ and ϕ0(y) = coshk(h − y)
where k satisfies (2.1). We also define

ϕn(y) = cos kn(h− y), n ≥ 1 (5.2)

where kn are the positive real roots of K = −kn tanknh. The set of eigenfunctions

{ϕ0(y), ϕ1(y) . . .}, are complete in the space L2(0, h) and satisfy the orthogonality condition

∫ h

0

ϕn(y)ϕm(y) dy = Nnhδmn, where Nn =
1

2

(
1 +

sin 2knh

2knh

)
(5.3)

and δmn is the Kronecker delta. We can extend the formulae given for ϕn and Nn when n ≥ 1 to

n = 0 by defining k0 = −ik.

The potential φu and φd for each of the two complementary problems in which the barrier

occupies Bu = Gd and Bd = Gu is expanded in separation solutions, thus

φu/d(x, y) = (Ru/d − 1)eiαxϕ0(y) +

∞∑

n=1

Au/d
n e−αnxϕn(y), x > 0, 0 < y < h (5.4)

so that φu/d(x, y) satisfies (2.2), (2.3) and (2.4) and Ru/d is the reflection coefficient in alignment

with the definition (2.10). Also, A
u/d
n are expansion coefficients and α2

n = k2n + l2. Thus, the

expansions in (5.4) satisfy all the conditions of the problem apart from those on x = 0. We continue

by defining

Ru/dUu/d(y) ≡ φu/dx (0, y) = iα(Ru/d − 1)ϕ0(y)−
∞∑

n=1

αnA
u/d
n ϕn(y). (5.5)
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Applying the first condition in (2.9) to (5.5) and using the orthogonality condition (5.3) gives

Au/d
n = −

Ru/d

αnhNn

∫

Gu/d

Uu/d(y)ϕn(y) dy (5.6)

for n ≥ 1 and

i(Ru/d − 1) = Ru/dBu/d, where Bu/d =
1

αhN0

∫

Gu/d

Uu/d(y)ϕ0(y) dy. (5.7)

Next, taking (5.4) with x = 0, substituting (5.6) and imposing the second condition in (2.10) results

in ∫

Gu/d

Uu/d(t)K(y, t) dt = ϕ0(y), y ∈ Gu/d (5.8)

where, here,

K(y, t) =
∞∑

n=1

ϕn(y)ϕn(t)

αnhNn
. (5.9)

Once Uu/d(y) is determined from (5.8), Ru/d can be calculated from (5.7).

Unlike the case of infinite depth and normal incidence considered in Section 4, the integral

equation (5.8) cannot be inverted explicitly. Numerical solutions to (5.8) based on an accurate

Galerkin approximation are outlined in Porter & Evans (1995). A summary of the procedure

is provided in Appendix B, accompanied with additional details associated with the connection

potential which follows.

The relations (3.1) and (3.9) allow us to express φu/d(x, y) in terms of φd/u(x, y) and Ru/d in

terms ofRd/u via connection potentials ψd/u(x, y) which we now set out to calculate. We first need

to establish the functions fd/u(y) defining the boundary condition (3.6) and derived from solutions

of (3.5) and satisfying either (2.3) or (2.4) where appropriate. Thus we find

fd(y) =

{
cosh ly − (K/l) sinh ly, l 6= 0
1−Ky, l = 0

(5.10)

and

fu(y) =

{
cosh l(h− y), l 6= 0
1, l = 0.

(5.11)

Now ψd/u(x, y) satisfies (2.2)–(2.4) with (3.2), (3.6) with either (5.10) or (5.11) and (3.8). We write

a general series expansion

ψd/u(x, y) = R̃d/ueiαxϕ0(y) +
∞∑

n=1

Ãd/u
n e−αnxϕn(y) (5.12)

and follow the solution process outlined above for the scattering problems, so that

R̃d/u = −
i

αhN0

∫

Gd/u

ψd/u
x (0, y)ϕ0(y) dy (5.13)

and

Ãd/u
n = −

1

αnhNn

∫

Gd/u

ψd/u
x (0, y)ϕn(y) dy (5.14)
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where ψ
d/u
x (0, y) is treated as an unknown function, leading to the integral equation

∫

Gd/u

ψd/u
x (0, t)K(y, t) dt = R̃d/uϕ0(y)− fd/u(y), y ∈ Gd/u. (5.15)

Linearity allows us to write

ψd/u
x (0, y) = R̃d/uUd/u(y)− Ũd/u(y) (5.16)

in terms of Ud/u(y), the solution of (5.8) and Ũd/u(y) satisfying
∫

Gd/u

Ũd/u(t)K(y, t) dt = fd/u(y), y ∈ Gd/u (5.17)

which only differs from (5.8) in the right-hand side function. Using (5.16) in (5.13) gives

R̃d/u = −iR̃d/uBd/u + iB̃d/u (5.18)

after invoking (5.9) and defining

B̃d/u =
1

αhN0

∫

Gd/u

Ũd/u(t)ϕ0(y) dy. (5.19)

Finally (5.18) can be expressed using (5.7) as

R̃d/u = iRd/uB̃d/u (5.20)

and this allows (3.9) to be rearranged into the form

Ru/d = 1−Rd/u
(
1 + iAd/uB̃d/u

)
(5.21)

which connects the reflection coefficient from one barrier problem to that of the complementary

barrier problem. The constant Ad/u is defined by the condition (3.7) which is translated here using

(5.5) and (5.16) into the condition

lim
y→a

(
Rd/uUd/u(y) +Ad/u(R̃d/uUd/u(y)− Ũd/u(y))

)
= 0. (5.22)

This needs to be calculated numerically and this is outlined, along with the method for numerically

approximating B̃d/u, in Appendix B.

5.1 Numerical results

Appendix B summarises the method used for approximating solutions of the integral equations

numerically using the efficient and accurate approach presented by Porter & Evans (1995).

Two sets of typical results are presented in table 1 where we show the complex reflection

coefficient Rd for a bottom-mounted barrier extending from y = h to y = a computed using two

different methods. In the right-hand column of each set of results we show Rd computed directly

using the methods described in Porter & Evans (1995) for bottom-mounted barriers. The values

of Rd converge rapidly with in the number of terms, P + 1, in the series expansion – see (B.1).

Shown in the left-hand columns are values of Rd computed using the formula (5.21) involving

Ru and properties of the solution of the connection potential. Computational details are given in

Appendix B. These results are also dependent on a numerical truncation parameter P and, although

convergence is less rapid, the results are clearly tending to those made from the direct calculations.

Results for P = 0 (a one-term approximation) are not shown since it can be shown analytically that

the estimate for Rd with P = 0 using the formula (5.21) is always identically zero.
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a/h = 1

4
, θ = 30◦, ka = 1

2

P Rd (formula) Rd (direct)

1 0.051449− 0.220912i 0.067944− 0.251649i
2 0.067236− 0.250460i 0.067957− 0.251672i
4 0.067951− 0.251662i 0.067957− 0.251672i
8 0.067952− 0.251664i 0.067957− 0.251672i

a/h = 1

2
, θ = 0◦, ka = 1

P Rd (formula) Rd (direct)

1 0.012175− 0.109668i 0.013338− 0.114721i
2 0.013321− 0.114647i 0.013338− 0.114721i
4 0.013337− 0.114717i 0.013338− 0.114721i
8 0.013337− 0.114718i 0.013338− 0.114721i

Table 1 Comparison of convergence of the complex reflection coefficient with numerical truncation

parameter P using the connection formula and a direct computation.

5.2 Remarks

In Porter & Evans (1995) two integral equation formulations were used to provide bounds on

reflection coefficients. Here it has been sufficient to present just one formulation which has been

based on an unknown function Uu/d(y) related to the velocity across the gap Gu/d in the barrier.

The alternative formulation demonstrated in Porter & Evans (1995) is based on a function related to

the unknown pressure, Pu/d(y) say, on the barrier Bu/d. A similar comment was made in relation

to the case of infinite depth in the previous section. An immediate advantage of this is that it allows

us to calculate Ru/d or Ru/d via two independent methods.

But the availability of dual formulations (referred to as ‘complementary formulations’ in Porter

& Evans (1995)) of the problems also provide an alternative insight into the connection between

the solutions to complementary problems of barriers and gaps. Thus, pursuing an integral equation

formulation for a suitably defined function Pu/d(y) leads to the integro-differential equation

1

α2

(
l2 −

d2

dy2

)∫

Bu/d

Pu/d(t)K(y, t) dt = ϕ0(y), y ∈ Bu/d (5.23)

where, remarkably, K(y, t) is the same kernel (5.9) defined in the integral equation (5.8) for

Uu/d(y) when y ∈ Gu/d (that is over the interval complementary to that over which (5.23)

is defined.) Since Gu/d = Bd/u we may simultaneously reverse the ordering of u and d in

(5.23), interchange Bu/d with Gd/u and integrate up the differential operator, respecting boundary

conditions on y = 0 and y = h and find that
∫

Gu/d

P d/u(t)K(y, t) dt = −ϕ0(y) + Cu/dfu/d(y), y ∈ Gu/d. (5.24)

The right-hand side involves a constant of integration Cu/d (not the same as Ad/u previously in

(3.1)) and fu/d(y) is precisely the function defined by (3.6) in the specification of the connection

potential. It follows that

P d/u(t) = −Uu/d(t) + Cu/dŨu/d(t), t ∈ Gu/d (5.25)
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since Uu/d(t) and Ũu/d(t) are solutions to (5.8) and (5.17).

Thus (5.25) indicates that a property of the solution to a d-problem has been related to properties

of solutions to complementary u-problems and vice versa.

The approach outlined above, which can be developed further and applies also to the infinite depth

case of the previous section, illustrates that the integral equation formulations themselves may be

used to connect complementary barrier problems. The key feature which allows this to happen is

the structure of (5.23) and, in particular, the presence ofK(y, t) in the integral operator of both (5.8)

and (5.23).

6. Conclusion

In this paper it has been shown that the solution to a particular problem of surface wave scattering

by a thin vertical barrier with a gap can be related to the complementary problem where the gaps and

the barriers are interchanged. This is done by using a solution to an auxiliary problem involving the

interchanged gap/barrier arrangement in which a non-physical forcing replaces the incident wave

forcing at the barrier. We have demonstrated analytically that the explicit solution to the Ursell

(1947) problem for a surface-piercing barrier can be found from the explicit Dean (1945) submerged

barrier solution and its associated auxiliary problem, solved using Dean-type methods. In the latter

part of the paper we have also shown how numerical solutions demonstrate the connection between

the two complementary problems in the case of finite depth and oblique wave incidence.

This connection result appears to be mainly of theoretical interest and has little obvious practical

significance. In the examples given, explicit solutions (or solution methods) exist to each of

the complementary problems and we have simply confirmed that the theory connecting the

complementary problems works as it should. Had it been, for example, that the Ursell (1947)

explicit solution was not known – but the Dean (1945) solution known – then the theory presented

here would have allowed us to find the Ursell result.

However, there may be other examples in water waves or other linear field theories where similar

ideas to those developed here (which themselves are really adaptions of Babinet’s principle) can be

used to generate solutions to new problems. For example, one plausible development of the present

work could be to consider complementary arrangements of horizontal submerged barriers although

solutions are arguably of limited practical interest and can probably be derived independently

anyway.

Within this paper we have only considered a single barrier and a single gap and this eases

the presentation. The extension of the theory connecting problems involving complementary

arrangements of multiple barriers and/or gaps is not difficult. It is found that as many connection

potentials are needed as there are submerged barrier edges (just one in our examples).
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APPENDIX A

Integral results

We start with the result
∫

∞

0

J0(ka) sin ky

k2 +K2
dk =

sinhKy

K
K0(Ka), y ∈ (0, a) (A.1)

(see Mandal & Chakrabarti, (2000 p.106 equation 23)). Thus

D
−

y

∫
∞

0

J0(ka) sin ky

k2 +K2
dk =

∫
∞

0

J0(ka)L(k, y)

k2 +K2
dk = e−KyK0(Ka). (A.2)

We also have
∫

∞

0

J2(ka) sin ky

k2 +K2
dk =

2

K2a

(y
a
−K1(Ka) sinhKy

)
−

1

K
K0(Ka) sinhKy, y ∈ (0, a), (A.3)

another result quoted in Mandal & Chakrabarti, (2000, p.106 equation 17). It follows that

D
−

y

(∫
∞

0

J2(ka) sin ky

k2 +K2
dk

)
=

∫
∞

0

J2(ka)L(k, y)

k2 +K2
dk

=
2

Ka

(
1−Ky

Ka
−K1(Ka)e−Ky

)
(A.4)

for y ∈ (0, a) so that from (A.2) and (A.4) and using 2J1(z) = z(J2(z) + J0(z)) we have

a

2

∫
∞

0

(J2(ka) + J0(ka))L(k, y)

k2 +K2
dk =

∫
∞

0

J1(ka)L(k, y)

k(k2 +K2)
dk

=
1

K

(
1−Ky

Ka
−K1(Ka)e−Ky

)
. (A.5)

APPENDIX B
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Galerkin approximation to solution of integral equations

The numerical solution to the integral equation (5.8) is outlined in Porter & Evans (1995), although the

addition of new integral equation (5.17) associated with the connection potential merits repeating some of the

outline details here. For the two integral equations we make the (P + 1)-term series expansions

U(y) ≈

P∑

p=0

cpvp(y) and Ũ(y) ≈

P∑

p=0

c̃pvp(y), y ∈ G (B.1)

(dropping the u/d super/subscripts for clarity) where vp(y) are functions careful chosen to reflect the physical

properties of the problem and cp, c̃p are coefficients to be found. Then the Galerkin method applied to (5.8)

and (5.17) results in the algebraic system of equations

P∑

p=0

cpKpq = Fq, and

P∑

p=0

c̃pKpq = F̃q, q = 0, 1, . . . , P, (B.2)

where

Kpq =
∞∑

n=1

FpnFqn

αnhNn
and Fpn =

∫

G

vp(y)ϕn(y) dy (B.3)

for p = 0, 1, . . . and n = 0, 1, 2, . . .. In (B.2) Fp = Fp0 whilst

F̃p =

∫

G

vp(z)f(y) dy p = 0, 1, . . . (B.4)

Then using (B.1) in (5.10) and (5.20) with (B.3) gives

B ≈
1

αhN0

P∑

p=0

cpFp0, and B̃ ≈
1

αhN0

P∑

p=0

c̃pFp0, (B.5)

which allows R and R̃ to be approximated using (5.7) and (5.20).

The specification of vp(y) depends on where the gap is located and different cases are discussed in detail in

Porter & Evans (1995). To illustrate the results, we choose the simplest of those cases here where the gap is

defined as G = Gu = (a, h) (implying super/subscripts u apply throughout) and define

vp(y) =
2(−1)p

π((h− a)2 − (h− y)2)1/2
T2p

(
h− y

h− a

)
(B.6)

in terms of even Chebychev polynomials, T2p(z). It follows, from Porter & Evans (1995), that

Fpn = J2p(kn(h− a)), n ≥ 1, and Fp0 = (−1)pI2p(k(h− a)) (B.7)

whilst, with f(y) = fu(y) given by (5.11),

F̃p =

{
(−1)pI2p(l(h− a)), l 6= 0,
δp0, l = 0.

(B.8)

The final part of the numerical procedure is to determine the constant Au from the condition (5.22). Using

(B.1) in (5.22) and noting that T2p(1) = 1, (5.22) reduces numerically into solving this relation for Au:

Au

(
R̃u

P∑

p=0

(−1)pcp −

P∑

p=0

(−1)pc̃p

)
≈ −Ru

P∑

p=0

(−1)pcp. (B.9)


