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Abstract
In this technical report we describe the method of solution to a variety of two-

dimensional problems involving semi-immersed cylinders of rectangular cross-section
piercing the free surface of a fluid of constant finite depth h. The aim is to be able
to calculate the various components of added mass and radiation damping coefficients
which can be used to characterise the two-dimensional time-harmonic oscillations of a
cylinder in waves. The problems of a single cylinder making forced oscillations in sway,
heave and roll in fluid of unbounded horizontal extent are considered first. Similar
calculations are then made for a cylinder in forced motion placed next to a vertical
wall.

1 Introduction

In this technical report we consider the forced motion of a cylinder of rectangular cross-
section which extends through the free surface of a heavy fluid. The fluid is of finite depth
and the motion of the cylinder and surrounding fluid is two-dimensional.

In the first part we consider a cylinder in isolation, meaning that there is a free surface
either side of the cylinder extending towards infinity. In the second part, we place the same
cylinder to the right of a vertical wall exteneding through the depth of the fluid. In both
situations, we are interested in calculating the hydrodynamic coefficients that can be used to
characterise the small-amplitude time-harmonic motion of the cylinder. These are the non-
dimensional added-mass and radiation damping coefficients, being the real and imaginary
components of the complex hydrodynamic force (or moment) on the cylinder. They apply to
each of the three independent modes of motion of the cylinder in a two-dimensional plane are
(in the terminology of ship hydrodynamics) sway, heave and roll. These refer, respectively,
to translational oscillations in the horizontal and vertical directions with respect to a fixed
frame of reference and the rolling oscillations about a fixed point.

The report has been written to accompany the paper of Evans & Porter (2008) in which
approximations are developed for the hydrodynamic coefficients for a cylinder next to a wall
in terms of those in the absence of a wall. The theoretical expressions derived in Evans
& Porter (2008) are tested numerically in the cases of circular semi-immersed cylinders in
addition to cylinders of rectangular cross-section.
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This report contains the solution to six different problems. They are the forced sway,
heave and roll of a cylinder in isolation and in the presence of a wall. The method of solution
in each of the six problem is similar to the other five. The details do, however, vary to the
extent that the solution to each problem but must presented separately. The solution to the
first problem is outlined in some detail, and thereafter it is assumed that the reader should be
able to follow the general approach that has been adopted and apply that approach to later
problems. Though the mathemtical details become increasingly sparse towards the end of
the report, there should be enough detail given to be able to reproduce results. It should be
noted that the problem of rectangular cylinders in heave only has previously been the subject
of a paper by Porter & Evans (2008), although we report a slightly different formulation of
the solution here. Though we present an outline of the numerical method used to produce
results, we do not present any results within this report. Some typical results are available
in the paper of Evans & Porter (2008).

1.1 Definition of the problem

Cartesian coordinates are used with the origin in the undisturbed free surface, and y
vertically downwards. When at rest, the submerged cross-section of the cylinder occupies
b− a ≤ x ≤ b + a, 0 ≤ y ≤ d. The fluid is of density ρ and of finite depth, h. The mass of
the cylinder is M = 2ρad (by Archimedes’ principle). The roll axis of the cylinder is given
by (x, y) = (b, c). In section 2 when we consider a cylinder in isolation, we take b = 0. In
section 3, in which the cylinder is situated next to a wall, the wall is located along x = 0,
for 0 < y < h, with b > a, so that the cylinder is separated from the wall.

The motion is two-dimensional and time-harmonic with angular frequency ω so that
the velocity potential is given by <{φ(x, y)e−iωt}. The linearised free surface condition is
φy +Kφ = 0 on y = 0 where K = ω2/g and g is gravity. At the bottom of the fluid, y = h,
we impose φy = 0. In the fluid, φ is harmonic. Other boundary conditions apply on the
cylinder and are stated at the appropriate point in the text.

2 A swaying, heaving and rolling cylinder in isolation

As a reminder, we take b = 0 throughout this section so that the cylinder occupies the
region −a < x < a, 0 < y < d of the fluid when at rest. When in motion, the linearised
kinematic boundary conditions apply on x = ±a, 0 < y < d and y = d, −a < x < a.
In the construction of each of the solutions below, advantage is taken of the geometric
symmetry of the rectangular cylinder to divide the solution to the hydrodynamic problem
into components which are symmetric and antisymmetric about the centreline x = 0. For
swaying and rolling cylinders, only the antisymmetric problem features and for the heaving
cylinder, it is only the symmetric problem which features. Thus boundary conditions need
only be placed on half of the cylinder surface in x > 0 with the appropriate condition placed
on the line x = 0, d < y < h extending vertically throughout the fluid. That is, for symmetric
(antisymmetric) solutions about x = 0, we impose Neumann (Dirichlet) conditions on x = 0
for d < y < h. Accordingly, solutions are sought only in x > 0, and can be extended into
x < 0 appropriately.

The superscripts s, h and r are used to identify problems associated with sway, heave
and roll. Functions X, Y and Z with F , G and H and coefficients Pij, Sij and Tij (in section
3, matrices Pij, Sij and Tij) are used respectively for the sway, heave and roll problems.
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2.1 Boundary conditions

For a swaying cylinder, we require

φs
x = 1, on x = a, 0 < y < d, (2.1)

φs
y = 0, on y = d, 0 < x < a, (2.2)

φs = 0, on x = 0, d < y < h; (2.3)

for a heaving cylinder we require

φh
x = 0, on x = a, 0 < y < d, (2.4)

φh
y = 1, on y = d, 0 < x < a, (2.5)

φh
x = 0, on x = 0, d < y < h; (2.6)

for a cylinder rolling about y = c we have

φr
x = (y − c), on x = a, 0 < y < d, (2.7)

φr
y = −x, on y = d, 0 < x < a, (2.8)

φr = 0, on x = 0, d < y < h, (2.9)

2.2 Notation and definitions

Before embarking on the solutions we introduce the reader to some standard notation
associated with water wave problems in finite depth. See Linton & McIver (2001) for more
details.

The depth eigenfunctions associated with water of depth h with a free surface are defined
by

ψn(y) = N−1/2
n cos kn(h− y), Nn =

1

2

(
1 +

sin 2knh

2knh

)
(2.10)

with K = ω2/g = −kn tan knh defining real kn ∈ ((n − 1
2
)π, nπ) for n ≥ 1 and k0 ≡ −ik, k

positive and real defined by K = k tanh kh.
In the region under the rectangle, the eigenfunctions associated with a homogeneous

Neumann condition on y = d and y = h are given by ψ̂n(y) = ε
1/2
n cosµn(y − h) and

µn = nπ/(h− d), ε0 = 1, εn = 2, n ≥ 1.
Both sets of eigenfunctions are orthogonal, satisfying the relations

〈ψ̂n, ψ̂m〉 ≡
∫ h

d

ψ̂n(y)ψ̂m(y)dy = (h−d)δmn, and

∫ h

0

ψn(y)ψm(y)dy = hδmn. (2.11)

Of continued use in this report are the quantities

L0 ≡
∫ d

0

ψ0(y)dy = N
−1/2
0

[
sinh kh− sinh k(h− d)

k

]
(2.12)

and

Ln ≡
∫ d

0

ψn(y)dy = N−1/2
n

[
sin knh− sin kn(h− d)

kn

]
(2.13)
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in addition to

M0 ≡
∫ d

0

(y − c)ψ0(y)dy

=
−1

N
1/2
0 k

[
(d− c) sinh k(h− d) + c sinh kh+

cosh k(h− d)

k
− cosh kh

k

]
(2.14)

and

Mn ≡
∫ d

0

(y − c)ψn(y)dy

=
−1

N
1/2
n kn

[
(d− c) sin kn(h− d) + c sin knh−

cos kn(h− d)

kn

+
cos knh

kn

]
. (2.15)

2.3 A single cylinder in sway

Central to the method of solution are the particular solutions that we employ to deal
with the inhomogeneous boundary conditions in each of the problems above (see equations
(2.1)–(2.9)). These are designed in a piecewise fashion to fit in with the decomposition of the
potential into rectangular subdomains of the fluid. We label region I, 0 < x < a, d < y < h,
and region II, x > a, 0 < y < h and use superscripts I and II to denote that the potentials
are being defined in these regions.

For the swaying problem, we define a potential

XII = − iL0

kh
ψ0(y)e

ik(x−a) −
∞∑

n=1

Ln

knh
e−kn(x−a)ψn(y) (2.16)

which satisfies XII
x = 1 on x = a, 0 < y < d (as required by (2.1)) and also XII

x = 0 on
x = a, d < y < h (this is not required by the problem, but chosen because it assists later
algebraic manipulations) in addition to the required free surface and bottom conditions. In
addition, note that on x = a,

XII(a, y) = − iL0

kh
ψ0(y) + F II(y), where F II(y) = −

∞∑
n=1

Ln

knh
ψn(y). (2.17)

With this we define the potentials in I and II for the swaying cylinder as, in II

φs(x, y) = XII(x, y) + (as
0 + iL0/kh)e

ik(x−a)ψ0(y) +
∞∑

n=1

as
ne−kn(x−a)ψn(y) (2.18)

and in I

φs(x, y) = bs0x+
∞∑

n=1

bsn sinh(µnx)ψ̂n(y) (2.19)

where µn = nπ(h−d). These expansions are ‘general solutions’ to the problems, in which the
inhomogeneity has been taken care of by the particular solution. It remains to determine the
coefficients as

n and bsn. This is done by matching pressure and velocity across the common
interface x = a, d < y < h and by application of the boundary condition along x = a,
0 < y < d of the cylinder.
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Equating velocities gives

U s(y) ≡ φs
x(a, y) =


XII

x (a, y) + ik(as
0 + iL0/kh)ψ0(y)−

∞∑
n=1

kna
s
nψn(y)

bs0ψ̂0(y) +
∞∑

n=1

µnb
s
n cosh(µna)ψ̂n(y)

(2.20)

where U s(y) is an unknown function representing the horizontal component of velocity
through the depth. Application of the orthogonality conditions gives

ikhas
0 − L0 = 〈U s, ψ0〉, −knha

s
n = 〈U s, ψn〉 (2.21)

and
bs0(h− d) = 〈U s, ψ̂0〉, µn(h− d)bsn cosh(µna) = 〈U s, ψ̂n〉. (2.22)

Next, matching pressures gives

bs0aψ̂0(y) +
∞∑

n=1

bsn sinh(µna)ψ̂n(y) = F II(y) + as
0ψ0(y) +

∞∑
n=1

as
nψn(y) (2.23)

and then substitution for the coefficients in the above from (2.21), (2.22) gives∫ h

d

U s(t)Kasym(y, t)dt = as
0ψ0(y)− bs0aψ̂0(y) + df s

3 (y) (2.24)

where

Kasym(y, t) =
∞∑

n=1

[
ψn(t)ψn(y)

knh
+
ψ̂n(t)ψ̂n(y)

nπ cothµna

]
(2.25)

and f s
3 (y) = F II(y)/d, with f s

1 = ψ0(y), f
s
2 = ψ̂0(y). Thus we have an integral equation for

U s(y); one forced by a linear combination of three linearly-independent functions and two
unknown coefficients.

We proceed by letting
U s(t) = d{âs

0u
s
1 + b̂s0u

s
2 + us

3} (2.26)

where âs
0 = a0/d and b̂s0 = −b0a/d in which the functions us

i (y) satisfy∫ h

d

us
i (t)Kasym(y, t)dt = f s

i (y), i = 1, 2, 3. (2.27)

We define Pij = 〈f s
i , u

s
j〉. Then we insert (2.26) into the first equations in (2.21) to give

ikhâs
0 = (L0/d) + âs

0P11 + b̂s0P12 + P13 (2.28)

and, similarly, into the first equation in (2.22) to give

−b̂s0(h− d)/a = âs
0P12 + b̂s0P22 + P23. (2.29)

These two equations (2.28), (2.29) can be solved for the unknown coefficients âs
0 and b̂s0.
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The sway component of the sway induced added-mass (A11) and radiation damping (B11)
is defined as

iω(A11 + iB11/ω) = −2iωρ

∫ d

0

φs(a, y)dy (2.30)

(the factor of 2 on the right-hand side is because we need to include the contribution from
x < 0).

We do not evaluate the right-hand side integral above directly Instead, we apply Green’s
Identity over region II to φs and XII , employing all the appropriate boundary conditions on
the four sides of the semi-infinite rectangle. The contribution all but one side, x = a and
hence we are left with the identity∫ h

0

(φsXII
x −XIIφs

x)
∣∣∣
x=a

dy = 0. (2.31)

Using the appropriate definitions of φs, XII and their derivatives on each section of the
interval from 0 < y < d and d < y < h gives∫ d

0

φs(a, y)dy = X II +

∫ h

d

U s(y)XII(a, y)dy (2.32)

where, from using (2.17) with (2.12), (2.13),

X II = − iL2
0

kh
−

∞∑
n=1

L2
n

knh
. (2.33)

The final integral in (2.32) above evaluates, using (2.17), to∫ h

d

U s(y)XII(a, y)dy = − iL0

kh
〈U s, ψ0〉+ d〈U s, f s

3 〉. (2.34)

Bringing (2.33), (2.34) together in (2.32) and substituting in to (2.30) now gives

(A11 + iB11/ω) = −2ρd2

[
âs

0(L0/d)−
∞∑

n=1

(Ln/d)
2

knh
+ âs

0P31 + b̂s0P32 + P33

]
. (2.35)

The non-dimensional added-mass and damping are defined as µ11 = A11/M and ν11 =
B11/(ωM) where M has dimensions of mass (we use the mass of the cylinder, assumed to
float when at rest so that M = 2ρad by Archimedes’ principle).

2.4 A single cylinder in heave

We define a particular solution for the heaving problem, in region I, by

Y I(x, y) = −1

2

(h− y)2

(h− d)
+

1

2

(x2 − a2)

(h− d)
(2.36)

(this is not a unique definition, but one which serves to simplify the algebra later on) and is
such that

Y I
x (a, y) =

a

(h− d)
; Y I(a, y) = −GI(y) where GI(y) =

1

2

(h− y)2

(h− d)
. (2.37)
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Then the expansion for the potential in region I is written

φh(x, y) = Y I(x, y) + bh0 +
∞∑

n=1

bhn cosh(µnx)ψ̂n(y) (2.38)

where Y I accounts for the inhomogeneous boundary condition on y = d and the remain-
ing terms satisfy homogeneous boundary conditions there and elsewhere. In region II, the
potential is expanded as

φh(x, y) = ah
0e

ik(x−a)ψ0(y) +
∞∑

n=1

ah
ne−kn(x−a)ψn(y). (2.39)

The remainder of the solution follows in a manner very similar to in the previous section for
sway. Thus, after defining Uh(y) = φh

x(a, y), for d < y < h, we have

ikhah
0 = 〈Uh, ψ0〉, −knha

h
n = 〈Uh, ψn〉, n ≥ 1 (2.40)

with
µn(h− d)bhn sinh(µna) = 〈Uh, ψ̂n〉, and 〈Uh, ψ̂0〉 = a (2.41)

(the latter equation incidentally an expression of conservation of flux). Then, matching φh

across x = a, d < y < h gives∫ h

d

Uh(t)Ksym(y, t)dt = ah
0ψ0(y)− bh0 ψ̂0(y) +GI(y) (2.42)

where Ksym(y, t) is

Ksym(y, t) =
∞∑

n=1

[
ψn(t)ψn(y)

knh
+

ψ̂n(t)ψ̂n(y)

nπ tanhµna

]
. (2.43)

Now we write
Uh(t) = a{âh

0u
h
1(t) + b̂h0u

h
2(t) + ((h− d)/a)uh

3(t)} (2.44)

where âh
0 = ah

0/a and b̂h0 = bh0/a and solve∫ h

d

uh
i (t)Ksym(y, t)dt = fh

i (y), i = 1, 2, 3 (2.45)

with fh
1 (y) = ψ0(y), f

h
2 (y) = ψ̂0(y) ≡ 1 as before and fh

3 = GI(y)/(h− d). Then, defining

Sij = 〈fh
i , u

h
j 〉, i, j = 1, 2, 3 (2.46)

we have
ikhâh

0 = âh
0S11 + b̂h0S12 + ((h− d)/a)S13 (2.47)

with
1 = âh

0S21 + b̂h0S22 + ((h− d)/a)S23 (2.48)

these two equations are used to determine the non-dimensional coefficients âh
0 , b̂

h
0 .
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All that remains is to calculate the heave component of the heave induced added mass
and radiation damping, A22 and B22, defined as

iω(A22 + iB22/ω) = −2iωρ

∫ a

0

φh(x, d)dx. (2.49)

Application of Green’s Identity to the harmonic functions φh and Y I in region I (i.e. d <
y < h, 0 < x < a) gives, after using the known definitions of those functions and their
derivatives on the boundaries of the rectangular domain,∫ a

0

φh(x, d)dx =

∫ a

0

Y I(x, d)dx+
a

(h− d)
〈φh, ψ̂0〉+ (h− d)〈Uh, fh

3 〉. (2.50)

In the above the first term evaluates to

YI ≡
∫ a

0

Y I(x, d)dx = −a2

[
(h− d)

2a
+

a

3(h− d)

]
(2.51)

whilst the middle term is

a

(h− d)
〈φh, ψ̂0〉 = −a2b̂h0 −

a

(h− d)
〈GI , ψ̂0〉 = −a2b̂h0 − 1

6
a(h− d). (2.52)

Then we find that

(A22 + iB22/ω) = 2ρa2

[
1

3

(
a

h− d

)
+ b̂h0 −

(h− d)

a

[
ah

0S31 + bh0S32 + ((h− d)/a)S33 + 2
3

]]
(2.53)

and the non-dimensional coefficients are µ22 = A22/M and ν22 = B22/(ωM).

2.5 A single cylinder in roll

This is more complicated than the previous two problems, because there are inhomo-
geneous boundary conditions on all both vertical and horizontal sides of the rectangular
cylinder.

In the region I, {0 < x < a, d < y < h} we define a particular solution accounting for
the inhomogeneous boundary condition on y = d, ZI(x, y), satisfying ∇2ZI = 0, in I with
the four boundary conditions ZI

y (x, h) = 0, ZI
y (x, d) = −x, ZI(0, y) = 0 and ZI

x(a, y) = 0.
The solution is readily determined by separation of variables and is given by

ZI(x, y) = 2
∞∑

n=0

(−1)n sin(λnx) coshλn(h− y)

λ3
na sinhλn(h− d)

(2.54)

where λn = (n+ 1
2
)π/a. Quantities of specific interest are

HI(y) = ZI(a, y) = 2
∞∑

n=0

coshλn(h− y)

λ3
na sinhλn(h− d)

(2.55)

in addition to

ZI(x, d) = 2
∞∑

n=0

(−1)n cothλn(h− d)

λ3
na

sin(λnx) (2.56)
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In region II, being {x > a, 0 < y < h}, the function ZII(x, y) is designed to absorb
the inhomogeneous boundary condition on x = a is harmonic and satisfies the conditions
ZII

x (a, y) = (y − c) on x = a for 0 < y < d whilst ZII
x (a, y) = 0 for d < y < h. As x → ∞,

only outgoing waves are possible. Again, the solution is straightforward to determine via
separation of variables and we find

ZII(x, y) =
−iM0

kh
eik(x−a)ψ0(y)−

∞∑
n=1

Mn

knh
e−kn(x−a)ψn(y) (2.57)

where Mn are defined by (2.14), (2.15).
We shall be interested in

ZII(a, y) =
−iM0

kh
ψ0(y) +HII(y), where HII(y) = −

∞∑
n=1

Mn

knh
ψn(y) (2.58)

Armed with these two functions, we now expand the potential in each of the regions I and
II, using ZI and ZII to take account of the inhomogeneous boundary conditions (2.7), (2.8)
that φr must satisfy and expanding the remaining part of the potential in terms of functions
satisfying the homogeneous boundary conditions. In the region II (x ≥ a) we write

φr(x, y) = ZII(x, y) + (ar
0 + iM0/kh)e

ik(x−a)ψ0(y) +
∞∑

n=1

ar
ne−kn(x−a)ψn(y) (2.59)

and in region I (0 ≤ x ≤ a) we write

φr(x, y) = ZI(x, y) + br0x+
∞∑

n=0

brn sinh(µnx)ψ̂n(y). (2.60)

It follows that

U r(y) ≡ φr
x(a, y) = ZII

x (a, y) + ik(ar
0 + iM0/kh)ψ0(y)−

∞∑
n=1

kna
r
nψn(y), 0 < y < h(2.61)

= ZI
x(a, y) + br0ψ̂0(y) +

∞∑
n=1

µnb
r
n cosh(µna)ψ̂n(y) d < y < h. (2.62)

Using orthogonality of ψn(y) and ψ̂n(y) gives

ikhar
0 −M0 = 〈U r, ψ0〉, and − knha

r
n = 〈U r, ψn〉, (2.63)

and
br0(h− d) = 〈U r, ψ̂0〉, and µn(h− d)brn cosh(µna) = 〈U r, ψ̂n〉, (2.64)

in which the conditions on the vertical face of the rectangular cylinder have been used.
Next, matching φr from each region across x = a gives

HI(y) + br0aψ̂0(y) +
∞∑

n=1

brn sinh(µna)ψ̂n(y) = HII(y) + ar
0ψ0(y) +

∞∑
n=1

ar
nψn(y). (2.65)
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Inserting the definitions of ar
n and brn from above, gives∫ h

d

U r(t)Kasym(y, t)dt = ar
0f

r
1 (y)− br0af

r
2 (y) + d2f r

3 (y) (2.66)

where f r
1 (y) = ψ0(y), f

r
2 (y) = ψ̂0(y) = 1, f r

3 (y) = (HII(y)−HI(y))/d2

Now we let ur
i (t) be the solution of∫ h

d

ur
i (t)Kasym(y, t)dt = f r

i (y), d < y < h, i = 1, 2, 3. (2.67)

such that
U r(t) = d2{âr

0u
r
1(t) + b̂r0u

r
2(t) + ur

3(t)} (2.68)

and âr
0 = ar

0/d
2, b̂r0 = −br0a/d2. We also define

Tij = 〈f r
i , u

r
j〉, i, j = 1, 2, 3 (2.69)

and substituting (2.68) into (2.63) and (2.64) we find

ikhâr
0 = âr

0T11 + b̂r0T12 + T13 + (M0/d
2) (2.70)

and

−b̂r0
(h− d)

a
= âr

0T21 + b̂r0T22 + T23. (2.71)

These two equations are used to determine the non-dimensional coefficients âr
0 and b̂r0.

Again, we calculate the roll component of the roll-induced added inertia and radiation
damping, A33 and B33, defined as the real and imaginary parts of the complex torque on the
rectangular cylinder about (0, c). Thus we have

iω(A33 + iB33/ω) = −2iωρ

∫ a

0

(−x)φr(x, d)dx− 2iωρ

∫ d

0

(y − c)φr(a, y)dy (2.72)

We deal with each of the integrals on the right-hand side in turn, but in much the same way
as one another. First, we apply Green’s Identity in region I to the functions φh(x, y) and
ZI(x, y) and find ∫ a

0

(−x)φr(x, d)dx =

∫ a

0

(−x)ZI(x, d)dx− 〈U r, HI〉 (2.73)

on account of the way that the function ZI(x, y) has been defined upon its boundaries.
The integral above can be evaluated directly from the definition of ZI to give

ZI ≡
∫ a

0

(−x)ZI(x, d)dx = −2
∞∑

n=0

cothλn(h− d)

λ5
na

. (2.74)

Moving onto the second integral in (2.72. We again use Green’s Identity, this time in region
II with φr and ZII and find∫ d

0

(y − c)φr(a, d)dy =

∫ d

0

(y − c)ZII(a, y)dy + 〈U r, HII〉 − (iM0/kh)〈U r, ψ0〉. (2.75)
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The first integral in (2.75) can be evaluated directly from the definition of ZII to give

ZII =

∫ d

0

(y − c)ZII(a, y)dy =
−iM2

0

kh
−

∞∑
n=1

M2
n

knh
. (2.76)

where (2.14), (2.15) have been used. Combining (2.73)–(2.76) and inserting in (2.72) we
obtain

(A33 + iB33/ω) = −2ρ
[
ZII + ZI + iM2

0/kh+ d2〈U r, f r
3 〉+ d2âr

0M0

]
(2.77)

after using ikhar
0 −M0 = 〈U r, ψ0〉. Then finally,

(A33 + iB33/ω) = −2ρd4

[
âr

0(M0/d
2)−

∞∑
n=1

(Mn/d
2)2

knh
+ ZI + {âr

0T31 + b̂r0T32 + T33}

]
.

(2.78)
These are to be non-dimensionalised by a moment of inertia, I, having dimensions equal to
the fourth power of length. Thus, non-dimensional coefficients µ33 = A33/I, ν33 = B33/(ωI).

2.6 The remaining hydrodynamic coefficients: the cross terms

Clearly, we have A21 = A23 = A12 = A32 = 0 and B21 = B23 = B12 = B32 = 0, as
heave motion is symmetric and sway and roll are both antisymmetric about the geometric
line of symmetry, x = 0. That is, symmetric motions cannot induce antisymmetric forces
and moments and vice versa.

The first of the non-zero terms to consider is the roll-component of added mass and
radiation damping due to forced sway motion. Thus we have

iω(A13 + iB13/ω) = −2iωρ

∫ d

0

φs(a, y)(y − c)dy − 2iωρ

∫ a

0

φs(x, d)(−x)dx. (2.79)

We use Green’s Identity to for the first integral, in region II with φs and ZII to give∫ d

0

φs(a, y)(y − c)dy =

∫ d

0

ZII(a, y)dy +

∫ h

d

U s(y)ZII(a, y)dy. (2.80)

The first integral is ∫ d

0

ZII(a, y)dy =
−iM0L0

kh
−

∞∑
n=1

MnLn

knh
. (2.81)

The second integral is∫ h

d

U s(y)ZII(a, y)dy =
−iM0

kh
(ikhas

0 − L0) + 〈U s, HII〉. (2.82)

Thus ∫ d

0

φs(a, y)(y − c)dy = dâs
0M0 −

∞∑
n=1

MnLn

knh
+ 〈U s, HII〉. (2.83)

In a similar manner, we use Green’s Identity in region I with φs and ZI to give∫ a

0

(−x)φs(x, d)dx = −
∫ h

d

U s(y)ZI(a, y)dy = −〈U s, HI〉. (2.84)
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The net outcome is that

A13+iB13/ω = −2ρd3

[
âs

0(M0/d
2)−

∞∑
n=1

(Mn/d
2)(Ln/d)

knh
+ {âs

0〈us
1, f

r
3 〉+ b̂s0〈us

2, f
r
3 〉+ 〈us

3, f
r
3 〉}

]
.

(2.85)
Non-dimensional coefficients are defined by µ13 = A13/

√
MI and ν13 = B13/(ω

√
IM). Sim-

ilarly for the 31 components below.
Next, consider the reciprocal terms, which represent the sway component of added mass

and radiation damping due to forced roll motion. In other words,

iω(A31 + iB31/ω) = −2iωρ

∫ d

0

φr(a, y)dy. (2.86)

We use Green’s Identity with φr and XII to give∫ a

0

φr(a, y)dy =

∫ a

0

(y − c)XII(a, y)dy − iL0

kh
〈U r, ψ0〉+ 〈U r, F II〉. (2.87)

Doing the same things as before we get

A31+iB31/ω = −2ρd3

[
âr

0(L0/d)−
∞∑

n=1

(Ln/d)(Mn/d
2)

knh
+ {âr

0〈ur
1, f

s
3 〉+ b̂s0〈ur

2, f
s
3 〉+ 〈ur

3, f
s
3 〉}

]
(2.88)

2.7 Numerical solution of the integral equations

The numerical procedure for solving the integral equations is as follows and is based on
the Galerkin method in which we write

us,h,r
i (y) '

N∑
n=0

as,h,r
n,i vn(y) (2.89)

(the notation here is a little awkward) for given functions vn(y), n = 0, . . . , N and, by making
the residual of the integral equation orthogonal to the space spanned by the functions vm(y),
m = 0, . . . , N we derive the system of equations

N∑
n=0

as,r
n,iK

(asym)
m,n = F (s,r;i)

m , m = 0, . . . , N (2.90)

and
N∑

n=0

ah
n,iK

(sym)
m,n = F (h;i)

m , m = 0, . . . , N (2.91)

for i = 1, 2, 3 whose solutions determine as,h,r
n,i . In the above

K(asym)
m,n =

∞∑
r=1

[
F

(1)
r,nF

(1)
r,m

krh
+

F
(2)
r,nF

(2)
r,m

rπ cothµra

]
, and K(sym)

m,n =
∞∑

r=1

[
F

(1)
r,nF

(1)
r,m

krh
+

F
(2)
r,nF

(2)
r,m

rπ tanhµra

]
(2.92)
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and

F (1)
r,m =

∫ h

d

vm(y)ψr(y)dy, F (2)
r,m =

∫ h

d

vm(y)ψ̂r(y)dy, (2.93)

with

F (s,h,r;3)
m =

∫ h

d

vm(y)f s,h,r
3 (y)dy. (2.94)

Then finally

Pij ≈
N∑

n=0

as
n,jF

(s;i)
0,n , Sij ≈

N∑
n=0

ah
n,jF

(h;i)
0,n , Tij ≈

N∑
n=0

ar
n,jF

(r;i)
0,n . (2.95)

We choose the standard sets of function for vm(y), defined by

vm(y) =
(−1)m21/6(2m)!Γ(1

6
)

πΓ(2m+ 1
3
)(h− d)1/3

C
(1/6)
2m ((h− y)/(h− d))

[(h− d)2 − (h− y)2]1/3
(2.96)

where C
(ν)
m (·) is the ultraspherical Gegenbauer polynomial. The normalisation is chosen to

give the simplest form for F
(i)
r,m. Thus we find that

F (1)
r,m = N−1/2

r

J2m+1/6(kr(h− d))

[kr(h− d)]1/6
, and F (2)

r,m =
√

2
J2m+1/6(rπ)

(rπ)1/6
, for r ≥ 1.

(2.97)
Next,

F (s,h,r;1)
m = (−1)mN

−1/2
0

I2m+1/6(k(h− d))

[k(h− d)]1/6
, and F (s,h,r;2)

m =
2−1/6

Γ(7
6
)
δ0m. (2.98)

Finally

F (s;3)
m = −

∞∑
r=1

(Lr/d)

krh
F (1)

r,m. (2.99)

and

F
(h;3)
0 =

9

7

2−1/6

Γ(1
6
)
, F

(h;3)
1 = −54

91

2−1/6

Γ(1
6
)
, and F (h;3)

m = 0, for m ≥ 2. (2.100)

and

F (r;3)
m = −

∞∑
r=1

(Mr/d
2)

krh
F (1)

r,m − 2
∞∑

r=0

(−1)mI2m+1/6(λr(h− d))

λ3
rad

2[λr(h− d)]1/6 sinhλr(h− d)
. (2.101)

2.8 Low-frequency asymptotics

We consider the result on νij, the non-dimensional radiation damping, of letting the
frequency ω tend to zero. Accordingly, the dimensionless wavenumber kh → 0, whilst all
other length scales are held fixed with respect to h.

As will be shown, we can ascertain the leading order behaviour of νij as kh → 0 with-
out having to solve the integral equations, although the arguments given below are not
particularly rigorous. We start by looking at ν22.
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As a result of letting kh→ 0, we note from (2.10) that

N0 → 1, ψ0(y) → 1 +O((kh)2) (2.102)

Hence fh
1 (y) = fh

2 (y) +O((kh)2). Accordingly, we have from (2.43)

uh
1(y) = uh

2(y) + (kh)2û(y) + . . . (2.103)

to where û(y) is some function we are not concerned with. It follows that

S11 = S12 +O((kh)2), S11 = S21 +O((kh)2), S11 = S22 +O((kh)2) (2.104)

and also that S13 = S23 +O((kh)2). Using these estimates in (2.47) and (2.48) we can easily
obtain leading order estimates on the coefficients âh

0 , b̂
h
0 so that

âh
0 ∼ − i

kh
, and b̂h0 ∼

i

kh
(2.105)

It is important to note that, inspite of any approximations being made, Sij are real and
symmetric. Using (2.105) in (2.53) and equating imaginary parts gives the estimate

B22 ∼
2ρωa2

kh
, as kh→ 0 (2.106)

In non-dimensional terms, with M = 2ρad, we have ν22 ∼ a/(khd) as kh → 0. Follow-
ing similar arguments for the other non-zero components of the radiation damping, it is
straightforward to see that νij → 0 as kh→ 0 for i, j 6= 2.
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3 A swaying, heaving and rolling cylinder next to a

wall

In this section we repeat the calculations of section 2, but now the cylinder is centred on
x = b 6= 0 with a wall at x = 0. The problems are now more complicated, since there
is no line of geometric symmetry. Accordingly, the fluid domain is now divided into three
rectangular subdomains, being the region between the wall and the cylinder, under the
cylinder and from the right of the cylinder. This inevitably makes the solution process
more complicated. Moreover, the effect of the wall means that none of the nine pairs of
hydrodynamic coefficients are trivially zero.

In this section, we re-use the notation of the last section.

3.1 Boundary conditions

For a swaying cylinder, we require

φs
x = 1, on x = b± a, 0 < y < d, (3.1)

φs
y = 0, on y = d, b− a < x < b+ a; (3.2)

for a heaving cylinder we require

φh
x = 0, on x = b± a, 0 < y < d, (3.3)

φh
y = 1, on y = d, b− a < x < b+ a; (3.4)

for a rolling cylinder we have

φr
x = (y − c), on x = b± a, 0 < y < d, (3.5)

φr
y = (b− x), on y = d, b− a < x < b+ a. (3.6)

3.2 A swaying cylinder next to a wall

We start by defining the particular solutions in each case of the regions.
In region I, we have XI

x(b − a, y) = 1 for 0 < y < d and XI
x(b − a, y) = 0 for d < y < h

in addition to the wall condition on x = 0, so that we write

XI(x, y) = − L0

kh sin k(b− a)
cos(kx)ψ0(y) +

∞∑
n=1

Ln

knh sinh kn(b− a)
cosh(knx)ψn(y) (3.7)

so that

XI(b−a, y) = −L0

kh
cot k(b−a)ψ0(y)+F

I(y), F I(y) =
∞∑

n=1

Ln

knh
coth kn(b−a)ψn(y). (3.8)

Then in region III, we need XIII
x (b + a, y) = 1 for 0 < y < d and XIII

x (b + a, y) = 0 for
d < y < h and outgoing waves at infinity.

XIII(x, y) = − iL0

kh
ψ0(y)e

ik(x−b−a) +
∞∑

n=1

Ln

knh
e−kn(x−b−a)ψn(y). (3.9)
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Then,

XIII(b+ a, y) = − iL0

kh
ψ0(y) + F III(y), where F III(y) = −

∞∑
n=1

Ln

knh
ψn(y). (3.10)

With this we define the potentials in I, II and III for the swaying cylinder as, in I

φs(x, y) = XI(x, y)+

(
as

0 +
L0

kh sin(k(b− a))

)
cos(kx)ψ0(y)+

∞∑
n=1

as
n cosh(knx)ψn(y) (3.11)

in II

φs(x, y) = (bs0(x− b) + cs0)ψ̂0(y) +
∞∑

n=1

(
bsn sinhµn(x− b) + csn coshµn(x− b)

)
ψ̂n(y) (3.12)

and in III

φs(x, y) = XIII(x, y) +

(
ds

0 +
iL0

kh

)
eik(x−b−a)ψ0(y) +

∞∑
n=1

ds
ne−kn(x−a)ψn(y). (3.13)

Then we let U s
1 (y) = φs

x(b− a, y) so that we obtain

−khas
0 sin k(b− a)− L0 = 〈U s

1 , ψ0〉, knh sinh kn(b− a)as
n = 〈U s

1 , ψn〉 (3.14)

and

bs0(h− d) = 〈U s
1 , ψ̂0〉, nπ(bsn cosh(µna)− csn sinh(µna)) = 〈U s

1 , ψ̂n〉. (3.15)

Now letting U s
2 (y) = φs

x(b+ a, y) we have

ikhds
0 − L0 = 〈U s

2 , ψ0〉, −knhd
s
n = 〈U s

2 , ψn〉 (3.16)

and

bs0(h− d) = 〈U s
2 , ψ̂0〉, nπ(bsn cosh(µna) + csn sinh(µna)) = 〈U s

2 , ψ̂n〉. (3.17)

Matching pressures across x = b− a for d < y < h gives

F I(y) + as
0 cos k(b− a)ψ0(y) +

∞∑
n=1

as
n cosh kn(b− a)ψn(y) =

(−bs0a+ cs0)ψ̂0(y) +
∞∑

n=1

(−bsn sinh(µna) + csn cosh(µna))ψ̂n(y). (3.18)

And matching pressures across x = b+ a for d < y < h gives

F III(y) + ds
0ψ0(y) +

∞∑
n=1

ds
nψn(y) = (bs0a+ cs0)ψ̂0(y) +

∞∑
n=1

(bsn sinh(µna) + csn cosh(µna))ψ̂n(y).

(3.19)
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Using the relations (3.16), (3.17) in (3.18), (3.19) gives∫ h

d

U s
1 (t)K11(y, t)dt+

∫ h

d

U s
2 (t)K12(y, t)dt = −as

0 cos k(b− a)ψ0(y)− (bs0a− cs0)ψ̂0(y)−F I(y)

(3.20)
and∫ h

d

U s
1 (t)K21(y, t)dt+

∫ h

d

U s
2 (t)K22(y, t)dt = ds

0ψ0(y)− (bs0a+ cs0)ψ̂0(y) + F III(y) (3.21)

where

K11(y, t) =
∞∑

n=1

[
coth kn(b− a)

knh
ψn(t)ψn(y) +

coth(2µna)

nπ
ψ̂n(t)ψ̂n(y)

]
(3.22)

and

K12(y, t) = K21(y, t) = −
∞∑

n=1

cosech(2µna)

nπ
ψ̂n(t)ψ̂n(y) (3.23)

and finally

K22(y, t) =
∞∑

n=1

[
ψn(t)ψn(y)

knh
+

coth(2µna)

nπ
ψ̂n(t)ψ̂n(y)

]
. (3.24)

We can write the coupled integral equations in matrix/vector form by introducing some new
notation. Hence we define

K(y, t) =

(
K11(y, t) K12(y, t)
K21(y, t) K22(y, t)

)
, Us(y) =

(
U s

1 (y)
U s

2 (y)

)
. (3.25)

We write
Us(y) = d (Us

1(y)A
s
1 + Us

2(y)A
s
2 + Us

3(y)) , (3.26)

where

Us
1(y) =

(
us

1(y) us
3(y)

us
2(y) us

4(y)

)
, Us

2(y) =

(
us

5(y) us
7(y)

us
6(y) us

8(y)

)
, Us

3(y) =

(
us

9(y)
us

10(y)

)
, (3.27)

and

As
1 =

(
âs

0

d̂s
0

)
, As

2 =

(
b̂s0 + ĉs0
b̂s0 − ĉs0

)
, (3.28)

where âs
0 = −as

0 cos k(b− a)/d, b̂s0 = −bs0a/d, ĉs0 = cs0/d and d̂s
0 = ds

0/d.
Finally, we define

Fs
1(y) =

(
ψ0(y) 0

0 ψ0(y)

)
, Fs

2(y) =

(
ψ̂0(y) 0

0 ψ̂0(y)

)
, Fs

3(y) =

(
−F I(y)/d
F III(y)/d

)
.

(3.29)
Then if Us

i (t) are defined to be the solutions of the coupled integral equation system∫ h

d

K(y, t)Us
i (t)dt = Fs

i (y), d < y < h, i = 1, 2, 3. (3.30)

it follows from (3.26) that U s
1 (y), U s

2 (y) satisfy (3.19), (3.20). Following on from this, we
define the matrices

Pij = 〈Fs
i
T,Us

j〉, i, j = 1, 2, 3. (3.31)
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whose dimensions are inherited from the definitions of the components of the inner product.
For example, P11 is a 2 × 2 matrix, whereas P33 is a 1 × 1 matrix (a coefficient). From a
vectorisation of earlier relations (3.13), (3.15) we have(

khâs
0 tan k(b− a)

ikhd̂s
0

)
−
(
L0/d
L0/d

)
=

1

d

∫ h

d

Us(y)ψ0(y)dy = P11A1 + P12A2 + P13 (3.32)

and of (3.14), (3.16) we have

−
(
b̂s0(h− d)/a

b̂s0(h− d)/a

)
=

1

d

∫ h

d

Us(y)ψ̂0(y)dy = P21A1 + P22A2 + P23. (3.33)

These four linear equations contained in (3.32), (3.33) determine the coefficients âs
0, b̂

s
0, ĉ

s
0

and d̂s
0.

The sway component of the sway induced added-mass and radiation damping, Aw
11 and

Bw
11 (the superscript w is used here to indicate the presence of the wall and distinguish from

the results of §2), are defined by

iω(Aw
11 + iBw

11/ω) = −iωρ

∫ d

0

φs(b+ a, y)dy + iωρ

∫ d

0

φs(b− a, y)dy. (3.34)

We apply Green’s Identity over region I to φs and XI and this ends up giving us the relation∫ d

0

φs(b− a, y)dy =

∫ d

0

XI(b− a, y)dy +

∫ h

d

XI(b− a, y)U s
1 (y)dy

= −dâs
0L0 +

∞∑
n=1

L2
n coth kn(b− a)

knh
+ 〈U s

1 , F
I〉. (3.35)

Next, in region III, use of φs and XIII gives, in much the same way∫ d

0

φs(b+ a, y)dy = dd̂s
0L0 −

∞∑
n=1

L2
n

knh
+ 〈U s

2 , F
III〉. (3.36)

Thus, finally,

(Aw
11 + iBw

11/ω) =

−ρd2

[
(d̂s

0 + âs
0)(L0/d)−

∞∑
n=1

(Ln/d)
2

knh
(1 + coth kn(b− a)) + AT

1 P31 + AT
2 P32 + P33

]
.(3.37)

The non-dimensional added-mass and damping are µw
11 = Aw

11/M and νw
11 = Bw

11/(Mω).

3.3 A heaving cylinder next to a wall

The particular solution is defined by Y II
y (x, d) = 1, b− a < x < b+ a, and we define

Y II(x, y) = −1

2

(h− y)2

(h− d)
+

1

2

(x− b)2 − a2

(h− d)
. (3.38)
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This function is such that

Y II(b± a, y) = −GII(y) = −1

2

(h− y)2

(h− d)
(3.39)

Y II
x (b± a, y) = ± a

h− d
. (3.40)

Using this, we expand the potential in II as

φh(x, y) = Y II(x, y)+ (bh0(x− b)+ ch0)ψ̂0(y)+
∞∑

n=1

(bhn coshµn(x− b)+ chn sinhµn(x− b))ψ̂n(y).

(3.41)
In region I we have

φh(x, y) = ah
0 cos(kx)ψ0(y) +

∞∑
n=1

ah
n cosh(knx)ψn(y) (3.42)

and in region III we have

φh = dh
0e

ik(x−b−a)ψ0(y) +
∞∑

n=1

dh
ne−kn(x−a)ψn(y). (3.43)

Then we let Uh
1 (y) = φh

x(b− a, y) so that we obtain

−khah
0 sin k(b− a) = 〈Uh

1 , ψ0〉, knh sinh kn(b− a)ah
n = 〈Uh

1 , ψn〉 (3.44)

and

−a+ bh0(h− d) = 〈Uh
1 , ψ̂0〉, nπ(bhn cosh(µna)− chn sinh(µna)) = 〈Uh

1 , ψ̂n〉. (3.45)

Now letting Uh
2 (y) = φh

x(b+ a, y) we have

ikhdh
0 = 〈Uh

2 , ψ0〉, −knhd
h
n = 〈Uh

2 , ψn〉 (3.46)

and

a+ bh0(h− d) = 〈Uh
2 , ψ̂0〉, nπ(bhn cosh(µna) + chn sinh(µna)) = 〈Uh

2 , ψ̂n〉. (3.47)

Matching pressures across x = b− a for d < y < h gives

ah
0 cos k(b− a)ψ0(y) +

∞∑
n=1

ah
n cosh kn(b− a)ψn(y) =

−GII(y) + (−bh0a+ ch0)ψ̂0(y) +
∞∑

n=1

(−bhn sinh(µna) + chn cosh(µna))ψ̂n(y) (3.48)

And matching pressures across x = b+ a for d < y < h gives

dh
0ψ0(y)+

∞∑
n=1

dh
nψn(y) = −GII(y)+ (bh0a+ ch0)ψ̂0(y)+

∞∑
n=1

(bhn sinh(µna)+ chn cosh(µna))ψ̂n(y).

(3.49)
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Upon substituting in for ah
n, bhn, chn, dh

n for n ≥ 1 from (3.43)–(3.46) into (3.48), (3.49
above, we derive the coupled integral equations for the functions Uh

1 (y) and Uh
2 (y),∫ h

d

U s
1 (t)K11(y, t)dt+

∫ h

d

U s
2 (t)K12(y, t)dt = −ah

0 cos k(b−a)ψ0(y)−(bh0a−ch0)ψ̂0(y)−GII(y)

(3.50)
and∫ h

d

Uh
1 (t)K21(y, t)dt+

∫ h

d

Uh
2 (t)K22(y, t)dt = dh

0ψ0(y)− (bh0a+ ch0)ψ̂0(y) +GII(y) (3.51)

where K11(y, t) K12(y, t), K21(y, t) and K22(y, t) are as before in the swaying cylinder prob-
lem. We can write the coupled integral equations in matrix/vector form as

Uh(y) =

(
Uh

1 (y)
Uh

2 (y)

)
, Uh(y) = (h− d)

(
Uh

1(y)A
h
1 + Uh

2(y)A
h
2 + Uh

3(y)
)

(3.52)

where

Uh
1(y) =

(
uh

1(y) uh
3(y)

uh
2(y) uh

4(y)

)
, Uh

2(y) =

(
uh

5(y) uh
7(y)

uh
6(y) uh

8(y)

)
, Uh

3(y) =

(
uh

9(y)
uh

10(y)

)
(3.53)

and

Ah
1 =

(
âh

0

d̂h
0

)
, Ah

2 =

(
b̂h0 + ĉh0
b̂h0 − ĉh0

)
(3.54)

where âh
0 = −ah

0 cos k(b−a)/(h−d), b̂h0 = −bh0a/(h−d), ĉh0 = ch0/(h−d) and d̂h
0 = dh

0/(h−d).
Also, we let

Fh
1(y) =

(
ψ0(y) 0

0 ψ0(y)

)
, Fh

2(y) =

(
ψ̂0(y) 0

0 ψ̂0(y)

)
,

Fh
3(y) =

(
−GII(y)/(h− d)
GII(y)/(h− d)

)
. (3.55)

Then Uh
i (t) are the solutions of the integral equations∫ h

d

K(y, t)Uh
i (t)dt = Fh

i (y), d < y < h, i = 1, 2, 3 (3.56)

Following from this, we define the matrices

Sij = 〈Fh
i

T
,Uh

j 〉, i, j = 1, 2, 3. (3.57)

From the earlier relations we have(
khâh

0 tan k(b− a)

ikhd̂h
0

)
=

1

(h− d)

∫ h

d

Uh(y)ψ0(y)dy = S11A1 + S12A2 + S13 (3.58)

and(
−a/(h− d)− b̂h0(h− d)/a

a/(h− d)− b̂h0(h− d)/a

)
=

1

(h− d)

∫ h

d

Uh(y)ψ̂0(y)dy = S21A1+S22A2+S23. (3.59)
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These four equations are sufficient to determine the coefficients âh
0 , b̂

h
0 , ĉ

h
0 and d̂h

0 .
The heave component of the heave induced added-mass and radiation damping is defined

as

iω(Aw
22 + iBw

22/ω) = −iωρ

∫ b+a

b−a

φh(x, d)dx. (3.60)

We apply Green’s Identity over region I to φh and Y II and this ends up giving us the relation∫ b+a

b−a

φh(x, d)dx =

∫ b+a

b−a

Y II(x, d)dx− 〈U s
1 , G

II〉+ 〈U s
2 , G

II〉

+

(
a

h− d

)∫ h

d

φ(b+ a, y)dy +

(
a

h− d

)∫ h

d

φ(b− a, y)dy.(3.61)

Then we have ∫ b+a

b−a

Y II(x, d)dx = −a(h− d)− 2

3

a3

(h− d)
. (3.62)

whilst (
a

h− d

)∫ h

d

φ(b± a, y)dy = a(h− d)(ĉh0 ∓ b̂h0)− 1
6
a(h− d). (3.63)

So altogether we get∫ b+a

b−a

φh(x, d)dx = −a(h− d)− 2

3

a3

(h− d)
+ 2a(h− d)ĉh0 −

1

3
a(h− d)

+(h− d)2{S31A
h
1 + S32A

h
2 + S33}. (3.64)

Thus, finally we get

(Aw
22 + iBw

22/ω) = −a(h− d)ρ

[
(2ĉh0 − 4

3
)− 2

3

a2

(h− d)2
+ ((h− d)/a){S31A

h
1 + S32A

h
2 + S33}

]
.

(3.65)
The non-dimensional coefficients are µw

22 = Aw
22/M and νw

22 = Bw
22/(ωM), where M is the

cylinder mass.

3.4 A rolling cylinder next to a wall

We start by defining the particular solutions in each case.
In region I, we have ZI

x(b−a, y) = (y−c) for 0 < y < d and ZI
x(b−a, y) = 0 for d < y < h

in addition to the wall condition on x = 0, so that we write

ZI(x, y) = − M0

kh sin k(b− a)
cos(kx)ψ0(y) +

∞∑
n=1

Mn

knh sinh kn(b− a)
cosh(knx)ψn(y) (3.66)

where Mn are defined in (2.14), (2.15) so that

ZI(b− a, y) = −M0

kh
cot k(b− a)ψ0(y) +HI(y), HI(y) =

∞∑
n=1

Mn

knh
coth kn(b− a)ψn(y).

(3.67)
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Next, in region III, we need ZIII
x (b+ a, y) = (y − c) for 0 < y < d and ZIII

x (b+ a, y) = 0 for
d < y < h and outgoing waves at infinity.

ZIII(x, y) = − iM0

kh
ψ0(y)e

ik(x−b−a) +
∞∑

n=1

Mn

knh
e−kn(x−b−a)ψn(y). (3.68)

Then,

ZIII(a, y) = − iM0

kh
ψ0(y) +HIII(y), where HIII(y) = −

∞∑
n=1

Mn

knh
ψn(y). (3.69)

We also need a particular solution operating the region II. The harmonic potential ZII(x, y)
needs to satisfy ZII

y (x, d) = b−x for b− a < x < b+ a and ZII
x (b± a, y) = 0. Then, we have

ZII(x, y) = 2
∞∑

n=0

(−1)n sinλn(x− b) coshλn(h− y)

λ3
na sinhλn(h− d)

(3.70)

which is a translated version of (2.54) and is such that

ZII(b± a, y) = ±HII(y), HII(y) = 2
∞∑

n=0

coshλn(h− y)

λ3
na sinhλn(h− d)

. (3.71)

With this we define the potentials in I, II and III for the rolling cylinder as, in I

φr(x, y) = ZI(x, y) +

(
ar

0 +
M0

kh sin(k(b− a))

)
cos(kx)ψ0(y) +

∞∑
n=1

ar
n cosh(knx)ψn(y) (3.72)

in II

φr(x, y) = ZII(x, y)+ (br0(x− b)+ cr0)ψ̂0(y)+
∞∑

n=1

(
brn sinhµn(x− b)+ crn coshµn(x− b)

)
ψ̂n(y)

(3.73)
and in III

φr(x, y) = ZIII(x, y) +

(
dr

0 +
iM0

kh

)
eik(x−b−a)ψ0(y) +

∞∑
n=1

dr
ne−kn(x−a)ψn(y). (3.74)

Then we let U r
1 (y) = φr

x(b− a, y) so that we obtain

−khar
0 sin k(b− a)−M0 = 〈U r

1 , ψ0〉, knh sinh kn(b− a)ar
n = 〈U r

1 , ψn〉 (3.75)

and

br0(h− d) = 〈U s
1 , ψ̂0〉, nπ(brn cosh(µna)− crn sinh(µna)) = 〈U r

1 , ψ̂n〉. (3.76)

Now letting U r
2 (y) = φr

x(b+ a, y) we have

ikhdr
0 −M0 = 〈U r

2 , ψ0〉, −knhd
r
n = 〈U r

2 , ψn〉 (3.77)
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and

br0(h− d) = 〈U r
2 , ψ̂0〉, nπ(brn cosh(µna) + crn sinh(µna)) = 〈U r

2 , ψ̂n〉. (3.78)

Matching pressures across x = b− a for d < y < h gives

HI(y) + ar
0 cos k(b− a)ψ0(y) +

∞∑
n=1

ar
n cosh kn(b− a)ψn(y) =

−HII(y) + (−br0a+ cr0)ψ̂0(y) +
∞∑

n=1

(−brn sinh(µna) + crn cosh(µna))ψ̂n(y) (3.79)

And matching pressures across x = b+ a for d < y < h gives

HIII(y) + dr
0ψ0(y) +

∞∑
n=1

dr
nψn(y) =

HII(y) + (br0a+ cr0)ψ̂0(y) +
∞∑

n=1

(brn sinh(µna) + crn cosh(µna))ψ̂n(y) (3.80)

Using the relations above in these two equations gives∫ h

d

U r
1 (t)K11(y, t)dt+

∫ h

d

U r
2 (t)K12(y, t)dt =

−ar
0 cos k(b− a)ψ0(y)− (br0a− cr0)ψ̂0(y)− (HI(y) +HII(y)) (3.81)

and∫ h

d

U r
1 (t)K21(y, t)dt+

∫ h

d

U r
2 (t)K22(y, t)dt = dr

0ψ0(y)− (br0a+ cr0)ψ̂0(y) + (HIII(y)−HII(y))

(3.82)
where K11(y, t) K12(y, t), K21(y, t) and K22(y, t) are as before.

We can write the coupled integral equations in matrix/vector form as

Ur(y) =

(
U r

1 (y)
U r

2 (y)

)
, Ur(y) = d2 (Ur

1(y)A
r
1 + Ur

2(y)A
r
2 + Ur

3(y)) (3.83)

where

Ur
1(y) =

(
ur

1(y) ur
3(y)

ur
2(y) ur

4(y)

)
, Ur

2(y) =

(
ur

5(y) ur
7(y)

ur
6(y) ur

8(y)

)
, Ur

3(y) =

(
ur

9(y)
ur

10(y)

)
(3.84)

and

Ar
1 =

(
âr

0

d̂r
0

)
, Ar

2 =

(
b̂r0 + ĉr0
b̂r0 − ĉr0

)
(3.85)

where âr
0 = −ar

0 cos k(b− a)/d2, b̂r0 = −br0a/d2, ĉr0 = cr0/d
2 and d̂r

0 = dr
0/d

2.
Also, we let

Fr
1(y) =

(
ψ0(y) 0

0 ψ0(y)

)
, Fr

2(y) =

(
ψ̂0(y) 0

0 ψ̂0(y)

)
,

Fr
3(y) =

(
(−HI(y)−HII(y))/d2

(HIII(y)−HII(y))/d2

)
. (3.86)
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Then Ur
i (t) are the solutions of the integral equations∫ h

d

K(y, t)Ur
i (t)dt = Fr

i (y), d < y < h, i = 1, 2, 3. (3.87)

Following from this, we define the matrices

Tij = 〈Fr
i
T,Ur

j〉, i, j = 1, 2, 3. (3.88)

From the earlier relations, (3.77), (3.78) we have(
khâr

0 tan k(b− a)

ikhd̂r
0

)
−
(
M0/d

2

M0/d
2

)
=

1

d2

∫ h

d

Ur(y)ψ0(y)dy = T11A1+T12A2+T13 (3.89)

and

−
(
b̂r0(h− d)/a

b̂r0(h− d)/a

)
=

1

d

∫ h

d

Ur(y)ψ̂0(y)dy = T21A1 + T22A2 + T23. (3.90)

These four equations are sufficient to determine the coefficients âr
0, b̂

r
0, ĉ

r
0 and d̂r

0.
The roll component of the roll induced added-mass and radiation damping is defined as

iω(Aw
33 + iBw

33/ω) = −iωρ

∫ d

0

φr(b+ a, y)(y − c)dy + iωρ

∫ d

0

φr(b− a, y)(y − c)dy

−iωρ

∫ b+a

b−a

φr(x, d)(b− x)dx. (3.91)

We apply Green’s Identity over region I to φr and ZI and this ends up giving us the relation∫ d

0

φr(b− a, y)(y − c)dy =

∫ d

0

ZI(b− a, y)(y − c)dy +

∫ h

d

ZI(b− a, y)U r
1 (y)dy

= −d2âr
0M0 +

∞∑
n=1

M2
n coth kn(b− a)

knh
+ 〈U r

1 , H
I〉. (3.92)

Next, in region III, use of φr and ZIII gives, in much the same way∫ d

0

φr(b+ a, y)(y − c)dy = d2d̂r
0M0 −

∞∑
n=1

M2
n

knh
+ 〈U r

2 , H
III〉. (3.93)

In region II, we use φr and ZII and get∫ b+a

b−a

φr(x, d)(b− x)dx =

∫ b+a

b−a

ZII(x, d)(b− x)dx− 〈U r
1 , H

II〉 − 〈U r
2 , H

II〉. (3.94)

Using (3.92)–(3.94) in (3.91) gives

(Aw
33 + iBw

33/ω) = −ρd4

[
(d̂s

0 + âs
0)(M0/d

2)−
∞∑

n=1

(Mn/d
2)2

knh
(1 + coth kn(b− a))

−4
∞∑

n=0

cothλn(h− d)

λ5
nad

4
+ AT

1 T31 + AT
2 T32 + T33

]
. (3.95)

The non-dimensional added-mass and damping are µw
33 = Aw

33/I and νw
33 = Bw

33/(Iω) where
I is the moment of inertia of the cylinder about its point of rotation.
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3.5 The remaining hydrodynamic coefficients: the cross terms

Having dealt with Aw
ii and Bw

ii for i = 1, 2, 3 in each of the three preceding sections,
we move onto calculating the off-diagonal coefficients. It is easy to establish reciprocity
relations, namely that Aw

ij = Aw
ji and Bw

ij = Bw
ji for i, j = 1, 2, 3.

The components of added-mass and radiation damping in sway, induced by forced heave
motion, are defined as

iω(Aw
21 + iBw

21/ω) = −iωρ

∫ d

0

φh(b+ a, y)dy + iωρ

∫ d

0

φh(b− a, y)dy. (3.96)

For the first integral, we use Green’s Identity in region III with φh and XIII to give∫ d

0

φh(b+ a, y)dy =

∫ h

d

Uh
2 (y)dy = − iL0

kh
〈Uh

2 , ψ0〉+ 〈Uh
2 , F

III〉 = (h− d)L0d̂
h
0 + 〈Uh

2 , F
III〉.

(3.97)
Next, in region I apply Green’s Identity to φh and XI . Then∫ d

0

φh(b− a, y)dy =

∫ h

d

Uh
2 (y)dy = −L0 cot k(b− a)

kh
〈Uh

1 , ψ0〉+ 〈Uh
1 , F

I〉

= −(h− d)L0â
h
0 + 〈Uh

1 , F
I〉. (3.98)

Using (3.97), (3.98) in (3.96)

Aw
21 + iBw

21/ω = −d(h− d)ρ
[
(L0/d)(d̂

h
0 + âh

0) + (h− d)−1〈Fs
3
T ,Uh〉

]
. (3.99)

The final inner product can be expanded as

(h− d)−1〈Fs
3
T ,Uh〉 = 〈Fs

3
T ,Uh

1〉Ah
1 + 〈Fs

3
T ,Uh

2〉Ah
2 + 〈Fs

3
T ,Uh

3〉. (3.100)

The reciprocal of this is the added-mass and radiation damping in heave, induced by forced
sway motion

iω(Aw
12 + iBw

12/ω) = −iωρ

∫ b+a

b−a

φs(x, d)dx. (3.101)

Use of Green’s Identity in region II with φs and Y II gives∫ b+a

b−a

φs(x, d)dx =

(
a

h− d

)∫ h

d

φs(b+ a, y)dy +

(
a

h− d

)∫ h

d

φs(b− a, y)dy

−〈U s
1 , G

II〉+ 〈U s
2 , G

II〉. (3.102)

It follows that

Aw
12 + iBw

12/ω = −adρ
[
2ĉs0 +

(h− d)

ad
〈Fh

3

T
,Us〉

]
. (3.103)

The final inner product can be expanded using

d−1〈Fh
3

T
,Us〉 = 〈Fh

3

T
,Us

1〉As
1 + 〈Fh

3

T
,Us

2〉As
2 + 〈Fh

3

T
,Us

3〉. (3.104)

Moving onto the heave components of added mass and radiation damping induced by roll
motion we have

iω(Aw
32 + iBw

32/ω) = −iωρ

∫ b+a

b−a

φr(x, d)dx. (3.105)
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Use of Green’s Identity in region II with φs and Y II gives∫ b+a

b−a

φr(x, d)dx =

(
a

h− d

)∫ h

d

φr(b+ a, y)dy +

(
a

h− d

)∫ h

d

φr(b− a, y)dy

+

∫ b+a

b−a

(b− x)Y II(x, d)dx− 〈U r
1 , G

II〉+ 〈U r
2 , G

II〉. (3.106)

The 3rd integral evaluates to zero, the first two are evaluated easily from the expressions for
φr on x = b± a in (3.72)–(3.74) and so we get

Aw
32 + iBw

32/ω = −ad2ρ

[
2ĉr0 +

(h− d)

ad2
〈Fh

3

T
,Ur〉

]
. (3.107)

The reciprocal of this is roll component of added-mass and radiation induced by heave motion
is

iω(Aw
23 + iBw

23/ω) = −iωρ

∫ d

0

φh(b+ a, y)(y − c)dy + iωρ

∫ d

0

φh(b− a, y)(y − c)dy

−iωρ

∫ b+a

b−a

φh(x, d)(b− x)dx.(3.108)

We apply Green’s Identity over region I to φh and ZI and this ends up giving us the relation∫ d

0

φh(b− a, y)(y − c)dy =

∫ h

d

ZI(b− a, y)Uh
1 (y)dy

= −(h− d)âh
0M0 + 〈Uh

1 , H
I〉. (3.109)

Next, in region III, use of φh and ZIII gives, in much the same way∫ d

0

φh(b+ a, y)(y − c)dy = (h− d)d̂h
0M0 + 〈Uh

2 , H
III〉. (3.110)

In region II, we use φh and ZII and get∫ b+a

b−a

φh(x, d)(b− x)dx = −〈Uh
1 , H

II〉 − 〈Uh
2 , H

II〉. (3.111)

Thus, finally,

Aw
23 + iBw

23/ω = −ρ(h− d)d2
[
(d̂h

0 + âh
0)(M0/d

2) + (h− d)−1〈Fr
3
T,Uh〉

]
. (3.112)

The non-dimensional added-mass and damping are µw
23 = Aw

23/
√
MI and νw

23 = Bw
23/(

√
MIω)

where M and I are the mass and moment of inertia of the cylinder. Similarly for µw
32 and

µw
32, as well as the 13 and 31 components below.

Finally, the last set of two coefficients turn out, using similar methods to above, to be

Aw
13+iBw

13/ω = −ρd3

[
(d̂s

0 + âs
0)(M0/d

2)−
∞∑

n=1

(MnLn/d
3)

knh
(1 + coth kn(b− a)) + d−1〈Fr

3
T,Us〉

]
(3.113)

with

Aw
31+iBw

31/ω = −ρd3

[
(d̂r

0 + âr
0)(L0/d)−

∞∑
n=1

(MnLn/d
3)

knh
(1 + coth kn(b− a)) + d−1〈Fs

3
T,Ur〉

]
.

(3.114)
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3.6 Numerical implementation of the solutions of section 3

In each problem, the solution is decomposed into ten unknown functions which we ap-
proximate in terms of a series solution as

us,h,r
i (y) ≈

N∑
n=0

αs,h,r
n,i vn(y), d < y < h (3.115)

(i = 1, . . . , 10). Here, vn(y) are the same as defined earlier towards the end of section 2.
We apply the Galerkin scheme as before. In matrix form, this process leads to a system

of linear equations for the ten sets of coefficients, which we write in the form(
K

(11)
m,n K

(12)
m,n

K
(21)
m,n K

(22)
m,n

)
αs,h,r = f s,h,r (3.116)

where

αs,h,r =

(
αs,h,r

n,1 αs,h,r
n,3 αs,h,r

n,5 αs,h,r
n,7 αs,h,r

n,9

αs,h,r
n,2 αs,h,r

n,4 αs,h,r
n.6 αs,h,r

n,8 αs,h,r
n,10

)
(3.117)

and

f s,h,r =

(
F

(s,h,r;1)
m 0 F

(s,h,r;2)
m 0 F

(s,h,r;9)
m

0 F
(s,h,r;1)
m 0 F

(s,h,r;2)
m F

(s,h,r;10)
m

)
(3.118)

for m = 0, . . . , N (where summation is implied by repeated suffices). The partitioning
indicates the separation between, and the structure of, the three separate integral equations.
In the above,

K(11)
m,n =

∞∑
r=1

{
coth kr(b− a)

krh
F (1)

r,mF
(1)
r,n +

coth(2µra)

rπ
F (2)

r,mF
(2)
r,n

}
(3.119)

K(12)
m,n = K(21)

m,n = −
∞∑

r=1

cosech(2µra)

rπ
F (2)

r,mF
(2)
r,n (3.120)

and

K(22)
m,n =

∞∑
r=1

{
1

krh
F (1)

r,mF
(1)
r,n +

coth(2µra)

rπ
F (2)

r,mF
(2)
r,n

}
(3.121)

where F
(1)
r,m, F

(2)
r,m and F

(s,h,r;1)
m , F

(s,h,r;2)
m are all defined as in section 2. The new terms here

are

F (s;9)
m = −

∞∑
r=1

Lr coth kr(b− a)

krh
F (1)

r,m, F (s;10)
m = F (s;3)

m (3.122)

with
F (h;9)

m = F (h;3)
m , F (h;10)

m = −F (h;3)
m (3.123)

and

F (r;9)
m = −

∞∑
r=1

Mr coth kr(b− a)

krh
F (1)

r,m − 2
∞∑

r=0

(−1)mI2m+1/6(λr(h− d))

λ3
rad

2[λr(h− d)]1/6 sinhλr(h− d)
, (3.124)
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and F
(r;10)
m = F

(r;3)
m . These new terms are all expressed in terms of expressions defined in

section 2. The simplest way of expressing the matrices Pij is in the block partitioned form P11 P12 P13

P21 P22 P23

P31 P32 P33

 = fT
s αs (3.125)

where the matrices are 5 × 5 and partitioned into a (2,2,1) row and column structure. For
example, P13 is a vector of two rows and one column, P33 is a 1×1 matrix (i.e. a coefficient).
Similarly,  S11 S12 S13

S21 S22 S23

S31 S32 S33

 = fT
h αh (3.126)

and  T11 T12 T13

T21 T22 T23

T31 T32 T33

 = fT
r αr (3.127)

There are also other inner products lurking in amongst the expressions for the off-diagonal
hydrodynamic coefficients.

For example, the set of matrix inner products required in the calculation of A21, B21 are
〈Fs

3
T,Uh

i 〉 for i = 1, 2, 3. These can be extracted from the appropriately partitioned elements
of the bottom row of the 5× 5 matrix formed by the multiplication of fT

s αh.

3.7 Low frequency asymptotics

We consider the exact results for the heave-induced heave radiation damping, given by
the imaginary part of (3.65), in the limit as kd → 0. This result is analogous to the one
considered for a single cylinder in heave in §2.8.

We follow the same initial reasoning as described in §2.8, which implies that Fh
1 ∼ Fh

2

(which means the terms ignored are order (kh)2 and that the correspondance is element by
element) which implies that Uh

1 ∼ Uh
2 . This in turn means that S11 ∼ S12 ∼ S21 ∼ S22

whilst S13 ∼ S23.
These approximations are used in the four equations (3.57), (3.58) defining the four

coefficients ah
0 , b

h
0 , c

h
0 and dh

0 . By structuring the equations appropriately, one can form a
matrix equation for the vector of four unknowns in which the coefficient matrix is symmetric
and involves the four elements of S11 only (under this approximation). Using a symbolic
algebra package, this system is inverted and the imaginary part extracted. As a result, it is
then easy to confirm that, as kh→ 0,

={ah
0} ∼

2ia

kh(h− d)
, ={bh0} ∼ 0, ={ch0} ∼

−2ia

kh(h− d)
, ={dh

0} ∼
−2ia

kh(h− d)
(3.128)

Using this in (3.65) shows that ν22 ∼ 2a/(khd) as kh→ 0, exactly the same result as for an
isolated cylinder in
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