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Wave absorption by a metamaterial cavity

I. INTRODUCTION11

The Helmholtz resonator is a classical device used for suppressing transmission of waves12

along waveguides by enhancing reflection and/or absorption of wave energy1. The resonator13

is usually comprised of a chamber with a narrow neck which connects to the waveguide.14

The geometry of the Helmholtz resonator determines its resonant frequencies and its inter-15

action with propagating waveguide modes becomes significant close to these frequencies2.16

For example, when damping is absent total reflection can occur and, with visco-thermal17

losses accounted for, it is possible to absorb up to half of the incident wave energy close to18

resonance3. Perfect absoprtion can be achieved by two resonators4,5 and multiple resonators,19

tuned to different frequencies, extend these effects over multiple frequencies6, having a close20

connection to a phenomenon labelled “rainbow trapping” in Physics7.21

In undamped periodic arrays of scatterers, stop bands are defined as the ranges of fre-22

quencies over which unattenuated wave propagation is prohibited within the array; these23

generally depend on scattering geometry and spacing. Rainbow trapping occurs when arrays24

are designed with a slow modulation of geometry and/or spacing along their length8–10 and25

waves of different frequencies encounter stop bands at different positions along the array.26

At the edges of stop bands the group velocity is zero and a field of high intensity is locally27

trapped. Thus, a modulated array acts to block wave transmission over a broad range of28

wave frequencies. When damping is added, broadbanded absorption of wave energy can be29

induced6,11.30
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Rainbow trapping can be achieved by passive structures or micro-resonators in 2D or31

3D12,13. One such device is to use a comb-like grating consisting of an array of grooves of32

tapered length or width which act as micro-resonators8–10,14.33

In this paper we consider a two-dimensional waveguide with a cavity attached to one wall.34

The cavity possesses a microstructure consisting of multiple equally-spaced narrow channels35

separated by thin parallel plates extending perpendicular to the waveguide. Each micro-36

channel acts as a Helmholtz resonator whose fundamental resonant frequency depends on37

its length. By arranging the micro-channels to extend over a range of lengths in a linearly-38

tapered array we construct a broadbanded resonant cavity. The assumption of narrowness39

of the micro-channels implies that in the physical setting of acoustics viscous losses will40

be important and should be included in the governing equations. Within this paper we41

model these losses by adding a linear damping3,15 which manifests itself as a complex-valued42

wavenumber within the cavity.43

The solution to the problem of discrete micro-channels is hard to solve by exact analytical44

methods and it is typical to use Finite Element Method simulations8–10,14, or asymptotic45

approximations16. Instead, here we take advantage of the contrast in lengthscales between46

the microstructure and the other lengthscales in the problem and use a homogenisation47

approach to replace the microstructured cavity by an effective medium/continuum. This48

particular approximation has been shown to work well when compared to exact mathematical49

description of the array in a related problem17.50

Within the framework of linearised acoustics the mathematical solution to the boundary-51

value problem is treated semi-analytically, by employing Fourier transforms within the52
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waveguide and matching to an exact description of the effective wave field within the cavity.53

The matching gives rise to an integral equation for an unknown function across the join54

between waveguide and cavity. Application of a standard Galerkin approximation results in55

a linear system of equations which is straightforward to compute – details are contained in56

Section 2 of the paper. Section 3 considers expressions for the damping coefficient, a measure57

of the proportion of wave power absorbed by the cavity. Section 4 contains a range of results58

and extended discussion of various features of the solution which arise and conclusions follow59

in Section 5.60

II. DESCRIPTION OF THE PROBLEM61

In terms of two-dimensional Cartesian coordinates (x, y) a compressible fluid fills a long62

uniform waveguide with sound-hard walls along y = 0, −∞ < x <∞ and y = a, |x| > c. A63

cavity attaches to the waveguide along a finite length of one wall {|x| < c, y = a}. Inside64

this cavity the compressible fluid fills narrow channels between a closely-spaced cascade of65

thin parallel plates aligned with the y-axis. The length of each of the channels can vary as66

a function of x as illustrated in Fig. 1.67

Within the waveguide, ℜ{ψ(x, y)e−iωt} represents time-harmonic variations of the pres-68

sure field where the complex-valued function ψ(x, y) satisfies69

(∇2 + k2)ψ = 0, −∞ < x <∞, 0 < y < a. (1)
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y = a
x = −c x = c

y

x

Incident wave

Reflected waves

Transmitted waves

FIG. 1. Definition sketch of the waveguide and plate-array metamaterial cavity.

where k = ω/cs where cs is the wave speed in the waveguide. The walls of the waveguide70

are sound-hard so71

ψy(x, 0) = 0, and ψy(x, a) = 0, for |x| > c. (2)

A wave of unit amplitude is incident from x = −∞ and is partially reflected and partially72

transmitted due to the effect of the cavity. Separation of variables applied to (1) with (2)73

in |x| > c determines that74

ψ(x, y) ∼ eikx +
N
∑

n=0

Rne
−iαnx cos(nπy/a), x → −∞ (3)

and75

ψ(x, y) ∼
N
∑

n=0

Tne
iαnx cos(nπy/a), x → ∞ (4)

where Rn, Tn are reflection and transmission coefficients, to be found, and the higher-order76

wavenumbers are defined by the real quantities77

αn =
√

k2 − (nπ/a)2, n = 0, 1, . . . , N (5)

and N = ⌊ka/π⌋ is the integer part of ka/π.78
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Within the cavity, the closely-spaced array of plates has the effect of restricting the propa-79

gation of waves to the y-direction and the equation governing the fluid/plate microstructure80

is represented by81

(∂yy + µ2)ψ = 0 (6)

in y > a for |x| < c. A formal derivation of (6) can be made by rescaling the x-coordinate82

within micro-channels width d where ǫ = kd ≪ 1. Equating orders of magnitude in ǫ uses83

the local lateral boundary conditions on the micro-channel walls en route to the derivation84

of (6); see16. In (6), µ ∈ C replaces k to allow viscous damping effects within the cavity due85

to the narrowness of the micro-channels, and is defined (see15 §2.7, for example) by86

µ = k + i
√
kσ, σ = (ν/2cs)

1/2/(2d) (7)

where ν is the kinematic viscosity of the fluid and a small adjustment to the real component87

of the wavenumber has been neglected.88

We remark that the current problem has an analogue in electromagnetic setting for TM-89

polarised waves in two-dimensional waveguide with perfectly-electric conducting surfaces in90

which µ represents the effect of a dielectric18,19. In accordance with the use of a continuum91

model (6) to describe the microstructure of the array, the terraced upper boundary of the92

metamaterial cavity illustrated in Fig. 1 is represented by the continuous line y = b +mx93

(such that b±mc > a); on this boundary we impose94

ψy = 0. (8)

Solutions of (6) with (8) are given by95

ψ(x, y) = u(x)
cosµ(b+mx− y)

µ sinµ(b+mx− a)
(9)
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in terms of the unknown function u(x) = ψy(x, a) for |x| < c.96

Within the waveguide, solutions are sought using Fourier transforms. Thus we define97

Ψ(l, y) =

∫

∞

−∞

(

ψ(x, y)− eikx
)

e−ilx dx (10)

to be the Fourier transform of the scattered part of the field and l is the Fourier transform98

variable. The inverse is99

ψ(x, y) = eikx +
1

2π

∫

∞

−∞

Ψ(l, y)eilx dl (11)

in which the contour of integration will be defined to satisfy the radiation condition. That100

is the contribution to ψ(x, y) as x→ ±∞ from the integral must defined outgoing waves.101

Taking the Fourier transform of (1) gives102

Ψ′′(l, y)− γ2Ψ(l, y) = 0, 0 < y < a (12)

where γ2 = l2 − k2, whilst the Fourier transform of (2) gives Ψ′(l, 0) = 0 and103

Ψ′(l, a) =

∫

∞

−∞

∂

∂y

(

ψ(x, y)− eikx
)

y=a
e−ilx dx = U(l) ≡

∫ c

−c

u(x)e−ilx dx (13)

using (2). Thus, the transform function can be written104

Ψ(l, y) =
U(l) cosh γy

γ sinh γa
(14)

and using (11) we have105

ψ(x, y) = eikx +
1

2π

∫

∞

−∞

U(l) cosh γy

γ sinh γa
eilx dl. (15)

It is evident from (15) that there are poles on the axis of integration at l = ±αn for106

n = 0, . . . , N and these relate to propagating modes at x → ∞. In order that energy is107
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outgoing, the contour is chosen to pass below the poles l = αn on the positive real l-axis and108

above the poles l = −αn on the negative real l-axis. This definition means that as x→ ∞,109

ψ(x, y) ∼ eikx +
N
∑

n=0

iǫn(−1)nU(αn)

2αna
eiαnx cos(nπy/a) (16)

where ǫ0 = 1, ǫn = 2 for n ≥ 1, an expression found by deforming the contour of integration110

into the upper-half plane and evaluating contributions from the poles along l = αn. Similarly,111

we find that as x→ −∞112

ψ(x, y) ∼ eikx +
N
∑

n=0

iǫn(−1)nU(−αn)

2αna
e−iαnx cos(nπy/a) (17)

found by deforming the contour of integration into the lower-half plane and evaluating113

contributions from poles at l = −αn.114

Comparing with (3), (4) we find that115

Rn =
iǫn(−1)nU(−αn)

2αna
, n = 0, 1, . . . , N (18)

and116

Tn = δn0 +
iǫn(−1)nU(αn)

2αna
, n = 0, 1, . . . , N. (19)

The formulation is completed by matching the two representations of ψ(x, y), (9) and117

(15) across the common boundary y = a, |x| < c. Thus118

cotµ(b− a+mx)

µ
u(x)− 1

2π

∫

∞

−∞

coth γa

γ
eilx
∫ c

−c

u(x′)e−ilx′

dx′ dl = eikx (20)

for |x| < c represents an integral equation for u(x).119

A numerical solution of this equation will be sought by expanding u(x) using a finite120

complex Fourier series over −c < x < c. I.e. we write121

u(x) ≈
P
∑

p=−P

cpup(x/c), where up(t) = (−1)peipπt/c (21)
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in which cp are coefficients to be determined and the value of P will be chosen to ensure the122

numerical solution is sufficiently converged – this is discussed further in the results section.123

Substituting (21) into (20) and then multiplying by the conjugate u∗q(x/c), q = −P, . . . , P124

and integrating over −c < x < c gives the algebraic system of equations125

P
∑

p=−P

(Lpq −Mpq) cp = Fq(kc), q = −P, . . . , P (22)

for the unknown coefficients cp where126

Lpq =
(−1)p+q

2µc2

∫ c

−c

eiπ(p−q)x/c cotµ(b− a +mx) dx (23)

and127

Mpq =
1

π

∫

∞

−∞

coth γa

γ
Fp(lc)Fq(lc) dl (24)

with128

Fp(lc) =
1

2

∫ c

−c

up(x/c)e
−ilx dx =

sin(lc)

lc− pπ
. (25)

Note that if m = 0, Lpq = δpq cot[µ(b− a)]/(µc). Work is also required to arrange Mpq into129

a computable form and these details are contained in the Appendix.130

Using (21) in (17), (18) with (13) gives131

Rn =
iǫn(−1)n

αna

P
∑

p=−P

cpFp(−αnc), n = 0, . . . , N (26)

and132

Tn = δn0 +
iǫn(−1)n

αna

P
∑

p=−P

cpFp(αnc), n = 0, . . . , N. (27)
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III. DAMPING133

The time-averaged flux of energy crossing a boundary S with unit normal n̂ is calculated,134

for any pressure field p(x, y) satisfying (1), from135

ωρ

2
ℑ
{

−
∫

S

p(n̂ · ∇p∗) ds
}

. (28)

where ρ is the fluid density, ds is the arclength along S and the asterisk denotes complex136

conjugate. When p(x, y) = eikx and the boundary, S, is the interval 0 < y < a for a137

constant x, the quantity above equates to 1
2
ωρa; this is the power in the incident wave of138

unit amplitude travelling along the waveguide defined in §2.139

In the scattering problem considered in the previous section, we can evaluate the outgoing140

energy flux by application of (28) to the function p(x, y) ≡ ψ(x, y) − eikx for x → −∞ as141

given by (3) and by application of p(x, y) = ψ(x, y) as x→ ∞ as in (4).142

The mean energy absorption ratio – or damping coefficient – is defined by the mean143

incoming power minus the total mean outgoing power normalised by the mean incoming144

power. For the problem considered in §2 this is calculated to be145

η = 1−
N
∑

n=0

αn

ǫn

(

|Rn|2 + |Tn|2
)

. (29)

I.e. η = 0 is non-absorbing and η = 1 represents total absorption of incident wave energy.146

An independent calculation of η can be obtained by measuring the mean rate of energy147

loss across the boundary y = a, −c < x < c between the cavity and the waveguide using148

(28). Once normalised with respect to the power of the incoming wave of unit amplitude,149

this gives150

η =
1

a
ℑ
{

−
∫ c

−c

ψ(x, a)ψ∗

y(x, a) dx

}

. (30)
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When used with the definition (9) this gives151

η =
1

a
ℑ
{

−
∫ c

−c

|u(x)|2cotµ(b+mx− a)

µ
dx

}

. (31)

In terms of the results of the numerical scheme the above is expressed as152

η ≈ −2c

a
ℑ
{

P
∑

p=−P

P
∑

q=−P

cpc
∗

qLpq

}

. (32)

When m = 0 the simplification to Lpq reduces this to expression to153

η ≈ −2c

a
ℑ{cot[µ(b− a)]/(µc)}

P
∑

p=−P

|cp|2. (33)

Either (29) or (32)/(33) for m = 0 can be used to calculate the damping coefficient. Nu-154

merically, we find agreement between the two expressions to machine precision in computed155

results (indeed, it can be proved with some effort that one does imply the other) and thus156

serves only as a check on the implementation of the method, not an indicator of the accuracy157

of the numerical results.158

IV. RESULTS159

The focus of our results are |Rn|, |Tn|, the amplitude of the scattering coefficients and160

on the damping coefficient η. Numerically these are computed by (26), (27) and (29) or161

(32) which depend on the solution to the system of equations (22). Approximations result162

from the truncation to 2P + 1 terms of the system of equations and from the truncation of163

the infinite integrals. We have conducted exhaustive tests on convergence of the results and164

conclude that truncating integrals to l = 400 and using P = 5 gives accuracy to more than165

four decimal places in all results presented, apart from where special comments apply. For166
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FIG. 2. Variation of reflection coefficients with ka (magnified scale in (b)) for a lossless rectangular

metamaterial cavity b/a = 2, c/a = 0.2, m = 0 and µ = k.

many, but not all, cases truncation to l = 10 and using P = 1 are sufficient; the numerical167

scheme is generally very quick and efficient to run.168

We start by considering m = 0 so that the metamaterial cavity is rectangular and µ = k169

so that there is no damping. We pick an example which illustrates the effect of this basic170

cavity by selecting b/a = 2, c/a = 0.2. Results showing the amplitudes of the reflected and171

transmitted wave coefficients |Rn|, |Tn| are shown, as ka varies, in Fig. 2(a) with Fig. 2(b)172

focussing on results close to ka = 1
2
π. The higher order modes are cut-on at ka = nπ,173

n = 1, 2, . . . and thus there are two modes shown in π < ka < 2π. We have displayed174

only reflected wave amplitudes in order to make the graphs presentable. The behaviour of175

scattering coefficients is complicated as ka approaches 1
2
π and 3

2
π.176

These two values have a particular physical significance as they are related to the eigen-177

solutions to the 1D wave equation in the channels formed by the metamaterial. That is,178
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at these frequencies the channels within the metamaterial cavity support a resonant wave179

with a node at the opening, y = a, and an antinode at the end of the channel, y = b.180

For the rectangular cavity considered in Fig. 2, this resonance condition is the same for all181

micro-channels: ka = (q + 1
2
)π/(b/a − 1), q = 0, 1, . . .. Thus, in the case shown in Fig. 2,182

where b/a = 2, resonance is predicted at ka = 1
2
π and ka = 3

2
π.183

A higher numerical truncation parameter, P , is required as ka → 1
2
π to resolve the184

increasingly oscillatory behaviour of the scattering coefficients, suggesting an increasing185

frequency in oscillations in the field between the two sidewalls of the cavity. This has been186

confirmed by numerical results not shown here.187

1e-08

1e-07

1e-06

1e-05

1e-04

1e-03

1e-02

1e-01

1e+00

 0.001  0.01  0.1  1
ℜ(λn)

ℑ(λn)

FIG. 3. The eigenvalues of the matrix M with elements Mpq for P = 32 (circles) and P = 16

(crosses) and with ka = 1.5, b/a = 2, c/a = 0.2.

In order to understand the complex behaviour seen in the results we need to understand188

the integral operator in (20). The operator is non-self-adjoint principally on account of189

the particular sense in which deformations have been made to the contour of integration190

to avoid poles in |l| ≤ 1 located on the real integration axis. A self-adjoint version of the191
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integral operator, in which integration is confined to the real l-axis and with integration192

across poles are interpreted in the Cauchy principal-value sense, has the property that its193

eigenvalues, λn, are positive and have zero as a limit point (i.e. with 0 < λn+1 < λn, λn → 0194

as n → ∞)20. In this regard an alternative formulation of the problem is possible in which195

this self-adjoint operator takes the part of the existing non-self-adjoint operator in (20) but196

happens at the expense of increased algebraic complication elsewhere; the rearrangement of197

terms give rise to a scattering matrix formulation reliant on the solution of 2N+2 uncoupled198

integral equations. However, it is not clear that pursuing such an approach brings any clear199

advantage or clarity to the problem.200

In the numerical method the eigenvalues of the non-self-adjoint integral operator are201

manifested as eigenvalues of the matrix M (with elements Mpq defined by (24)). There are202

now a finite number of these eigenvalues which are complex but with imaginary parts smaller203

than their real parts – see Fig. 3. The sequence of eigenvalues formed by taking an increased204

truncation parameter P tends to zero with positive real and imaginary parts and matches205

the behaviour anticipated above. When m = 0 and µ = k, b/a = 2 the matrix elements206

Lpq = δpq cot(ka) from (23) and it is clear from (22) that near resonance arises when the207

real-valued cot(ka) passes close to the complex eigenvalues of the matrix M . With reference208

to Fig. 5 as ka → 1
2
π from below this happens with increasing frequency and the strength209

of the near resonance increases; this explains the plot in Fig. 2. Note that the same effect210

is replicated at higher frequencies – as ka→ (q + 1
2
)π/(b/a− 1) for any integer q = 0, 1, . . .211

and any value of b/a.212
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FIG. 4. Variation of scattering and damping coefficients with ka for a rectangular metamaterial

cavity b/a = 2, c/a = 0.2, m = 0 and µ = k + iσ
√
k with σ = 0.001 in (a) and σ = 0.01 in (b).

It is tempting to conclude that there is no solution in Fig. 2 at ka = 1
2
π. However for213

b/a = 2, m = 0, ka = 1
2
π the solution in the metamaterial cavity satisfies ψ(x, a) = 0214

for |x| < c. Thus, the solution in the waveguide must satisfy ψ(x, a) = 0 for |x| < c in215

addition to (1), (2) and radiation conditions and is therefore decoupled from the solution216

in the cavity. This waveguide boundary-value problem is well-posed and the solution can217

be expressed using Fourier transforms by (20) but with the first term absent. The solution,218

u(x), representing ψy(x, a), |x| < c, sets the value of ψ(x, y) within metamaterial cavity. On219

account of the boundary condition across |x| < c being homogenous Dirichlet and (2) for220

|x| > c being homogeneous Neumann, the solution, u(x), is known to possess inverse square221

root singularities as |x| → c−, (e.g.2). We have used a modified set of functions222

up(t) =
2e−ipπ/2Tp(t)

π
√
1− t2

, (34)
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where Tn(t) are Chebychev functions, in place of those defined in (22)2 which results in223

Fp(lc) = Jp(lc) replacing (25). The revised numerical scheme has been used to compute224

accurate and rapidly-convergent solutions for the specific case relating to ka = 1
2
π in Fig. 2.225

Computation of results for the problem with parameters used in Fig. 2 evaluated at226

exactly ka = 1
2
π returns values for |R0| of 0.551615 (P = 8), 0.551301 (P = 16), 0.55115227

(P = 32) and 0.55113 (P = 64). With (34) we find |R0| = 0.55105 to five significant figures228

with a truncation parameter of P = 1.229

In Figs. 4(a,b) we consider the effect on the results shown in Fig. 2 of adding small (but230

increasing) amounts of damping. Thus we retain the geometrical parameters m = 0 and231

b/a = 2, c/a = 0.2, but take µ = k + 0.001i
√
k and µ = k + 0.01i

√
k in the two plots.232

In Figs. 4(a,b) we add the transmission coefficient, |T0|, and the damping coefficient, η. A233

small amount of damping smooths out the rapid fluctuations in scattering coefficients.234

 0
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 0.3
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 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0  0.5  1  1.5  2
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|R0|

FIG. 5. Variation of |R0| with ka for a lossless (µ = k) tapered metamaterial cavity b/a = 2,

c/a = 0.2, m = 1.
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FIG. 6. Variation of (a) scattering and (b) damping coefficients with ka for a lossy tapered

metamaterial cavity b/a = 2, c/a = 0.2, m = 1: µ = k + 0.0025i
√
k (solid), µ = k + 0.01i

√
k

(dashed), µ = k + 0.04i
√
k (dotted).

We stick with b/a = 2 and c/a = 0.2 in Figs. 5, 6 where the effect of changing cavity235

taper, m, is considered. We have shown results for m = 1, so that the cavity taper is angled236

at 45◦. In Fig. 5 results are given for a lossless cavity (µ = k). For these parameters there237

is a continuous range (1.309 < ka < 1.963) of resonant frequencies embedded within the238

metamaterial cavity over which |R0| oscillates rapidly. The number of oscillations is set by239

the truncation parameter – P = 24 in Fig. 5. When P is halved or doubled the number of240

oscillations in this range is halved or doubled although the vertical extent of the oscillations241

forms a robust and well-defined envelope (the resolution of the plot accounts for random242

variations in the vertical). Thus, it appears that the numerical solution does not converge243

as P → ∞ and this single issue has been at the centre of most of the work performed on244

this paper.245
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Various alternative approaches have been explored to shed light on this. One approach has246

been to change the numerical approximation scheme. This has included using collocation247

methods and different basis functions. We have also reformulated the integral equation248

(20) replacing u(x) ≡ φy(x, a) with φ(x, a) as the unknown and have used the fact that249

φ(x∗, a) = 0 to construct a basis where x∗ is a solution of tan(µ(b − a + mx∗)) = 0 and250

the location of the resonant channel in the metamaterial cavity. By taking this approach251

we have attempted to remove potential issues with singularities or discontinuities associated252

with derivatives. Every attempt had resulted in the same outcome, namely non-convergent253

oscillations whose frequency are tied to the numerical scheme. We note that similar results254

have been observed in related studies11. Finally, an approximation has been made to the255

current problem which involves replacing the continuum model for the cavity by a finite256

number of discrete narrow channels, using matched asymptotic expansions to determine257

overall scattering. The formulation and results are described in a supplementary report,16.258

Not only is this approach able to accurately reproduce the qualitative behaviour of the259

reflection and transmission coefficients seen in Fig. 5, but it indicates that there are as260

many zeros of transmission as there are micro-channels in the cavity. Even the envelope of261

oscillations suggested by Fig. 5 is captured accurately. Thus the oscillations increase as the262

number of finite channels increase (so that their width decreases in proportion) and we are263

led to the conclusion that a converged solution to the undamped continuum metamaterial264

cavity does not exist.265

The addition of damping regularises the convergence. In Figs. 6(a,b) we show the reflected266

wave coefficients and the damping coefficient, η, for the same parameters as in Fig. 5 but267

18



Wave absorption by a metamaterial cavity

with µ = k + 0.04i
√
k, µ = k + 0.01i

√
k and µ = k + 0.0025i

√
k. The curves are produced268

with truncation parameters P = 16, P = 32 and P = 128, respectively. It can be seen269

that as the imaginary part of µ tends to zero, the results converge (although the numerical270

scheme has to work harder to achieve this) but not to a solution for zero damping. In fact,271

η → 0, as the damping parameter tends to zero in all non-resonant intervals of ka. Over272

intervals of ka where there is resonance (e.g. 1.309 < ka < 1.963, 3.927 < ka < 5.890 in273

Fig. 6) in the metamaterial cavity the damping coefficient η converges to non-zero values274

and forms a well-defined curve.275

We now turn our attention to the potential practical application of this device which276

is to act as an acoustic damper. In Fig. 7 we have plotted the damping coefficient, η,277

and the scattering coefficients for a tapered array with b/a = 2, m = 0.25, c/a = 4 and278

µ = k+0.05i
√
k. Thus, the horizontal extent of the cavity is 8 times the waveguide width, the279

longest micro-channel is twice the waveguide width and the cavity tapers to micro-channels280

of zero length. This configuration means there is resonance in the cavity for all ka > 1
4
π and281

we see that damping is close to 100% for a broad range of values of ka extending from 1
4
π282

dropping slowly as ka increases beyond π. As already noted in relation to Fig. 6, the shape283

of the damping coefficent curve is quite robust to changes in the damping parameter.284

To some extent, the shape and size of the metamaterial cavity does not affect the high285

absorption demonstrated in Fig. 7. By way of example, in Fig. 8 we have extended the286

depth of the cavity by setting b/a = 3, retaining c/a = 4 using m = 0.5 to taper the length287

of the micro-channels from four times the waveguide width down to zero. Cavity resonances288

now extend beyond ka = 1
8
π ≈ 0.39 and in Fig. 8 a damping parameter of µ = 1 + 0.1i has289
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FIG. 7. Variation of η (thick dotted curve) and scattering coefficients with ka for a tapered

metamaterial cavity b/a = 2, c/a = 4, m = 0.25 with damping µ = k + 0.05i
√
k.

been used to demonstrate once again that high absorption can be achieved (over 98% of the290

acoustic energy is damped over 0.4 < ka < 2.83).291
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FIG. 8. Variation of η (thick dotted curve) and scattering coefficients with ka for a tapered

metamaterial cavity b/a = 3, c/a = 4, m = 0.5 with damping µ = k + 0.1i
√
k.
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V. CONCLUSIONS292

We have presented a simplified mathematical model of a microstructured plate-array293

metamaterial cavity of a type commonly used in applications of rainbow trapping. The294

cavity has been attached to the sidewall of a waveguide and its effect on acoustic wave295

propagation has been considered. The simplified model for the cavity has allowed us to296

express important features of the problem such as the scattering coefficients and acoustic297

absorption in terms of the solution of a simple integral equation.298

The main purpose of the problem was to consider the efficacy of a tapered metamaterial299

cavity as a model of a rainbow trapping absorbing device to provide a broadbanded damping300

of acoustic energy. However, many interesting features of the solution have emerged in the301

process, relating to resonance in the case where the damping is set to zero. In particular,302

we have shown that the effective medium/continuum model produces anomalous results303

when resonance is encountered; in a rectangular metamaterial cavity oscillations in the304

scattering coefficients increase in frequency without bound as isolated resonant parameters305

are approached but the limiting case at resonance parameters is well-defined. On the other306

hand, for a lossless tapered metamaterial cavity possessing a continuous range of resonant307

parameters the effective medium model appears to be at fault. Numerical results fail to308

converge, consistent with discrete models of micro-channelled cavities,16. A continuum model309

which includes damping does converge numerically for a fixed damping parameter and as310

this tends to zero results converge, though not to the solution of a zero-damping problem.311
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Other results have demonstrated that close to 100% of ducted acoustic wave energy312

can be damped by a tapered array over a broad range of frequencies suggesting that the313

metamaterial cavity is an extremely effective broadbanded asborber. Work is ongoing on314

using the continuum model to construct absorbing surfaces using tapered metamaterial315

cavities.316
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APPENDIX: COMPUTATION OF INTEGRALS321

From (23) we substitute l → −l for l < 0 to write322

Mpq =
2

π

∫

∞

0

coth γa

γ
Spq(l) dl (A.1)

where323

Spq(l) =
[(lc)2 + pqπ2] sin2(lc)

[(lc)2 − (pπ)2][(lc)2 − (qπ)2]
. (A.2)

and the contour of integration has been defined to pass below the poles at l = αn, n =324

0, 1, . . . , N . The value of N and hence the number of poles is dependent on ka but there325

always exists a pole at l = k corresponding to n = 0.326

Integrals with contours passing below the poles are evaluated as principal-value integrals327

plus half-residues from the vanishly-small semi-circular indentations of the contour around328

22



Wave absorption by a metamaterial cavity

the poles. The principal-value integral at l = k is dealt with by organising the integral in a329

form suitable for numerical quadrature with330

−
∫ 2k

0

f(l) dl =

∫ k

0

(f(l) + f(2k − l)) dl. (A.3)

To treat any remaining principal-value evaluations at l = αn for n ≥ 1 we write331

−
∫ k

0

f(l)

g(l)
dl =

∫ k

0

(

f(l)

g(l)
− f(αn)

(k − αn)g′(αn)

)

dl + log

(

k − αn

αn

)

f(αn)

g′(αn)
(A.4)

where it is assumed that g(αn) = 0 so that the integrand on the right-hand side is now332

bounded as l → α. With these tricks in place we may write (A.1) as333

Mpq=
2

π

∫

∞

2k

coth(
√
l2 − k2a)√

l2 − k2
Spq(l) dl

+
2

π

∫ k

0

[

coth(
√

(2k − l)2 − k2a)
√

(2k − l)2 − k2
Spq(2k − l)− cot(

√
k2 − l2a)√
k2 − l2

Spq(l)

−
N
∑

n=1

Spq(αn)

αna(l − αn)

]

dl +
i

ka
Spq(k) +

2

π

N
∑

n=1

(πi + log(k/αn − 1))

αna
Spq(αn)

(A.5)

which includes the evaluations from semi-circular intendations below the poles.334

The integrand in the real integral over 0 < l < 1 in (A.5) is smooth and bounded335

everywhere and can be computed using a standard numerical quadrature. The integrand in336

the real semi-infinite integral in (A.5) decays like O(1/l3) and is approximated by truncating337

the upper limit to l = 400.338

In the case of m = 0, Lpq is explicit. For m 6= 0 and µ complex the complex-valued339

integral defined by (23) can be performed by numerical quadrature.340

However, when m 6= 0 and µ is real special care may be required owing to the fact341

that the integrand may contain singularities. In such an instance (23) will be defined as342
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principal-value type and we use the same procedure outlined above of subtracting and adding343

singularities to get344

Lpq=
(−1)p+q

2µc2

∫ c

−c

(

eiπ(p−q)x/c cotµ(b− a+mx)−
R
∑

r=1

eiπ(p−q)xr/c

µm(x− xr)

)

dx

+
(−1)p+q

2µ2mc2

R
∑

r=1

eiπ(p−q)xr/c log

(

c− xr
c+ xr

)

(A.6)

where xr ∈ (−c, c) satisfy sin µ(b−a+mxr) = 0, r = 1, . . . , R. If no such xr exists the sums345

in (A.6) are removed and the original integral in (23) is done directly.346
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