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Abstract

The paper describes the theoretical modelling and experimental validation of a novel design of
ocean wave energy converter which is comprised of a floating, moored, spherical hull containing
a mechanical pendulum arrangement from which power is taken when excited by incident waves.
Experimental results are shown to compare favourably with those predicted by the theory. An
explicit expression is derived for the capture width of the proposed device in terms of physical
and hydrodynamic parameters. This exposes the multiple resonant characteristics of the device
which enable it to operate effectively over a broad range of wave periods. The subsequent efficient
computations allows a numerical optimisation of the design to be performed over a large space
of device parameters and model sea spectrum. The work is focussed towards producing reliable
estimates for the power capacity of different sized devices deployed at the EMEC site in Scotland.
Predictions compare favourably with existing wave energy converter concepts.
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1. Introduction

The WITT (Whatever Input to Torque Transfer; see http://www.witt-energy.com/; Fig. 1) is1

a proprietary mechanical device for converting kinetic energy into electrical energy. It is comprised2

of a heavy compound pendulum connected through a gearbox so that its rotary motion about3

either of two perpendicular horizontal axes is transferred to a single unidirectional output through4

a primary axis from which the energy of motion can subsequently be harvested. The WITT is5

currently being considered for use in a range of small to large scale applications.6

The authors on this paper have been involved as part of a wider project to investigate the7

feasibility of using a WITT housed within a sealed hull to harness the motions induced by ocean8

waves and convert them into electrical energy. The present paper details a theoretical model which9

has been developed to describe the operation of a WITT Wave Energy Converter (WITT WEC)10

and experiments performed to validate its predictions.11

The concept of using a mechanical device with heavy counterweights operating inside a sealed12

hull to absorb wave energy is not new; for example the SEAREV [see 5] and the [18] Penguin.13

The principle underpinning the successful capture of ocean wave energy lies in amplifying and14
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converting the energy in low frequency, low amplitude waves. The Wello Penguin device appears15

to do this using the instability of a hull to pitching and rolling motions of a large weight mounted16

on a vertical axis. In contrast, SEAREV uses the more conventional approach in WEC design of17

exploiting resonance of the hull and an internal pendulum rotating about a horizontal axis. It is18

this latter approach which also underpins the current design analysis of the WITT WEC and one19

which allows us to use existing methodology based on linearised (or small amplitude) theory to20

predict power capture and device motions across an irregular sea sate. It is the primary purpose21

of this paper to demonstrate how this is done and to provide initial estimates as to the potential22

power output from a WITT WEC.23

There are several ways in which the WITT WEC design varies from the SEAREV design. Both24

are designed to operate in the surface of the ocean, but the ability of the pendulum in the WITT25

to operate about both horizontal axes allows it to extract power from from all wave headings.26

Moreover, the design of the WITT WEC integrates the sealed hull with a heavy chain catenary27

mooring system which is crucial in providing device resonances. In contrast, the SEAREV mooring28

is not an active design component. Thus, we will show later the WITT WEC can exhibit resonance29

at three distinct periods and this consequently gives the WITT WEC a broadbanded response30

to incident waves. In contrast the SEAREV [4, Fig. 4], [5, Fig. 12] possesses just two device31

resonances. There are other differences, perhaps the key one being that the WITT is able to rotate32

fully through 360 degrees about either axis which means its motion is not mechanically limited, a33

common problem in converter design.34

The theoretical development of the WITT WEC design uses a number of assumptions and35

approximations which are outlined through the paper. Many of these are based on the use of36

first order, or small amplitude, theory. These assumptions are made in the hydrodynamic theory37

describing the manner in which waves interact with the sphere, requiring wave steepness and device38

motions to be sufficiently small. They are also made in the theoretical model of a catenary mooring39

system whose first order approximation results in a Hooke’s law relation. Moreover, pendulum40

motions are also assumed to be small to allow linearisation of the underlying mechanical equations.41

Finally, we assume a simple linear power take-off (PTO) system. In addition, various simplifying42

model assumptions are made throughout justified as having captured the most important effects.43

These include, for example, constraining the pendulum to move about only one of its two axes on44

the assumption that a deployed device would be aligned to operate in a marine environment with45

a well-understood directional sea state.46

The effect of these assumptions are tested by comparing device RAOs to a series of experiments,47

described later in the paper, which again focus on the main operational elements of the model rather48

than a fully developed scale model of the WITT WEC.49

The theoretical work is most closely related to recent work by two of the current authors on a50

theoretical WEC design based on a similar principle. Thus [6] considered a long submerged cylinder51

containing a heavy pendulum allowed to rotate around a single axis and which was tethered to the52

sea bed and whose cylindrical hull operated as an inverted pendulum using an assumed buoyancy53

acting to provide a restoring force. That work demonstrated that multiple resonances could be54

achieved and an optimisation over physically realisable parameters allowed the proposed device to55

operate close to a theoretical maximum over a broad range of wave periods (roughly 5-11s). The56

design of [6] is quite different to the WITT WEC the former device principly acting as an attenuator57

and the latter as a point absorber. However, the concept of using a counterweight is common to58

both and mathematical ideas developed in [6] can be extended to the moored floating hull design59

of the WITT WEC. The mathematics here is more complicated with four degrees of freedom here60
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Figure 1: A photo of a prototype of the WITT pendulum and gearbox mechanism

(hull pitch, heave, surge and pendulum pitch) replacing the two (device surge and pendulum pitch)61

in [6]. Nevertheless, it is shown that explicit expressions for capture width (a standard measure62

of power absorption capacity) can be attained in terms of physical and hydrodynamic coefficients.63

This allows us to theoretically identify aspects of the design which are useful in describing the device64

operation. Moreover, the computational efficiency offered by the theoretical results used allows us65

to numerically optimise over physical design parameters and over a realistic wave energy spectra.66

Related work on the use of moored spheres as a wave power absorber include [16] who considered67

a sphere held submerged below the surface with the PTO incorporated into a mooring system. Also,68

[7] made a theoretical assessment of the impact on power absorption of placing motion constraints69

on the operation of WECs including a semi-submerged spherical WEC. That study showed, for70

example, that a surging sphere whose motion is limited to a wave amplitude cannot extract more71

than 70% of the power incident on the sphere. This rises to 108% when surge motion is limited to72

two wave amplitudes.73

The layout of the paper is as follows. In Section 2, we describe the proposed operation of the74

WITT WEC and define some of the parameters adopted in the modelling. In Section 3, an outline75

of the mathematical model is presented focussing on the mechanics and the derivation of expressions76

useful for calculating the power. The derivation of the equations of motion, the modelling of the77

mooring system coefficients and the description of a model sea state are relegated to Appendices but78

will be useful to researchers wanting to follow in detail the modelling and its assumptions. Section79

4 describes the modelling used in the wave tank tests and compares experimental results with those80

predicted by the model. In Section 5 we use the model to predict results for an optimised full scale81

device and finally in the Conclusions summarise the paper and discuss the proposed design in a82

wider context of WEC design (see [1]) and describe the direction in which further work will be83

pursued.84
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Figure 2: Sketch in plan, elevation and internal cross section (in elevation) of the system, showing directions of modes
of motion and definition of the pendulum geometry.

2. Device description85

This paper addresses the modelling of a specific embodiment of the proposed WITT WEC in86

which a WITT device is placed within a semi-immersed sealed spherical hull, which is able to move87

in heave, surge, and pitch but is restrained by a four-point catenary mooring system in which splayed88

heavy chains connect the hull of the WEC to the sea floor. This mooring system has the obvious89

practical role of preventing the WITT WEC from drifting away from its installation site, but it90

also supplies spring restoring forces to the device when it moves in response to waves. A realistic91

mooring would include clump weights along an extended section of the mooring line resting on the92

sea bed which would provide a stiffening of the restoring force for larger device motions anticipated93

under heavier seas. In our model, we use point masses placed on inextensible light lines to represent94

the effect of a heavy catenary chain (see Fig. 2).95

Internal to the sphere the WITT pendulum which is designed to rotate about both horizontal axis96

by any amount (see Fig. 1). We model it as a compound pendulum which is vertically axisymmetric97

formed by an annular sector in cross section. The gearbox within the WITT device selects the input98

possessing the greatest angular velocity from the two axes to drive the output rather than combining99

them additively. In practice, this means that a WITT with its primary axis aligned with a principal100

direction of incoming waves will operate predominately in a single degree of freedom (which we refer101

to as pendulum pitch) and will only extract energy from pendulum roll motion for wave headings102

beyond 45◦ or in the possible event of the onset of parametric instabilities. Therefore, in this103

model, the pendulum is allowed to rotate in pitch about just one central horizontal axis of the104

sphere aligned with the crests of the predominant incoming waves (see Fig. 2). Power is assumed105

to be extracted from a linear damper which acts in proportion to the relative angular velocity of106

the pendulum with respect to that of the sphere. In our model, two point masses are positioned107
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Figure 3: In (a), (b) the non-dimensional added mass and radiation damping coefficients against a dimensionless
frequency parameter, Ka, for a surging (solid lines) and heaving (dashed lines) sphere. In (c) the magnitude of the
non-dimensional surge (solid) and heave (dashed) wave exciting force.

at the centre and bottom of the sphere to represent the WITT gearbox and power take-off (PTO)108

machinery and ballast respectively. The centre of gravity of the hull thus lies a distance below the109

centre of the sphere. Resolving the vertical forces on the sphere and mooring lines determines the110

mass of ballast required for the device to be semi-submerged when in equilibrium.111

3. Mathematical modelling112

The mathematical model of the device described in Section 2 can be broken down into three113

components: (i) the hydrodynamic response of a sphere in waves (described later); (ii) the mathe-114

matical model of the mooring system (described in detail in Appendix A); and (iii) the dynamics115

of the fully coupled mechanical system of sphere - mooring - pendulum (described in detail in116

Appendix B).117

Underpinning each element is a small amplitude assumption, a routine first step in the analysis118

of WECs as it allows the equations describing the device motion to be linearised and thus solutions119

can be sought by factorising a time-harmonic variation with radian frequency ω from the dynamic120

variables. The small amplitude assumption manifests itself in different ways when applied to each121

of the different elements of the design. Principally, the incident waves which excite the motion are122

assumed to be of small steepness. We also require device motions to be small enough to justify the123

use of linearised hydrodynamic theory and linearised elastic behaviour in the mooring model. The124

response of the internal pendulum must also be of sufficiently small amplitude. These assumptions125

will all be tested at device resonance which is an integral part of WEC design.126

It is shown in Appendix B that the motion can be described by two uncoupled sets of equations.127

The vertical motion is described by the third equation in (B.15) where Re{V e−iωt} is the vertical128

velocity and does not contribute to power production under the small amplitude assumption. The129

surge and pitch motions of the hull, encoded in the time-independent quantities U and Ω, are130

coupled to the rotation of the internal pendulum in the equation of motion131

−iωMU = Xw − i

ω
(C + K) U − γGU (1)

(see Appendix B). The complex velocity vector U is given by U = (U, Ω, Ωr)T where Ωr encodes132

the rate of rotation of the pendulum relative to the hull. The inertia matrix M, mass restoring133
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force matrix C and mooring force matrix K are defined by (B.19) and (B.20) whilst G is also134

given by (B.20) and is pre-multiplied in (1) by the PTO parameter, γ, which we are free to tune.135

All matrices are real and symmetric and determined by geometric parameters of the problem.136

The vector Xw = (Xw,x, 0, 0)T where Xw,x is the time-independent surge component of the wave137

exciting force on the hull. The heave exciting force Xw,z is also needed to determine V in (B.15).138

Both can be decomposed using linearity in the usual way into forces on the static hull and radiation139

forces due to the motion of the hull. Thus we write140

Xw,x = Xs,x cos β + (iωA11 − B11)U − D11U (2)

where β is the incident wave direction and141

Xw,z = Xs,z + (iωA33 − B33)V − D33V. (3)

The forces Xs,x and Xs,z and the added mass and radiation damping coefficients Aii and Bii are142

calculated here following [11] which assumes water of infinite depth. Note there are no wave forces143

in the pitch mode of motion owing to the hull being spherical. Forces accounting for hydrodynamic144

drag resulting from the differential flow between the fluid and the sphere are modelled in (2) and145

(3) by terms linearly proportional to device velocities and with constants of proportionality D11146

and D33. A brief description of the derivation of this drag model and estimates to the values of Dii147

will be discussed later in §3.4.148

Tabulated values of the added mass and radiation damping coefficients are provided in [11], but149

the wave exciting forces are not calculated explicitly. In Fig. 3 the non-dimensional equivalents of150

these quantities are plotted against the non-dimensional wave frequency Ka ≡ ω2a/g, where151

µii =
Aii

Mw
, νii =

Bii

Mwω
, X̂s,α =

Xs,α

ρa2ω
, (4)

with α = x, z for surge and heave respectively and where Mw = 2
3 πρa3 is the mass of water, density152

ρ, displaced by the sphere which has radius a.153

3.1. Device motion154

Using equation (2), the equation of motion (1) can be inverted to give the response as155

U = EXs, (5)

where Xs = (Xs,x cos β, 0, 0)T ,156

E = (Z + γG)
−1

, (6)

and157

Z ≡ B − iω
(

M + A − (C + K)/ω2
)

. (7)

after defining158

A =





A11 0 0
0 0 0
0 0 0



 , B =





B11 + D11 0 0
0 0 0
0 0 0



 . (8)

For the heave response, the third equation in (B.15) is similarly used with (3) to give159

V =
Xs,z

(B33 + D33 − iω(M + A33 − (K33 + ρgS)/ω2))
(9)
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where M and S are defined in Appendix B and K33 is defined in (A.14). Subsequently, the sphere
and pendulum motions are given by

X(t) = Re{(gA/ω2)Ue−iωt}, Θ(t) = Re{(gA/ω2)(Ω/l)e−iωt},

Z(t) = Re{(gA/ω2)V e−iωt}, θ(t) = Re{(gA/ω2)((Ω + Ωr)/l)e−iωt}. (10)

following (B.14) where A is the wave amplitude, g is gravitational acceleration and l is the natural160

length of the pendulum, (B.3). Device RAOs (Response Amplitude Operators) are defined as the161

maximum excursion per unit wave amplitude.162

3.2. Power calculation163

The mean power (time averaged over a period, T = 2π/ω) per unit crest length of an incident164

wave of amplitude A is given as165

Winc = 1
2 ρg|A|2cg (11)

where cg is the group velocity given by 1
2 (g/ω) in deep water.166

The mean power absorbed by the device is equivalent to the mean rate of working of the wave167

forces (see Appendix B) against the device motion, that is168

W =
1

T

∫ T

0

(Fw,x(t)Ẋ(t) + Fw,z(t)Ż(t))dt

and can be expressed, after use of the decomposition in (B.14), as

W = 1
2 (g2|A|2/ω2)Re{X∗

w,xU + X∗

w,zV } = 1
2 (g2|A|2/ω2)Re{X

∗

wU}
= 1

2 (g2|A|2/ω2)Re{γU
∗

GU}
= 1

2 (g2|A|2/ω2)Re{γ|Ω2
r|} (12)

where ∗ denotes the complex conjugate transpose. In the above the third equation in (B.15) is used169

with (1) and the fact that the elements of M, K and C are all real. We recognise the last equation170

in (12) as the mean power developed by the rotation of the pendulum relative to the sphere, that is171

W =
1

T

∫ T

0

γl2(θ̇ − Θ̇)2dt.

As expected we have demonstrated the equivalence of the power generated by the waves acting on172

the hull to the power generated by the PTO machinery.173

Using (11) in (12) we can define the capture width as174

l(T, β) =
W

Winc
=

g

ρω2cg
Re{γ|Ωr|2} (13)

being the equivalent length of incident wave from which all energy is absorbed. Assuming a fixed175

power take-off parameter, γ, the capture width is a function of wave period, T , and wave heading,176

β. Although (13) can be computed in the form presented further useful progress can be made.177

We denote the i, jth element of E defined in (6) by Eij/∆ where ∆ = det(E) and the i, jth178

element of Z defined in (7) by Zij . Since (Z + γG)E = I, the 3 × 3 identity matrix, it follows that179

∆ = E33 (γ + Y ) . (14)
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where180

Y = Z33 + (Z13E13 + Z23E23) /E33 (15)

which, crucially for what follows, is independent of γ since

E13 = Z12Z23 − Z13Z22, E23 = Z13Z12 − Z11Z23, E33 = Z11Z22 − Z
2
12. (16)

From (5), Ωr = (E13/∆)Xs,x cos β and so (13) becomes,181

l =
g

ρω2cg
Re

{

γ|Xs,x|2|E13|2 cos2 β

|E33|2|γ + Y |2
}

(17)

after using (14). The Haskind relation (e.g. see [8]) provides the following182

B11 = |Xs,x|2/(8ρcg) (18)

which allows (17) to be written as183

l =
8B11

K
Re

{

γ
|E13|2 cos2 β

|E33|2|γ + Y |2
}

. (19)

where K = ω2/g = 2π/Λ and Λ is the incident wavelength. If we assume γ to be real we can use184

the general identity,185

2γ

|γ + Y |2 =
1

(|Y | + Re{Y })

(

1 − (γ − |Y |)2

|γ + Y |2

)

, (20)

as in [9] allowing us to rewrite (17) as,186

l =
2ΛB11|E13|2 cos2 β

π|E33|2 (|Y | + Re{Y })

(

1 − (γ − |Y |)2

|γ + Y |2

)

. (21)

From (15), considerable algebra leads to the relation187

Re{Y } =
(B11 + D11)|E13|2

|E33|2 (22)

which, when used in (21), gives our final expression for the capture width as188

l(T, β) =
Λ

π

B11

(B11 + D11)

2Re{Y }
(|Y | + Re{Y })

(

1 − (γ − |Y |)2

|γ + Y |2

)

cos2 β. (23)

Thus, the original expressions for the mean absorbed power given in (12) has been reduced to189

(23) with W = lWinc and the dependence on the PTO parameter, γ, has been made explicit in190

the final bracket of equation (23). Consequently the power is maximised, when γ = |Y | and the191

hydrodynamic damping D11 = 0, to the value which we will call the optimal capture width and192

label193

lopt =
Λ

π

2Re{Y }
|Y | + Re{Y } cos2 β. (24)
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(a) (b)

Figure 4: Images of the experimental set up: In (a) the internal arrangement of the sphere used in the experimental
tests and (b) the sphere, semi-submerged in calm water, during tank testing.

If, additionally, Im{Y } = 0, then194

lopt = lmax ≡ Λ

π
cos2 β (25)

which is the maximum theoretical capture width that a vertically axisymmetric wave power device195

operating in surge/pitch can achieve, a well-known result – see [8] or [13].196

In other wave energy problems with simpler mechanical components it is easy to identify the197

condition under which lopt = lmax with a resonant condition being met (e.g. [9]). Often this is198

a balance between inertia – including hydrodynamic inertia – and spring forces. Because of the199

complexity of Y in (15) it seems unlikely that a similar connection can be made here. However, by200

analogy with these simpler systems we will refer the condition for device resonance as Im{Y } = 0201

at which lopt = lmax. We recall the tuning condition for optimal power is γ = |Y | when l = lopt.202

Thus if both tuning and resonance conditions are satisfied at the same frequency, l = lmax.203

We remark that for axisymmetric devices taking power in heave only lmax is half that reported204

above whilst a device capable of taking power in both surge/pitch and heave motions the value of205

lmax reported above is increased by a factor of 1.5 ([8] or [13]).206

3.3. Non-dimensionalisation207

In order to solve (5) we define dimensionless variables using Ẑ = Z/(Mwω), X̂s = aXs/(Mwω),208

Û = aU and γ/(Mwω) = γ̂/
√

Ka so that a fixed γ̂ implies a fixed physical PTO damping constant,209

γl2.210

Consequently the RAOs in surge and heave are defined from (10) as dimensionless quantities211

X = |Û |/Ka and Z = |V̂ |/Ka and the hull pitch and pendulum RAOs are ϑ = |Ω̂|/(Kal) and212

ϑp = |Ω̂ + Ω̂r|/(Kal) and are not dimensionless, but measured per metre of wave amplitude.213

Results presented later will be expressed in terms of dimensionless capture width ratios – or214

capture factors – where capture widths are divided the by the device diameter, 2a. These are215

defined as l̂ = l/2a, l̂opt = lopt/2a and l̂max = Λ cos2 β/(2πa) These are all frequency and incident216

angle dependent and should not be confused with the mean capture factor l̄ (defined in §5) which217

encodes the similar information but is averaged over all incident frequencies and angles.218

3.4. Hydrodynamic drag219

We assume that the total hydrodynamic drag is dominated by turbulent drag and adopt, as a220

starting point, a quadratic law to capture its effect. For surge motions, this drag force is approxi-221
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mated by 1
2 ρCDAẊ(t)|Ẋ(t)| where CD ≈ 1

2 is the drag coefficient for a sphere and A = 1
2 πa2 is its222

frontal area. This approximation neglects the effect of background flow velocity. Using the Lorentz223

principle of equivalent work over a cycle, the linearised version of this drag is 4ρCDAAωU/(3π)224

and this, with reference to (2), gives D11 = 4ρCDAAω/(3π) having assumed a characteristic device225

velocity based on the background wave field. The dimensionless drag coefficient is therefore226

D̂11 = D11/(Mwω) ≈ 0.16A/a. (26)

Dedicated experimental studies, beyond the scope of the current project, can be used to parametrise227

D̂11 accurately and (26) should be regarded only as a simple first attempt at capturing the correct228

order of magnitude of the drag effects.229

For example, with 2m wave amplitude and a 7.5m diameter sphere, D̂11 ≈ 0.04 and it can230

be seen from Fig. 3 that this is small percentage of ν11 = B11/(Mwω) to which D̂11 is added in231

calculations (equations (8), (23)).232

Although heave motion is affected by drag, it does not contribute to power absorption and hence233

we do not consider the influence of D33 here.234

Because of the uncertainty with setting an accurate representation of drag, all calculations in235

the main results section are made with D11 = 0. That is, we do not want to misrepresent our results236

or analysis. However, some brief comments on the effect of including drag into the calculations are237

made in the Conclusions.238

4. Prelimary model validation with experimental results239

Scale tank test experiments were conducted in the UK’s Plymouth University ocean wave basin,240

in order to validate the RAOs of the device predicted by the mathematical model.241

The following experimental set-up was chosen. A 1.2m diameter spherical hull was constructed242

from bolting a lower hemisphere made of steel to an upper hemisphere of perspex allowing observa-243

tions of the pendulum motion to be made. The hull contained a simplified pendulum model of the244

WITT as no suitable WITT unit was available for testing. Two pendulums were suspended and free245

to move independently about a single common axis perpendicular to the incident wave direction,246

see Fig. 4(a). Observations made during the tests confirmed motions of the two pendulums were247

synchronised. No rotation was allowed about the the transverse axis, as per assumptions in the248

analysis. No power take-off device was attached to the pendulums.249

The hull was moored to the bottom of the wave tank (which was filled to a depth of 3m) using250

pre-tensioned elastic bungee cord. Sufficient lead ballast was placed at the bottom of the hull to251

ensure near semi-immersion of the hull, see Fig. 4(b). The sphere was raised about 50mm above the252

level of semi-immersion to help mitigate against the effects from the protruding lip of the sphere253

formed where the upper and lower sections were bolted together. Four elastic cords were splayed254

symmetrically left and right and fore and aft of the hull and pre-tensioned according to the model255

outlined in Appendix A. Small variations (less than 5%) in the pre-tensioning in each cord was256

required to configure an aligned and level static configuration which suppressed unwanted yaw and257

roll effects in motion. These adjustments were needed to account for small misalignments in the258

positioning of eye-bolts on the sphere for the mooring line attachments. Static loadings were applied259

to the bungee cord to determine its elastic modulus and confirm that the behaviour of the cord in260

motion was Hookean.261

Some of the modelling outlined in the main body of the paper has been altered to reflect the262

experimental model. This involved the use of the elastic mooring model, described at the end of263
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Appendix A and the setting of the PTO parameter γ to zero in addition to determining appropriate264

moments of inertia and centres of gravity specific to the experimental model.265

Tests were run across a range of single wave frequencies, with particular focus around the266

resonant frequency of the internal pendulum. These tests were repeated at three different wave267

amplitudes: 50mm, 100mm and 200mm. All tests were performed with normally-incident waves.268

The experimentally measured device RAOs are plotted in Fig. 5 using symbols, along with269

the output from the mathematical model (with damping D11 = 0) using solid lines. The root270

mean square (RMS) surge and heave values have been non- dimensionalised by the RMS wave271

amplitude and the pitch and pendulum RMS values, measured in radians, have been normalised by272

the non-dimensional RMS wave steepness, ω2A/g in order to obtain the RAOs.273
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Figure 5: Comparison of the theoretical (line) and experimental (points) results for (a) surge, (b) heave, (c) pitch and
(d) relative pendulum RAOs against wave frequency in Hertz. The different symbols represent results from different
incident wave amplitudes used in the experiments: A = 50mm (+); A = 100mm (×) A = 200mm (∗).

Generally, the results show good agreement. The frequency of the resonant peak is offest very274

slightly between experiments and theory and this is probably due to small errors made in esti-275

mating measurements of the hull/ballast/pendulum/mooring configuration. The experiments also276

demonstrate that the response of the buoy and the pendulum is generally linear with increasing277
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h = 3m T0 = 70N ms = 75kg
a = 0.6m L0 = 8.4m I = 211kgm2

λ = 150N/m
α = 48.2◦ mb = 309kg
χ = 71.3◦ l = 0.335m L = 0.44m
η = 67.5◦ m = 77kg
ζ = 34.4◦ mk2 = 9.5kgm2 M = 452kg

Table 1: Table of measured and calculated experimental parameters used to generate data and curves in Fig. 5.

wave height and it is only at the highest wave amplitude of 200mm (so that the wave height is one278

third of the hull diameter) is there any notable difference. Here the resonant peaks in RAOs drop279

significantly lower than for the two other wave heights. The inclusion of a linear damping term280

using (26) in the theoretical model reduces the peak response in the surge and pendulum motions281

for the largest 20mm wave amplitudes by roughly 8% whilst the response elsewhere changes very282

little. Thus, it seems that hydrodynamic drag is not an important factor in these experiments.283

Other non-linear effects may be influential. For example, for the largest 200m wave amplitudes284

linear theory predicts a pendulum amplitude of 43◦ at peak resonance, around 0.73Hz. The time285

series from the experimental results for these largest waves revealed that the pendulum motion be-286

came asymmetric around the peak resonant frequency (the most extreme records showing motions287

between −20◦ and 50◦ for the relative motion of the pendulum against the hull). The displayed288

experimental results have been adjusted to account for this offset in the mean position of the mo-289

tion. The non-linear effects described above may have been caused by a lip around the equator of290

the hull (Fig. 4) which was observed to slam hard against the water surface especially at resonance291

in larger amplitude waves.292

Similar results, not shown here, have been obtained for a different splay and pre-tensioning of293

mooring lines with similar agreement observed.294

The generally good correlation between theory and experiments provide us with confidence that295

the theoretical model can make reasonable predictions about a full scale WITT WEC apart from296

at the largest amplitudes. In particular, experiments have indicated that predictions using linear297

theory of pendulum pitch motions beyond roughly 30◦ show a loss of accuracy and this will act as298

an important guide later.299

5. Optimisation of full scale devices300

In order to demonstrate the efficacy of the proposed design, we set out to optimise the device301

performance over a wave energy spectrum for a given device test site. We have considered the Billia302

Croo EMEC test site, on the western edge of the UK’s Orkney mainland. For context, the EMEC303

site has an annual average wave power of 21kW/m and an average water of depth 50m, justifying304

the earlier deep water modelling assumptions in the calculation of the hydrodynamic coefficients.305

A scatter diagram of probabilities of expected sea states is replicated in Fig. C.12 but can also306

be found in [14], allowing us to define a joint probability function P (Hs, Tp) of the likelihood of307

occurrence of a pair of parameter values describing a particular sea state, where Hs is the significant308

wave height and Tp the peak wave period.309
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Figure 6: Maximum (dotted), optimum (dashed) and achievable (solid) capture width ratio for a device of diameter
(a) 2a = 15m and (b) 2a = 7.5m, under head seas. The circles indicate periods at which Im{Y } vanishes.

We employ the two parameter spectrum developed by [3] and using the probability function310

P (Hs, Tp) along with a function G(θ) to describe the angular spread of the energy density of the311

incident wave field, define a modified spectrum, S̃(T, θ). Expressions for these functions can be312

found in Appendix C, equations (C.1)–(C.3).313

The total mean power absorbed by a device of width 2a is then314

W = ρg

∫ π

−π

∫

∞

0

cg(T )S̃(T, β)l(T, β)T −2 dT dβ, (27)

where l(T, β) is given in (23) and cg = T g/4π in deep water. The explicit cos2 β variation in l315

in (23) combined with the model spread in (C.3) allows the β dependence (27) to be integrated316

analytically to 25/26. Thus, only integration over period is required and multiplication by 25/26317

accounts for spreading.318

We can also define a dimensionless mean capture factor,319

l =
W

W inc2a
, (28)

which describes the mean proportion of incident wave power absorbed per unit width of the device,320

where W inc has been defined in (C.5).321

With many free parameters in this problem, we employ a numerical optimiser from the NAG322

library (E04JYF) to determine the design parameter values which maximise the mean capture323

factor, l, over a given wave energy spectrum. In order to reduce the numerical effort required, a324

small number of parameters are fixed: for example, the density of the pendulums are set to that325

of concrete and the spherical structure is assumed to be equivalent to a shell of thickness 0.001%326

of the sphere diameter (e.g. 10mm for a 10m sphere) and to be made of steel. Upper and lower327

bounds are also imposed on the optimisers free parameters to ensure that optimised configurations328

are physically sensible. These include bounds on the inclination of the mooring lines, the slack in329

the static mooring line configuration and the position of masses along the mooring line. Some of330
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Figure 7: The RAOs in surge, X (solid lines), and heave, Z (dashed lines), per device diameter for (a) 15m and (b)
7.5m diameter WITT WECs; the angular pitch, ϑ (solid lines), and pendulum, ϑp (dashed lines), RAOs, for (c) 15m
and (d) 7.5m diameter WITT WECs

these have been guided by advice from marine engineers employed as part of the current project.331

This includes weights of mooring lines.332

In Fig. 6 curves of the theoretical maximum, the optimal and the actual capture width ratio333

(i.e. for fixed PTO parameter) plotted for two numerically optimised WITT WEC devices of 15m334

and 7.5m diameter.335

In both plots, the optimal capture width ratio lopt/2a possess three peaks which extend to336

the theoretical maximum. As noted in Section 3.2, these peaks are associated with the resonant337

condition Im{Y } = 0, which are indicated in Fig. 6 by the circles on the period axis.338

The numerical optimisation has distributed these resonances across the range of periods and339

selected the particular PTO parameter, γ, such that the realisations given by the solid curves340

maximises the mean power, W , (i.e. averaged over the wave energy spectrum). Those values are341

indicated within the figures. The multiple resonances can be seen to broaden the capture width342

ratio over a range of wave periods so that, for example, for the 15m device, the capture width ratio,343
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Unconstrained Case (i) Case (ii)

Diam. W l W l W l

6 27 0.22 22 0.17 14 0.12
9 70 0.37 63 0.34 57 0.31
12 127 0.51 122 0.49 115 0.46
15 191 0.61 190 0.61 183 0.59
18 258 0.69 258 0.69 254 0.68
21 325 0.74 325 0.74 325 0.74
24 387 0.77 387 0.77 387 0.77

Table 2: Table of mean capture factor l, and mean power W
(kW) for different diameters (m) with and without motion con-
straints.
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Figure 8: Mean capture factor against device size:
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(ii) (dotted).

l/2a, is greater than unity across 8–10s waves and is above a half for a 5-second range of wave344

periods. These ranges are smaller for the half-size 7.5m device, as might be expected. The other345

effect of the optimisation is that it selects a configuration and PTO characteristics which smooth346

out the power capture over the range of wave periods. In other words the device de-tuned away347

from the peak resonances, but is near resonant over a broad range of periods instead. This, in turn,348

also helps smooth out the RAOs and the loads on the mooring.349

Selecting other non-optimal fixed values of PTO parameter, γ, shifts the solid curve around350

under the optimal curve resulting in lower overall mean power, W . This procedure has a useful351

purpose, allowing us to tune the device to the each of the three resonant peaks in turn as a means352

of understanding the characteristic device behaviour associated with these resonances. Thus, the353

lowest resonant period is found to be associated with a resonant motion of the pendulum only.354

This tallies with (B.5) which provides the natural resonant period of the pendulums in isolation for355

the two optimised 15m and 7.5m spheres as 5.29s and 3.79s, close to the values indicated on the356

horizontal axis. The other two peaks at higher periods excite large motions in all three components357

of pendulum, WEC pitch and surge motions. This is reminiscent of the effects observed in ‘tuned358

mass dampers’ (see, for example, [12]) where the coupling of different independent motions leads to359

bifurcation of resonances. Under linear theory heave is decoupled from pitch, surge and pendulum360

rotation and consequently no resonant heave motions are observed in any results.361

The RAOs corresponding to the optimised solid curves in Fig. 6 are given in Fig. 7. They show,362

respectively, the surge and heave RAOs per device diameter and the angular RAOs of the internal363

pendulum and pitch of the device, measured in degrees per metre wave amplitude (see §3.3). The364

RAOs for the 7.5m sphere are more than double that for the 15m sphere. This is not surprising365

(indeed, it is well known) that smaller devices optimised to maximise power output have larger366

responses than larger devices; see [7] for example. We notice that the heave motion is very small367

in both cases; this is in part due to the optimal mooring line configuration which nearly always368

favours the steepest allowable mooring angle (30◦ to the vertical in our design space) at the point369

of attachment to the sphere. The surge RAO for the 15m optimal design is not exceptionally large.370

However, the pitch and pendulum RAOs suggest that linear theory could only be expected to hold371
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in low to moderate wave heights. The 7.5m optimal design has RAOs which are well outside the372

range of validity of linear theory apart from in low seas.373
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5.1. Optimisation with motion constraints374

Theoretical work to include the effect of motion constraints on power output have been con-375

sidered in, for example, the work of [7] and [15]. In Fig. 1 of [7] it was shown that restricting the376

vertical motion of a heaving semi-immersed spherical WEC to different proportions (results for 0.5,377

16



1 and 2 are shown) of the wave amplitude leads to a reduction in the capture width ratio from its378

maximum Λ/2π for unconstrained motions as Λ increased.379

We have not attempted to follow [7] and apply theoretical motion constraints here. Since a380

numerical optimisation is already being used with constraints on input design parameters, we have381

considered restricting the output RAOs as part of the optimisation. This is done by including a382

smooth penalty function into the optimiser’s objective function which is set to penalise motions383

above threshold which can be set arbitrarily.384

As an illustration, each WEC size has been optimised in the same manner as before but subject385

to two different sets of constraints, one more severe than the other. In Case (i) the penalty threshold386

of heave and surge RAOs is set at the half the device diameter, and the pendulum and hull pitch387

RAOs set at 30◦ per metre wave amplitude (i.e. per 2m wave height). Case (ii) restricts heave and388

surge RAOs to 25% of device diameter and angular rotations to 22.5◦ per metre wave amplitude.389

These are somewhat arbitrary, although they are influenced by the range of validity indicated390

by the experimental results and the distribution of significant wave heights at the EMEC test site,391

Fig. C.12. Moreover, they provide a good indication of the effects that motion constraints introduce.392

Numerical results are presented in Table 2 and Fig. 8 for the mean power and the capture width393

ratios for both constrained cases alongside the unconstrained device motion. The optimiser finds394

it less easy to converge to an optimal solution when a penalty function is introduced and the data395

for Cases (i) and (ii) is not particularly smooth as a result.396

The results demonstrate that motion constraints increase the percentage loss in power as the397

device gets smaller. Thus, Case (ii) constraints applied to a 6m device leads to roughly a 50% loss398

in power. However, for larger devices the loss incurred by imposing motion constraints is actually399

quite small, and for devices larger than 18m optimised motions fall within the bounds of both Case400

(i) and (ii) constraints.401

For devices smaller than 6m the motion constrained devices generate very little power, suggesting402

that linear analysis is not a useful tool for analysing and optimising smaller devices. This adds to403

the fact that we have neglected drag forces and these play an increasingly prominent role in smaller404

devices.405

Case (i) Case (ii)

Hull diam. (m) S. area (m2) Mass (t) l ls lm l ls lm

6 56.54 57.95 0.17 3.53 3.33 0.12 2.16 2.11
9 127.2 195.6 0.34 4.33 2.82 0.31 3.92 2.55

12 226.2 463.7 0.49 4.72 2.30 0.46 4.45 2.17
15 353.4 905.7 0.61 4.70 1.83 0.59 4.53 1.77
18 508.9 1595 0.69 4.44 1.41 0.69 4.44 1.41

Table 3: Alternative measures of device performance based on [2] for devices optimised under Case (i) and (ii) motion

constraints: annual absorbed energy per submerged surface area ls (Mwh/m2) and per displaced mass lm (Mwh/t).

Results are only now plotted in Fig. 9 and Fig. 10 for the 15m device under Case (i) and (ii)406

motion constraints. Although there is only a small reduction in overall mean power, Fig. 9 illustrates407

the fairly significant shift in the capture width ratios between Cases (i) and (ii) which are broader408

and lower in the latter. The result of this on the RAOs is evident in Fig. 10. The Case (i) curve409
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in Fig. 10(b) has the 30◦ m−1 threshold imposed and Case (ii) curves are limited by the 0.25 surge410

RAO limit and the 22.5◦ m−1 pitch and and pendulum limit.411

In summary, for the 15m device, the optimisation under Case (ii) constraints has resulted in412

a reduction of under 5% in mean power which has required a reduction in maximum RAOs of413

30 − 40%.414

The capture factor is arguably not the most appropriate measure for the comparison of the415

relative performance of WECs of different sizes, especially for a spherical device. [2] suggests some416

alternative measures, including the annual absorbed energy per characteristic submerged surface417

area, ls, and per characteristic mass, lm. These measures are shown for the 6m–18m devices subject418

to optimised Case (i) and (ii) motion constraints in Table 3. Here, we have defined the characteristic419

mass as the hull displacement. Unlike the capture factor which is seen to increase as the device size420

increase, both of these alternative measures take their maximum at intermediate diameters.421

Based on Case (i) motion constraints the results in Table 3 might suggest a roughly 9m sphere422

to be most favourable. Under more plausible Case (ii) motion constraints, the measures perhaps423

favour a slightly larger device, roughly 12m in size.424

6. Conclusions425

In this paper we have outlined a mathematical model of a novel design of wave energy converter426

(WEC) in which a sealed hull containing a heavy pendulum representative of the WITT energy427

harvesting device operates on the surface of the ocean. The modelling has been carried out using428

small amplitude theory and care has been taken in the results to assess the WEC performance429

under the conditions assumed in the model. Furthermore, experimental results have confirmed the430

key elements of the WEC operation predicted by the theory: the coupling of device motions with431

an internal pendulum under a four-point mooring system, as assumed in the model.432

The derivation of model mooring systems and the equations of motion along with key results of433

the hydrodynamic modelling are all provided in the paper. The main part of the paper focusses on a434

derivation of an analytic expression for the capture width which have allowed us to both understand435

the operation of the WITT WEC and perform rapid computations in numerical optimisation over436

many device design parameters under a model wave climate. In particular, the ability to be able to437

calculate the maximum achievable power and its corresponding power take off tuning condition has438

also allowed us to identify how the system operates, by spreading three resonances across a range439

of periods allowing broad banded power capture characteristics to be obtained with a smooth RAO440

response.441

Numerical results have focussed on numerically optimised design of WITT WECs with diameters442

between 6m and 24m operating in the EMEC test site in Orkney, UK. The optimisation is performed443

over many free parameters of the design including the pendulum shape and mooring configuration444

and allows thresholds on the motions of elements of the design to be set to ensure the underlying445

small amplitude theory is not compromised. The imposition of motion constraints to limit the446

RAOs to operating conditions in all but very heavy seas to ensures that the model assumptions447

have not been violated and means that the mean power estimates provided for different device448

diameters are realistic. In illustrative calculations we have focussed on a 15m device, which has449

been estimated to produce an annual mean power output of 188kW under motion constraints in450

the 21kW/m wave climate of EMEC, equivalent to a mean capture factor of 0.59.451

According to Fig. 16 of [1] such a predicted device performance competes favourably amongst452

existing WEC designs especially considering it does not technically belong in the the class of oscil-453
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lating wave surge converter which emerge from the study of [1] as on average the best performing454

WEC.455

However, we have not included effects of hydrodynamic drag (which [1] does by using a quadratic456

drag law and solving in the time domain) or mechanical losses into our device operation and this457

will have some impact on its performance. Computations which include a linearised hydrodynamic458

drag term with the definition (26) in the numerical optimisation without motion constraints show,459

for example, show the following reduction in mean power: from W̄ = 27kW to W̄ = 17kW for a 6m460

sphere (with D̂11 = 0.075); from W̄ = 191kW to W̄ = 167kW (or l̄ = 0.53) for a 15m sphere (with461

D̂11 = 0.030); from W̄ = 383kW to W̄ = 363kW (or l̄ = 0.72) for a 24m sphere (with D̂11 = 0.018).462

Additionally the power take off (PTO) model assumed here is idealised; it includes no mechanical463

or electrical losses and may not be representative of a practical implementation. Modifications464

to account for these factors including the influence of random seas, will require further modelling465

beyond the current first order model most likely performed in numerical time domain simulations466

and experimental tests.467

In the Introduction we highlighted the SEAREV as being a comparable device, employing a468

counterweight in a sealed hull. In [5], the SEAREV G1 design with roughly the same displacement469

as a 15m WITT WEC is reported to produce a mean power of 70kW in a wave resource of 25kW.470

Its width is 14m and the figures above equate to a mean capture factor of l̄ ≈ 0.2.471

Although not reported in any detail here, other hull geometries have been considered to inves-472

tigate whether any significant improvement in the mean absorbed power could be made including:473

(i) an upright cylindrical hull floating in the surface and moored using the same four-point mooring474

system as the spherical hull; and (ii) a submerged spherical hull moored to the sea bed via taut lines475

held under tension by the assumed buoyancy of the hull. Both designs have been modelled using476

the same underlying principles and assumptions as for the original spherical hull. The performance477

of each design has been optimised in a similar manner to that described here. Results suggest that478

there is little difference in the predicted power output from the mathematical model at the scale of479

10m–25m diameter device where the small amplitude assumptions can be reasonably applied.480

Appendix A. Mooring model481

In this Appendix, two different mooring models are outlined. In the first, a simple mathematical482

model of a four-point heavy catenary mooring system is described, in which a point mass is placed483

some distance along each of the light, inextensible mooring lines connecting the hull to the sea bed.484

In the second, taut elastic mooring lines replace the caternary lines: this has been introduced to485

mimic the experimental set-up. Both models are illustrated in Fig. A.11.486

In both cases, it is assumed that the mooring limbs are arranged symmetrically about the sphere,487

their horizontal projection making an angle ζ to the primary incident wave direction. The mooring488

points on the spherical hull are described by the two angles α and η as showin in Fig. A.11. The489

vertical distance from the point of attachment to the seabed is given by h1 = h − a cos α, (h is490

the water depth and a is the radius of the hull) and the horizontal distance along the mooring line491

between these two points h2 = h1 tan χ so that χ is the angle that the imaginary line from the492

points of attachment on the hull to the bed make with the vertical. We shall assume that all angles493

α, η, ζ and χ are given, in addition to h and a.494

The hull can move along the horizontal x axis by X(t) (surge) and along the vertical z axis495

by Z(t) (heave) and it can rotate by an angle Θ(t) about the y-axis (pitch, measured clockwise).496

As it moves in each of these three modes of motion, the tension in each of the four mooring lines497
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Figure A.11: A basic definition sketch of a single mooring limb of the four point mooring system in (a) the catenary
type mooring system, in (b) the taut, extensible mooring system.

attached to the hull will also change and this will provide reactive force/moments on the hull. It is498

the relation between the motion and these force/moments we set out to derive here.499

Appendix A.1. Catenary mooring system500

Each mooring limb comprises two straight, massless, line segments of fixed lengths r1 and r2501

with a single point mass ml at their intersection, see Fig. A.11(a). The ratio r̂ = r1/r2 is assumed502

to be a given mooring parameter, as is ml.503

Consider just one mooring limb connected to the hull. The tension in the upper segment is504

denoted T1 in Fig. A.11 and so the components of the tension in the x and z directions are505

T1x = T1 sin β1 cos ζ, T1z = T1 cos β1, (A.1)

along with the pitch moment about the centre of the sphere,506

M1θ = T1a (cos η sin α cos β1 − cos ζ cos α sin β1) , (A.2)

which, we note, may be written507

M1θ = a (T1z cos η sin α − T1x cos α) . (A.3)

Additionally there is a component of tension in the y direction and yaw and roll moments non of508

which contribute to the dynamics.509

When the hull is in motion, Cartesian components of distance between the mooring points on510

the hull and the bed can be calculated as511

lx = X + h2 cos ζ + a sin α cos η(1 − cos Θ) − a cos α sin Θ
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where h2 ≡ (h − a cos α) tan χ in terms of prescribed parameters,512

ly = h2 sin ζ, and lz = Z + h − a cos α cos Θ + a sin α cos η sin Θ.

Further elementary geometry applied to the two mooring line segments provides the two relations513

r2(r̂ sin β1 + cos β2) =
√

l2
x + l2

y (A.4)

and514

r2(r̂ cos β1 + sin β2) = lz (A.5)

where β1 is the angle the upper mooring line makes to the vertical at the hull and β2 is the angle the515

lower mooring line makes with the horizontal at the bed. These two relations implicitly determine516

β1 and β2 in terms of (X, Θ, Z).517

The tensions T1 and T2 in upper and lower lines follow from a quasi-static force balance (i.e. we518

assume no inertial effects from the moving lines in this model) to give519

(

T1

T2

)

=
mlg

cos(β1 + β2)

(

cos β2

sin β1

)

. (A.6)

Thus lx, ly, lz and β1, β2, ζ are all functions of (X, Θ, Z) and hence so are T1, T2. To determine the520

static configuration, including static tensions, we substitute (X, Θ, Z) = (0, 0, 0), we fix the angle521

β1 = λχ where λ < 1 becomes the final mooring parameter.522

Thus the static angle β2 can be deduced from523

cos(β2 + χ) = r̂ sin(χ(1 − λ)). (A.7)

which combine (A.4) and (A.5), and then524

r2 = (h − a cos α)/(r̂ cos λχ + sin β2) (A.8)

from which r1 = r2r̂.525

Meanwhile, a small amplitude assumption allows us to approximate the dynamic elements of526

the tension components T1x as527

(

X(t)
∂T1x

∂X
+ Θ(t)

∂T1x

∂Θ
+ Z(t)

∂T1x

∂Z

)

(0,0,0)

(A.9)

(similarly for T1z and hence M1θ from (A.2)).528

Due to symmetry of the mooring configuration, the net effect of the four lines either reinforces529

additively or cancels out. For example, heave motions create dynamic tensions in each limb of the530

mooring line in all three components, but the net surge force and pitch moment induced by this531

heave motion is zero.532

Thus, the dynamic components of the forces/moments experienced by the hull in directions of533

surge, pitch and heave provided by the mooring system due to small displacements of the hull are534

summarised by the matrix representation535

Xm = −





K11 K12 0
K21 K22 0

0 0 K33









X
Θ
Z



 . (A.10)
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where536

K11 = 4
∂T1x

∂X
, K12 = 4

∂T1x

∂Θ
, K21 = 4

∂M1θ

∂X
, K22 = 4

∂M1θ

∂Θ
, K33 = 4

∂T1z

∂Z
.

Taking partial derivatives of (A.4), (A.5) with respect to X , Z and Θ and evaluating at (X, Θ, Z) =
(0, 0, 0) we find, after considerable algebra

∂β1

∂X
=

cos ζ cos β2

r1 cos(β1 + β2)
,

∂β1

∂Z
=

sin β2

r1 cos(β1 + β2)
,

∂β2

∂X
=

cos ζ sin β1

r2 cos(β1 + β2)
,

∂β2

∂Z
=

cos β1

r2 cos(β1 + β2)
. (A.11)

Additionally, we can deduce that537

∂ζ

∂X
= − sin ζ

h2
, and

∂ζ

∂Z
= 0 (A.12)

whilst ∂Θ = −a cos α∂X + a cos η sin α∂Z .538

With (A.1) the relations above are enough to determine the elements of the matrix (A.10)539

K11 =
4mlg cos2 ζ

r2 cos3(β1 + β2)

(

cos3 β2

r̂
+ sin3 β1

)

+
4mlg sin2 ζ sin β1 cos β2

h2 cos(β1 + β2)
, (A.13)

540

K33 =
4mlg

r2 cos3(β1 + β2)

(

cos β2 sin2 β2

r̂
+ cos2 β1 sin β1

)

, (A.14)

with541

K12 = K21 = a(cos η sin αK13 − cos αK11), (A.15)
542

K22 = a2(cos2 αK11 − cos η sin 2αK13 + cos2 η sin2 αK33) (A.16)

in terms of an intermediary variable543

K13 =
4mlg cos ζ

r2 cos3(β1 + β2)

(

cos2 β2 sin β2

r̂
+ cos β1 sin2 β1

)

. (A.17)

In these definitions, dynamic variables are evaluated at their static values: in particular β1 = λχ in544

terms of given mooring parameters and β2 and r2 are given by (A.7) and (A.8). The symmetry of545

the matrix in (A.10) is expected. Simplifications made under special cases have been used to check546

the validity of the spring constants.547

Appendix A.2. Elastic mooring system548

Here a model of a taut mooring system with extensible limbs is considered, see Fig. A.11(b).549

This model is used only in the comparison with the experiments in Section 4. There are fewer550

model parameters than in the previous system. Each mooring limb comprises a single taut elastic551

mooring line of elastic stiffness λ and pre-stressed tension T0 when extended to length L0 in the552

static configuration. The line makes an angle χ with the vertical at the point of attachment as in553

the catenary example. Thus L0 = (h − a cos α)/ cos χ) whilst the tension T1 in the line attached to554

the hull is modelled by the Hookean relation555

T1 = T0 + λ
(√

l2
x + l2

y + l2
z − L0

)

.
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A simpler application of the ideas given previously leads to

K11 = 4λ sin2 χ cos2 ζ +
4T0

L0
(1 − sin2 χ cos2 ζ), (A.18)

K33 = 4λ cos2 χ +
4T0

L0
sin2 χ (A.19)

and the intermediate variable

K13 = 4

(

λ − T0

L0

)

sin χ cos χ cos ζ (A.20)

allows K21 = K12 and K22 to follow from (A.15) and (A.16) as before.556

Appendix B. Formulation of governing equations557

In this Appendix, the equations of motion of the pendulum and the sphere are derived from the558

Euler-Lagrange equations. A hollow spherical shell of radius a, mass ms, thickness ds and density559

ρs has power take off machinery represented by a point mass, mpto, positioned at the centre of560

the sphere and a point mass mb representing ballast which is assumed to sit at the bottom of the561

sphere. The sum of these three fixed masses is denoted M = ms + mpto + mb, its centre of mass562

located at z = −L where L = amb/M , and its moment of inertia about the origin is I where we563

calculate564

I = a2

(

mb +
2ms

5

(

1 − (a − ds)5/a5

1 − (a − ds)3/a3

))

. (B.1)

The sphere contains a compound pendulum which rotates through an angle θ(t) clockwise about565

the horizontal y-axis. The pendulum is assumed to be rotationally symmetric about the vertical566

central axis and has an annular central cross-section; it has a outer radius c < a, an inner radius567

b < c and subtends to an angle of 2ξ, as shown in Fig. 2. The pendulum has a density ρp and has568

corresponding mass569

m = 2
3 ρp(c3 − b3)(1 − cos ξ)π. (B.2)

The natural length l of the pendulum, being the distance from the origin to its centre of mass is570

calculated to be571

l = 3
8

(c4 − b4)

(c3 − b3)
(1 + cos ξ). (B.3)

The pendulum also has a moment of inertia about the origin which we denote by mk2, where k is572

the radius of gyration of the pendulum defined by573

k2 = 1
10

(c5 − b5)

(c3 − b3)
c2(4 + cos ξ(1 + cos ξ)). (B.4)

We note that, in the absence of damping, the resonant period of small amplitude pendulum motions574

are given by575

T =
2π

ω
, with ω2 =

gl

k2
. (B.5)

In motion, the centre of sphere is (X(t), Z(t)) and it rotates through an angle Θ(t) clockwise576

about the origin. The sphere is restrained by mooring lines characterised by linear spring constants577
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Kij representing the force in the direction i due to motion in direction j, i, j = 1, 2, 3. These are578

given in Appendix A. Thus, the potential energy of the sphere/pendulum/mooring system is then579

given by,580

V(X, Z, Θ, θ) = 1
2

(

K11X2 + K22Θ2 + K33Z2 + 2K12XΘ
)

+ 1
2 ρgSZ2 − MgL cos Θ − mgl cos θ,

(B.6)
where ρ is the density of the fluid and S = πa2 is the equilibrium water plane area of the sphere.581

The kinetic energy for the system is the sum of the kinetic energies for the sphere/ballast and
that of the pendulum given by

T (Ẋ, Ż, Θ̇, θ̇, Θ, θ) = 1
2 IΘ̇2 + 1

2 mk2θ̇2 + 1
2 M(Ẋ2 + Ż2 − 2LΘ̇(Ẋ cos Θ − Ż sin Θ))

+ 1
2 m
(

Ẋ2 + Ż2 − 2lθ̇(Ẋ cos θ − Ż sin θ)
)

. (B.7)

A linear damping mechanism is connected to the pendulum, which acts in proportion to the rate582

of rotation of the pendulum with respect to the rotation of the sphere in pitch in order to extract583

power from the system. The linearised damping is included via the Rayleigh dissipation function584

[see 10], and we write585

D(Θ̇, θ̇) =
1

2
γl2(θ̇ − Θ̇)2, (B.8)

where γ represents a power take-off parameter.586

The Euler-Lagrange equations are then given by587

∂

∂t

∂L
∂Ẋ

− ∂L
∂X

+
∂D
∂Ẋ

= Fw,x, (B.9)

∂

∂t

∂L
∂Θ̇

− ∂L
∂Θ

+
∂D
∂Θ̇

= 0, (B.10)

∂

∂t

∂L
∂Ż

− ∂L
∂Z

+
∂D
∂Ż

= Fw,z, (B.11)

∂

∂t

∂L
∂θ̇

− ∂L
∂θ

+
∂D
∂θ̇

= 0, (B.12)

where L = T − V and Fw,x(t) and Fw,z(t) represent the external horizontal and vertical wave
forces acting on the sphere. Applying equations (B.9)–(B.12) to (B.6)–(B.8) and linearising on the
assumption of small amplitude motions gives

(M + m)Ẍ − MLΘ̈ − mlθ̈ = Fw,x − K11X − K12Θ

IΘ̈ − MLẌ = −K22Θ − K12X − MgLΘ + γl2(θ̇ − Θ̇),

(M + m)Z̈ = Fw,z − (K33 + ρgS)Z

mk2θ̈ − mlẌ = −mlgθ − γl2(θ̇ − Θ̇). (B.13)

We shall assume incident waves of a single radian frequency ω and, since our governing equations
are linear, a time harmonic dependence can be factorised from all dynamic variables and we write

[Fw,x, Fw,z] = Re{(−igA/ω)[Xw,x, Xw,z]e−iωt},

[Ẋ, Ż, lΘ̇, l(θ̇ − Θ̇)] = Re{(−igA/ω)[U, Z, Ω, Ωr]e−iωt} (B.14)
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where A is the incident wave amplitude so that Xw,x, Xw,z, U , V , Ω and Ωr are all complex
frequency dependent variables encoding amplitude and phase, respectively, of the surge and heave
wave exciting forces, the surge and heave velocities, and scaled angular velocities of the sphere and
the pendulum, relative to the sphere. The scaling of angular velocities by l assists with subsequent
non-dimensionalisation and the introduction of relative velocity Ωr as a proxy for the pendulum
rotation is important in allowing the governing equations to be expressed in a natural symmetric
manner as shown below. Thus, applying the decompositions (B.14) to (B.13) results in

−iω(M + m)U + iωML̂Ω + iωm(Ω + Ωr) = Xw,x − i

ω
K11U − i

ωl
K12Ω,

−iωÎΩ + iωML̂U = − i

ωl
K12U − i

ω
(K22/l2 + (Mg/l)L̂)Ω + γΩr,

−iω(M + m)V = Xw,z − i

ω
(K33 + ρgS) V,

−iωmk̂2(Ω + Ωr) + iωmU = − i

ω
(mg/l)(Ω + Ωr) − γΩr (B.15)

where L̂ = L/l, Î = I/l2 and k̂ = k/l. It is clear from the third line of (B.15) that the heave588

motions are independent, or uncoupled, to surge, pitch and pendulum motions.589

The result of adding the fourth to the second equation is

− iω(Î + mk̂2)Ω − imk̂2Ωr + iω(ML̂ + m)U = − i

ωl
K12U

− i

ω

(

K22/l2 + (Mg/l)L̂ + (mg/l)
)

Ω − i

ω
(mg/l)Ωr. (B.16)

Organising the first line of (B.15), (B.16) and then the last line of (B.15) as a 3×3 matrix equation590

gives591

−iωMU = Xw − i

ω
(C + K) U − γGU (B.17)

where the vectors are592

U = (U, Ω, Ωr)T and Xw = (Xw,x, 0, 0)T , (B.18)

and the matrices are593

M =





M + m −ML̂ − m −m

−ML̂ − m Î + mk̂2 mk̂2

−m mk̂2 mk̂2



 , C =





0 0 0

0 (Mg/l)L̂ + mg/l mg/l
0 mg/l mg/l



 , (B.19)

and594

K =





K11 K12/l 0
K12/l K22/l2 0

0 0 0



 , G =





0 0 0
0 0 0
0 0 1



 . (B.20)

The system defined by (B.17) is similar to that described in [5] for the SEAREV device.595

It should be noted that we have not included the dynamic effects of the catenary mooring lines596

on the equations of motion of the coupled sphere/pendulum system. For heave and pitch motions597

there will be no net restoring forces from the mooring line mass but there will be extra inertia598
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contributions. In reality, the mooring lines would also exhibit added inertia due to acceleration599

of the fluid and viscous damping losses due to its motion. These terms have been neglected in600

the model above for simplicity and on the assumption they will have a small effect on the overall601

dynamics.602

Appendix C. Wave climate parametrisation603

This appendix describes the process used in order to be able to predict the device performance604

over a given wave energy spectrum for a particular wave energy test site. [14] provide scatter605

diagrams of sea states for a number of wave energy test sites, including EMEC illustrated in606

Fig. C.12, which we will use in this study. Data is binned in intervals of 1 s for Tz, the zero-crossing607

period, and 0.5 m for Hs, and the occurrence of each sea state over a given period is provided.608

Using this data we define a function P (Hs, Tp) to be the joint probability of the occurrence of a609

pair of parameter values; it is assumed that Tp =
√

2Tz.610

We employ the two parameter spectrum developed by [3],611

S(T ) =
5

16
H2

s

T 5

T 4
p

e−
5

4
(T/Tp)4

, (C.1)

where Hs denotes the significant wave height – defined as the mean height of the highest third612

of waves – and Tp the peak wave period in the spectrum. Then, using the probability function613

P (Hs, Tp), define a modified spectrum,614

S̃(T ) =
∑

Hs

∑

Tp

P (Hs, Tp)S(T ; Hs, Tp), (C.2)

where the sums extend over the full range of expected sea states. Thus S̃(T ) takes into account the615

probability of occurrence of each sea state.616

We also incorporate a function to describe the spread of the energy density of the incident wave617

field, such that the incoming waves are no longer assumed to be unidirectional.618

The directional spread of the incident waves is incorporated using a normalised cosine(2s) func-619

tion,620

G(θ) =

{

F (s) cos2s(θ) |θ| < π/2,

0 otherwise,
where F (s) =

22s−1

π

Γ2(s + 1)

Γ(2s + 1)
, (C.3)

where θ is the angle of incidence of the incoming wave. We have taken the predominant wave621

direction to be zero. The variable s is known as the spread parameter that can be taken to be622

constant or frequency dependent. We set s = 12, which is commonly used as an estimate for623

practical purposes, [17]. The function G(θ) is normalised such that,624

∫ π

−π

G(θ)dθ = 1. (C.4)

The mean incident wave power per unit crest length is then given by625

W inc = ρg

∫ π

−π

∫

∞

0

cg(T )S̃(T )G(θ)T −2 dT dθ, (C.5)

in units of kW/m, where cg(T ) is the group velocity of the waves as a function of period [see 8, for626

example] which, in deep water is equivalent to cg = g/(2ω), and S̃(T ) the modified wave energy627

density spectrum, given in (C.2).628
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Figure C.12: A scatter plot of the probabilities of expected sea states at the EMEC wave site, data from [14].
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