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Abstract

The propagation of plane incident waves over a long submerged uniform rectangular struc-
tured ridge protruding from the sea bed is considered. The ridge is comprised of a uniform
closely-spaced array of vertical barriers between which the fluid is allowed to flow. In addi-
tion to the height and width of the ridge, the orientation and thickness of the barriers are
adjustable design parameters. Particular interest centres on the ability of the ridge to nega-
tively refract obliquely-incident waves and this is shown to be possible provided the barriers
extend sufficiently close to the surface. A key result is that the modulus of reflection and
transmission coefficients are symmetric functions of the incident wave heading and the bar-
rier orientation. This implies perfect transmission of wave energy for thin barrier elements at
incident angles that are the reverse of the barrier orientation, extending the result of Porter
(2021) to structured plate arrays of any submergence. The paper details two mathemati-
cal approaches to the solution of the problem, one for general barrier orientations and the
other for a specific orientation where special treatment of the resulting problem is required.
Numerical computations compare favourably with a variety of established results and good
agreement with an existing shallow water approximation is confirmed for sufficiently long
wavelengths.

Keywords: Water waves, metamaterials, bathymetry, negative refraction.

1 Introduction

The bespoke manipulation of water waves by rigid bathymetric structures immersed in a fluid with
a free surface has been the main subject of interest in a number of recent papers: see, for e.g.,
Farhat et al. (2008), Chen et al. (2009), Farhat et al. (2010), Berraquero et al. (2013), Maurel et
al. (2017), Maurel et al. (2019), Marangos & Porter (2021), Porter et al. (2021).

These studies have been principally motivated by the application of so-called metamaterials
to problems relating to electromagnetic, acoustic and elastic wave propagation in which devices
are created to manipulate waves in ways that are inaccessible using conventional materials (an
extensive modern catalogue of examples is described in collection of volumes edited by Maier
(2018)). A metamaterial is typically defined by elements forming a microstructure possessing a
lengthscale that is significantly smaller than the underlying wavelength and designed to produce
unusual macroscopic effects on the wavefield. In water waves this includes, for example, negative
gravity (e.g. Hu et al. (2013)) and negative refraction (e.g. Farhat et al. (2010), Marangos &
Porter (2021)).
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The earliest application of metamaterials in a water waves setting was described by Farhat et al.
(2008) who considered an annular ring device comprised of closely-spaced vertical posts extending
uniformly through the fluid as an invisibility cloak, designed to bend incoming waves entering the
device around the centre of the ring without distorting the wavefield outside the ring. Berraquero et
al. (2013) used a closely-spaced array of submerged rectangular ridges protruding upwards from the
bottom as a device for perfectly transmitting waves through a sharp bend in a channel of uniform
width. In both these contributions the exact governing equations are reduced to approximate two-
dimensional equations, independent of the depth, involving a rank-2 tensor whose elements encode
the macroscale influence of the microstructure through homogenisation. This independent spatial
control of two perpendicular components of the wave speed is now influenced by the design of
elements of the microstructure. In certain applications such as cloaking (e.g. Farhat et al. (2008),
Zareei & Alam (2015)), a coordinate transformation method prescribes this design.

The analysis for Berraquero et al. (2013) was performed under so-called shallow water theory
which, as the name suggests, is an approximation which applies when the depth of the fluid is
small compared to both the wavelength and horizontal lengthscales over which significant changes
depth occur. Their homogenisation, which did not to take into account this latter restriction, was
later improved upon by Maurel et al. (2017) whilst effective matching conditions on boundaries of
the water wave metamaterial were established in Maurel et al. (2019) allowing them to consider
the topic of the present study: plane wave scattering by a long structured ridge of finite width. All
three contributions mentioned above were performed under the restriction of shallow water theory.
Marangos & Porter (2021) also developed a shallow water model which complements those earlier
models by assuming the gaps between the rectangular protrusions in the bed are small relative to
their height. Whilst the model of Maurel et al. (2017) relied upon (albeit simple) computations of
the effective depths, in the method of Marangos & Porter (2021) these expressions were explicit.

The same close-spacing assumption has recently been used in Porter et al. (2021) to consider
scattering of wave by a vertical plate array structure confined within a truncated cylinder pro-
truding from the bottom of the fluid. In that work, the results from the shallow water theory
of Marangos & Porter (2021) was compared with a full depth-dependent treatment of the prob-
lem. As expected, the agreement between exact and approximate theories was shown to be good
provided the depth to wavelength ratio was sufficiently small.

Significantly, the work of Porter et al. (2021) was the first to consider a bathymetric water wave
microstructure under full depth-dependent theory and the solution posed mathematical challenges.
In particular, in seeking separation solutions in the domain including the structured bed, it becomes
necessary to determine the eigenvalues of a non-trivial dispersion relation. The present paper is
closely related to Porter et al. (2021) but here we consider plane wave scattering by a long
submerged uniform rectangular ridge formed by a plate array. This is geometrically simpler than
the truncated cylinder of Porter et al. (2021). In particular, the factorisation of the longshore
wavenumber dependence from the problem results in a two-dimensional problem in a vertical cross
section perpendicular to the longshore direction. In seeking eigensolutions over the structured
bed a non-trivial dispersion relation results. However, apart from special cases, it is found that
eigenvalues lie in the complex plane and this brings an added complication to the mathematical
and numerical solutions not encountered in Porter et al. (2021).

In addition to the developing solutions to the general problem we will be interested in comparing
solutions to the shallow water approximation of Marangos & Porter (2021) and to other special
cases. These include the case where the barriers forming the structured ridge are aligned with the
longshore direction, a consequence of which matching conditions along the lateral edges of the ridge
change character. We take advantage of this to develop a new approach (this appears in Section
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Figure 1: The most general configuration of the structured ridge of width 2b.

3) which is based on the formulation and solution of integral equations, similar to Porter & Evans
(1995), This approach makes it simpler to consider a fluid depth within the structured array which
is different to the fluid depth away from the ridge. This contrasts with the eigenfunction matching
method used for the general orientation of the barriers developed in Section 2 which is most easily
applied in the case where the total fluid depths inside and outside the ridge are the same. In
Section 4, we discuss numerical methods and convergence to existing results. Of particular interest
will be the influence of the depth of submergence of the top of the ridge below the surface and the
effect this has on its refractive properties.

2 Formulation and solution

Cartesian coordinates (x, y, z) are used with z directed vertically upwards from an origin lying in
the mean free surface of the fluid. In the semi-infinite regions x < −b and x > b the fluid is of
uniform constant depth h. In the strip −b < x < b a closely-spaced periodic array of vertical
barriers of width lΘ protrude upwards from a constant depth D to a depth d below the surface.
The narrow gaps between the barriers are of width (1−Θ)l and the barriers are rotated through
an anticlockwise angle δ with respect to the (x, z) plane. See Fig. 1. The geometry is therefore
specified in exactly the same way as, and with almost identical notation to, Marangos & Porter
(2021).

A plane wave is incident from x = −∞ and propagates at an anticlockwise angle θ0 ∈
(−π/2, π/2) with respect to the positive x-direction. The wave is partially reflected and par-
tially transmitted with amplitudes described by reflection and transmission coefficients R and T ,
being the principal unknowns in the problem.

Working within the assumptions of classical linearised theory, namely that the fluid is inviscid
and incompressible and its motion assumed to be irrotational and of small amplitude, there exists
a velocity potential φ(x, y, z) relating to motion of a single radian frequency ω that satisfies

∇2φ = 0, in the fluid (1)

and
φz −Kφ = 0, on z = 0 (2)
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where K = ω2/g with
n̂ · ∇φ = 0 (3)

on all rigid submerged boundaries having unit outward normal n̂. In x < −b and x > b (3) reduces
to φz = 0 on z = −h and we have

φ(x, y, z) ∼
{

(eiα0x +Re−iα0x)eiβ0yψ0(z), x → −∞
T eiα0xeiβ0yψ0(z), x → ∞ (4)

where α0 = k cos θ0, β0 = k sin θ0. Here

ψ0(z) = N
−1/2
0 cosh k(z + h), N0 =

1

2

(

1 +
sinh 2kh

2kh

)

(5)

and k is the real positive root of K = k tanh kh.
Within |x| < b and −d < z < 0, above the structured plate array, (1) continues to hold. For

|x| < b and −D < z < −d we can approximate the effect of the interaction of the fluid and the
vertical barriers by introducing an effective medium equation (as in Porter (2021), Marangos &
Porter (2021), Zheng et al. (2021)) given by

ΦY Y + Φzz = 0 (6)

for φ(x, y, z) ≡ Φ(X, Y, z) where (X, Y ) are coordinates rotated through an angle δ from (x, y) via
the transformation

(

X
Y

)

= R
(

x
y

)

, where R =

(

cos δ sin δ
− sin δ cos δ

)

. (7)

The governing equation (6) is derived by exploiting a contrast in lengthscales between the narrow
gaps between the barriers and other lengthscales in the problem. That is, we require l to be
significantly smaller than D − d, b, 1/k, all of which are regarded as being of similar orders
magnitude. Then the ratio of l/(D − d), say, forms a small parameter, ǫ, say, which is used to
develop the approximation (6) through a standard multiple-scales approach – see Porter (2021) for
details. In addition

Φz = 0, on z = −D (8)

holds and, at boundaries between the structured plate array and the surrounding fluid, effective
conditions can be derived at leading order in ǫ which require the local matching of pressures and
fluxes across those boundaries. For |x| < b this is expressed as

Φ|−d− = φ|−d+ and (1−Θ)Φz|−d− = φz|−d+. (9)

We will specify conditions that hold on the lateral boundaries, x = ±b, later.
For now, we remark that replacing the detailed flow within and into the microstructure by a

flow governed by effective equations and boundary conditions implies a geometric invariance in the
y coordinate and this implies that the solution everywhere inherits the y-variation of the incident
wave. In other words we can write

φ(x, y, z) = ϕ(x, z)eiβ0y (10)
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everywhere, including within the region |x| < b, −D < z < −d governed by (6) in transformed
coordinates. Now we can write the full solution in x < −b as

ϕ(x, y) = (eiα0x +Re−iα0x)ψ0(z) +

∞
∑

n=1

ane
αn(x+b)ψn(z) (11)

and in x > b as

ϕ(x, y) = T eiα0xψ0(z) +

∞
∑

n=1

bne
−αn(x−b)ψn(z) (12)

in which an, bn are expansion coefficients, αn = (β2
0 + k2n)

1/2 and

ψn(z) = N−1/2
n cos kn(z + h), Nn =

1

2

(

1 +
sin 2knh

2knh

)

. (13)

Here, kn are the increasing sequence of positive roots of K = −kn tan knh for n ≥ 1. Writing
k0 = −ik extends this definition to include the propagating wavenumber. Then it is known that
the depth eigenfunctions are orthogonal, satisfying

∫ 0

−h

ψn(z)ψm(z) dz = hδm,n, for m,n ≥ 0. (14)

Within |x| < b we use (7) to write (6)

φzz +

(

− sin δ
∂

∂x
+ cos δ

∂

∂y

)2

φ = 0 (15)

and then, using (10), reduce this equation, which holds over −D < z < −d, to

ϕzz +

(

− sin δ
∂

∂x
+ iβ0 cos δ

)2

ϕ = 0. (16)

Likewise, the governing equation (1) in −d < z < 0 is reduced using (10) to

ϕzz + ϕxx − β2
0ϕ = 0 (17)

and these two equations govern in contiguous domains upon whose horizontal boundaries the
conditions ϕz −Kϕ = 0 on z = 0, ϕz = 0 on z = −D apply in addition to matching conditions:
ϕ is continuous across z = −d and ϕz(x,−d+) = (1−Θ)ϕz(x,−d−).

In seeking solutions of the form ϕ(x, z) = eiµxZ(z) we find that

Z(z) =

{

coshλz + (K/λ) sinhλz, −d < z < 0
A(µ) coshκ(z +D), −D < z < −d (18)

(defined such that Z(0) = 1) where

A(µ) =
coshλd− (K/λ) sinhλd

cosh κ(D − d)
(19)

and
λ2 = µ2 + β2

0 , κ = µ sin δ − β0 cos δ (20)
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satisfy the dispersion relation

(1−Θ)κ tanh(κ(D − d)) = λ
K − λ tanhλd

λ−K tanhλd
. (21)

For general parameters the roots of this dispersion relation are complex and the task of locating
roots is typically not easy. We note that if µ is a root then so is µ̄, its complex conjugate, but −µ
is not a root unless Θ = 1, D = d, β0 = 0 or δ = 0, π/2. For these parameter sets all roots can be
shown to lie either on the real or imaginary µ-axes and we can use any of these cases as the basis
for a numerical scheme which track roots as the parameters change. In particular when β0 = 0,
corresponding to normal wave incidence, θ0 = 0, (21) reduces to

(1−Θ) sin δ tanh(µ(D − d) sin δ) =
K − µ tanhµd

µ−K tanhµd
(22)

and it is shown in Porter et al. (2021) (this can be mapped to their relation using (1−Θ) sin δ = cos t
and (D − d) sin δ = (h − d) cos t to define an equivalent t and h) that this equation has two real
roots µ = ±µ0 and an infinite sequence of roots µ = ±µn, n = 1, 2, . . . lying on the imaginary axis.
In Porter et al. (2021) it was shown how to locate all these roots and, crucially, it was proved that
no roots lie away from the real or imaginary axes in the complex plane.

Assuming that roots of (22) have been determined and that roots vary continuously as a
function of β0 we we can increase β0 in small steps to the value required allowing us to numerically
track the new location of roots in the complex plane as each step is made. Practically, this is
done using Newton iteration. In most cases with steps of 1 degrees and 20 iterations at each step
are sufficient to reach solutions of (21) accurate to 12 decimal places. However, there are some
cases where computations require increased refinement, especially when Θ is not small or when
kh is large and when we seek roots further away from real axis. In these cases, without sufficient
refinement, the roots can ‘hop away’ from their intended branch, landing on and following the
branch of another root. In such instances it is typical that conservation of energy is violated and
this is a useful signature that increased refinement of the root tracking scheme is needed. Two
contrasting examples of the variation of the roots in the complex plane are illustrated in Fig. 2,
the first example requiring few steps and the latter many more.

For β0 6= 0, the roots no longer occur in plus/minus pairs and we label the roots µ±
n for

n = 0, 1, 2, . . . to coincide with ±µn when β0 = 0. Typically µ±
0 remain on the real axis and any

root off the real axis will be paired with a complex conjugate.
We have to be careful to monitor any cases where roots coalesce to form double roots. In fact

this will only happen when D > h (a case we will not actually consider in this part of the paper)
and the two real roots can coalesce before moving off the real axes as β0 increases past a critical
value. This loss of real roots is associated with total internal reflection for oblique wave incidence
into deeper water.

We assume hereafter that µ±
n , n = 0, 1, 2, . . . are known for a prescribed value of β0 and continue

with the solution method. Thus, in |x| < b we now write

ϕ(x, z) =

∞
∑

n=0

cne
iµ+

n (x+b)Z+
n (z) + dne

iµ−

n (x−b)Z−
n (z) (23)

where Z±
n (z) are defined by (18) with µ = µ±

n . The spatial offset in the exponentials in (23)
anticipates the sign of the imaginary part of of µ±

n in such a way that the exponential functions
do not exceed a value of unity in magnitude.
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Figure 2: Location of 18 roots µ±
n of the dispersion relation (21) closest to the real axis as β0

increases from 0◦ (red circles): (a) in steps of 10◦ to 90◦ for kh = 1, d/h = 0.5, Θ = 0.5 and
δ = 45◦; (b) in steps of 0.1◦ to −60◦ for kh = 2, d/h = 0.25, Θ = 0.9, δ = 30◦.

We now consider the conditions which apply across the two interfaces x = ±b which will be
used to determine the coefficients an, bn in (11) and (12) and cn and dn in (23). The methodology
applied depends upon the relative size of D and h and the angle of rotation of the plates on the
structured bed, δ. We continue by developing a solution method specific to the case D = h and
for δ 6= 0. Then

ϕ(±b−, z) = ϕ(±b+, z), for −h < z < 0 (24)

equates pressures through the fluid and matching fluxes gives, after use of the mapping (7) and
transformation (10)

ϕx(−b−, z) =
{

ϕx(−b+, z), −d < z < 0
−(1−Θ) sin δΦY |x=−b+, −D < z < −d (25)

where we note that

−(1−Θ) sin δΦY |x=−b+ = (1−Θ)
(

sin2 δϕx(x,−b+)− iβ0 sin δ cos δϕ(x,−b+)
)

. (26)

The relation (25) also applies at x = b after replacing −b+ by b− and −b− by b+. Applying (24)
to (11) and (23) and using the orthogonality relation (14) gives

e−iα0b +Reiα0b =
∞
∑

n=0

cn(U
+
n0 + L+

n0) + dne
−2iµ−

n b(U−
n0 + L−

n0) (27)

and

am =
∞
∑

n=0

cn(U
+
nm + L+

nm) + dne
−2iµ−

n b(U−
nm + L−

nm) (28)

for m = 1, 2, . . .. Here we have written

U±
nm =

1

h

∫ 0

−d

Z±
n (z)ψm(z) dz and L±

nm =
1

h

∫ −d

−h

Z±
n (z)ψm(z) dz (29)
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which can be calculated explicitly from the definitions of Z±
n (z) and ψm(z) – see Appendix B.

Applying (24) to (12) and (23) at x = b gives

T eiα0b =

∞
∑

n=0

cne
2iµ+

n b(U+
n0 + L+

n0) + dn(U
−
n0 + L−

n0) (30)

bm =
∞
∑

n=0

cn(U
+
nm + L+

nm)e
2iµ+

n b + dn(U
−
nm + L−

nm). (31)

Application of the condition (25) similarly result in

α0(e
−iα0b −Reiα0b) =

∞
∑

n=0

µ+
n cn(U

+
n0 + p+nL

+
n0) + µ−

n dne
−2iµ−

n b(U−
n0 + p−nL

−
n0) (32)

and

αmam = i

∞
∑

n=0

µ+
n cn(U

+
nm + p+nL

+
nm) + µ−

n dne
−2iµ−

n b(U−
nm + p−nL

−
nm) (33)

where we have written
p±n = (1−Θ)[sin2 δ − (β0/µ

±
n ) sin δ cos δ]. (34)

Finally from applying (25) at x = b we have

α0T e
iα0b =

∞
∑

n=0

µ+
n cne

2iµ+
n b(U+

n0 + p+nL
+
n0) + µ−

n dn(U
−
n0 + p−nL

−
n0) (35)

and

−αmbm = i

∞
∑

n=0

µ+
n cne

2iµ+
n b(U+

nm + p+nL
+
nm) + µ−

n dn(U
−
nm + p−nL

−
nm). (36)

It is clear we can eliminate R, T , am and bm from between equations (27)–(36). If the infinite
series are truncated at n = N , and we retain equations from m = 1, 2, . . . , N then we will have
2N + 2 equations for the 2N + 2 unknown constants cn, dn, n = 0, 1, 2, . . . , N . After inverting
these equations we can recover R, T and am, bm for m = 1, 2, . . . , N from the equations above.

It is notable that we have not considered the case D 6= h here. It is possible to apply the
mode matching method described above to D < h, although it complicates the algebra and does
not provide much additional insight. The difficulty of solving problems in the more interesting
case of D > h is that standard approaches (for equivalent problems involving non-porous steps
and trenches see, for example, Evans & McIver (1984), Mei & Black (1969) or Kirby & Dalrymple
(1983)) rely upon orthogonal eigenfunctions existing in both |x| > b and |x| < b. In our case this
presents two problems. The first is that, apart from special cases of β0 = 0, or δ = 0, π/2, the
eigenfunctions Z±

n (z) are not orthogonal. It is possible to define a set of eigenfunctions from an
adjoint problem in which β0 is replaced by −β0 which satisfy a generalised orthogonality condition
when used in conjunction with Z±

n (z). However this fails to address a second issue which is that
the solution is complicated by the definition of (26). For the reasons above we have postponed
consideration of the case D 6= h for general δ, but will consider D 6= h in the special case δ = 0
below.
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3 The case δ = 0

When δ = 0, the barriers within |x| < b are aligned with the y-direction and consequently there
is no flux across the boundaries x = ±b for −h < z < −d. Thus, while (25) still holds, (24) now
only holds for −d < z < 0 across the top of the ridge, and the solution outlined in the previous
section cannot be applied directly to this special case.

Using δ = 0 (21) is reduced to

(1−Θ)β0 tanh[β0(D − d)] = λ
K − λ tanhλd

λ−K tanhλd
. (37)

In this case, it can be shown (see Appendix A) in a similar manner to Porter et al. (2021)
that the only values of λ satisfying (37) lie on the real and imaginary axes. Specifically the
values of λ satisfying (37) are ±λ0 on the real axis and ±λn, n = 1, 2, . . . lying on the imaginary
axis. On account of the relationship (20), the corresponding values of µ = ±µn are defined by
µn =

√

λ2n − β2
0 . Consequently µn lie on the positive imaginary axis whilst µ0 lies on the positive

real axis for λ0 > β0 and µ0 lies on the positive imaginary axis if λ0 < β0. Such a case will only
occur when D > h and is associated with total internal reflection as oblique waves pass from
shallower water into deeper water.

It is important to note that the depth eigenfunctions Zn(z) corresponding to the values of µn

are orthogonal over the interval −d < z < 0 and (strangely, perhaps) not the whole range of values
of z over which they are defined. To show this we start with the fact that µn are distinct and
Zn(z) are real. Then

(µ2
n − µ2

m)

∫ 0

−d

Zn(z)Zm(z) dz =

∫ 0

−d

Z ′′
n(z)Zm(z)− Zn(z)Z

′′
m(z) dz

= [Z ′
n(z)Zm(z)− Zn(z)Z

′
m(z)]

0
−d = 0 (38)

after using the governing equation Z ′′(z)−(µ2+β2
0)Z(z) = 0 for Z(z) in −d < z < 0, the boundary

condition Z ′(0)−KZ(0) and the conditions matching Zn(z), Z
′
n(z) at z = −d to the definition of

Zn(z) in −D < z < −d which involves hyperbolic functions whose argument is independent of n.
Thus, it must be that

1

d

∫ 0

−d

Zn(z)Zm(z) dz = Cnδnm (39)

where Cn can easily be calculated from the definition of Zn(z) in −d < z < 0 given by (18) with
µ = µn; it is defined in Appendix B.

Unlike the general problem with plates rotated through a non-zero angle, once δ = 0 the geom-
etry is symmetric about the vertical plane x = 0. The solution is made simpler by decomposing
the potential into the sum of even and odd parts via

φ(x, y, z) =
1

2
(φs(x, y, z) + φa(x, y, z)) (40)

such that
φs(x, y, z) = φs(−x, y, z), φa(x, y, z) = −φa(−x, y, z). (41)

Consequently the problems for φs,a need only be solved in x < 0 when supplemented with the
conditions

∂φs

∂x
= φa = 0, on x = 0. (42)
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Additionally, if we write

φs,a(x, y, z) ∼ (eiα0x +Rs,ae−iα0x)eiβ0yψ0(z), as x→ −∞ (43)

then it follows from (4) and (40) with (41) that

R =
1

2
(Rs +Ra), T =

1

2
(Rs − Ra). (44)

We are now in a position to write down general expansions for the potentials in x < −b and
−b < x < 0. We first factorise the y dependence inherited from the incident wave with

φs,a(x, y, z) = ϕs,a(x, z)eiβ0y (45)

and then

ϕs,a(x, z) = (eiα0x + Rs,ae−iα0x)ψ0(z) +
∞
∑

n=1

as,an eαn(x+b)ψn(z) (46)

in x < −b where αn have been defined after (12). In −b < x < 0 we have

ϕs(x, z) =

∞
∑

n=0

csn
cosµnx

cosµnb
Zn(z) and ϕs(x, z) =

∞
∑

n=0

can
sin µnx

sin µnb
Zn(z) (47)

satisfying (42) where cs,an are coefficients to be determined and the factors in the denominator
normalise the functions of x.

The matching conditions at the common interface are that ϕs,a(x, z) is continuous across x = −b
and that

ϕs,a
x (−b−, z) =

{

ϕs,a
x (−b+, z) − d < z < 0

0, −h < z < −d. (48)

Note that we have no information relating to ϕs,a(−b+, z) or ϕs,a
x (−b+, z) for −D < z < −d as the

boundary x = −b+ is absorbed by the homogenisation within the microstructure. We could follow
the previous method and use the orthogonality of eigenfunctions in x < −b to determine systems
for equations for coefficients from the matching conditions, following the approach of Evans &
McIver (1984) for example. Instead, we follow the methods advocated by Mei & Black (1969),
Porter & Evans (1995) and formulate integral equations for functions relating to the unknown
horizontal velocity above the edge of the ridge at x = −b for which the establishment of the
orthogonality condition (39) is vital.

We let Us,a(z) = ϕs,a
x (−b−, z) = ϕs,a

x (−b+, z) over −d < z < 0. Combining this definition with
(46) we get

iα0h(e
−iα0b −Rs,aeiα0b) =

∫ 0

−d

Us,a(z)ψ0(z) dz (49)

and

αnha
s,a
n =

∫ 0

−d

Us,a(z)ψn(z) dz (50)

using (14). Using the expansions (47) and the orthogonality condition (39) we find that

µndc
s
n tanµnb =

1

Cn

∫ 0

−d

Us(z)Zn(z) dz, µndc
a
n cotµnb =

1

Cn

∫ 0

−d

Ua(z)Zn(z) dz, (51)
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for n = 0, 1, 2, . . .. Matching (46) to (47) over x = −b, −d < z < 0 and using the relations (50)
and (51) to eliminate all unknowns (apart from Rs,a) we arrive at

∫ 0

−d

Us,a(z′)Ks,a(z, z′) dz′ = −(e−iα0b +Rs,aeiα0b)ψ0(z), −d < z < 0 (52)

where

Ks(z, z′) =
∞
∑

n=1

ψn(z)ψn(z
′)

αnh
−

∞
∑

n=0

Zn(z)Zn(z
′)

Cnµnd tanµnb
(53)

and Ka(z, z′) is defined as above but with tanµnb replaced by − cotµnb. We proceed by letting

Us,a(z) = −(e−iα0b +Rs,aeiα0b)us,a(z) (54)

such that us,a(z) is the only unknown satisfying the integral equation

∫ 0

−d

us,a(z′)Ks,a(z, z′) dz′ = ψ0(z), −d < z < 0. (55)

Introducing the definition (54) into (49) gives

iα0h(e
−iα0b − Rs,aeiα0b) = −(e−iα0b +Rs,aeiα0b)

∫ 0

−d

us,a(z)ψ0(z) dz (56)

and so it follows that

Rs,a = e−2iα0b

(

α0h− iAs,a

α0h+ iAs,a

)

(57)

where

As,a =

∫ 0

−d

us,a(z)ψ0(z) dz. (58)

Once Rs,a is determined, all other coefficients in the problem can also be determined from us,a(z).
Thus we are just left requiring to solve (55) for us,a(z) which is performed by introducing an
approximation in which the unknowns are expanded in a finite series of P + 1 terms

us,a(z) ≈
P
∑

p=0

ws,a
p up(z) (59)

and ws,a
p are coefficients weighting the expansion functions up(z), p = 0, . . . , P . We are not able

to determine the local behaviour of the solution in the vicinity of the corner of the ridge, but have
imagined that the flow around the edge at (x, z) = (−b,−d) is similar to that around an isolated
thin barrier protruding upwards to this point. This allows us to follow the approximation of Porter
& Evans (1995) used exactly for such barrier configurations. In this approach, we first relate ûp(z)
to up(z) by

ûp(z) = up(z)−K

∫ z

−d

up(ζ) dζ (60)

such that ûp(z) has zero derivative at z = 0 since the functions up(z) are related to φx which itself
satisfies (2). Also, up(z) should incorporate the anticipated inverse square root behaviour of φx at
as z approaches −d. Thus we make the choice

ûp(z) =
2(−1)pT2p(z/d)

π
√
d2 − z2

(61)

11



kh = 0.25, θ0 = 0◦ kh = 2.5, θ0 = 60◦

N |R| |E| |R| |E|
4 0.162670 10−16 0.139759 8.1× 10−6

8 0.162727 10−16 0.139991 1.7× 10−6

16 0.162743 10−16 0.140059 3.5× 10−8

32 0.162746 10−15 0.140077 2.5× 10−8

64 0.162747 10−16 0.140082 2.8× 10−9

Table 1: Convergence of |R| and |E| = |1−|R|2−|T |2| with truncation parameter, N , for Θ = 0.1,
δ = 30◦, b/h = 1.

where T2p(z) is a Chebychev polynomial, even across z = 0. The outcome of the implementation
of the Galerkin approximation, in which (59) is substituted into (55) before being multiplied by
uq(z) and integrated over −d < z < 0, is

P
∑

p=0

ws,a
p Ks,a

pq = Gq0, q = 0, 1, . . . , P (62)

where

Ks
p,q =

∞
∑

n=1

GqnGpn

αnh
−

∞
∑

n=0

HqnHpn

Cnµnd tanµnb
(63)

and Ka differs with tan replaced by − cot whilst

Gpn = N−1/2
n cos knhJ2p(knd), for n ≥ 1 with Gp0 = (−1)pN

−1/2
0 cosh khI2p(kd), (64)

expressed in terms of Bessel and modified Bessel functions. Also, we find

Hpn = (−1)pI2p(µnd) ≡ J2p(−iµnd) (65)

recalling that µn are imaginary for n ≥ 1 and possibly imaginary for n = 0 also. Once ws,a
p are

determined from (62) we have from using (59) in (58) and working through the details from Porter
& Evans (1995) that

As,a ≈
P
∑

p=0

ws,a
p Gp0. (66)

One of the advantages of using this method is that it is known from Porter & Evans (1995) to
be rapidly convergent and here we will confirm that P = 5 is normally sufficient for six decimal
place accuracy computations of Rs,a (indeed often smaller values of P will suffice). We have used
expansion functions with an inverse cube root singularity at the edge (x, z) = (−b,−d) (e.g. Evans
& Fernyhough (1995)) and confirmed these results converge quickly to the same results as those
computed with the choice (61). We can also easily confirm that the system of equations in (62) is
real and hence As,a is real from (66) which then implies from (57) that |Rs,a| = 1 which is required
by conservation of energy.
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Figure 3: Variation of |R| against kh for θ0 = 0◦, b/h = 1 and thin barriers (Θ = 0). In (a)
δ = 45◦ and curves for d/h = 0.1, 0.02, 0.004 are shown converging to results for full depth
barriers (solid/purple). In (b) d/h = 0.1 and δ = 25◦, 5◦, 1◦ are shown converging to results for
equivalent rigid step (solid/purple).

4 Results

Before discussing the quantitative behaviour of the results, we state the key finding of this work.
When either θ0 is replaced by −θ0, or δ is replaced by −δ, we find that the computed values

of |R| and |T | at the same frequency are unchanged, irrespective of other geometric parameters in
the problem. This symmetry of the reflection and transmission coefficients in wave heading and
the array orientation was the principle highlight of the work of Porter (2021) who considered thin
barriers (Θ = 0) extending throughout the depth. It was subsequently also shown to hold under a
shallow water approximation to scattering by rectangular structured ridges by Marangos & Porter
(2021). In the context of these established results it is perhaps not surprising that the same result
holds for the full depth-dependent model of wave scattering. Nevertheless, taken on its own, it
is a remarkable result. For instance, since waves are perfectly transmitted for all frequencies by
thin barriers (Θ = 0) of any non-zero rotation δ and any submergence depth d/h provided the
wave heading is aligned with the barriers (θ0 = δ − π/2) it follows that waves are also perfectly
transmitted for all wave frequencies by the same structure when the wave heading is reversed to
θ0 = π/2− δ.

The invariance of |R|, |T | to changes in sign of either θ0 or δ can be established from the formu-
lation of the solution presented in §2. It is based on (21) and the observation that if µ±

n are labelled
as the eigenvalues corresponding to the parameters (θ0, δ) then the eigenvalues corresponding to
either (−θ0, δ) or (θ0,−δ) are −µ∓

n . It readily follows that if Z±
n (z) are the eigenfunctions for (θ0, δ)

then Z∓
n (z) are eigenfunctions for the cases (−θ0, δ) or (θ0,−δ). Next, from (23), if ϕ(x, y) is the

general solution corresponding to (θ0, δ) then ϕ(−x, y) becomes the general solution for (−θ0, δ) or
(θ0,−δ). This is equivalent to flipping the plate array about x = 0, or, equivalently, to sending in
incident waves from plus infinity rather than minus infinity. Either way this reduces the problem
to one in which either the sign of θ0 or δ has been reversed.

The main purpose of Fig. 3(a,b) and Fig. 4 is to show how results convergence to various
established cases. We continue by illustrating the convergence of the numerical scheme based on
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Figure 4: Variation of |R| against kh for b/h = 1, d/h = 0.25 and θ0 = 30◦, δ = −60◦. In (a)
Θ = 0.1, 0.5, 0.9 are shown converging to results for equivalent rigid step (solid/purple).

the approach adopted in §2 based on eigenfunction matching through the fluid depth. In addition
to the numerical methods required to locate the complex roots of (21), already discussed in §2, we
must determine how many roots are required. This is a set by the truncation of the infinite system
of equations in §2 to m,n = 0, 1, . . . , N .

Table Tab. 1 provides two contrasting cases of low frequency and high frequency for a ridge
occupying a 75% of the water depth. At lower frequencies, fluid velocities decrease less rapidly
with the depth than at higher frequencies. It is therefore typical that more depth functions are
required to resolve the interaction with the submerged ridge for lower frequencies although this
expected feature is not especially clear from the results presented, which illustrate that only a few
modes are required for two to three decimal place accuracy. Also shown in Tab. 1 are values of |E|
where E = 1− |R|2 + |T |2 and conservation of energy demands that E = 0. It seems from Tab. 1,
and other computations performed in the preparation of this work, that energy conservation is
automatically satisfied for normal incidence and is only used as an indicator of convergence for
values of θ0 6= 0. Numerical convergence can be much slower for more extreme parameter values
including Θ → 1, d/h→ 0, δ → 0. For example, for δ = 1◦, kh = 2.5, d/h = 0.1, Θ = 0.9, b/h = 1
we find |E| = 3.8× 10−3 (N = 64), |E| = 2.2× 10−3 (N = 128).

Thus, in Fig. 3(a) we have examined the effect of reducing d/h in the case Θ = 0 and comparing
with the Porter’s (2021) explicit results for |R| for thin barriers extending through the depth.
In Fig. 3(b) we the effect that rotating the barriers towards being aligned perpendicular to the
normally-incident waves has on an arrangement of thin barriers extending to d/h = 0.1. In this
case, we confirm that |R| tends to results for a rigid impermeable step, computed using methods
devised for Evans et al. (2015), applying Porter’s (1995) integral equation method to the general
approach described in Mei & Black (1969). This is expected, since for normal incidence on closely-
spaced arrays of plates, there will be no fluid motion in the narrow gaps between the plates.

In Fig. 4 we compare again with results from a rigid step, but choose to increase Θ from 0
(thin barriers) towards 1 where the gaps close up completely. Numerically it is hard to go further
than Θ = 0.9, but the trend is clear. In this arrangement, the barriers are aligned with the wave
heading and in the case Θ = 0 it follows (confirmed numerically) that |R| = 0 for all kh. On
account of the symmetry in |R| to reversal in the signs of θ0 or δ the same curves shown in Fig. 4
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Figure 6: The instantaneous surface when a Gaussian beam centred on θ0 = 45◦ is incident on
a structured ridge of width b/h = 2, δ = 45◦, Θ = 0 with: (a) d/h = 0.1; (b) d/h = 0.2; (c)
d/h = 0.4.

are produced when θ0 = −30◦, δ = −60◦ or when θ0 = 30◦, δ = 60◦.
We make comparisons with the shallow water (long wavelength) approximation of Marangos

& Porter (2021) in Fig. 4 which confirms that results are in good agreement for kh ≪ 1. It also
shows the effect of varying the width of the ridge whose main influence is determining multiple
interference effects due to reflection of waves propagating across the ridge at their edges, x = ±b.

Next, we illustrate the refractive characteristics of the structured bed. In Fig. 6 three plots
are shown of the instantaneous free surface for an incident Gaussian beam from x = −∞ centred
around θ0 = θc = 45◦ in the case of δ = 45◦, Θ = 0 so that the thin barriers forming the plate array
are perpendicular to the central wave heading. At the central heading, θ0 = 45◦, there is perfect
transmission on account of the symmetry of the reflection coefficient in θ0. However, we expect
small amounts of wave reflection from the contributions to from wave angles around θ0 which have
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been subject to a Gaussian weighting. That is, in Fig. 6 we have plotted

φbeam(x, y; θc) = 2
√
π

∫ θc+∆θ

θc−∆θ

cos(θ0 − θc)e
−4π2(θ0−θc)2φ(x, y; θ0) dθ0 (67)

where, for numerical purposes, ∆θ truncates the range of values over which the integration is
performed (we used ∆θ = 30◦). The three subplots in Fig. 6 show the influence of the depth of
submergence of the barriers in the array for a fixed width, b/h = 2, and wavenumber, kh = 2.
When the barriers extend through 90% of the depth (d/h = 0.1) the waves are negatively refracted
by the ridge and resemble figures shown in Porter (2021) for barriers extending fully through the
depth. White lines are overlaid on the plots to indicate the path of the centre of the Gaussian
beam. As the ridge height decreases the refractive effect of the ridge weakens and when d/h = 0.4
(Fig. 6(c)) we observe that the refraction is conventional (positive).

4.1 The case δ = 0

The special case of δ = 0 is computed using values of P = 5 in (62) and truncation of the infinite
summation in (63) to 500 terms. This determines |R| and |T | to six decimal place accuracy in
all cases under investigation. The roots λn of (37) are found numerically following the description
given in Appendix A, all lying on either the real or imaginary axes.

When θ0 = 0, the fluid in the narrow gaps between the plates does not move and values of |R|
coincide with those for a rigid step submerged to a depth d, irrespective of the depth of the fluid
in the gaps, D. This can be seen in Fig. 7(a,b) in which the curves for θ0 = 0◦ are identical to the
solid curve in Fig. 2(b). In Fig. 7 we have concentrated on the effect the internal fluid depth, D,
a new parameter which we can only adjust in this special δ = 0 case. Thus, we have plotted the
variation of |R| for D/h = 2 and D/h = 0.2 in Figs. 7(a) and (b) in the case that d/h = 0.1 for two
oblique incident wave headings of 45◦ and 60◦. Whilst there is no difference for θ0 = 0◦, we can see
that the internal fluid depth has a significant effect on reflection for oblique wave angles. When
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Figure 8: The instantaneous surface when a Gaussian beam centred on θ0 = 45◦ is incident on a
structured ridge of width b/h = 1, δ = 0◦, d/h = 0.1, Θ = 0 with: (a) kh = 0.5, D/h = 2; (b)
kh = 2, D/h = 0.2.

D/h > 1 the reflection increases for longer wavelengths whilst reduced internal depths, (D/h < 1)
results in a decrease reflected energy as θ0 increases.

We have used Gaussian beams centred around θ0 = 45◦ to showcase the reflective qualities of
the ridge with the large internal fluid depth D/h = 2 at kh = 0.5 in Fig. 8(a). There is much
higher reflected energy from this structured device at these oblique incident angles over a wide
range of frequencies than for the equivalent rigid step or thin barrier. In contrast, Fig. 8(b) relates
to D/h = 0.2 and kh = 2 where there is much more typical transmission over the step with normal
(positive) refraction into the shallower fluid depths.

5 Conclusions

In this paper, we have shown how full depth-dependent linear theory has been applied to solve
a scattering problem involving a long submerged horizontal ridge of closely-spaced plate arrays.
The effect of the local structure of a discrete plate array has been modelled using a approximate
effective medium equation which has previously been confirmed as a good approximation to a
discrete array. Two mathematical solution approaches have been developed depending on the
parameters in the problem. When the plates are not aligned with the direction of the ridge we have
used an eigenfunction matching method to determine the reflection and transmission of oblique
incident waves. The mathematical challenge here has been in determining the complex eigenvalues
of the dispersion relation. On account of the solution method employed for general plate array
orientations only the case when the fluid depth within the array matches that outside the array
has been considered. When the plates are aligned with the ridge, the boundary conditions at the
ends of the ridge change character and a special solution is required which does allow the internal
fluid depth to differ from that outside the array. This case has been approached by developing
integral equations for functions relating to the horizontal velocity across the top corner of the ridge
and solving via a Galerkin method.

The range of configurations described by the theory in the paper allow us to demonstrate a
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number of cases in which numerical results which can be validated against existing results. One
of the purposes of this paper has been to confirm that the simpler shallow water model of wave
propagation of Marangos & Porter (2021) is a good approximation to the full depth dependent
models for sufficiently small values of kh (roughly kh . 1

2
). A key result is to show that the perfect

transmission predicted by Porter (2021) for plate arrays with thin barrier elements extending at
incident wave angles opposite to the array orientation angle is also a feature of barriers extending
partially through the depth. In doing so, we have demonstrated that submerged plate arrays are
capable to producing negative refraction the effect being stronger for longer waves and for barriers
closer to the surface.

For plate arrays aligned with the ridge, we have shown that the reflection of sufficiently long
obliquely incident waves over a structured ridge with an internal fluid depth exceeding the fluid
depth away from the ridge is enhanced when compared with an equivalent impermeable ridge or
a vertical barrier submerged to the same depth. This may be of interest to the design of offshore
breakwater systems.
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A Roots of the dispersion relation for δ = 0

In this Appendix we discuss the roots of the dispersion relation given by (37), in relation to the
special case δ = 0 which we write in the form

C = R(λ) ≡ λ
K − λ tanhλd

λ−K tanhλd
(68)

and
C = (1−Θ)β0 tanh[β0(D − d)] (69)

is a real and non-negative constant. The following arguments are very similar to Porter et al.

(2021).
The case of β0 = 0 is trivial, since (68) is reduced to finding roots of K = λ tanhλd which

coincides with the water wave dispersion relation for a fluid depth d. This (e.g. Linton & McIver
(2001)) is known to result in a pair of real roots and an infinite sequence of roots lying symmetrically
on the imaginary axis.

When λ is assumed real and positive different cases arise, depending on the sign of 1−Kd the
value of R(0) ≡ R0 = K/(1 − Kd). If Kd > 1 then R0 < 0, and there is an asymptote of R(λ)
at λ = λ∗ where λ∗ = K tanhλ∗d. Away from this asymptote R(λ) is a monotonically decreasing
function which crosses the axis at a value of λ† > λ∗ corresponding to the positive real root of
K = λ† tanhλ†d and continues as R(λ) ∼ −λ as λ → ∞. Therefore there is a single root λ0 of
(68) satisfying λ∗ < λ0 < λ†. Since R(λ) is an even function, there is a corresponding negative
root, −λ0.

If Kd < 1 there are no zeros of the denominator of R(λ) which is monotonic decreasing function
from a positive value of R0 at λ = 0, crossing the axis at λ† and with R(λ) ∼ −λ as λ→ ∞. Thus
there are real roots ±λ0 only if C < R0. These two scenarios are illustrated in Fig. 9
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2
.

Now consider λ = iλ̃ where λ̃ is assumed real and positive whereby (68) is transformed into

C = R̃(λ̃) ≡ F̃1(λ̃)/F̃2(λ̃) (70)

where
F̃1(λ̃) = λ̃ sin λ̃d+K cos λ̃d, F̃2(λ̃) = cos λ̃d− (K/λ̃) sin λ̃d. (71)

We again have two consider different cases depending on the sign of Kd − 1. When Kd > 1 the
asymptotes of the right-hand side of (70) lie at zeros of F̃2(λ̃) located in intervals nπ < λ̃d < (n+ 1

2
)π

for n = 1, 2, . . .. In between asymptotes R̃(λ̃) is monotonic increasing and passes through zeros
of F̃1(λ̃) at roots of the water wave dispersion relation for a fluid of depth d, located between
(n − 1

2
)π < λ̃d < nπ. Thus we can infer there is an infinite sequence of roots, ±λn (n = 1, 2, . . .)

of (68), lying on the imaginary axes between each of these zeros and the asymptote that follows
each zero.

When Kd < 1 the first asymptote at λ̃ = λ̃∗ of F̃2(λ̃) lies between zero and π/2. For values of
λ̃ > λ̃∗ beyond this asymptote, R̃(λ̃) increases monotonically and all the arguments of the previous
paragraph apply. For 0 < λ̃ < λ̃∗, R̃ remains monotonic increasing from R̃(0) = R0. In other
words, there is an additional root in 0 < λ̃ < λ̃∗ if Kd < 1 and C > R0 which we label λ0 since it
only exists when the real root ceases to exist. That is to say, λ0 is the same root and either lives
on the real or imaginary axis depending on certain conditions being met. A graphical illustration
of this information is provided in Fig. 9.

Finally, we can use Rouché’s theorem (e.g. Ablowitz & Fokas (1997, p.263)) to show that there
are no roots lying in the complex plane off the real or imaginary axes. Again the arguments follow
quite closely the details described in Porter et al. (2021). We write (68) as

F (λ) = F1(λ) + F2(λ) = 0

where
F1(λ) = K cosh λd− λ sinhλd, F2(λ) = C((K/λ) sinhλd− cosh λd).

Then F1 and F2 are meromorphic functions and Rouché’s theorem states that the number of zeros
of F = F1 + F2 inside a closed contour C in the complex plane is equal to the number of zeros of
F1 provided |F1| > |F2| for all points on C.
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We consider the rectangular contour C = Cm(ρ) comprised of four straight-line segments. Two
are defined by ℑ{λ} = ±pm, −ρ < ℜ{λ} < ρ where pm is themth positive zero of (K/pm) sin pmd−
cos pmd = 0. The other two segments complete the rectangle by setting ℜ{λ} = ±ρ and letting
−pm < ℑ{λ} < pm. Then it can be shown that |F1| > |F2| on each Cm(ρ) with ρ→ ∞. The zeros
of F1 are just those for the water wave dispersion relation which are known to be located on the
real and imaginary axes at locations previously described. When we count the number of zeros of
F that we have identified as being located on the real and imaginary axes inside the contour Cm(ρ)
with ρ → ∞, we find they are the same as the number of zeros of F1. Therefore, by Rouché’s
theorem, and taking the limit m→ ∞, we conclude that there are no zeros of F other than those
on the real and imaginary axes.

B Definition of depth integrals

From the definition of (29) we find, after extensive algebra in which the dispersion relation for k
and (21) are both used, that

U±
nm =

−N−1/2
m A(µ)

(λ2 + k2m)h
(km sin km(h− d) cosh κ(h− d) + κ(1−Θ) cos km(h− d) sinh κ(h− d)) (72)

where λ2 = µ2 + β2
0 , κ = µ sin δ − β0 cos δ, A(µ) is defined by (19) and µ = µ±

n . For m = 0 when
k0 = −ik,

U±
n0 =

N
−1/2
0 A(µ)

(λ2 − k2)h
(k sinh k(h− d) cosh κ(h− d)− κ(1−Θ) cosh k(h− d) sinh κ(h− d)) . (73)

It is slightly less complicated to determine that

L±
nm =

N
−1/2
m A(µ)

(k2m + κ2)h
(km sin km(h− d) cosh κ(h− d) + κ cos km(h− d) sinh κ(h− d)) (74)

such that

L±
n0 =

N
−1/2
0 A(µ)

(k2 − κ2)h
(k sinh k(h− d) coshκ(h− d)− κ cosh k(h− d) sinh κ(h− d)) . (75)

When λ = k and/or κ = k, (73) and/or (75) need revising either by recalculating integrals from
the start or by taking limits of the expressions given.

The value of Cn defined by (39) is evaluated as

Cn =
1

2
(1− (K/λn)

2) + (1 + (K/λn)
2)
sinh 2λnd

4λnd
− K sinh2 λnd

λ2nd
(76)

with λ2n = µ2
n + β2

0 determined by (37).
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