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A novel design concept for a wave energy converter (WEC) is presented and analysed. Its
purpose is to balance the theoretical capacity for power absorption against engineering
design issues which plague many existing WEC concepts. The WEC comprises a fully
submerged buoyant circular cylinder tethered to the sea bed by a simple mooring system
which permits coupled surge and roll motions of the cylinder. Inside the cylinder a me-
chanical system of pendulums rotate with power generated by the relative rotation rates
of the pendulums and the cylinder.

The attractive features of this design include: making use of the mooring system as a
passive component of the power take off (PTO); using a submerged device to protect it
from excessive forces associated with extreme wave conditions; locating the PTO within
the device and using a PTO mechanism which does not need to be constrained; exploiting
multiple resonances of the system to provide a broad-banded response.

A mathematical model is developed which couples the hydrodynamic waves forces
on the device with the internal pendulums under a linearised framework. For a cylinder
spanning a wave tank (equivalent to a two-dimensional assumption) maximum theoretical
power for this WEC device is limited to 50% maximum efficiency. However, numerical
results show that a systematically optimised system can generate theoretical efficiencies
of more than 45% over a 6 second range of wave period containing most of the energy
in a typical energy spectrum. Furthermore, three-dimensional results for a cylinder of
finite length provide evidence that a cylinder device twice the length of its diameter can
produce more than its own length in the power of an equivalent incident wave crest.

1. Introduction

The earliest recorded patent on a wave energy device was taken out by the Girard
father and son in Paris in 1794. It was not until the mid-1970s when the price of oil
quadrupled that the feasibility of extracting useful electrical energy from ocean waves
was again considered seriously. In the UK this was stimulated by a key paper published in
Nature by Stephen Salter (1974) in which he showed experimentally that a cam-shaped
cylindrical section spanning a narrow wave tank was capable of absorbing over 80% of
the energy in the waves incident upon it. The potentially high efficiency of the Salter
‘duck’ prompted the UK government to initiate a major Wave Energy R & D programme
aimed at estimating the cost of this renewable energy if used on a large-scale to supply UK
electricity needs. This was quickly followed by smaller programmes in Japan, Scandinavia,
Portugal and the USA. These programmes attracted a wide range of scientists, engineers,
theoreticians and industrialists and a large number of ideas for capturing wave energy
were proposed many of which were tested at varying scales in wave tanks or in a few
cases in sea conditions at one-tenth scale. During this time the main theoretical principles
underpinning ocean wave power absorption were established by extending ideas from
ocean engineering and ship hydrodynamics. A contemporary review of the theory at that
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time can be found in Evans (1981). In 1982 the UK Department of Energy concluded that
the overall economic prospects for wave energy looked poor when compared with other
electricity-producing renewable energy technologies and the programme was terminated
apart from some small-scale generic research, although research continued at a lower level
outside the UK.

In the last decade or so concerns about the effect of global warming have prompted gov-
ernments to revisit the potential for ocean wave power as an economically viable source
of renewable energy and to encourage and support private industry in the development
of new wave energy converters. In contrast to the seventies, with one or two notable
exceptions, theoreticians have been largely absent from this latest surge of activity. This
is possibly because much of the mathematical framework is believed to be in place but
more likely from the recognition that the reliable and robust conversion of ocean wave
power to electrical power is predominantly an engineering challenge involving practical
considerations such as survivability and ease of engineering design in the harsh environ-
ment of the ocean surface. Examples of modern perspectives on wave power are given in
Cruz (2008) and Falnes (2007).

In this paper we introduce a wave energy converter (WEC) which we believe addresses
many of these over-riding concerns while at the same time providing a firm mathematical
basis for optimising the power absorption of the device. The WEC can be thought of as a
modification of the Bristol Cylinder device invented by one of the authors and described
in Clare et al. (1982) and Evans et al. (1979). The present version shares the advantages of
the Bristol Cylinder in operating just below the ocean surface thereby shedding excessive
power levels, and of moving in response to the incident waves in such a way as to reduce
excessive wave loading and avoiding ‘end stop’ problems. In contrast to its predecessor
it also has an internal power take off system protected from the ocean which can be
adjusted to optimise the energy extracted. The mooring of the cylinder is used as a
passive component in the power take off system, allowing the cylinder to pitch about an
axis parallel to that of the cylinder. Thus, the present device could also be regarded as
being loosely related to number of nearshore and onshore devices operating in pitch-surge
motions - the ‘Oyster’ device being the most well-known of these in which a buoyant flap
is hinged about its base and power is extracted from the pitching motion relative to the
sea bed (see Folley et al. 2007). Not everything about the new concept is an improvement
on the old Bristol Cylinder idea. The main, significant, drawback follows from the fact
that the Bristol Cylinder was shown theoretically, in two-dimensional motion, to be 100%
efficient (that is all incoming wave energy is absorbed) at a particular tuned wave period.
The current design, constrained to move in one degree of freedom as opposed to two, is
at most 50% efficient. The focus here then is to design a system which is effective over a
wide range of wave periods.

Theory – and indeed physical intuition – dictates that a good wave energy absorber
should be resonant and many WEC’s are designed with this in mind. Recently, Evans
& Porter (2012) described a number of theoretical devices which exhibit either coupled
resonances or multiple resonances. The idea behind such concepts, which is again not
new, is to tune devices to be resonant at more than one wave period so that the WEC
is able to operate effectively over a wider range of periods with the realisation that a
real sea state is broad banded and peak wave periods vary significantly over an annual
cycle. The current idea of having multiple internal pendulums located within the device,
tunable to different periods and each capable of taking off power is a natural development
of these thoughts.

The use of relative motion of a mass moving internally within a buoyant structure
to extract power from the ocean is not new. Thus, Parks (1980) investigates a range
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of simple WECs with internal, self contained, resonant systems for power extraction.
Advantage is taken of the tunability of such devices so that efficiency and bandwidth are
optimal at a desired frequency. Likewise, Salter (1982) discusses the advantages of the
use of gyros over a simpler pump mechanism to provide a frame of reference about which
multiple ‘ducks’ on a spine may react in order to extract power. Korde (1990) proposes
a smaller scale application of wave energy conversion whereby the energy of a cylinder
rolling on a circular track within a barge, which itself rolls in the sea waves, is extracted
and used to generate a laser beam.

More recently, the floating SEAREV device has been developed (see Babarit et al.

2006, for example), which also has an internal component that behaves mechanically like
a pendulum. Power is taken off through the relative motion between the floating body and
the inner pendulum. The authors list two advantages of such a system, namely that all
components relating to PTO are internal and thus protected from the sea environment
and secondly, due to the wheel shape of the inner pendulum there are no ‘end-stop’
problems (that is, the motion does not need to be limited or constrained as with many
device concepts). Similary Kashiwagi et al. (2012) introduce a floating device of square
cross section with another rotating pendulum-type PTO mechanism. It comprises two
circular cylinders nested within one another, the smaller cylinder being allowed to rotate,
without sliding, along the inner surface of the cylinder with the larger radius. The authors
investigate the conditions required to maximise the device efficiency over a wide range of
wave freqencies and find evidence of increased efficiency close to the resonant frequencies
of both the floating body and the inner cylinder.

The detailed configuration of the device presented here is explained in Section 3. How-
ever, before this, in Section 2 we take a step back and consider a much simpler theoretical
device concept. Here, we simply consider the cylinder pitching about a fixed point held
under tension to the sea bed by the buoyancy of the cylinder. The purpose of this is
two-fold. First, we show that certain properties of a circular cylinder, related to its vari-
ation of added mass with frequency, mean that multiple resonances and, consequently, a
broad-banded response can be achieved. This is based on the adoption of power take off
system which is unlikely to be successful in practice although similar PTOs have been
previously suggested (see Chaplin & Aggidis 2007). Secondly, it allows the basic results,
formulation and ideas needed for later sections to be introduced.

In Section 3 the particular configuration of the device is described and the equations
of motion for a general system of N internal pendulums rotating independently within
the cylinder is described. Also, a general mooring system is used and parametrised by
a number δ which governs how the roll of the cylinder is coupled to its pitch. Despite
this generality, much of the results focus on N = 1 and δ = 1. Two different approaches
are given to the calculation of power, one limited to N = 1 pendulums, but capable of
predicting the efficiency envelope or optimal power and the other method not able to do
this, but applicable to any number of pendulums. In Section 4, results are presented first
for a two-dimensional cylinder with internal pendulums focusing on how to determine
the optimal configuration for a broad-banded response. Again it is shown that the best
configuration exhibits multiple resonances (a cylinder with one internal pendulum can
be resonant at five different wave periods) and leads to a broad-banded response. Opti-
misation of ‘full-scale’ and ‘half-scale’ cylinder configurations are given. Later in Section
4, results for a three-dimensional cylinder are presented. A short and long cylinder with
internal pendulum PTO are optimised over a range of wave periods and the optimisation
is performed again, weighted by a model sea state showing that capture factors in excess
of one are predicted.
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2. A submerged pitching cylinder device

2.1. Equation of motion

This WEC device consists of a submerged buoyant circular cylinder with closed ends
having radius a, length D and total mass M . The cylinder is held a distance f (> a)
below the surface and is constrained to pitch about a point, P , a distance L below the
axis of the cylinder, O. In motion the line OP makes a clockwise angle Θ with respect
to the vertical. The surrounding water, of density ρ, is of constant depth h which need
not be equal to L+ f .

Assuming small amplitude motions, Θ ≪ 1, the vertical forces acting along the line
OP balance the buoyancy forces acting on the cylinder given by (Mw −M)g where Mw

is the mass of water displaced by the cylinder. The horizontal component of force along
OP due to the buoyancy is (Mw −M)gL sinΘ ≈ (Mw −M)gLΘ. Thus, Newton’s Law
applied to small amplitude pitching motions about P gives

M
(

L2 +K2
)

Θ̈ = LFw − (Mw −M)gLΘ− λLΘ̇, (2.1)

where MK2 is the moment of inertia of the cylinder about its axis O, Fw is the horizontal
wave force in surge acting through O and the last term denotes an external linear damping
force proportional to the rate of rotation of the cylinder about P , controlled by the
damping constant λ.

Assuming incident waves of a single angular frequency ω, the surge force may be written
Fw = Re{Xwe

−iωt} where Xw is a function of ω, whilst we write LΘ̇ = Re{Ue−iωt} so
that U represents the complex horizontal velocity of the axis of the cylinder, O. Then
(2.1) can be written

−iωM(1 + K̂2)U = Xw − i

ω
C0U +Xe, (2.2)

where we introduced the dimensionless quantity K̂ = K/L, and defined

C0 =
g

L
(Mw −M) , (2.3)

whilst

Xe = −λU. (2.4)

2.2. Power calculation

Standard theories of wave-energy absorption can be applied to (2.2); see, for example,
Cruz (2008, Chapter 3) or Evans & Porter (2012). Hence, the surge wave force on the
cylinder can be decomposed using linearity into forces due to diffraction of a motionless
cylinder, Xs, and those due to radiation, proportional to the velocity of the cylinder, Xr,
that is

Xw = Xr +Xs, with Xr = (iωA−B)U, (2.5)

where Xr is represented in terms of the surge induced added mass, A(ω), and radiation
damping, B(ω), components both dependent on frequency.

Upon combining (2.2) and (2.4) with (2.5) one finds

(Z + λ)U = Xs, (2.6)

where

Z ≡ B − iω(A+M(1 + K̂2)− C0/ω
2). (2.7)

The mean power (time averaged over a period) generated by the device is given by

W = 1
2Re{XwU}, (2.8)
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the over bar denoting conjugation of complex quantities. It follows from using (2.2) in
(2.8) that

W = − 1
2Re{XeU} = 1

4

(

λ+ λ
)

|U |2, (2.9)

after using (2.4) where, for now, we have assumed λ to be complex. Using (2.6) to
eliminate U and the identity

(

λ+ λ
)

|λ+ Z|2 =
1

2Re{Z}

(

1− |Z − λ|2
|Z + λ|2

)

, (2.10)

the mean power is given by

W =
|Xs|2
8B

(

1− |λ− Z|2
|λ+ Z|2

)

. (2.11)

noting that Re{Z} = B. It is well known that, in two dimensions, the quantities Xs and
B are connected by the formula (see, for example, Newman (1976))

Winc =
|Xs|2
8B

/η, (2.12)

where Winc is the mean power in an incident wave per unit length of wave crest. The
term η is related to the wave-making ability of the device, via η = |A+|2/(|A−|2+ |A+|2)
in terms of the radiated wave amplitudes A± towards ±∞ due to the forced motion
of the device in surge motion in the absence of incident waves which would otherwise
have arrived from −∞. Here the circular cylinder moving in surge has fore-aft symmetry
dictating that |A+| = |A−| and implying that η = 1

2 .
Thus, in two dimensions, a WEC device may be characterised by the efficiency, the

ratio of the power absorbed per length of the device to the power per length of wave
crest in the incident wave,

E =
W

Winc
= η

(

1− |λ− Z|2
|λ+ Z|2

)

, (2.13)

with a maximum of Emax = η = 1
2 when λ = Z, a result first obtained independently

by Mei (1976), Evans (1976) and Newman (1976). The symmetry of the WEC device we
are considering limits the efficiency in two dimensions to 1

2 or 50% of the of the total
available incident wave energy.

If, as envisaged from a practical perspective, λ is real, achieving maximum efficiency
requires both

λ = B(ω) and I(ω) ≡ A(ω) +M(1 + K̂2)− C0/ω
2 = 0, (2.14)

to be satisfied at the same frequency. It helps to derive alternative versions of (2.10) and
(2.11) which apply to real-valued λ. Thus instead of (2.10) we introduce the relation

2λ

|λ+ Z|2 =
1

(|Z|+Re{Z})

(

1− (λ− |Z|)2
|λ+ Z|2

)

, (2.15)

from which it follows that the efficiency can be expressed by,

E = η
2B

(|Z|+B)

(

1− (λ− |Z|)2
|λ+ Z|2

)

. (2.16)

Again we note that E = Emax if λ = |Z| and |Z| = B (in other words the conditions in
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(2.14)) hold. However (2.16) gives us an upper bound on the power available from the
WEC when λ is constrained to be real given by

Eopt = η
2B

(|Z|+B)
=

B

(|Z|+B)
. (2.17)

2.3. Results and discussion

The success of this concept (and any WEC device that has no control over the imaginary
part of a complex damping parameter, λ) requires that the inertia term

|I(ω)| ≪ B(ω)/ω (2.18)

over a wide range of frequencies, since then Eopt will be close to Emax over that range.
Values of ω such that I(ω) = 0 are identifiable as resonances of the system and, whilst
A(ω) is evidently dependent on frequency, it is clear to see that such a resonance should
exist. Since the hydrostatic ‘spring’ term, C0, is positive for the cylinder to be buoyant
and A(ω) tends to positive constants denoted by A(0) and A(∞) as ω → 0 and ω → ∞,
we readily confirm that

I(ω) → −∞ as ω → 0 whilst I(ω) → A(∞) +M(1 + K̂2) > 0 as ω → ∞.

Since A(ω) is non-singular, there is at least one value of ω satisfying I(ω) = 0. This is of
course, unsurprising: a submerged buoyant cylinder rotating about a fixed point below
its axis acts as an upturned pendulum and so we expect it to exhibit resonance. What is
perhaps more surprising is that it is possible to configure a submerged pitching cylinder
which possesses multiple resonances. The key lies in the variation of the added mass with
ω for the circular cylinder which can be shown behaves roughly like α+ β/ω2 (α and β
constants) over a range of values of ω for cylinders close enough to the surface. Thus,
it is possible to find arrangements in which I(ω) is close to zero over a broad range of
values of ω and, in fact, passes through zero for three values of ω.
These features are illustrated in figure 1(a) where the dimensionless added mass co-

efficient µ = A(ω)/Mw is plotted against the period T = 2π/ω (in seconds) of motion
for three submergence ratios, a/f = 0.6, 0.75 (highlighted) and 0.9. For these results, we
have used h = 50m and a = 7m, K2 = 0.8a2 and M/Mw = 0.15. Plotted on the same
graph is the dimensionless quantity (A(ω)− I(ω))/Mw for three different dimensionless
mooring lengths, L/a = 1

2 , 1 and 2.
Each one of these three latter curves is exactly quadratic on these axes whilst the curves

of added mass are roughly quadratic over periods between 6 − 10s. Note that curves of
(A(ω) − I(ω))/Mw depend upon mooring length, L/a, but not the submergence, a/f ,
whilst the opposite is true for curves of A(ω)/Mw. Thus, intersections between any of
the three chained lines of (A(ω)− I(ω))/Mw and any of the A(ω)/Mw curves are points
where I(ω) = 0; in other words resonances.

Most pairs of curves intersect just once. However, notice that the pair of curves a/f =
0.9 and L/a = 2 intersect at three points indicating three distinct resonances at periods
close to 12.5s, 8s and 4.5s. Also notice that the pair of curves labelled a/f = 0.75 and
L/a = 2 remain close together, implying I(ω) is close to zero, over a range of periods
from 6 to 11 seconds. As indicated above, this feature will result in the potential for a
broad-banded response in the WEC efficiency as demonstrated by curves in figure 1(b) for
the optimum efficiency for a real damping coefficient, Eopt, against period. Here we have
fixed submergence a/f = 0.75 but vary L/a. Hence, for L/a = 2, the optimum efficiency
curve remains close to the maximum of a half over periods from 6 to 11 seconds. In
contrast, smaller values of L/a where I(ω) = 0 just once and the divergence of the pairs
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Figure 1. A pitching cylinder WEC device: h = 50m, a = 7m, M/Mw = 0.15. In (a)
(A(ω) − I(ω))/Mw plotted for L/a = 1

2
, 1 and 2 (chained curves), and A(ω)/Mw for

a/f = 0.6, 0.75 and 0.9. In (b) the corresponding upper bound of efficiency Eopt for fixed
a/f = 0.75 and L/a = 1

2
, 1 and 2.

δΘ

Θ

L

a

bi

αi

θi

O

P

Figure 2. Definition of dimensions for the WEC and pendulum system.

of curves a/f = 0.75 and L/a = 1, 1
2 in figure 1(a) is more pronounced lead to much

narrower peaks to maximum values in Eopt.

3. A cylinder with internal pendulums

3.1. Description of the device

In the previous section we have demonstrated the potential of a submerged pitching
cylinder WEC which exploits multiple resonances under certain configurations to produce
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Figure 3. Various tether configurations.

a broad-banded efficiency over a range of physically relevant wave periods. However, for
such a device, power is designed to be generated from the rotation of the device with
respect to the fixed pivot about which the cylinder is constrained to pitch. The principal
purpose of this pivot is to hold the cylinder under tension below the surface. It is difficult
to envisage a robust practical engineering solution to cope with the additional forces
required by a PTO mechanism attached through the pivot.

It is widely recognised amongst wave energy specialists that PTO’s contained internally
within a device are the most desirable from an engineering design perspective. Thus,
we take the submerged cylinder idea of the previous sections forward by allowing the
submerged buoyant cylinder to pitch freely about the pivot and instead place the PTO
inside the cylinder by means of an internal pendulum system which we continue to
describe in detail below.

For generality, assume a hollow cylinder contains N compound pendulums each de-
signed to rotate about the cylinder axis. All pendulums are assumed to have the same
density, ρs, and each pendulum has a uniform cross-section and spans an equal propor-
tion, D/N , of the total cylinder length.

The specific pendulum design considered here is comprised of an annular cross-section,
with a common outer radius a to coincide with the cylinder radius, an inner radius bi < a,
i = 1, . . . , N , and subtends an angle of 2αi (see figure 2). Thus, the ith pendulum has
mass mi = ρsαi(a

2−b2i )D/N and is pivoted about the axis of the cylinder. These masses
do not contribute towards the mass, M , of the cylinder which we have previously defined.
A linear damping mechanism is connected to each pendulums, which acts in proportion
to the rate of rotation of the pendulums with respect to that of the cylinder.

Each compound pendulum has its own natural length, li, being the distance of the
centre of mass to its pivot defined by

li =
2a sinαi

3αi

(1 + b̂i + b̂2i )

1 + b̂i
,

where b̂i = bi/a. Each pendulum also has a moment of inertia about its centre of mass,
mik

2
i , where ki is the radius of gyration of the ith pendulum, and this is given by

k2i = 1
2a

2(1 + b̂2i )− l2i .

Finally, each pendulum has, in the absence of damping, a resonant period given, for small
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amplitudes, by

Ti =
2π

ωi
, with ω2

i =
g

li + k2i /li
. (3.1)

Then as αi → 0, and b̂i → 1 we recover a point mass pendulum in which li → a and
ki → 0 and Ti = 2π

√

a/g. When αi → π, li → 0 and the period approaches infinity. The
attraction of this system is that each internal compound pendulum can be tuned to its
own resonant period within the range of physically relevant periods.

Having separated the PTO mechanism, through the use of internal pendulums, from
the mooring system we are able to consider a more general design in the way in which
the device is constrained to pitch about its pivot point P . An example of an alternative
mooring system is one in which tethers are designed to induce varying degrees of roll
of the cylinder about its axis, O, in proportion, δ, to the angular displacement of the
cylinder about the point P . Three such mooring systems are represented in figure 3 in
which the cylinder rotates through an angle δΘ with δ = 0, 1 and 2. These integer values
of δ are examples of a continuous range of cylinder rotation rates determined by the
attachments of the mooring lines. The value δ = 1 corresponds to the mooring system
used in Section 2 and is the easiest to implement practically.

3.2. Equations of motion

The added complication of a system of internal compound pendulums means that equa-
tions of motion are most easily derived from the Euler-Lagrange equations. Generalised
coordinates Θ and θi, for i = 1, . . . , N are used to represent the angle of roll of the
cylinder and those of the pendulums with respect to the vertical (see figure 2). Thus, the
potential energy for the system is given by

V(Θ, θ1, . . . , θN ) = −(Mw −M)gL cosΘ +

N
∑

i=1

mig(L cosΘ− li cos θi), (3.2)

where Mw is the mass of water displaced by the cylinder as before and M is the mass of
the cylinder not including internal pendulums.

The kinetic energy for the system is given by

T (Θ, θ1, . . . , θN ) =
1

2
ML2Θ̇2 +

1

2
Mδ2K2Θ̇2 +

1

2

N
∑

i=1

mik
2
i θ̇

2
i

+
1

2

N
∑

i=1

mi

(

L2Θ̇2 + l2i θ̇
2
i − 2LliΘ̇θ̇i cos(Θ− θi)

)

. (3.3)

The linearised damping is included via the Rayleigh dissipation function (see Goldstein
1974), with

D(Θ, θ1, . . . , θN ) =
1

2

N
∑

i=1

γil
2
i (θ̇i − δΘ̇)2, (3.4)

where γi is the damping coefficient proportional to the differential rate of rotation of the
pendulums and the cylinder.

The Euler-Lagrange equations are given by

∂

∂t

∂L
∂Θ̇

− ∂L
∂Θ

+
∂D
∂Θ̇

= LFw (3.5)

∂

∂t

∂L
∂θ̇i

− ∂L
∂θi

+
∂D
∂θ̇i

= 0 for i = 1, . . . , N, (3.6)
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where L = T − V and Fw represents the external horizontal wave force applied to the
cylinder, as before.

Application of (3.5) and (3.6) followed by a linearisation of the variables on the as-
sumption that |Θ| ≪ 1 and |θi| ≪ 1 for all i leads to

M

(

L+ δ2
K2

L

)

Θ̈ +

N
∑

i=1

mi

(

LΘ̈− liθ̈i

)

= Fw − (Mw −M)gΘ

+
N
∑

i=1

migΘ+ δ
N
∑

i=1

γi
l2i
L
(θ̇i − δΘ̇), (3.7)

and

mi
k2i
li
θ̈i +mi

(

liθ̈i − LΘ̈
)

= −migθi − γili(θ̇i − δΘ̇), for i = 1, . . . , N, (3.8)

where these equations have been re-ordered into a form suggestive of Newton’s Law.
We consider the single frequency response of the device to single frequency wave forcing,

as in Section 2 and re-use notation introduced there. Here, we have an additional dynamic
variable θ̇i replaced by a time-harmonic factorised equivalent using liθ̇i = Re{uie

−iωt},
so that ui is now frequency dependent and represents the complex horizontal velocity of
the pendulum’s centre of mass with respect to the cylinder centre.

Then the two equations of motion, (3.7) and (3.8) may be written as,

−iωM(1 + δ2K̂2)U − iω
N
∑

i=1

mi (U − ui) = Xw − i

ω
CNU + δ

N
∑

i=1

l̂iγi

(

ui − δl̂iU
)

(3.9)

and

−iωmik̂
2
i ui − iωmi (ui − U) = − i

ω
ciui − γi

(

ui − δl̂iU
)

, (3.10)

respectively, where we have developed earlier shorthand notation by defining

CN =

(

Mw −M −
N
∑

i=1

mi

)

g

L
, and ci =

mig

li
. (3.11)

(the former required to be positive for the cylinder to be buoyant) and dimensionless
quantities

l̂i =
li
L
, k̂i =

ki
li
. (3.12)

Equations (3.9) and (3.10) represent N +1 equations for the N +1 unknowns U and ui,
i = 1, . . . , N , noting that the system is forced comes from one of the components of Xw,
the other component being proportional to U (see equation (2.5)).

There are two ways in which one may proceed each with its own merits. Firstly, since
each ui is connected only to U (rather than the other ui’s) as demonstrated in (3.10), it
is possible to eliminate the ui’s from (3.9) in favour of a single equation for U , expressed
in the form of (2.2), (2.4). At this point the standard results of Section 3 for power
calculations can be used.

A second approach seems more immediately obvious, which is to assemble the equations
(3.9) and (3.10) into a single matrix analogue of (2.2). As we shall see later, some care
is needed over the structure of these equations and, related to this, how to develop
appropriate power calculations.
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3.3. First method

The process of deriving equations of motion from resolving forces leads more naturally to
a revised form of (3.9) in which the second acceleration term is substituted from (3.10)
to give

− iωM(1 + δ2K̂2)U − iω

N
∑

i=1

mik̂
2
i ui = Xw − i

ω
CNU − i

ω

N
∑

i=1

ciui

−
N
∑

i=1

γi

(

1− δl̂i

)(

ui − δl̂iU
)

. (3.13)

Then the equations of motion, (3.10) and (3.13), may be written as

−iωM(1 + δ2K̂2)U = Xw − i

ω
CNU +Xe, (3.14)

and
(

Ω̂i + iγ̂i

)

ui =
(

1 + iγ̂i l̂iδ
)

U, i = 1, . . . , N, (3.15)

respectively, whilst

Xe = −
N
∑

i=1

miωγ̂i

(

1− δl̂i

)(

ui − δl̂iU
)

− i

ω

N
∑

i=1

ciui + iω

N
∑

i=1

mik̂
2
i ui. (3.16)

It has helped the presentation to define non-dimensional variables

Ω̂i =
g

li

(

1

ω2
i

− 1

ω2

)

, and γ̂i =
γi

miω
, (3.17)

where ωi is the resonant frequency of the ith pendulum, given by (3.1).
Using (3.15) in (3.16) gives

Xe = −λU, (3.18)

where, after some algebra, we find

λ =

N
∑

i=1

imiω

Ω̂i + iγ̂i

(

(

Ω̂i + iγ̂i

)(

1 + iγ̂iδl̂i

)2

−
(

1 + iγ̂iδ
2 l̂2i

)

)

. (3.19)

As envisaged, (3.14) with (3.18) are the analogues of (2.2) and (2.4) in Section 2
although λ, instead of being a real damping coefficient, is now a complex quantity be-
ing a non-linear combination of the real damping coefficients γi acting on each of the
pendulums.

The equations of motion for the new cylinder device and internal pendulum arrange-
ment described in this section connect in the same way as before to the external hydro-
dynamic problem through the velocity U of the cylinder and the horizontal wave force,
Xw, on the cylinder (see equation (2.5)). In order to calculate the power absorbed by
the device we follow the same calculations described in Section 2.2, noting that λ is now
complex. Thus, the mean power developed by this WEC is given by (2.11) as before but
with λ replaced by (3.19) and (2.7) replaced by

Z = B − iω(A+M(1 + δ2K̂2)− CN/ω2) (3.20)

We note, in passing, that, at an intermediate stage of the calculation of mean power
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given by (2.9), we find W = 1
2 |U |2Re{λ}. Then

Re{λ} =
N
∑

i=1

miωγ̂i

|Ω̂i + iγ̂i|2
(

1− δl̂iΩ̂i

)2

(3.21)

follows from (3.19) which demonstrates that power generated by the device is, as ex-
pected, non-negative.

An alternative power calculation is available, in which the mean power generated by
the WEC is given by sum of the mean power generated by each of pendulums. This is
given by the time-averaged rate of working of the couple forces due to damping on the
relative angular velocity of the pendulums to that of the cylinder, or

W = 1
2Re

{

N
∑

i=1

γi

∣

∣

∣ui − δl̂iU
∣

∣

∣

2
}

, (3.22)

after conversion to linear velocities. With use of (3.15) we find

W = 1
2 |U |2

N
∑

i=1

miωγ̂i

|Ω̂i + iγ̂i|2
(

1− δl̂iΩ̂i

)2

, (3.23)

which coincides with the expression for mean power derived from (3.21) above.
As previously discussed, with the efficiency given by (2.13), the maximum efficiency

of Emax = 1
2 for the device is obtained when λ = Z where λ and Z are given by (3.19)

and (3.20). Due to the particular dependence of the complex-valued λ upon the damping
coefficients γi it is far from obvious if and when this maximum power condition may
be met. In other words, unlike the simple pitching cylinder device described earlier in
the paper, there is no obvious formula for prescribing γi to obtain optimal or maximum
power, even in the case of N = 1 pendulum.

The second method helps in this respect although, as we shall see, its usefulness is
restricted to only N = 1 pendulum.

3.4. Second method

The aim here is to develop a matrix analogue of (2.2) by formulating a system of equa-
tions for the cylinder and pendulum motion whose structure allows a subsequent power
calculation to be most easily formulated. To this end, we first make the change of variables
from ui to vi via

vi = ui − δl̂iU, i = 1, . . . , N (3.24)

which is a more natural representation of the internal pendulum excursion, being related
through vi to the difference between pendulum and cylinder angular velocities.

Under this variable change (3.9) and (3.10) become

−iωM(1 + δ2K̂2)U − iω

N
∑

i=1

mi

((

1− δl̂i

)

U − vi

)

= Xw − i

ω
CU + δ

N
∑

i=1

l̂iγivi (3.25)

and

−iωmik̂
2
i

(

vi + δl̂iU
)

− iωmi

(

vi −
(

1− δl̂i

)

U
)

= − i

ω
ci

(

vi + δl̂iU
)

− γivi, (3.26)

(for i = 1, . . . , N) respectively.

We take (3.26) and multiply through by δl̂i, sum the resulting equations from i =
1, . . . N , and add the sum to (3.25). This process is designed to eliminate all terms
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relating to the damping from the first equation. The result is

− iωM(1 + δ2K̂2)U − iω
N
∑

i=1

mi

(

1− δl̂i

)

U − iω
N
∑

i=1

mi

(

δl̂i(1 + k̂2i )− 1
)(

vi + δl̂iU
)

= Xw − i

ω
C ′

NU − i

ω

N
∑

i=1

c′ivi (3.27)

where

C ′

N = CN +
N
∑

i=1

ciδ
2 l̂2i , and c′i = ciδl̂i ≡

mig

L
δ. (3.28)

After some rearranging (3.26) and (3.27) for i = 1, . . . , N can be written in matrix/vector
form,

−iωMU = Xw − i

ω
CU +Xe, (3.29)

where the vectors of length N + 1 are given by

U = (U, v1, . . . , vN )T , Xw = (Xw, 0, . . . , 0)
T ,

and Xe = (0,−γ1v1, . . . ,−γNvN )T (3.30)

The ‘mass’ matrix M is symmetric with elements

M00 = M(1 + δ2K̂2) +

N
∑

i=1

mi

(

(

1− δl̂i

)2

+
(

δl̂ik̂i

)2
)

,

M0i = Mi0 = −mi

(

1− δl̂i − δl̂ik̂
2
i

)

, for i ≥ 1

Mij = mi

(

1 + k̂2i

)

δij , for i, j ≥ 1 (3.31)

where δij represent the Kronecker delta function, whilst the ‘restoring force’ matrix C is
also symmetric, with elements

C00 = C ′

N , C0i = Ci0 = c′i, and Cij = ciδij , (3.32)

for i, j = 1, . . . N .
We may regard (3.29) as the analogue of (2.2) although it not obvious how to interpret

physically the various terms that arise in the matrix elements above.
However, under the definitions above, the total mean power absorbed by the device is

now given simply by,

W = 1
2Re{X

∗

wU} = − 1
2Re{X

∗

eU}. (3.33)

where ∗ denotes the complex conjugate transpose. The second equation arises from using
(3.29) and the fact that M and C are real. The first of the two expressions in (3.33)
measures the power taken by the cylinder (equivalent to (2.7)) and the second the power
generated by the internal pendulums (equivalent to (3.22)).

General results for wave power absorption by systems with more than one degree of
freedom are well known (see Evans (1980), Falnes (2002) for example). However, these
general results require that complex damping parameters couple each independent mode
of the system to another independent mode. In other words there is a requirement that the
system contains an (N+1)-square matrix of unconstrained complex damping coefficients.
This is not the case in this internal pendulum design where power is taken off due to
the N pendulums only (i.e. the pitching cylinder is passive in power take-off terms) and
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their rotation relative to that of the cylinder, not to each other. In other words, we have
envisaged a system in which power is generated by just N real damping coefficients, γi.
There is little in the way of theoretical results for optimising power take off when power

is taken off either in fewer modes than the device is allowed to operate under or when
coupling between different modes is not constrained. Of note is the work of Evans (1980)
of which a few details are given in Cruz (2008) though there are no results of obvious
use in this case. We can, however, make progress when there is just one pendulum, as
outlined below.

3.5. Calculations for a device with one pendulum

If N = 1 and there is only one pendulum in the device then the matrix/vector system in
(3.29) is of degree two. However, since damping is only taken off from the single internal
pendulum, we may factorise the damping coefficient γ1 from the matrix/vector system
by writing

Xe = −γ1GU , (3.34)

where

G =

(

0 0
0 1

)

. (3.35)

Now the structure of (3.34) appears more closely related to that of Section 2 as opposed
to that pursued in the first method with (3.18) and (3.19).

From (3.33) we have

W =
1

2
γ1U

∗
GU , (3.36)

to provide an expression for the mean power absorbed by the device in terms of the
damping coefficient γ1, which is assumed real. All that is required is an equation for U
relating the velocity of the cylinder and internal pendulums to the external hydrodynamic
problem such that it can be eliminated from (3.36). The scalar equation (2.5) can be
recast in matrix form as,

Xw = (iωA− B)U +Xs, (3.37)

where Xs = (Xs, 0, . . . , 0)
T and the added mass and radiation damping matrices A

and B only contain non-zero entries in the top left-hand corners. That is Aij = Aδi0δj0
and Bij = Bδi0δj0 where A and B are the scalar added-mass and radiation damping
coefficients defined earlier. Thus using (3.29), (3.34) and (3.37) we have

Xs = (Z + γ1G )U , (3.38)

where now, we have a matrix version of (2.7) given by

Z ≡ B − iω
(

A+M − ω−2
C
)

. (3.39)

With (3.36) and (3.38) written in this manner, the damping coefficient associated with
the single internal pendulum is seen explicitly and the equations are in a form that may
allow us to find a value of γ1 with which to obtain maximum power.
Using (3.38) in (3.36) we write

W = 1
2γ1X

∗

sE
∗
GEXs, (3.40)

where E = (Z + γ1G )
−1

, the components of which can be calculated explicitly. We
continue by assuming the elements of Z in (3.39) are assigned Zij for i, j = 0, 1 and
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recall that G is given by (3.35) such that,

E =
1

∆

(

Z11 + γ1 −Z01

−Z10 Z00

)

, where ∆ = (Z11 + γ1)Z00 − Z
2
01, (3.41)

and the fact that Z is symmetric has been used. It can be shown that

X
∗

sE
∗
GEXs =

|Xs|2|Z01|2
|∆|2 , (3.42)

with which, after setting

Z1 = Z11 −
Z

2
01

Z00
, such that ∆ = Z00 (Z1 + γ1) , (3.43)

equation (3.40) becomes

W =
|Xs|2
2

γ1|Z01|2
|γ1 + Z1|2|Z00|2

. (3.44)

Since γ1 is taken to be real we reuse the identity (2.15), with Z1 replacing Z, such that
the power may be written

W =
|Xs|2
4

|Z01|2/|Z00|2
(|Z1|+Re{Z1})

(

1− (γ1 − |Z1|)2
|γ1 + Z1|2

)

, (3.45)

The efficiency isW/Winc withWinc defined by (2.12) and noting that Re{Z1} = B|Z01/Z00|2
this gives

E = η
2B

(

B + |Z00/Z01|2 |Z1|
)

(

1− (γ1 − |Z1|)2
|γ1 + Z1|2

)

, (3.46)

from which the maximum achievable efficiency may be written

Eopt = η
2B

(B + |Z00||1− Z11Z00/Z 2
01|)

, (3.47)

which is obtained when γ1 = |Z1|. Furthermore, if this is satisfied when Im{Z1} = 0,
such that |Z1| = Re{Z1}, then Eopt = Emax = η.

Thus, for N = 1 pendulum we have derived conditions needed to obtain maximum
power: that Im{Z1} = 0 and that γ1 = Re{Z1} = B|Z01/Z00|2. Moreover, we have
developed an expression for the ‘envelope’ of maximum power Eopt which assumes that
γ1 is tuned optimally as a function of frequency. Both of these features are obscured in
the first method in this section. However, this second method has a restricted practical
use to just one internal pendulum whereas the first method can be used for any number
of pendulums.

As with the submerged pitching cylinder with no internal pendulums, it can be shown
analytically that there must be at least one value of ω for which the condition for maxi-
mum power is satisfied. In the limit as ω → 0,

Im{Z1} → 1

ω

(

C11 −
C

2
01

C00

)

=
m1g

ωl1





Mw −M −m1

Mw −M −m1

(

1− δ2 l̂1

)



 . (3.48)

In order for the device to be buoyant (Mw − M − m1) must be positive, thus Im{Z1}
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tend to positive infinity as ω → 0. Conversely, as ω → ∞,

Im{Z1} → ω

(

M
2
01

(M00 +A(∞))
−M11

)

= −m1ω





m1k̂
2
1 + (1 + k̂21)

(

M(1 + δ2K̂2) +A(∞)
)

M(1 + δ2K̂2) +m1(1− δl̂i)2 +m1(δl̂1k̂1)2 +A(∞)



 , (3.49)

where A(∞) > 0, implying that Im{Z1} tends to minus infinity as ω → ∞. Thus since
Im{Z1} is a continuous function of ω, there must be at least one value of ω such that
Im{Z1} = 0. It will be important that the values of ω for which this is satisfied correspond
to a period in the range of interest when considering a typical sea state.

3.6. Numerical Calculations

To summarise the procedure for calculating the efficiency of the two-dimensional device
with N internal pendulums, we use (2.13) with Z defined by (3.20) in terms of A and B,
and with λ given by (3.19).

If only one internal pendulum is used, then an alternative calculation of efficiency for
the two-dimensional device is given by (3.46) expressed in terms of the elements of the
matrix Z in (3.39), the advantage of this system being that the optimum device efficiency
over all frequencies is given by (3.47) and that conditions for maximum efficiency are
easily tested.

The theory is based on linearised small-amplitude motions. Thus, we have a duty to
consider the response of the cylinder and the pendulums as a function of frequency and
incident wave amplitude. As before, we are able bypass a direct calculation of Xs by
using the Haskind relation (for symmetric bodies)

Xs =
1
2ρgHA+D(kh), (3.50)

where H is the incident wave height (peak to trough), A+ is far-field radiated wave
amplitude to +∞ for the forced surge motion of unit velocity of the cylinder previously
introduced in the definition of η in Section 2.2, D(kh) = tanh kh+khsech2kh is a scaling
factor in terms of the water depth h and the wavenumber k travelling waves related via
the dispersion relation to the frequency by ω2 = gk tanh kh.
A second reciprocal relation relates far-field radiated waves to the radiation damping

coefficient via

B = ρω|A+|2D(kh), (3.51)

(see Mei et al. 1983, for example). Thus, together (3.50) and (3.51) allow us to eliminate
the far field radiated wave amplitude, A+, and write an expression for |Xs|,

|Xs| = 1
2gH

√

ρD(kh)B/ω (3.52)

We recall from the first method (2.6) gave

U =
Xs

Z + λ
, (3.53)

and combining with (3.52) leads to a cylinder velocity non-dimensionalised by the surface
wave velocity,

|U |
Aω

=
g
√

ρDB/ω

ω|Z + λ| ≡ g
√

Dν/π

ω2a|Ẑ + λ̂|
(3.54)

where ν = B/(Mwω), Ẑ = Z/(Mwω), λ̂ = λ/(Mwω) and A = 1
2H is the wave amplitude.
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Note that |U |/Aω is also the ratio of the amplitude of the cylinder axis excursion to the
surface wave amplitude. In terms of the angular displacement of the cylinder, we make
the connection |Θ| = |U/(Lω)| such that

|Θ/A| = 1

L

|U |
Aω

, (3.55)

as a dimensional measure of the maximum displaced angle of the cylinder per unit am-
plitude of incident wave.

Further, the relation (3.15) between ui and U with |θi| = |ui/(liω)| also reveals a
similar relation for the maximum excursion, per unit wave amplitude as

|θi|/A =
1

li

∣

∣

∣

∣

∣

1 + iγ̂i l̂iδ

Ω̂i + iγ̂i

∣

∣

∣

∣

∣

|U |
Aω

, i = 1, . . . , N (3.56)

using (3.54) to substitute for the last factor of the right-hand side.
Following the notation of second method and with a device containing only one pen-

dulum, writing the equation of motion in matrix form also poses an alternative way of
calculating the cylinder and pendulum excursion. Equation (3.38) provides a relation be-
tween the velocity vector U and the external hydrodynamic problem, thus we can simply
invert and write

U = EXs. (3.57)

After using (3.30), (3.24), (3.41) and (3.52) this allows the cylinder and pendulum
excursion per unit wave amplitude to be evaluated explicitly, once the connections
|Θ| = |U/(Lω)| and |θi| = |ui/(liω)| have been made.
The only hydrodynamic coefficients that are needed to assess a two-dimensional device

are the dimensionless added mass and damping coefficients µ = A/Mw and ν = B/(Mwω)
as a function of ω for a submerged circular cylinder in finite depth and these are accessible
using well-established multipole methods (see Linton & McIver (2001) or the Appendix
of Evans & Porter (2007) for example). Thus the exciting force Xs is not required in
two-dimensional calculations although it is needed for a three-dimensional device (i.e. a
finite length cylinder in an unbounded ocean).

Finally, the moment of inertia of the cylinder about its axis has been defined in terms
of a radius of gyration K which would probably be close to a for a real device assuming
most of the mass of the cylinder is mainly confined to the walls of the cylinder. In all of
the computations that follow we have taken K2 = 0.8a2 though computations are not
sensitive to the numerical factor of 0.8.

4. Results for a cylinder with internal pendulums

We concentrate on the two-dimensional version of this device for which simple analyt-
ical methods exist for determining the hydrodynamic coefficients A(ω) and B(ω) needed
for the power calculations.

The first task is to determine the effectiveness of the internal pendulum power take-off
system. Consequently, it is sensible to compare with the simple pitching cylinder device of
Section 2 and thus we choose the same parameters, a cylinder of radius a = 7m in water
of depth h = 50m, and look for efficiencies close to maximum of Emax = 1

2 over periods
from 5 to 11 seconds. There is a greater flexibility in the choice of parameters for this
new device, including the mooring parameter, δ, and both the number (N) of pendulums
and their configuration (ρs, bi, αi and γi). These are in addition to parameters such as
the mooring length L, the submergence f and the mass of the cylinder M .
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Figure 4. For a pitching cylinder device with an internal pendulum: h = 50m, a = 7m,

a/f = 0.75, M/Mw = 0.15, ρ̂ = 2.4, b̂i = 0.5, αi = π/3. In (a)-(c) Im{Ẑ1} for varying values
of the roll to pitch length ratio δa/L. In (d)-(f) the corresponding Eopt for the same parameter
values.
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To fix ideas further, let us take M/Mw = 0.15 and a/f = 0.75 as in Section 2 and
to simplify initial investigations we consider a single (N = 1) pendulum. We assume
the pendulum to be made from concrete, ρ̂ = ρs/ρ = 2.4 and this remains unaltered

hereafter. Initial numerical investigations reveal that b̂1 = b1/a = 0.5 and α1 = π/3 have
the potential to produce promising results. These parameters are fixed throughout the
results shown in figure 4 which then predominantly focus on the effect of varying the
mooring parameters, δ and L.

In the left-hand panels of figure 4, the imaginary part of Ẑ1 = Z1/(Mwω) is shown as
a function of wave period. The purpose of these curves is to mimic the effort made in
Section 2.3 to determine resonant conditions for the simple pitching cylinder. Here, the
situation with a coupled pendulum/cylinder system is more complicated, but we have
shown theoretically in Section 3 that resonance and the potential for maximum power
efficiency correspond to values of frequency when Im{Ẑ1} = 0. In the right-hand panels,
the corresponding plots of Eopt, calculated using (3.47) are shown. These are curves which
show the optimal efficiency for the system configuration at any given frequency which
would be obtained by setting the damping parameter to vary with frequency as γ1 = |Z1|.
In figure 4, which have been extended over periods from 3 to 20s, the correspondence
between frequencies at which Im{Ẑ1} = 0 and Eopt =

1
2 can be observed.

In the formulation of the problem it may be noted that mooring parameter, δ, de-
scribing the proportional roll with respect to pitch of the cylinder and L, the mooring
length, appear in the combination δ/L almost everywhere; the single exception is in the
definition of CN (or C ) where L is independent from δ. Nevertheless, this suggests that
the single dimensionless parameter δa/L, might be a useful tool for assessing the effect
of the two mooring parameters. Thus, in figure 4 we set δa/L = 1, 1.5 and 2 and within
each pair of subfigures let L/a vary with values 0.5, 1, 2 and 4.

One can see for fixed δa/L some similarity in the behaviour of the function Im{Ẑ1} as
L/a is varied, especially at high frequencies and this is more notable as δa/L increases.
Also evident from figure 4 is the behaviour of Im{Ẑ1} as ω → 0 and infinity predicted by
(3.48) and (3.49). Within these asymptotic bounds, the function Im{Ẑ1} passes through
zero anywhere between just once and five times depending on the parameters chosen.
These zeros correspond to resonances and there is a division between those associated
with the internal compound pendulum in isolation which is tuned here to 5.2s and is a
persistent feature of figures 4(a),(b) and (c) and those associated with pitching cylin-
der in isolation which does vary with the mooring system. The coupling between the
hydrodynamics, the cylinder and the internal pendulum makes this more complicated
than just stated so that, for example, there are no ‘internal pendulum resonances’ when
L/a = 0.5 and δa/L = 2 – see figure 4(c). Apart from these peculiarities, another general
observation is that a single internal pendulum produces a pair of resonances close to the
tuned uncoupled resonance of the pendulum. This is a well-known effect in the small
amplitude oscillations of coupled pendulum systems.

The simplest mooring system from a practical perspective corresponds to δ = 1. Then
in figures 4(a), (d) this would correspond to L/a = 1 (the long-dashed line). A better
response over periods from 5 to 11 seconds is found in figures 4(b), (e). Now L/a = 2

3
and a broad-banded response curve sitting between the solid and the long-dashed lines
can be inferred from the figures. In both cases, the pivot is far above the level of the
sea bed. If, instead, the cylinder was to be pivoted about a point on the sea bed then
one would require L/a = 5.81 under the parameters being considered. Looking at the
curves in figure 4, it can be inferred that a good broad-banded response is possible for the
largest value of L/a = 4 when δa/L = 1.5 and this would imply a mooring system with
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Figure 5. A pitching cylinder device with an internal pendulum: h = 50m, a = 7m, a/f = 0.75,

s = 0.15, ρ̂ = 2.4, b̂1 = 0.5, α1 = π/3, δ = 0.5, L/a = 0.5. The points T ∗

i indicate three of the

five periods for which Im{Ẑ1} = 0. In (a) Eopt is plotted (light grey) along with the efficiency

E for different damping coefficients γ̃1. In (b) the optimal damping coefficient γ̃1 = |Ẑ1|
√
Ka to

obtain Eopt, along with constant values chosen manually and numerically. In (c) the efficiency E

for the damping coefficients selected by the optimiser (solid line) and γ̂1 = Re{Ẑ1(T
∗

3 )} (dotted
line) is shown, along with the upper bound Eopt (light grey).

δ = 6. Indeed, a numerical experiments have allowed us to confirm a general trend that δ
must increase roughly in proportion to L/a to retain a broad-banded efficiency. In fact,
for the sea bed moored cylinder with L/a = 5.81 we have found that the ‘optimal’ value
of δ for this particular system is 8.7. Such large values of δ are unlikely to be adopted
in practice and thus we are likely to be confined to considering smaller values of δ and
hence L/a.

We now investigate one of the configurations presented in figure 4 in more detail:
L/a = 0.5 and δ = 0.5 which possesses fives resonances. The aim is now to select a
constant damping coefficient such that the efficiency, E, is both broad-banded and close
to Emax across our target period range of T = 5− 11s.

If γ1 = Re{Z1} at a resonant frequency, for which Im{Z1} = 0, then E = Emax

there. Figure 5(a) shows the device efficiency when the damping coefficient is tuned to
γ1 = Re{Z1} at T = T ∗

i for i = 1, 3, 5, three of the five resonant periods. The curve tuned
to the period T ∗

3 happens to gives the best efficiency, that is the device response remains
closest to 1

2 of those three candidates over the range 5−11s. However, it is expected that
a more broad-banded response could be achieved given a more judicious choice of, or say
a numerically selected, damping coefficient. Hence, we choose to numerically minimize
the normalised integral of (γ1 − |Z1|)2/|γ1 + Z1|2 as a function of γ1 over periods from
T = 5 to 11s, thus maximising the area under the efficiency curve – a process described
by Thomas & Gallachóir (1993) for the Bristol Cylinder.

Figure 5(b) plots the optimal value of the damping coefficient, i.e γ̃i ≡ γ̂i
√
Ka =

|Ẑ1|
√
Ka that would result in optimum efficiency. The dotted line represents the value

of the damping coefficient chosen to obtain the curve in figure 5(a) for γ̃1 = |Ẑ1|
√
Ka =

1.156 tuned to resonance at T = T ∗
3 and the dashed line the value chosen by the optimiser.

Figure 5 (c) plots the efficiency resulting from the use of the optimised damping γ̃1 =
1.156 along with the best manually chosen result from figure 5(a), for reference. Although
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Figure 6. Two-dimensional results for a device of radius a = 7m in a sea of depth 50m with three
internal pendulums tuned to 6, 8 and 10 seconds. Fixing the geometric pendulum configuration,
parameters a/f , L/a and γ̃i for i = 1, 2, 3 are optimised over 5-11s. The device efficiency E is
plotted for three different mooring configurations δ = 0, 1, 2.

the efficiency of the optimised system fails to reach 1
2 over this range, it does reach Eopt

three times. Thomas & Gallachóir (1993) refer to this as the detuning effect of the
numerical optimiser.

We go on to consider optimised versions of the cylinder devices in three settings.
Case A will refer to the large cylinder in deep water (a = 7m, h = 50m) that we have
been previously looking at and case B is at half scale (a = 3.5m, h = 25m), both for
δ = 1. We also consider case C of a device moored to the seabed in shallower water
(a = 7m, h = 25m, δ = 2, h = L + f). With these fixed we extend the previously
mentioned numerical minimisation routine to optimise the efficiency integrated over the
period range 5− 11s in terms of all free parameters, placing bounds on the values where
necessary. These include α1 ∈ (0, π), b̂1 ∈ (0, 1), ρ̂ ∈ (0, 2.4), L/a ∈ (0, (h − f)/a),
a/f ∈ (0, 0.8) and M/Mw ∈ (0.15, 0.3) in addition to the positive-valued γ̃1. There is
a restriction that the total weight of the cylinder plus pendulums does not exceed the
weight of water displaced.

Numerical optimisation always selects the heaviest pendulums, ρ̂ = 2.4 and the lightest
cylinder M/Mw = 0.15. Otherwise the optimal configurations can be quite different
depending on the cylinder size and parameters for cases A, B and C are given in in Table
1.

We have also considered optimising over multiple pendulums, N > 1, but the numerical
optimisation appears always to select identical pendulum parameters. An example of a
system with three internal pendulums, tuned to fixed wave periods of 6, 8 and 10 seconds
is shown in figure 6. Under a sequence of fixed mooring parameters δ = 0, 1 and 2 and
a = 7m, h = 50m and M/Mw the parameters L/a, a/f and damping constants γ̃i,
i = 1, 2, 3 have been optimised to produce the best efficiency over 5-11s. One can see
only clearly in the case δ = 0 the effect of each pendulum; this is typical that fixing the
tuning of the pendulums is not effective. For δ = 1 and 2 is is less clear how the system
operates, although it is well below the performance of the earlier examples with just one
pendulum.

Figure 7(a) shows the efficiency of the two cases A and B against period alongside
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Figure 7. Two-dimensional results for two optimised devices A and B, details of which are given

in table 1. In (a) the device efficiency E is plotted with its upper bound Eopt, in (b) Im{Ẑ1} is
shown with y = 0 for reference. In (c) the angular pendulum and cylinder excursion is plotted
per unit amplitude of incident wave and in (d) the relative phase of the internal pendulum and
rolling cylinder is shown.

corresponding optimal curves Eopt. It is clear that the device with larger radius (case
A) exhibits better performance over over the target period range of 5 − 11s than the
half-scale version. These results are linked to the optimised curves of Im{Ẑ1} in figure
7(b), since Im{Ẑ1} for case A remains closer to zero and for a broader period than case
B. Figure 7 (c) shows that the angular excursion of both the internal pendulum and
cylinder – plotted per unit wave amplitude – is small and thus is in line with the small-
amplitude motions that were initially assumed. The results indicate that a cylinder of
radius 7m is appropriate for a broad-banded response over 5-11s and that the half-scale
3.5m cylinder struggles to be as efficient over the same period range, having to respond
with approximately twice the cylinder/pendulum excursion but still able to perform
reasonably well. Had the target period range been lower, say 3.5 − 9s then the 3.5m
cylinder could be optimised to perform as well as the 7m cylinder over 5-11s.
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Figure 8. Two-dimensional results for an optimised device (C) of radius a = 7m in a sea of
depth 25m, moored such that δ = 2 with pivot points fixed to the seabed, details of which are
given in table 1. In (a) the device efficiency E is plotted with its upper bound Eopt, in (b) the
angular pendulum and cylinder excursion is plotted per unit amplitude of incident wave.

WEC Depth (m) Cyl. radius, a(m) δ a/f L/a (M +mi)/Mw b̂i αi/π γ̃i Ti

A 50 7 1 0.69 0.84 0.58 0.66 0.32 1.05 5.34
B 25 3.5 1 0.80 0.94 0.66 0.59 0.33 1.34 3.74
C 25 7 2 0.54 1.73 0.50 0.57 0.21 2.08 5.00

Table 1. Two-dimensional WEC configurations: one pendulum

An example of a cylinder moored directly to the sea bed such that h = L + f , case
C, is given in figure 8, with a = 7m, and N = 1 pendulum again but with h = 25m
and a δ = 2 mooring. The internal pendulum configuration and a/f are optimised over
wave periods 5-11s and figure 8(a) shows both Eopt and the underlying curve E for a
fixed optimised damping parameter. In figure 8(b) the associated cylinder and pendulum
angular excursions are shown per unit incident wave amplitude confirming that linearised
theory is an appropriate approximation.

Moored to the seabed such that δ = 2 the shape of the device response curve for case C
is quite different to that of cases A and B. Although the efficiency case C, in figure 8(a),
decreases to a lesser extent and more slowly at lower frequencies when compared to cases
A and B in figure 7(a), and despite that efficiencies greater than 40% are acheived over
6− 13s, the response of case A is far more broad-banded and the efficiency consistently
closer to 1

2 over 5− 11s.

4.1. Three-dimensional theory

Energy absorption calculations in three dimensions differ only very slightly from their
two-dimensional counterparts. Here we will quote modifications to the previously two-
dimensional theory for a three-dimensional device consisting of a finite length cylinder
in the open sea. In two dimensions, power is measured per unit length of the device and
this enables the notion of efficiency to be introduced. In three dimensions, efficiency is
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replaced by capture width, defined to be the ratio of the mean power taken from the
device of length D to the mean power per unit crest length of an incident wave. In other
words

l = W/Winc (4.1)

defines capture width where

Winc =
1

8
ρg|H|2cg and cg =

g

2ω
D(kh) (4.2)

as before in terms of the wave height H, where cg is the group velocity and D(kh) =
tanh kh + khsech2kh. Previously-derived expressions for power, W , such those given by
as (2.11), (2.16) or (3.45) – dependent upon the method used – all remain in place but
now with A and B now defined as the surge component of the forced surge motion for
the finite cylinder and with Xs replaced by Xs(β), the surge exciting force on the fixed
three-dimensional cylinder due to a wave making an angle β with respect to the positive
x direction. For example, the maximum mean power a device may absorb is modified by

Wmax =
|Xs(β)|2

8B
. (4.3)

It follows from (4.3), that the maximum capture width is given by

lmax ≡ Wmax

Winc
=

|Xs(β)|2
8BWinc

. (4.4)

We note that is purely a function of the geometry of the cylinder; that is, contains
no tunable parameters associated with the internal power take off mechanism nor the
mooring system.

It is worth noting that the reciprocal relation (2.12) used in two dimensions to bypass
the calculation ofXs in favour of the known quantity η = 1

2 is replaced in three dimensions
by

B =

∫ 2π

0
|Xs(θ)|2dθ
8ΛWinc

, (4.5)

(see Evans 1980, for example) where Λ denotes the incident wavelength. This expression
is only simplified for devices with a vertical axis of symmetry. When such a device absorbs
in surge, Xs(β) = Xs(0) cos β and the well-known result that follows from (4.5) and (4.4)
is lmax = Λ/π. In our case, there is no vertical axis of symmetry and hence the capture
width calculation is performed using (4.1) with (4.3) and requires computation of |Xs(β)|.

A useful alternative to the capture width is the ratio of capture width to device width,
often referred to as the capture factor

l̂ =
l

D
. (4.6)

For a device which is much longer than the incident wavelength, one might expect the
device to respond as a two-dimensional cylinder along a large proportion of its length and
one might argue that l̂ will find it hard to significantly exceed a value of a half, reflecting
the fact that the infinitely-long cylinder is maximum 50% efficient. For a ‘shorter’ cylin-
der, although there is no vertical axis of symmetry, one might expect the values of l̂ to
feel the influence of the point absorber result of Λ/π.

It is with these arguments in mind that we have computed capture widths as a function
of period for two three-dimensional devices in figure 9. Computations for the hydrody-
namic coefficients, A and B, and Xs(β) have been performed using WAMIT for cylinders
of length D = 28m and D = 70m respectively. In both cases the cylinder is of radius
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Figure 9. Three-dimensional results for two optimised devices of length 28m and 70m, details
of which are given in table 2. In (a) the dimensionless capture width per unit length of the device

l/D is plotted with its maximum possible value lmax/D, in (b) Im{Ẑ1} is shown with y = 0 for
reference. In (c) the angular pendulum and cylinder excursion is plotted per unit amplitude of
incident wave and in (d) the dimensionless capture width per unit length of the device l/D and
the maximum possible value lmax/D is shown for waves of varying angles of incidence.

a = 7m in h = 50m water depth with its axis submerged a distance f = 10m below
the surface, a configuration which proved to be optimal in two dimensions (see case A
in table 1). We fix ρ̂ = 2.4 and M/Mw = 0.15, but allow the dimensions of the pen-
dulums (bi, αi) and the damping coefficient (γ̃i) to be selected by the same numerical
optimisation procedure working over periods from 5 to 11s. In each case the device has
one pendulum and we have δ = 1 as our mooring system, the numerically optimised
parameters are given in table 2.

Thus figure 9(a) which shows both the capture factor and the maximum capture factor
for the two cylinder lengths, confirms that the longer cylinder has a capture factor only
just above a half, a feature more noticeable for shorter waves. In contrast, the D = 28m
cylinder has a much higher capture factor over a large range of periods of interest and
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Length, D(m) L/a (M +mi)/Mw b̂i αi/π γ̃i Ti

28 1.09 0.47 0.78 0.34 0.88 5.55
70 0.93 0.53 0.71 0.31 0.95 5.38

Table 2. Three-dimensional WEC configurations, for a cylinder of radius a = 7m in fluid of
depth h = 50m with submergence f = 10m.

takes values in excess of unity between 8 and 10.5s waves. The shorter cylinder now
finds it harder than the longer cylinder to approach the maximum values which have
been designed around the two-dimensional optimisation. Nevertheless, a broad-banded
response persists in this three-dimensional simulation.

In figure 9(b) we show the variation of Im{Ẑ1} with period corresponding to the
optimised pendulum configurations of figure 9(a) for each cylinder length. The curve
for the longer cylinder resembles closely that seen in figure 7(b) though the shorter
cylinder exhibits just three potential resonances. Figure 9(c) illustrates that the angular
excursion of both the internal pendulum and cylinder for each cylinder length – plotted
per unit wave amplitude – remains small enough to find linearised theory appropriate.
Again, the results for the longer cylinder are similar to those in figure 7(c) though,
perhaps surprisingly, the shorter cylinder with the larger capture ratio has generally
smaller motions.

Finally, in figure 9(d) we illustrate how the capture width of the 28m device varies for
waves of a range of angles of incidence – from normally incident waves to those incident
at an angle of 30◦ to the cylinder. We see that for even for waves inclined at 15◦, the
WEC still has a capture width ratio greater than a half for waves of period 5.5− 11s.

4.2. Irregular Waves

In this section we consider the power output of a three-dimensional cylinder device in
irregular waves with use of a wave energy spectrum S(T ) to represent a more realistic
sea state. We employ the two parameter spectrum developed by Bretschneider (1959),

S(T ) =
5

16
H2

1/3

T 5

T 4
p

e−
5

4
(T/Tp)

4

, (4.7)

whereH1/3 denotes the significant wave height – defined as the mean height of the highest
third of waves – and Tp the peak wave period in the spectrum. The average incident wave
power per unit crest length is given by,

W inc = ρg

∫ ∞

0

cg(T )S(T )T
−2 dT, (4.8)

in units of kW/m, where cg(T ) is the group velocity of the waves as a function of period.
The depth dependent group velocity was previously given by (4.2), however since the
Bretschneider spectrum was developed for deep water conditions, here we make the same
deep water assumption such that D(kh) = 1 and cg = g/(2ω). Thus the total mean
power absorbed by a device of length D is then

W = ρg

∫ ∞

0

cg(T )S(T )l(T )T
−2 dT, (4.9)
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0◦ 5◦ 15◦ 30◦

W (kW) 740 733 682 530
l 0.894 0.886 0.824 0.640

Table 3. Total mean power absorbed by the device

where l(T ) is the capture width of the device given by (4.1) expressed here as a function
of period, T . As before we can define a dimensionless mean capture factor,

l =
W

W incD
, (4.10)

which describes the mean proportion of incident wave power absorbed per unit length of
the device. This now allows us to simply optimise the total mean power absorbed by the
device as opposed to the capture efficiency which does not take into account the varying
spectral wave energy density across wave period.

We take typical values of wave height and peak wave period with H = 2m, such that
Hs = 2.83m, and Tp = 9s which represents a model sea state with an annual average
power of approximately 30kW/m, see Falnes (2007), for example.

Table 3 gives the power output and dimensionless mean capture factor of the 28m
device introduced earlier for waves of varying angles of incidence. The pendulum config-
uration is determined by an optimisation routine that is only concerned with maximising
the total mean power absorbed by the device in normally incident waves. For the model
sea state given above, the 28m device is predicted to output 740kW, assuming no losses.
This translates to an average absorption of 26.4kW/m of the device, not far below the
30kW/m incident on it. In other words, the device has a ‘mean capture factor’ of close
to one. As for the two-dimensional device, the output remains of a similar order of mag-
nitude for waves inclined up to 15◦ on the device. A more sophisticated sea state with
built in directional spreading could also have been used.

5. Conclusions

A new concept for the conversion of ocean wave energy into useful energy has been con-
sidered in this paper. The wave energy converter comprises a tethered submerged buoy-
ant cylinder containing an internal mechanical system of compound pendulums whose
rotation relative to that of the cylinder provides the power. The first part of the paper
demonstrates the most important feature of the idea presented, namely that a buoyant
cylinder allowed to pitch about a point below the cylinder axis can exhibit multiple res-
onances over a range of wave periods of interest. The inclusion of a system of N internal
pendulums each capable of being tuned to its own period promises to enhance the poten-
tial for multiple resonances. However, a series of numerical experiments, some features of
which have been illustrated in this paper, and the use of numerical optimisation methods
have shown that the optimal configuration in nearly all cases is for there to be just N = 1
internal pendulum taking off the power. This result reinforces the view that the cylinder
is the important component in the system and that the purpose of the single internal
pendulum is to provide a frame of reference about which the rotation of the pitching
cylinder can extract power.

The theoretical concept presented is not as sophisticated as the original Bristol cylinder
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device, but it incorporates features which we believe make the idea attractive to engi-
neers. These include using the mooring as a passive component in the PTO mechanism,
incorporating the PTO system internally to the main device and avoiding problems with
‘end stops’. Despite being only 50% efficient in two-dimensions, the multiple resonances
exhibited by the device being proposed make allow to be be close to 50% efficient over a
broad range of wave frequencies. Furthermore, in three-dimensions, the device is shown
to operate much better than the two-dimensional results would suggest, with a particular
(unoptimised) arrangement having a mean capture factor for an irregular sea-spectrum
of close to one.

Mathematically, two approaches to formulating calculations of wave power have been
developed. The challenge here has been to present and arrange equations for motion in
N + 1 degrees of freedom into informative and practical calculations of power when N
of the modes of motion are being damped independently. Each method has particular
attributes which have been highlighted within the paper.

The availabilty of numerically efficient methods for calculating hydrodynamic coeffi-
cients in two dimensions has meant that much of the focus has been of demonstrating
the optimisation of the device parameters in a two-dimensional setting. However the
provision of two sets of numerical data for cylinders of finite length have allowed us
to demonstrate a limited optimisation in three dimensions, and subject to a model sea
state. Further optimisation of the cylinder geometry (length, radius, submergence) is now
required to increase the power absorption capacity of the device.

The need for large internal masses acting as the pendulums inside the cylinder is one
particular concern for this concept. A future development of the idea presented here will
be to replace the internal pendulums with water, the sloshing of which will be used to
drive air turbines to generate power.

The authors would like to thank Dr Matthew Folley at Queens University, Belfast
for providing numerical data for the calculations of power from a finite length cylinder.
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Thomas, G.P. & Gallachóir, B.P 1993 An assessment of design parameters for the bris-

tol cylinder. In Proceedings of the First European Wave Energy Symposium, Edinburgh,
Scotland , pp. 139–144.


