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The two-dimensional problem of the free sloshing of an inviscid fluid in a vertically-
walled tank with an arbitrary bed shape is solved at both first and second-order in the
Stokes expansion of the velocity potential. The approach employed at both orders uses
Green’s functions for a flat-bed in conjunction with the Cauchy-Riemann equations to
derive integral equations for the tangential flux along the varying bed. The first and
second-order potentials everywhere in the fluid may then be related to these fluxes.
Significant analytic progress is made with the calculation of various contributions to the
integral equations at second order. The equations at first and second-order are ultimately
solved using a variational principle equivalent to the Galerkin method giving efficient and
accurate results. In particular, the work involved in determining the second-order solution
is no more intensive than solving the first-order problem. The first-order solution is shown
to reproduce known results for specific bed shapes. The method is applied to a range of
bed shapes and the second-order correction to the free-surface elevation is illustrated.

1. Introduction

The sloshing problem is a classical eigenvalue problem of fluid mechanics, a standard
reference for which is Lamb (1932). The references in Lamb show the problem’s long
history and the illustrious names involved with it; however, he notes that despite such
long standing attention, the number of cases of motion with a variable depth for which the
solution has been obtained is very small. Lamb presents the analysis for a triangular canal
whose section consists of two straight lines inclined at π/4 to the vertical and which, to
date remains one of the few cases for which an analytical solution is known. During the
mid-twentieth century there was an upsurge of interest in the sloshing problem driven by
the need to develop a theory of the motion of fluid within partially filled containers. The
main applications of the era as highlighted by Moiseev (1964) were all aspects of fuel
tank problems, ranging from aircraft fuel within wings to liquid fuelled rockets, as well as,
for example, seismic oscillations of structures under water pressure. Moiseev (1964) and
subsequently Moiseev & Petrov (1968) provided extensive reviews of the linear theory
and main references of the period. Although Moiseev states that most of the applications
occur in circumstances where perturbation theory proves extremely effective, he reiterates
that even the linearised case calls for numerical calculation. Moiseev does not deal with
non-linear oscillations where he states that many of the algorithms of the time were
clumsy and convergence was unproved.

The advent of high-power computational facilities has enabled researchers to make
progress, albeit numerically, in the sloshing problem. The motivation is still driven by the
technological problems arising from the often violent motion of the fluid within partially-
filled fluid containers. Efficient and accurate calculation of sloshing frequencies remains
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an important goal as it is desirable to avoid the resonance which is known to occur in a
system externally forced at, or near, a sloshing frequency. It is also known that violent
motions can induce large pressures so accurate modelling of the motion is also required to
estimate the pressures and to engineer safe containers. Research has continued actively in
two complementary directions, namely identifying the sloshing frequencies, and modelling
the non-linear fluid motion.

There has been much work on non-linear sloshing motions based on improving modal
approaches or using computational fluid dynamics code. Some papers are discussed below
and the references therein provide a fair coverage of the field. Faltinsen (1974) found
analytic results for the motion of a two-dimensional rectangular tank forced to oscillate
harmonically at frequencies close to the lowest natural mode of oscillation and with
small amplitudes of roll or sway. Faltinsen, Rognebakke, Lukovsky & Timokha (2000),
Faltinsen & Timokha (2001), Faltinsen & Timokha (2002) and Faltinsen, Rognebakke &
Timokha (2002) develop a multi-dimensional modal approach using generalised domain
and surface modes rather than natural modes. This basic approach, and its refinements
in the later papers as they develop are shown to model sloshing in intermediate to
small depths and in tanks where the length to breadth ratio is O(1) and therefore a
two-dimensional approach is questionable. However, they note the difficulties inherent
in a modal approach of dealing with run-up, overturning and dissipation due to local
breaking. The sloshing problem is also amenable to non-linear solvers, for example see
Wu & Eatock Taylor (1994) who apply their finite-element method code to consider the
sloshing problem in a rectangular tank. Their approach is to perform a finite-element
analysis, obtaining the solution through a variational principle and obtaining the fluid
motion by a Galerkin approach. They extend this work in Wu & Eatock Taylor (1998)
where they consider three-dimensional translational motion in a rectangular tank and
observe travelling waves and bores in addition to standing waves. Their work is calibrated
by checking that their three-dimensional code applied to two-dimensional motion gives
consistent results with two-dimensional solvers. In the course of this paper they clearly
demonstrate that there remain many interesting problems associated with the sloshing
problem.

The other main direction of research has focussed on the calculation of linear sloshing
frequencies. Davis (1965) established important results regarding uniqueness of solution
and provided asymptotics of the eigenvalues for two-dimensional oscillations in canals
of arbitrary cross section. In Davis (1974) significant progress was made in asymptotics
for the semi-circular cross section which at the time remained unsolved. Packham (1980)
solved the case for a triangular canal with sides inclined at π/6 to the horizontal. Craggs
& Duck (1978) show how techniques from complex-variable theory may be applied to two-
dimensional problems and proceed to solve the segmental and arbitrary triangular cross
section. Fox & Kuttler (1983) provide an extensive review of the two-dimensional sloshing
problem and appropriate references. In their paper they provide upper and lower bounds
for numerous cross sections by using conformal mappings from the specific geometry to
one whose explicit solution is known. They also refer to a series of papers by Henrici,
Troesch & Wuytack (1970), Troesch & Troesch (1972), Miles (1972), Troesch (1973) and
Troesch (1972) on the ’ice-fishing’ problem, or sloshing in a strip aperture in an infinite
half-space. This is important in providing bounds on sloshing frequencies through domain
monoticity, meaning that if two domains have the same free-surface but one domain
contains the other then the containing region has the larger sloshing frequency. This
theoretical result is also confirmed in the numerical results we produce in the present
paper. Later work by McIver (1989) has looked at cylindrical and spherical containers
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filled to arbitrary depths. Evans & Linton (1991) also considered both an infinite and
finite cylinder with semi-circular cross section as well as a hemisphere, and presented an
extremely efficient technique of calculating the lowest sloshing frequencies.

Despite the long history of the sloshing problem, there is relatively little work on
the case of arbitrary bed shapes. The Mild-Slope Equation (MSE), often attributed
to Berkhoff (1973), and later refinements by Chamberlain & Porter (1995) (Modified
Mild-Slope Equations - MMSE) introduce approximate analytical techniques essentially
involving depth-averaging under the assumption of small variations in the bed shape. The
MSE/MMSE prove to be very effective at solving problems involving, for example, Bragg
resonance and scattering by arbitrary bed profiles, see, for example, Porter & Porter
(2003). Booij (1983) has used the MSE to compute oblique sloshing in a tank with a flat
sloping bottom and appeared to obtain quite good agreement with a numerical solution
based on a finite-element method. More recently Belibassakis & Athanassoulis (2002)
have demonstrated an extension of the MSE which deals with variable bed profiles by
expanding in terms of a complete set of depth modes for the flat bottom and adding in
a function to ensure the arbitrary profile’s boundary condition is met.

The focus of this paper is on solving the sloshing problem to second-order providing
a weakly non-linear solution. Essentially this introduces the much more complicated
free-surface problem whereby the first-order potential forces the second-order potential,
in essence having the effect of a pressure distribution on the free-surface in the second-
order problem. Wehausen & Laitone (1960) §21 discuss this problem in general, whereas
later papers on second-order scattering such as Vada (1987), McIver & McIver (1990) and
McIver (1994) make use of the specific form of this forcing to solve scattering problems.

We base our approach on the Green’s Identity method of Porter & Porter (2000)
and, through careful formulation and manipulation, we are able to extend it to the
much more complicated second-order problem. Fundamental to this is the use of the
Cauchy-Riemann equations to convert normal to tangential derivatives simplifying the
integral equations to be solved. It should be emphasised that our formulation is exact at
each order, satisfying the no-flow condition at the bed and the complicated free-surface
boundary conditions. We show how to apply the approach twice, non-trivially dealing
with the problem of defining the first order potential on the free-surface, which is required
to feed into the second-order problem. This key step to our problem did not need to be
calculated in Porter & Porter to determine the scattering coefficients and was therefore
not considered. The second-order problem requires more careful manipulation as, in this
case, the integral equation to be solved is inhomogeneous. However, we find it is possible
to solve it and find a solution expressed in terms of the coefficients of the first-order
solution. We formulate the problem and then proceed to solve at first-order showing
how to calculate the sloshing frequencies and how to obtain an expression for the first-
order potential. We then show how to solve the second-order problem, again yielding
solutions for the second-order potential on the free-surface which is required to calculate
the free-surface elevation. We present calculations of the sloshing frequencies confirming
that our method gives correct results for known bed shapes. We also compare our results
for sloshing frequencies with those predicted by the MSE and MMSE and present results
showing that, for the sloshing problem at least, the MSE/MMSE’s effectiveness not only
depends upon the maximum slope but on the specific geometry under consideration.
Although our formulation is exact, the Galerkin approximation used to solve the integral
equations provides an approximate solution at first-order, so we present data indicating
the rapid convergence of the approximation. Finally we show the second-order corrections
to the first order surface elevations.
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2. Formulation and preliminaries

We consider surface gravity waves upon a fluid which is assumed to be incompressible
and inviscid, and whose motion is irrotational. The fluid motion, which is taken to be
two-dimensional, may therefore be described in terms of a velocity potential Φ(x, y, t)
which satisfies Laplace’s equation in the domain occupied by the fluid. Here x is the
horizontal axis and y is the vertical axis (positive downwards), with y = 0 representing
the undisturbed free-surface. We choose the wave steepness ε as the small parameter of
the problem and so may expand the velocity potential and wave elevation as

Φ = εΦ1 + ε2Φ2 + O(ε3),
η = εη1 + ε2η2 + O(ε3).

(2.1)

The derivation of the equations to be satisfied at first, second and higher orders of
this expansion is well known and so will not be repeated here. See, for example Mei
(1983) who gives an elegant scaling argument to deduce wave steepness as the small
parameter, and, although he only derives the linearised equations, this argument may be
continued to higher orders. The scaling argument applied to higher orders also yields the
additional requirement, highlighted in Stokes (1847), of short waves/deep water for the
small parameter expansion to remain valid.

The problem is to determine the sloshing modes in a tank whose walls are at x = 0, x =
l and whose bed is given by the curve C defined as y = h(x) . We define the constant
depth d such that d = max{h(x)|x ∈ [0, l]} . The tank walls and bed are impermeable
so the fluid velocity normal to these fixed boundaries is zero. In this case the equations
to be satisfied by Φ1 and Φ2 are

∇2Φi = 0, (x, y) ∈ D, (2.2)

∂Φi

∂n
= 0, y = h(x), 0 < x < l, (2.3)

∂Φi

∂x
= 0, on {x = 0, 0 < y < h(0)} ∪ {x = l, 0 < y < h(l)}, (2.4)

for i = 1, 2, where ∂/∂n ≡ n.∇ with n as the unit outward normal on C , and D
is the region occupied by the fluid. The kinematic and dynamic free-surface boundary
conditions combine, upon eliminating the dependence on η1, η2 , to give

∂2Φ1

∂t2
− g

∂Φ1

∂y
= 0, on y = 0 (2.5)

at first order and

∂2Φ2

∂t2
− g

∂Φ2

∂y
= − ∂

∂t

[
(∇Φ1)

2
]
− 1

g

∂Φ1

∂t

∂

∂y

[
∂2Φ1

∂t2
− g

∂Φ1

∂y

]
, on y = 0 (2.6)

at second-order (see, for example, McIver & McIver (1990)). The first and second-order
surface elevations are recovered from the expressions

η1 = Re

{
1

g

∂Φ1

∂t

}
, on y = 0 (2.7)

and

η2 =
1

g

(
∂Φ2

∂t
+ η1

∂2Φ1

∂y∂t
+

1

2
(∇Φ1)

2

)
, on y = 0 (2.8)

Assuming time harmonic motion of frequency ω for the first-order potential we write

Φ1(x, y, t;K) = Re
{
φ1(x, y;K)e−iωt

}
(2.9)
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where the frequency parameter is

K =
ω2

g
. (2.10)

The time-independent first-order potential now satisfies

∇2φ1 = 0, (x, y) ∈ D,
∂φ1

∂y
+ Kφ1 = 0, on y = 0, 0 < x < l,

∂φ1

∂x
= 0, on {x = 0, 0 < y < h(0)} ∪ {x = l, 0 < y < h(l)},

∂φ1

∂n
= 0, on y = h(x), 0 < x < l.

(2.11)

In the case of constant depth h(x) = d this problem is easily solved by separation of
variables to give modal solutions

φ
(n)
1 = Cn cos µnx cosh µn(y − d) (2.12)

for arbitrary coefficients Cn where

µn =
nπ

l
n = 1, 2, . . . . (2.13)

with frequencies ω = ωn determined by the dispersion relation

K = µn tanh(µnd). (2.14)

So for the first mode, for example, the dimensionless wavenumber µnl is given by π
which, for a tank where l/d = 1 gives a dimensionless frequency Kl = 3.1299 , and for
a tank where l/d = 2 , gives Kl = 2.8813 .

We also follow Vada (1987) and McIver & McIver (1990) to express the second-order
free-surface boundary condition as

∂2Φ2

∂t2
− g

∂Φ2

∂y
= Re[F (x)e−2iωt] + Fs(x), on y = 0 (2.15)

where

F (x) =

[
iω(∇φ1)

2 − 1
2 iωφ1

∂

∂y

(
Kφ1 +

∂φ1

∂y

)]

y=0

(2.16)

and

Fs(x) =
iω

4

[
φ1

∂2φ1

∂x2
− φ1

∂2φ1

∂x2

]

y=0

(2.17)

and φ denotes the complex conjugate of φ .

In the solution to both the first and second-order problem we will make use of the
Green’s function for a two-dimensional infinite domain with a constant depth d which
we will denote G1(x, y|x0, y0) , and which satisfies

∇2G1 = −δ(x − x0)δ(y − y0), −∞ < x < ∞, 0 < y < d,
∂G1

∂y
+ KG1 = 0, on y = 0,

∂G1

∂y
= 0, on y = d, −∞ < x < ∞ .





(2.18)



6 G. J. D. Chapman and R. Porter

It has the form

G1(x, y|x0, y0) =

∞∑

n=0

ψn(y)ψn(y0)

2knd
e−kn|x−x0|, (2.19)

where

ψn(y) = N
−1/2
n cos kn(d − y),

Nn = 1
2{1 + sin(2knd)/2knd},

}
n = 0, 1, 2, . . . (2.20)

and we have used kn (n = 1, 2, . . .) to denote the positive real roots of

K = −kn tan knd

incorporating k0 = −ik where k is the real root of the dispersion relation

K = k tanh kd.

A derivation of this Green’s function is presented in Mei (1983) however, it should be
noted that the final expression therein contains a sign error.

We now construct, using the method of images, a Green’s function G(x, y|x0, y0;K)
for the tank satisfying (2.18) for 0 < x < l with Gx = 0 on x = 0, l for 0 < y < d .
Hence

G(x, y|x0, y0) =
∞∑

m=−∞

{G1(2ml + x, y|x0, y0) + G1(2ml − x, y|x0, y0)} (2.21)

or by using (2.19)

G(x, y|x0, y0) =
∞∑

m=−∞

∞∑

n=0

ψn(y)ψn(y0)

2knd
{e−kn|2ml+x−x0| + e−kn|2ml−x−x0|}. (2.22)

from which we deduce that

G(x, y|x0, y0) =

∞∑

n=0

ψn(y)ψn(y0)

2knd

{cosh kn(l − |x − x0|) + cosh kn(l − x − x0)}
sinh knl

. (2.23)

We note that G converges everywhere in the domain apart from (x, y) = (x0, y0) where
it possesses a log singularity.

3. First-order solution

We proceed to find the first order potential using the method of Porter & Porter (2000).
We apply Green’s Identity

∫ ∫

D

(φ1∇2G − G∇2φ1) dD =

∫

S

(
φ1

∂G

∂n
− G

∂φ1

∂n

)
ds

where s measures the arc length on S , the boundary of D , which gives

−φ1(x0, y0) =

∫

S

(
φ1

∂G

∂n
− G

∂φ1

∂n

)
ds.

Now the boundary conditions on G and φ1 mean that the only contribution is from C
and therefore

φ1(x0, y0) = −
∫

C

φ1
∂G

∂n
ds. (3.1)
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In this form equation (3.1) represents a homogeneous second-kind integral equation for
φ1 and hence can be used to determine the sloshing frequencies at first order. We choose
to proceed further following Porter & Porter’s (2000) technique of converting normal
derivatives to tangential derivatives by using the Cauchy-Riemann equations in the form

∂

∂s
ψn(y)e±knx = ∓ ∂

∂n
χn(y)e±knx,

∂

∂n
ψn(y)e±knx = ± ∂

∂s
χn(y)e±knx,

(3.2)

where

∂

∂n
=

1

σ

(
−h′(x)

∂

∂x
+

∂

∂y

)
,

∂

∂s
=

1

σ

(
∂

∂x
+ h′(x)

∂

∂y

)
,

σ =
√

(1 + (h′(x))2),

χ(y) = N
−1/2
n sin kn(d − y).

(3.3)

Now using these equations we deduce that

∂2G

∂n∂n0
= − ∂2H

∂s∂s0

where

H(x, y|x0, y0;K) =
∞∑

n=0

χn(y)χn(y0)

2knd

{cosh kn(l − |x − x0|) − cosh kn(l − x − x0)}
sinh knl

.

(3.4)
We can now derive an integral equation by differentiating equation (3.1) with respect to
n0 and noting that this derivative must vanish on y0 = h(x0) . Therefore

0 =
∂

∂n0
φ1(x0, y0) = −

∫

C

φ1(x, y)
∂2

∂n0∂n
G(x0, y0|x, y) ds

=

∫

C

φ1(x, y)
∂2

∂s0∂s
H(x0, y0|x, y) ds

which on integrating with respect to s0, becomes

C0 =

∫

C

φ1(x, y)
∂

∂s
H(x0, y0|x, y) ds.

We take the limit x0 → l where it may be shown from the definition of H that the
integrand vanishes and hence C0, the constant of integration, is zero. We may now
integrate by parts to obtain

0 = [φ1H(x0, h(x0)|x, y)]C −
∫

C

H
∂φ1

∂s
ds.

Now it may be easily seen from the definition of H(x0, y0|x, y) that the first term above
vanishes to give

∫

C

H
∂φ1

∂s
ds = 0. (3.5)
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If we now define

q1(x) =

[
∂φ1

∂x
+ h′(x)

∂φ1

∂y

]

y=h(x)

(3.6)

and

m(x0, x;K) =

∞∑

n=0

χn(h(x))χn(h(x0))

2knd

{cosh kn(l − |x − x0|) − cosh kn(l − x − x0)}
sinh knl

(3.7)
the integral equation may be rewritten as

∫ l

0

m(x0, x;K)q1(x) dx = 0, 0 < x0 < l. (3.8)

Non-trivial solutions of this homogeneous first kind integral equation furnish the slosh-
ing frequencies for the tank containing the particular bed shape y = h(x) and the cor-
responding function q1(x) which is related to the tangential flux along the bed. In order
to solve the second-order problem, however, we must find φ1 in a suitable form to feed
into the second-order problem. Specifically this requires the value of φ1 on y = 0 so we
proceed to find the general form of φ1 everywhere in D and, in particular, its value on
the free-surface, y = 0 .

We now use equations (3.2) to deduce the relation

∂G

∂n
=

∂L

∂s

where L(x, y|x0, y0;K) is given by

L =





∞∑

n=0

χn(y)ψn(y0)

2knd

{
sinh kn(l − |x − x0| − sinh kn(l − x − x0)

sinh knl

}
, x < x0,

−
∞∑

n=0

χn(y)ψn(y0)

2knd

{
sinh kn(l − |x − x0|) + sinh kn(l − x − x0)

sinh knl

}
, x > x0.

(3.9)
Therefore performing integration by parts in equation (3.1) we deduce that

φ1(x0, y0) = −[φ1(x, y)L(x, y|x0, y0;K)]C +

∫

C

L(x, y|x0, y0;K)
∂φ1(x, y)

∂s
ds. (3.10)

A careful treatment of the term [φ1L]C noting that L is discontinuous at x = x0 yields

[φL]C = φ1(x0, h(x0))
∞∑

n=0

χn(h(x0))ψn(y0)

knd
. (3.11)

This may be simplified using the result

∞∑

n=0

χn(h(x0))ψn(y0)

knd
= f(y0) ≡

{
0, 0 < y0 < h(x0),

1, h(x0) < y0 < d
(3.12)

which is found by expanding the function of y0 on the right hand side in the complete
set {ψn} to give

[φ1L]C = φ1(x0, h(x0))f(y0). (3.13)
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Finally, upon substituting in equation (3.10) we obtain the expression

φ1(x0, y0) =

∫ l

0

L(x, h(x)|x0, y0;K)q1(x) dx, (x0, y0) ∈ D. (3.14)

This may be used to find φ1 everywhere in D . However, for our purposes we note that
we simply require the expression for φ1 on the undisturbed free-surface y = 0. Hence

φ1(x0, 0) =

∫ l

0

L(x, h(x)|x0, 0;K)q1(x) dx. (3.15)

This result is in terms of the bed-flux function q1(x) already computed and gives us the
all the information we require, both to compute the time-independent first-order wave
elevation given by

η1(x) = Re

{
− iω

g
φ1(x, 0)

}
,

and to feed the first order results into the second-order problem.

4. Second-order solutions

Recall the 2nd order potential Φ2 must satisfy Laplace’s equation together with zero
normal derivative on fixed boundaries. Furthermore it must satisfy the complicated free-
surface boundary condition (FSBC)

∂2Φ2

∂t2
− g

∂Φ2

∂y
= Re[F (x)e−2iωt] + Fs(x), on y = 0

as stated in (2.15) and where the terms on the right hand side are defined in equations
(2.16) and (2.17). Now, following McIver & McIver (1990), we observe that the right
hand side of the FSBC suggests that Φ2 has the form

Φ2(x, y, t) = Φs(x, y) − Γt + Re[φ2(x, y)e−2iωt] (4.1)

where the steady and double frequency components of the potential, Φs and φ2 , both
satisfy Laplace’s equation and have zero normal derivatives on the fixed boundaries. The
FSBC implies the two conditions

∂Φs

∂y
= −Fs(x)

g
, on y = 0, 0 < x < l (4.2)

and

4Kφ2 +
∂φ2

∂y
= g(x), on y = 0, 0 < x < l (4.3)

where

g(x) = − iω

g

{(
∂φ1

∂x

)2

+
3

2
K2φ2

1 +
1

2
φ1

∂2φ1

∂x2

}

y=0

. (4.4)

The choice of Γ simply affects the position of the mean free-surface and is set to a value
which guarantees mass conservation, i.e. by requiring no net flux across the undisturbed
free-surface. Furthermore, noting that since φ1 satisfies a homogeneous problem, it may
be taken to be real without loss of generality, therefore it is evident that Fs(x) = 0 in
equation (4.2) and consequently Φs has zero normal derivative on the boundary y = 0 .



10 G. J. D. Chapman and R. Porter

Then (see, for example, Dettman (1965))
∫∫

D

∇Φs.∇Φs dD = −
∫∫

D

Φs∇2Φs dD +

∫

S

Φs∇Φs.n ds = 0.

Therefore ∇Φs ≡ 0 in D and so we deduce that Φs is a constant which we may set
equal to zero without loss of generality.

We now turn to solving for the double frequency component φ2 and we note that g(x)
may be calculated in terms of (3.15). The full boundary value problem for φ2 is

∇2φ2 = 0, (x, y) ∈ D,

∂φ2

∂x
= 0, on {x = 0, 0 < y < h(0)} ∪ {x = l, 0 < y < h(l)},

4Kφ2 +
∂φ2

∂y
= g(x), on y = 0, 0 < x < l,

∂φ2

∂n
= 0, on y = h(x), 0 < x < l.

(4.5)

We proceed to solve for φ2 using the same techniques applied at first-order, but now
use the Green’s function G given by (2.23) for a frequency of 4K . So, applying Green’s
identity, but this time to φ2(x, y) and G(x, y|x0, y0; 4K) , gives contributions from the
free surface and the bed only. Thus

−φ2(x0, y0) =

∫

y=0

−φ2
∂

∂y
G(4K) + G(4K)

∂φ2

∂y
dx +

∫

C

φ2(x, y)
∂

∂n
G(4K) ds. (4.6)

We now apply the FSBC to obtain

−φ2(x0, y0) =

∫ l

0

G(x, 0|x0, y0; 4K)g(x) dx +

∫

C

φ2(x, y)
∂

∂n
G(4K) ds. (4.7)

In order to proceed as before we need the result

∂

∂n0
G(x, y|x0, y0;K) =

∂

∂s0
L(x0, y0|x, y;K)

which is deduced from equations (3.2) and where L(K) is defined by (3.9). We now
differentiate with respect to n0 to give

− ∂

∂n0
φ2(x0, y0) =

∫ l

0

∂

∂n0
G(x, 0|x0, y0; 4K)g(x) dx −

∫

C

∂2

∂s∂s0
H(4K)φ2 ds. (4.8)

Then applying the bed condition and converting from normal to tangential derivatives
we find

0 =

∫ l

0

∂

∂s0
L(x0, h(x0)|x, 0; 4K)g(x) dx −

∫

C

φ2
∂2

∂s∂s0
H(4K) ds on y0 = h(x0).

(4.9)
We may now integrate with respect to s0. So

C0 =

∫ l

0

L(x0, h(x0)|x, 0; 4K)g(x) dx −
∫

C

φ2
∂

∂s
H(4K) ds on y0 = h(x0) (4.10)

and using the limit x0 → 0 we deduce that C0 = 0. Integrating the second integral by
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parts we find that

−
∫ l

0

L(x0, h(x0)|x, 0; 4K)g(x)dx = −[φ2H(4K)]C+

∫

C

H(4K)
∂φ2

∂s
ds on y0 = h(x0),

(4.11)
where, since H(4K) = 0 at x0 = 0, l the first term on the right hand side of the equation
vanishes, giving

−
∫ l

0

L(x0, h(x0)|x, 0; 4K)g(x) dx =

∫

C

H(4K)
∂φ2

∂s
ds on y0 = h(x0). (4.12)

Now, defining

q2(x) =

[
∂φ2

∂x
+ h′(x)

∂φ2

∂y

]

y=h(x)

(4.13)

and using equation (3.7) we may rewrite the integral equation (4.11) as

f(x0) ≡ −
∫ l

0

L(x0, h(x0)|x, 0; 4K)g(x) dx =

∫ l

0

m(x, x0; 4K)q2(x) dx. (4.14)

Once we have solved for q2(x) we find that the solution for φ2 on the free-surface follows
using a similar procedure as used previously in equations (3.9) to (3.15). Thus omitting
the details we find

φ2(x0, 0) = p(x0) −
∫ l

0

L(x, h(x)|x0, 0; 4K)q2(x) dx, (4.15)

where

p(x0) ≡ −
∫ l

0

G(x, 0|x0, 0; 4K)g(x) dx. (4.16)

Once again, φ2 is given in terms of a bed flux function q2(x) which we have already
computed. Now it may be shown from (2.8) that η2 may be decomposed as

η2 = η20 + Re
{
η22e

−2iωt
}

with the time independent expressions η20 and η22 given by

η20 = −Γ

g
+

1

4g

{(
∂φ1(x, 0)

∂x

)2

− K2(φ1(x, 0))2

}

and

η22 = −2iω

g
φ2(x, 0) +

1

4g

{(
∂φ1(x, 0)

∂x

)2

+ 3K2(φ1(x, 0))2

}

respectively. We set Γ by requiring
∫ l

0

η20(x) dx = 0

therefore obtaining

Γ =
1

4

∫ l

0

(
∂φ1(x, 0)

∂x

)2

− K2(φ1(x, 0))2 dx.

It may easily be shown directly from the formulation of the governing equations that
∫ l

0

η22(x) dx = 0,
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thus guaranteeing mass conservation, and providing a useful check for our numerical
results.

We note that we have all the information to calculate the second-order potential
throughout D , and specifically to calculate the second-order surface elevation. There-
fore we have effectively formulated the solution of the sloshing problem for arbitrary bed
topographies exactly to second-order.

5. Approximation and Numerical Method

Although our formulation of the problem so far is exact we must resort to numerical
techniques to generate results. A discussion of the key steps involved is presented below.

5.1. Calculation of the bed flux q1(x)

We solve the integral equation (3.8) numerically by using a Galerkin method where we
approximate q1(x) by

q1 ' q̃1 ≡
N∑

n=1

anvn(x). (5.1)

We introduce an operator M where

(Mq1)(x0) =

∫ l

0

m(x, x0;K)q1(x) dx

and define an associated inner product

(q1, p) =

∫ l

0

q1(x)p(x) dx.

A variational principle equivalent to Galerkin’s method is used to approximate the solu-
tion of the integral equation and takes the form

(Mq̃1, vm(x)) = 0, m = 1, . . . , N.

This results in the matrix equation

N∑

n=1

anMm,n ≡
N∑

n=1

an(Mvn, vm) = 0, m = 1, . . . , N. (5.2)

We now choose appropriate trial functions to model q1(x) the fluid flow along the bed
particularly at x = 0, l . A local analysis of the fluid flow shows that q1(x) → 0 as
x → 0, l to give zero normal flux. Therefore we choose

vn(x) =
1

l
sin

(nπx

l

)
, (5.3)

and we construct the matrix M with elements Mm,n defined by

∫ l

0

vm(x)

∫ l

0

∞∑

r=0

χr(h(x))χr(h(y))

2krd

{cosh kr(l − |x − y|) − cosh kr(l − x − y)}
sinh krl

vn(y)dydx.

(5.4)
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We note that the terms in cosh kr(l − x − y) are separable, so we define

gs0n =

∫ l

0

χ0(h(x))
sin k(l/2 − x)

sin kl/2
vn(x) dx,

gc0n =

∫ l

0

χ0(h(x))
cos k(l/2 − x)

cos kl/2
vn(x) dx,

G(0)
m,n =

1

4kd

{
gs0ngs0m tan(kl/2) − gs0ngs0m

tan(kl/2)

}
,

gsrn =

∫ l

0

χr(h(x))
sinh kr(l/2 − x)

sinh krl/2
vn(x) dx, r = 1, 2, . . .

gcrn =

∫ l

0

χr(h(x))
cosh kr(l/2 − x)

cosh krl/2
vn(x) dx, r = 1, 2, . . .

G(r)
m,n =

1

4krd

{
gsrngsrm tanh(krl/2) − gsrngsrm

tanh(krl/2)

}
.

We also break the terms in cosh kr(l − |x − y|) into

wm,n =
1

2kd

∫ l

0

χ0(h(x))vm(x)

∫ l

0

χ0(h(y))
cos k(l − |x − y|)

sin kl
vn(y) dy dx (5.5)

and

em,n =

∞∑

r=1

1

2krd

∫ l

0

vm(x)χr(h(x))

∫ l

0

χr(h(y))vn(y)
cosh kr(l − |x − y|)

sinh krl
dy dx (5.6)

to give

Mm,n = G(0)
m,n −

∞∑

r=1

G(r)
m,n + wm,n + em,n. (5.7)

The only term which presents any computational difficulties is em,n which contains a
logarithmic singularity. Porter & Porter (2000) explain how to deal with this term by
subtracting the asymptotic leading order contribution and then identifying it as a log
function which may be integrated out explicitly. The sloshing frequency and associated
bed-flux were found using a standard bisection approach typically involving 12 bisections
and hence calculations of the matrix coefficients, to achieve six significant figure accuracy.

5.2. Calculation of the first-order potential on y = 0

To calculate the first-order wave elevation and to solve the second-order problem we need
an easily calculated expression for φ1(x, 0) . We obtain this by expanding φ1(x, 0) as
a Fourier cosine series to remain consistent with (5.3) thus obtaining the expression for
the first order potential on the free-surface in a readily computable form

φ1(x, 0) =

∞∑

s=0

bs cos(sπx/l) (5.8)

where

bs =
εs

l

∫ l

0

∫ l

0

L(x, h(x)|x0, 0;K)q1(x) cos(sπx0/l) dx dx0. (5.9)
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Of course, b0 must be equal to zero to guarantee mass conservation, however, anticipating
a more compact means of presenting further results, we leave the summation from s = 0
but noting that b0 = 0 . Now, using our expression for q1(x) as calculated above we
may insert into equation (5.9) to give

bs =
2

l2

N∑

n=1

an

∫ l

0

∫ l

0

L(x, h(x)|x0, 0;K) sin(nπx/l) cos(sπx0/l) dx dx0. (5.10)

In practice we truncate the cosine series for φ1(x, 0) taking no more terms than N, the
truncation size for the Galerkin approximation. Now, the Fourier coefficient bs in the
form presented at (5.10) is computationally expensive in that, for each s , there is a sum
of double integrals of the discontinuous function L which itself involves a sum. If we
define

Ln,s(K) =

l∫

0

l∫

0

L(x, h(x)|x0, 0;K) sin
(nπx

l

)
cos

(sπx0

l

)
dx dx0 (5.11)

then the bs may be constructed from sums of the Ln,s(K) . We note that within the
double integral the discontinuous function L(x, h(x)|x0, 0;K) is evaluated on the free-
surface thereby removing the dependence on the arbitrary function h(x0) and therefore
allowing us to separate in the form

Ln,s(K) = −
l∫

0

∞∑

r=0

χr(h(x))ψr(0)

2krd
sin

(nπx

l

)
(I1(x) + I2(x)) dx (5.12)

where

I1(x) =

l∫

0

sgn(x − x0) sinh kr(l − |x − x0|)
sinh krl

cos
(sπx0

l

)
dx0, (5.13)

I2(x) =

l∫

0

sinh kr(l − x − x0)

sinh krl
cos

(sπx0

l

)
dx0. (5.14)

Using Gradshteyn & Ryzhik (1965) (§2.671:2) we may integrate these directly to give

I1(x) =
krl

2

k2
r l2 + s2π2

(−1)s cosh krx − cosh kr(l − x)

sinh(krl)
+ 2

sπl

k2
r l2 + s2π2

sin
(sπx

l

)
,

I2(x) =
krl

2

k2
r l2 + s2π2

cosh kr(l − x) − (−1)s cosh krx

sinh(krl)
. (5.15)

Finally, simplifying we obtain

I1(x) + I2(x) =
2sπl

(k2
r l2 + s2π2)

sin
(sπx

l

)
(5.16)

which may be used in equation (5.12) to compute Ln,s(K) . In practice no further
progress may be made analytically with equation (5.12) due to the presence of the h(x)
term so it must be computed numerically. This however presents no difficulties for a
Gaussian quadrature as the procedure above has reduced the problem to a single inte-
gral with smooth integrand. We note from our numerical results that the decrease of
bs is much more rapid than the worst case of O(s−4) predicted by Fourier theory and
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therefore our evaluation of φ1(x, 0) is not limited by taking modest truncation sizes in
the Galerkin approximation.

5.3. Calculation of the integrals f(x0) and p(x0)

The integrals f(x0) in equation (4.14) and p(x0) in equation (4.16) as they are cur-
rently defined are rather complicated. However, the fact that they are defined on y = 0
enables us perform the integration analytically. We are able to do this by simplifying
the expression for g(x) using the approach presented in Appendix A. In essence this in-
volves calculating the g(x) as a Fourier cosine series in terms of the Fourier coefficients
bs introduced in equation (5.8). Thus in Appendix A it is shown how we may write

g(x) =

2N∑

n=0

gn cos(nπx/l). (5.17)

Using Gradshteyn & Ryzhik (1965) (§2.671:2-3) it is possible to integrate f(x0) and
p(x0) to give

f(x0) =

∞∑

r=0

χr(h(x0))ψr(0)

2krd
.fr(x0) (5.18)

where

fr(x0) =

2N∑

s=0

gs
2lπs

k2
r l2 + π2s2

sin(sπx0/l) (5.19)

and

p(x0) =
l2

d

2N∑

s=0

gs

(
∞∑

r=0

ψ2
r(0)

(k2
r l2 + π2s2)

)
cos(sπx0/l). (5.20)

5.4. Calculation of the second-order bed flux q2(x)

Once again we solve using the Galerkin method to find

q2 ' q̃2 ≡
N∑

n=1

cnvn(x) (5.21)

where the coefficients cn are found by solving the matrix equation

N∑

n=1

cnMm,n(4K) = fm m = 1 . . . N. (5.22)

Where we define fm by

fm =

∫ l

0

f(x0)vm(x0) dx0 (5.23)

and Mm,n(4K) is the matrix defined in equation (5.7) but operating at 4K . The inte-
gral in (5.23) must be integrated numerically to form the integral equation, but this is
relatively inexpensive. In particular, it is worth noting that our code used the extremely
efficient routine for summing a Fourier series in Acton (1997) to both sum quickly, and to
avoid oscillatory effects. Solution of this inhomogeneous problem is routine, and typically
an order of magnitude quicker than the first-order solution, requiring only one calculation
of the matrix coefficients.
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5.5. Calculation of the second-order potential on y = 0

Calculation of the second-order potential on y = 0 poses no additional problems to those
encountered for the first order potential. Equation (4.15) gives two contributions to φ2

φ2(x0, 0) = p(x0) + d(x0) (5.24)

where

d(x0) = −
∫ l

0

L(x, h(x)|x0, 0; 4K)q2(x) dx. (5.25)

We see from the definition of p(x0) (5.20) that it is already in the form of a Fourier
cosine series, and d(x0) may be evaluated to give a Fourier cosine series exactly as for
the {bs} at first-order. Therefore we may add both contributions to give φ2 as a Fourier
cosine series with coefficients {ds} for s = 0, 1, 2 . . . .

6. Results

The numerical method for the first-order solution has been checked against several
analytic results for its accuracy. The first check is made by comparing the computed
sloshing frequencies against the known exact solutions (2.12) for a flat-bed. It was found
that our method converged to six significant figures for modest truncation sizes (N = 8)
of the bed flux approximations. Another check can be made by comparing our results
with those of Porter & Porter (2003) who considered scattering by a periodic ripple bed.
In their work they showed that the onset of Bragg resonance for the scattering of waves
by a smooth periodic bed was governed by frequencies at which sloshing occurs over a
single period of the bed contained within solid vertical walls. In our problem, we have
considered a more general situation in which the bed shape does not have to belong
to a smooth periodic structure. In particular Porter & Porter (2003) produced sloshing
frequencies for values of a/d = 1

2 in the two bed shapes given by the functions

h(x) = a + 1
2 (d − a)(1 − cos(2πx/l))

and

h(x) = d − 1
2 (d − a)(1 − cos(2πx/l)).

These functions represent cosine curves with minima of h(x) = a at x = 0 and x = l
in the former case and at x = 1

2 l in the latter case. Our results using a truncation
parameter of N = 8 are Kl = 3.0739 and Kl = 2.9508 respectively and agree with
those of Porter & Porter (2003) to the same accuracy. In figure (6.1) we show, graphically,
the variation of sloshing frequencies Kl as a/d is varied between a/d = 1

2 and unity,
which corresponds to the flat-bed solution previously mentioned. In figure (6.1) we also
plot, for comparison results using the MMSE which were produced via direct integration
using an adaptive-stepsize Runge-Kutta-Fehlberg scheme. It can be seen that, as the
bed-shape approaches the flat-bed case, all the results approach the analytic solution.
Likewise the exact results agree with Porter & Porter (2003) as a/d → 0.5 to within
four significant figures with a truncation size of N = 8 . They also show the correct
monotonic decreasing behaviour as a/d → 0 and as predicted by Fox & Kuttler (1983).
It can be seen that for mild-slopes the MMSE produces reasonable accuracy as expected,
whereas for moderate slopes the results appear more geometry-sensitive. In particular,
by using the MSE, one of the geometries fails to show the correct monotonic decreasing
behaviour of the frequency for even moderate slopes. As a further check, we confirmed the
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Figure 6.1. Sloshing frequencies for the first mode over periodic beds given by (Geom 3 -
h = a + 0.5(d − a)(1 − cos(2πx/l)) ) & (Geom 4 - h = d − 0.5(d − a)(1 − cos(2πx/l)) )

calculations for the MMSE by independently solving via a Green’s function formulation
giving identical results to those found by direct integration.

We shall adopt the previous notation in what follows by defining a to be the minimum
value of h(x) over 0 < x < l . We proceed for the rest of the paper to consider the two
specific geometries in figure (6.2) and for which in the limit a → 0 results are known.
Results are presented for domains having various aspect ratios l/d and where a/d is
varied in the interval [0, 1] . The bed shape for the first geometry is an arc of a circle
whose intercept with the vertical walls of the tank at a depth of a defines the radius and
in the limit a → 0 (when l/d = 2 ) approaches the semi-circular canal for which results
have been computed independently by Evans & Linton (1991) using a semi-analytical
method. The second geometry is a canal with a triangular bed which in the limit a → 0
(when l/d = 2 ) approaches the geometry for which Lamb (1932) provides an analytic
solution, corresponding to sloshing in a right-angled wedge. Lamb’s sloshing frequencies
are thus determined by the roots of the equation

tanh kd = ± tan kd

where +(−) corresponds to antisymmetric(symmetric) modes.

Figure (6.3) shows a graph of the sloshing frequency normalised by dividing by the
flat-bed solution (2.14) plotted against a/d for the first sloshing mode over a triangular
bed in a tank whose aspect ratio is governed by the relation l/d = 2 cot(π/n) for
n = 3, 4, . . . , 8 . This means that, when a = 0 , the angle that each section of sloping
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Figure 6.2. Geometries considered for the second-order sloshing problem
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Figure 6.3. Normalised sloshing frequencies for the first mode over a triangular bed making
an angle of π/n with the horizontal bed

bottom makes with the horizontal is π/n . Thus, in figure (6.3), the variation of a/d
from one to zero represents the transition from the flat-bed solution to the triangular
canal solution. This case was run first with the trial function sin(nπx/l) where we found
that in the limits a/d → 1 we obtained the correct results to the required accuracy. In
the limit a/d → 0 we obtained the results given by Lamb (1932) for the bed of slope
π/4 accurate to four significant figures ( Kl = 1.000 ). Then, noting that the first mode
is antisymmetric, we anticipated a bed-flux symmetric around l/2 and therefore ran
the code again choosing sin((2n − 1)πx/l) as the trial function. The latter results are
presented because, as expected, they give slightly better convergence for fixed maximum
truncation size. Results over the same bed shapes are also presented at figure (6.4) for the
second mode which is symmetric and therefore requires the trial function sin(2nπx/l) .
In this case we are able to verify that, in the limit a/d → 0, the results for the bed
of slope π/6 agree with analytic results in Lamb (1932) and Packham (1980) in which
Kl = 3.464 .

Figure 6.5 shows a graph of the non-dimensional frequency Kl against a/d for the
first mode over a symmetric bed in the shape of an arc of a circle and where the tank
aspect ratio is l/d = 2 . The results are bounded from above by the rectangular canal
solution and from below by the semi-circular canal solution which has also been computed
by Evans & Linton (1991) as Kl = 2.7114 . This case was run first with the trial function
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Figure 6.4. Normalised sloshing frequencies for the second mode over a triangular bed
making an angle of π/n with the horizontal

2.7

2.75

2.8

2.85

2.9

00.20.40.60.81

Exact
MSE
MMSE

S
lo

sh
in

g 
fr

eq
ue

nc
y 

(K
L)

a/d

2.88131

2.71144

Figure 6.5. Sloshing frequencies for the first mode over an arced bed

sin(nπx/l) where we found that, in the limits a/d → 1 and a/d → 0 we obtained the
correct results. Again we re-ran the code anticipating a bed flux symmetric around l/2
using sin((2n−1)πx/l) as the trial function and we present the latter results. Alongside
we provide, for comparison, equivalent results using the MMSE. Surprisingly in this case
the accuracy of the MMSE results is extremely poor even for mild slopes.

For the flat-bed case a/d = 1 all of our results were found to agree with the analytical
results to six significant figures with modest truncation sizes ( N = 8 ). For the limit a →
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a/d N = 6 N = 12 N = 18 N = 24 N = 30 N = 36 N = 42 N = 48

1.00 1.44066 - - - - - - -
0.90 1.42759 - - - - - - -
0.80 1.41125 1.41124 - - - - - -
0.70 1.39083 1.39082 - - - - - -
0.60 1.36537 1.36535 - - - - - -
0.50 1.33372 1.33369 - - - - - -
0.40 1.29445 1.29441 1.29440 - - - - -
0.30 1.24579 1.24569 1.24568 - - - - -
0.20 1.18525 1.18504 1.18502 1.18501 - - - -
0.10 1.10859 1.10810 1.10804 1.10803 1.10802 - - -
0.05 1.06134 1.06043 1.06032 1.06029 1.06028 1.06027 - -
0.00 1.00367 1.00094 1.00042 1.00024 1.00015 1.00010 1.00007 1.00006

Table 6.1. Convergence of results for sloshing frequency K

0 we obtained four significant figure accuracy against known results for the triangular bed
shape and three significant figures for the semi-circular bed shape using the sin(nπx/l)
trial function and using a truncation size of ( N = 48 ). Using Legendre functions we were
able to obtain six significant figure accuracy for the first symmetric mode in the triangular
canal problem where l/d = 2 . It is to be expected that our approach will cause problems
when a = 0 as, at this point the bed meets the free-surface. This problem manifests itself
in our assumptions about the local behaviour of the fluid flow at the join with the canal
walls. In the case of the semi-circular bed the condition at the end of the bed remains
zero flux however this is inconsistent with the free-surface condition at this point. In the
triangular case the Legendre function was chosen to model the high fluxes anticipated
in the region thus apparently improving the local modelling and regaining the required
accuracy. We found that, in order to improve on these results we needed to take more
terms in the Fourier series expansion and even then found weak convergence as expected
with a Fourier series representation in this case.

Table (6.1) shows how convergence for the first mode of the triangular bed depends
upon the truncation size. We use a dash to denote no further improvement in results.
It is clearly seen that the Galerkin approach provides efficient convergence reaching at
least four significant figures for a truncation size of (N = 12) . In fact it is only the
extreme case where a/d ≈ 0 that increased truncation size is required to account for the
problems we anticipate at that limit in this formulation, nevertheless we see that four
significant figures are still obtained for a modest N = 12 .

We move now to the results for the second-order problem where it can be shown
that the analytical solution for the forced double-frequency term at second-order for a
flat-bottomed tank corresponding to the n th first-order mode of

φ1 =
gA cos µnx cosh µn(y − d)

ω cosh µnd

where K = ω2
n/g , is given by

φ2 =
−iA2√g(3K2 + µ2

n)

16
√

K3
+

−i3A2√g(K4 − µ4
n) cos 2µnx cosh 2µn(y − d)

16
√

K7 cosh 2µnd
. (6.1)

The expression for φ2 is easily derived following the formulation of the problem in this
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n an bn icn idn

0 0.988842
1 0.925275 2.67999 0 0
2 0 0 0.531020 -0.493030
3 0.368583 0.011046 0 0
4 0 0 0.205348 0.142988
5 0.012162 0.000303 0 0
6 0 0 0.040089 0.002149
7 0.080727 0.000019 0 0
8 0 0 0.039160 0.000132
9 0.002728 0.000001 0 0
10 0 0 0.018101 0.000010
11 0.036602 0 0 0
12 0 0 0.018440 0

Table 6.2. Table of results for second-order sloshing over a triangular bed where a/d = 0.6 ,
N = 12 and Kl = 2.73073

paper. For an alternative derivation in the time domain, see Wu & Eatock Taylor (1994)
who use this result to calibrate their finite-element analysis code. However, it should be
noted that the second term in the expression above differs slightly from that presented
in the reference which appears dimensionally incorrect. Our code was run with a Fourier
series truncation size of 10 to find the first sloshing frequency to six significant figure
accuracy. We found full agreement with the second-order analytic solution in (6.1), to
five significant figures. In particular we found that in the limit a → 1, the contribution to
φ2 came from p(x0). However, as we decreased a we found that the contribution from
d(x) grew such that we still obtained agreement with (6.1) to five significant figures.

We now solve the full second-order problem for second-order sloshing over a triangular
bed. Table (6.2) displays the results for the case where a/d = 0.6 for a truncation size of
N = 12 . It can be shown from our formulation that Mass conservation is guaranteed using
the infinite Fourier series representation of the first-order potential on the free-surface.
Therefore calculation of the integral of η22 over the free-surface provides a valuable
measure of the error introduced in truncating the Fourier series. In this case we find that
the integral of η22 over the surface is 3× 10−6 which implies that we have retained the
5 significant figure accuracy we obtained for the flat bed with this truncation size. Figure
(6.6) plots snapshots of both the first-order and second-order surface elevations ( η1

and η2 respectively) at regular intervals in half a period of oscillation for the case where
a/d = 0.5 and for the same truncation size N = 12 . In this case we find that the integral
of η22 over the surface is 7 × 10−6 . The second half of the period is simply the same
sequence of snapshots with η1 replaced by −η1 . We normalised the first mode of the
free surface potential to give a first-order surface elevation of unit amplitude in order to
compare all other contributions with this dominant mode. In order to construct the total
surface elevation including both the first and second-order terms we use η = εη1 + ε2η2

where ε represents the wave steepness.

The major computational effort is in finding the sloshing frequency via a bisection
method where each step involves a calculation of the matrix in (5.7). There is significant
code reuse provided the matrix equation is coded with frequency as a parameter, in
which case to solve the second-order problem we only need calculate the matrix once
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Figure 6.6. First-Order ( ∼ cos(πx/l) ) and Second-order wave elevations for sloshing over a
triangular bed (a/d) = 0.5

more using a frequency twice the first-order sloshing frequency. We observe that, once
the linear sloshing problem is solved for the bed shape under consideration, the second-
order problem may be solved relatively easily with our approach.
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7. Conclusions

In a weakly non-linear model of wave problems, in order to produce reliable results at
second (and higher) orders, extremely accurate solutions are required at the lower orders.
This paper has shown how to provide a lower order(linear) solution for a complicated
geometry and feed it into the next higher order of approximation retaining an exact
formulation with regards both to the bed condition and the free-surface condition. This
approach may be extended to higher orders giving the possibility of highly accurate
representations although it is noted that the calculation of the free-surface coefficients
becomes increasingly more complicated as the order increases. The solutions are shown
to converge rapidly requiring quite modest truncations of the series representations of
the solutions.

Although useful in its own rights and offering a practical means of investigating second-
order effects, it is envisaged that this method will provide a valuable means of testing
fully non-linear solvers. It will enable them to be calibrated against a weakly non-linear
model of motion over more realistic geometries. The method of solution can be extended,
for example, to higher orders in the Stokes expansion and also to the situation where
the tank is forced to oscillate at a frequency both away from, and near to, resonance a
problem which is currently being investigated.

One of us, GJDC, would like to acknowledge the UK Natural Environment Research
Council’s kind support for this research.

Appendix A. Calculation of g(x)

We note that g(x) depends on products of the first-order potential on the free surface
and its derivatives which we have found as a finite Fourier series as below

φ1(x, 0) =

N∑

n=1

bn cos(nπx/l).

Therefore treating each component of g(x) separately we have

φ2
1 =

N∑

n=1

N∑

m=1

bnbm cos µnx cos µmx

=
1

2

N∑

n=1

N∑

m=1

bnbm(cos µn+mx + cos µn−mx).

Also

(
∂φ1

∂x

)2

=
N∑

n=1

N∑

m=1

µnµmbnbm sin µnx sin µmx

=
1

2

N∑

n=1

N∑

m=1

µnµmbnbm(cos µn−mx − cos µn+mx),
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and

φ1
∂2φ1

∂x2
= −

(
N∑

n=1

bn cos µnx

)(
N∑

m=1

µ2
mbm cos µmx

)

= −1

2

(
N∑

n=1

N∑

m=1

bnbmµ2
m(cos µm+nx + cos µn−mx)

)
.

Combining the above three results, converting to finite sums and simplifying we find that

g(x)

−iω/g
=

1

4

N∑

n=1

N∑

m=1

bnbm(3K2 + 2µnµm − µ2
m) cos µn−mx

+
1

4

N∑

n=1

N∑

m=1

bnbm(3K2 − 2µnµm − µ2
m) cos µn+mx

Now we seek to write

g(x) =

2N∑

s=0

gs cos(sπx/l) (A.1)

where the limits reflect that terms in µn−m contribute for s = 0 . . . N −1 and the terms
in µn+m contribute for s = 2 . . . 2N . After some algebra it may be seen that the four
distinct contributions to the Fourier series for g(x) simplify to give

g(x)

−iω/g
=

1

4

N∑

n=1

b2
n(3K2 + µ2

n),

+
1

4

N−1∑

s=1

N∑

n=s+1

bn−sbn(6K2 + 2µnµn−s − µ2
s) cos µsx

+
1

4

N+1∑

s=2

s−1∑

n=1

bs−nbn(3K2 − µs−n(2µn + µs−n)) cos µsx

+
1

4

2N∑

s=N+2

N∑

n=s−N

bs−nbn(3K2 − µs−n(2µn + µs−n)) cos µsx

This expansion has been extensively verified using Mathematica for a wide range of values
of bn . The coefficients of this series are extremely easy to calculate and give us a much
easier form of g(x) to deal with.
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