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Abstract

In this technical report we describe the method of solution to a variety of two-
dimensional problems involving semi-immersed cylinders in the free surface. These
include: (i) determining the reflection and transmission coefficients for the scattering of
incident waves by a single fixed cylinder; (ii) determining the added mass and radiation
damping for a cylinder forced to move with unit velocity in both heave and sway
motions; (iii) determining the heave and sway added mass and damping coefficients for
a cylinder in forced motion next to a vertical boundary on which either a Neumann or
Dirichlet condition is posed, equivalent to a pair of cylinders forced to move in-phase
or out of phase with each other.

In each case, the fluid is assumed to be of infinite depth and the fluid motion is
two-dimensional.

The description of the method of solution for parts (i) and (ii) follows that of Martin
& Dixon (1983). The formulation of the solution for the final third problem is similar
to that performed by Wang & Wahab (1971) for catamarans in heave oscillation only.

1 Scattering by a fixed cylinder

Cartesian coordinates (x, y) are chosen with y directed vertically downwards and y = 0 coin-
ciding with the mean free surface of the fluid. A time harmonic wave of angular frequency ω
is incident from x = −∞ upon a fixed semi-immersed cylinder of radius a. Polar coordinates
based on the centre of the cylinder (r, θ) are also used with y = r cos θ and x = r sin θ so
that θ = 0 coincides with the positive y axis.

In the fluid the time-independent complex-valued velocity potential ΦS(x, y) satisfies

∇2ΦS = 0 (1.1)

with |∇ΦS| → 0 as y → ∞ and

∂ΦS

∂y
+ KΦS = 0, y = 0, with K = ω2/g (1.2)

On the cylinder, we have

∂ΦS

∂r
= 0, on r = a, −1

2
π < θ < 1

2
π (1.3)
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is the potential for the incident wave, propagating from left to right. The radiation conditions
are

ΦS(x, y) ∼

{

(eiKx + Re−iKx)e−Ky, x → −∞
T eiKxe−Ky, x → ∞

(1.4)

It is the purpose of this section to determine R and T .
We decompose ΦS by writing ΦS = ΦI + ΦD where

ΦI = eiKx−Ky =
∞
∑

m=0

(−Kr)m

m!
e−imθ (1.5)

is the potential for the incident wave, propagating from right to left, whilst the diffraction
potential, responsible for the waves outgoing from the cylinder is written as

ΦD =
∞
∑

n=0

{as
nΦs

n + aa
nΦa

n}. (1.6)

In the above, as,a
n are as yet unknown coefficients associated with the sets of expansion

functions for the cylinder, described by Φs,a
n for n = 0, 1, . . .. The superscripts s and a identify

those functions which are symmetric and antisymmetric (respectively) about the vertical
line θ = 0. This set of functions involve a fundamental source at the origin (symmetric),
horizontal dipole at the origin, and an infinite set of symmetric and antisymmetric wave-free
potentials, all singular at r = 0. Ursell (1949) first introduced the symmetric set of potentials
when looking at a the heave motion for a single cylinder semi-immersed in the free surface.

The symmetric source in the free surface given by

Φs
0(r, θ) =

∫ ∞

0

−
e−ky cos kx

k − K
dk + πie−Ky cos Kx (1.7)

with symmetric wave-free potentials

Φs
n =

(a

r

)2n

cos 2nθ +
Ka

(2n − 1)

(a

r

)2n−1

cos(2n − 1)θ, (n ≥ 1). (1.8)

Antisymmetric functions are given by a horizontal dipole, defined by

Φa
0(r, θ) = −

1

K

∂Φs
0

∂x
=

sin θ

Kr
+

∫ ∞

0

−
e−ky sin kx

k − K
dk + πie−Ky sin Kx (1.9)

and antisymmetric wave-free potentials

Φa
n =

(a

r

)2n+1

sin(2n + 1)θ +
Ka

2n

(a

r

)2n

sin 2nθ, (n ≥ 1). (1.10)

As |x| → ∞, Φs
0 ∼ πie−KyeiK|x|, and Φa

0 ∼ sgn(x)πe−KyeiK|x|. All wave free potentials decay
to zero at infinity. It follows from Yu & Ursell (1961), Appendix A, we can write

Φs
0(r, θ) = ℜ{f1(Kz)} + πiℜ{e−Kz} (1.11)

and

Φa
0(r, θ) =

sin θ

Kr
−ℑ{f1(Kz)} − πiℑ{e−Kz} (1.12)
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where z = reiθ and where

f1(ζ) = −(γ + ln(ζ))e−ζ +
∞
∑

m=1

(−ζ)m

m!

(

1 +
1

2
+ . . . +

1

m

)

. (1.13)

and γ = 0.5772 . . . is Euler’s constant. Note the presentation here is slightly different to that
used in Yu & Ursell (1961). It follows that

Φs
0 =

∞
∑

m=0

(−Kr)mGm(Kr)

m!
cos mθ + θ

∞
∑

m=0

(−Kr)m

m!
sin mθ (1.14)

whilst

Φa
0 =

sin θ

Kr
−

∞
∑

m=1

(−Kr)mGm(Kr)

m!
sin mθ + θ

∞
∑

m=0

(−Kr)m

m!
cos mθ (1.15)

where we have defined

G0(z) = −(ln(z) + γ − πi), Gp(z) = Gp−1(z) + 1/p, (p ≥ 1)

Applying of the cylinder boundary condition (1.3) – representing no-flow on the cylinder
– and making the resulting expression, dependent on θ ∈ (−1

2
π, 1

2
π), orthogonal to cos 2mθ

and sin(2m + 1)θ, results in the decoupled systems of equations,

∞
∑

n=0

As,a
mnas,a

n = F s,a
m , m = 0, 1, 2, . . . (1.16)

As
mn = −1

4
π(2m)δmn − (−1)m+n (2n − 1)Ka

4m2 − (2n − 1)2
(1.17)

and

Aa
mn = −1

4
π(2m + 1)δmn + (−1)m+n (2n)Ka

4n2 − (2m + 1)2
(1.18)

for m = 0, 1, . . . and n = 1, 2, . . .. For n = 0, things are more complicated. We have,

As
00 = −1

2
π cos Ka −

∞
∑

j=0

(−1)j(Ka)2j+1

(2j + 1)!
G2j+1(Ka) (1.19)

with, for m ≥ 1,

As
m0 =

π

4

(Ka)2m

(2m − 1)!
G2m−1(Ka) −

∞
∑

j=0

(−1)m+j(Ka)2j+1G2j(Ka)

(2j + 1)!(1 − [2m/(2j + 1)]2)

+
1

2

∞
∑

j=1

(−1)j(Ka)j

(j − 1)!
(Sj+2m + Sj−2m) (1.20)

followed by, for all m,

Aa
m0 = −

π

4(Ka)
δm0 +

π

4

(Ka)2m+1

(2m)!
G2m(Ka) +

∞
∑

j=1

(−1)m+j(Ka)2jG2j−1(Ka)

(2j)!(1 − [(2m + 1)/(2j)]2)

+
1

2

∞
∑

j=1

(−1)j(Ka)j

(j − 1)!
(Sj+2m+1 − Sj−2m−1) . (1.21)
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where we have defined

S0 = 0, Sp =
sin(1

2
pπ) − (1

2
pπ) cos(1

2
pπ)

p2
, (p ≥ 1).

The right-hand sides of (1.16) are given by F s
0 = sin(Ka), with

F s
m = −

π

4

(Ka)2m

(2m − 1)!
+

∞
∑

j=0

(−1)m+j(Ka)2j+1

(2j + 1)!(1 − [2m/(2j + 1)]2)
, (m ≥ 1) (1.22)

and

F a
m = −i

π

4

(Ka)2m+1

(2m)!
− i

∞
∑

j=1

(−1)m+j(Ka)2j

(2j)!(1 − [(2m + 1)/(2j)]2)
, (m ≥ 0). (1.23)

The reflection and transmission coefficients are given by

R = π(ias
0 − aa

0), T = 1 + π(ias
0 + aa

0). (1.24)

These expressions precisely those to be found in Martin & Dixon (1983), correcting a
single typographical error in their work (the power of Ka in their first sum defining As

n1

should be 2j and not 2j + 1). Note also that our use of notation is slightly different to that
of Martin & Dixon’s.

2 The forced heave and sway motion of the cylinder

Next we consider a single cylinder, semi-immersed in the free surface undergoing forced
small-amplitude heaving or swaying oscillations of unit velocity. We denote the associated
velocity potentials Φ1 (sway) and Φ2 (heave) which will be symmetric and antisymmetric,
respectively.

The aim is to determine the heave and sway added-mass and damping coefficients, which
will be defined shortly.

The equations satisfied by Φj , j = 1, 2 are the same as for ΦS in the previous section,
apart that from on the cylinder boundary, the forced motion condition are

∂Φ1

∂r

∣

∣

∣

∣

r=a

= sin θ, and
∂Φ2

∂r

∣

∣

∣

∣

r=a

= cos θ, −1
2
π < θ < 1

2
π (2.1)

whilst in the far field,

Φj ∼ [sgn(x)]jAje
iK|x|+Ky, as |x| → ∞ (2.2)

and A1 and A2 are the far-field radiated wave amplitudes at x = +∞ due to sway and heave
motions respectively.

We write

Φ1 = a

∞
∑

n=0

ba
nΦa

n, Φ2 = a

∞
∑

n=0

bs
nΦs

n (2.3)

(the multiplicative factor of a is introduced for algebraic convenience) where bs,a
n are coeffi-

cients to be determined and Φs,a
n are those functions defined previously in section 1.
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By imposing the boundary conditions (2.1) and making the result of these operations
orthogonal to sin(2m + 1)θ and cos 2mθ (respectively) over −1

2
π < θ < 1

2
π, we obtain the

uncoupled systems of equations

∞
∑

n=0

As
mnb

s
n =

(−1)m

1 − 4m2
, and

∞
∑

n=0

Aa
mnba

n =
π

4
δm0, m = 0, 1, . . . (2.4)

where As,a
mn are defined by (1.17)–(1.21). The added-mass and damping, ajj and bjj, are

defined by

−(bjj − iωajj) = −iωρ

∫ π/2

−π/2

Φj(a, θ) cos(θ − 1
2
(2 − j)π)adθ, (j = 1, 2)

The non-dimensional added-mass and damping defined by µj = ajj/M and νj = bjjω/M
where M = 1

2
ρπa2 is the mass of the cylinder are then

µj + iνj = −
4

π

∞
∑

n=0

ba,s
n V a,s

n (2.5)

where j = 1(2) correspond to the use of superscripts a(s). In the above,

V s
0 = G0(Ka) −

π

4
(Ka)G1(Ka) +

∞
∑

j=1

(−1)j(Ka)2jG2j(Ka)

(2j)!(1 − 4j2)
+

1

2

∞
∑

j=1

(−Ka)j

j!
(Sj+1 + Sj−1)

(2.6)
and

V s
n =

π

4
(Ka)δn1 +

(−1)n

1 − 4n2
, (n ≥ 1) (2.7)

whilst

V a
0 =

π

4Ka
+

π

4
(Ka)G1(Ka) + S1 −

∞
∑

j=1

(−1)j(Ka)2jG2j(Ka)

(2j − 1)!(1 − 4j2)
+

1

2

∞
∑

j=1

(−Ka)j

j!
(Sj+1 − Sj−1)

(2.8)
and

V a
n =

(−1)n(Ka)

1 − 4n2
, (n ≥ 1). (2.9)

The far field wave amplitude is determined from (2.2) and the and the far field behaviour
of the functions Φs,a

0 expressed in the previous section, which gives A1 = aπba
0 and A2 = aπibs

0.
Various relations exist between the various problems considered in this and the previous

section. Thus, the Newman relations state

R + (−1)jT = −Aj/Āj (2.10)

which reduce to R + T = bs
0/b0

s
and R − T = −ba

0/b0
a
. Additionally, the relations

bjj = ρω|Aj|
2 (2.11)

translate to the non-dimensional versions ν1 = 2π|ba
0|

2, and ν2 = 2π|bs
0|

2. These conditions
can be used to check the accuracy of the numerical procedure.
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3 Calculation of the hydrodynamic coefficients for a

cylinder next to a wall

In this section we detail the analysis needed to calculate the added mass and damping
coefficients in the jth direction due to forced motion in the ith direction for a cylinder placed
a distance b from a vertical boundary on which either a Neumann or Dirichlet condition is
to be placed. We continue this section as though it is the former of these two conditions
which is to be imposed, which is equivalent to having a wall along x = −b. The changes for
the case of a Dirichlet condition are simple and outlined at the end of this section.

The effect of the wall is modelled by an image cylinder centred on (−2b, 0) which moves
in an equal and opposite manner. The potential for the radiation of waves due to unit forced
motion in the sway (j = 1) and heave (j = 2) directions is given by

Φw
j = a

∞
∑

n=0

{c(j)
n Ψa

n + d(j)
n Ψs

n}, (j = 1, 2) (3.1)

where
Ψs,a

n (r, θ) = Φs,a
n (r, θ) + Φs,a

n (r′,−θ′) (3.2)

and z′ = r′eiθ′ = z+2ib define polar coordinates based on the point (−2b, 0). The superscript
w makes Φw

i here distinct from Φi used for the radiation potential for a cylinder in the absence
of a wall.

The functions Ψs,a
n have been constructed so as to satisfy the condition ∂Ψs,a

n /∂x = 0
on x = −b, Unlike the radiation problems in section 2, there is no longer symmetry or
antisymmetry in the fluid motion about a vertical line through the origin, hence the need
for a combination of both sets of singular solutions in the expansion above. There is no
particular significance in the use of superscripts s and a here; they merely serve to remind
us of the functions from which they were derived and act as a convenient labelling system.

Using the translation of variables expressed in complex form, we can expand the second
term above involving singularities at (−2b, 0) in terms of (r, θ) variables and after some
lengthy and detailed algebra we find that, for n ≥ 1

Ψs
n(r, θ) = Φs

n(r, θ) +

∞
∑

j=0

(r

a

)j

(Css
j,n cos jθ + Csa

j,n sin jθ) (3.3)

provided r < 2b (this restriction holds for all subsequent definitions), where

Css
2j,n = (−1)j+nk2j,2n, Css

2j+1,n = −(−1)j+n Ka

(2n − 1)
k2j+1,2n−1, (3.4)

Csa
2j,n = −(−1)j+n Ka

(2n − 1)
k2j,2n−1, Csa

2j+1,n = −(−1)j+nk2j+1,2n, (3.5)

and

kj,n =
( a

2b

)j+n (j + n − 1)!

j!(n − 1)!
. (3.6)

Similarly we have

Ψa
n(r, θ) = Φa

n(r, θ) +

∞
∑

j=0

(r

a

)j

(Cas
j,n cos jθ + Caa

j,n sin jθ) (3.7)
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for n ≥ 1 where

Cas
2j,n = −(−1)j+nk2j,2n+1, Cas

2j+1,n = +(−1)j+n Ka

(2n)
k2j+1,2n, (3.8)

Caa
2j,n = (−1)j+n Ka

(2n)
k2j,2n, Caa

2j+1,n = (−1)j+nk2j+1,2n+1. (3.9)

We move onto the n = 0 terms: these require more effort. As above, we are only
concerned at how the image singularities at x = −2b, y = 0 can be expanded about the
origin. From the integral expression for a source in the free surface we can write

Ψs
0(r, θ) = Φs

0(r, θ) − ℜ{f2(Kz)} + πie−KyeiK(x+2b) (3.10)

and

Ψa
0(r, θ) = Φa

0(r, θ) −
sin θ′

Kr′
−ℑ{f2(Kz)} − πe−KyeiK(x+2b) (3.11)

where
sin θ′

Kr′
=

1

2Kb

∞
∑

j=0

(−1)j

{

( r

2b

)2j

cos 2jθ −
( r

2b

)2j+1

sin(2j + 1)θ

}

(3.12)

provides the expansion of the horizontal dipole at (−2b, 0) about the origin whilst

f2(ζ) =

∫ ∞

0

∪
e−v(ζ+2iKb)

1 − v
dv (3.13)

with z = y+ix = reiθ, the contour being deformed below the pole. Then, assuming x > −2b,
we deform the contour onto the negative imaginary axis to give

f2(ζ) = −

∫ ∞

0

eivζe−2vKb

v − i
dv = −

∞
∑

n=0

(iζ)n

n!
In (3.14)

with

In =

∫ ∞

0

vne−λv

v − i
dv =

(n − 1)!

(2Kb)n
+ iIn−1 (3.15)

for n ≥ 1 whilst

I0 =

∫ ∞

0

e−2vKb

v − i
dv = e−2iKbE1(−2iKb) (3.16)

and E1 is an exponential integral (see Abramowitz & Stegun (1964)) defined by

E1(z) = −γ − ln(z) −
∞
∑

n=1

(−z)n

nn!
, |arg(z)| < π. (3.17)

It follows from (3.15) that

In = in
n
∑

j=1

e−iπj/2(j − 1)!

(2Kb)j
+ inI0, n ≥ 1 (3.18)
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and so

f2(ζ) = −I0

∞
∑

n=0

(−ζ)n

n!
−

∞
∑

n=0

(

−
ζ

2Kb

)n

Wn, Wn =
n
∑

j=1

e−ijπ/2(j − 1)!(2Kb)n−j

n!
, n ≥ 1.

(3.19)
and W0 = 0. We note the convenient recurrence relation Wn = (2KbWn−1 + i−n)/n. Note
also that the series above converges provided r < 2b. We decompose quantities above into
their real and imaginary parts via Wn = W

(r)
n + iW

(i)
n and I0 = I

(r)
0 + iI

(i)
0 .

Thus we have

Ψs
0(r, θ) = Φs

0(r, θ)

+(I
(r)
0 + πie2iKb)

∞
∑

j=0

(−Kr)j

j!
cos jθ + (−I

(i)
0 + πe2iKb)

∞
∑

j=0

(−Kr)j

j!
sin jθ

+

∞
∑

j=0

(r

a

)j (

−
a

2b

)j

(W
(r)
j cos jθ − W

(i)
j sin jθ) (3.20)

and

Ψa
0(r, θ) = Φa

0(r, θ) −
1

2Kb

∞
∑

j=0

(−1)j

{

( r

2b

)2j

cos 2jθ −
( r

2b

)2j+1

sin(2j + 1)θ

}

+(I
(i)
0 − πe2iKb)

∞
∑

j=0

(−Kr)j

j!
cos jθ + (I

(r)
0 + πie2iKb)

∞
∑

j=0

(−Kr)j

j!
sin jθ

+
∞
∑

j=0

(r

a

)j (

−
a

2b

)j

(W
(i)
j cos jθ + W

(r)
j sin jθ) (3.21)

We impose the conditions

∂Φw
1

∂r
= sin θ,

∂Φw
2

∂r
= cos θ, on r = a for −1

2
π < θ < 1

2
π (3.22)

and make the result of each equation orthogonal to sin(2m + 1)θ and cos 2mθ, m = 0, 1, . . .

which gives a pair of coupled infinite systems equations for the coefficients c
(j)
n , d

(j)
n for

j = 1, 2.
The systems of equations we end up with can be written

∞
∑

n=0

(c(1)
n (Aa

m,n + Baa
m,n) + d(1)

n Bsa
m,n) =

1

4
πδm0 (3.23)

and
∞
∑

n=0

(c(1)
n Bas

m,n + d(1)
n (As

m,n + Bss
m,n)) = 0 (3.24)

whilst the system for the coefficients c
(2)
n , d

(2)
n differ from the above only in the right hand

side terms which are replaced by 0 and (−1)m/(1 − (2m)2).
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The quantities As,a
m,n are defined earlier in (1.17)–(1.21) for all m and n. For n ≥ 1 and

m ≥ 0 we have

Bss
m,n = (−1)m+n

[

π

4
(2m)k2m,2n −

Ka

2n − 1

∞
∑

j=0

k2j+1,2n−1

1 − [2m/(2j + 1)]2

]

(3.25)

Bas
m,n = (−1)m+n

[

−
π

4
(2m)k2m,2n+1 +

Ka

2n

∞
∑

j=0

k2j+1,2n

1 − [2m/(2j + 1)]2

]

(3.26)

and

Bsa
m,n = (−1)m+n

[

−
π

4
(2m + 1)k2m+1,2n +

Ka

2n − 1

∞
∑

j=1

k2j,2n−1

1 − [(2m + 1)/(2j)]2

]

(3.27)

Baa
m,n = (−1)m+n

[

π

4
(2m + 1)k2m+1,2n+1 −

Ka

2n

∞
∑

j=1

k2j,2n

1 − [(2m + 1)/(2j)]2

]

(3.28)

The tricky terms are n = 0 where we have

Bss
m,0 = −(I

(r)
0 + πie2iKb)F s

m +
π

4
(2m)(a/2b)2mW

(r)
2m −

∞
∑

j=0

(−1)m+j(a/2b)2j+1W
(r)
2j+1

1 − [2m/(2j + 1)]2
(3.29)

and

Bas
m,0 = −

πm(−1)m

4Kb

( a

2b

)2m

−(I
(i)
0 − πe2iKb)F s

m +
π

4
(2m)(a/2b)2mW

(i)
2m −

∞
∑

j=0

(−1)m+j(a/2b)2j+1W
(i)
2j+1

1 − [2m/(2j + 1)]2
(3.30)

with

Bsa
m,0 = i(I

(i)
0 − πe2iKb)F a

m

+
π

4
(2m + 1)(a/2b)2m+1W

(i)
2m+1 +

∞
∑

j=1

(−1)m+j(a/2b)2jW
(i)
2j

1 − [(2m + 1)/(2j)]2
(3.31)

and

Baa
m,0 =

π(m + 1
2
)(−1)m

4Kb

( a

2b

)2m+1

−i(I
(r)
0 + πie2iKb)F a

m −
π

4
(2m + 1)(a/2b)2m+1W

(r)
2m+1 −

∞
∑

j=1

(−1)m+j(a/2b)2jW
(r)
2j

1 − [(2m + 1)/(2j)]2
(3.32)

where F s
m, F a

m are defined earlier in (1.23) and (1.24).
The quantities of interest are the non-dimensional added mass and damping coefficients

which are defined as

µw
jk + iνw

jk = −
2

πa

∫ π/2

−π/2

Φw
j (a, θ) cos(θ − 1

2
(2 − k)π)dθ, (j, k = 1, 2) (3.33)
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(having being non-dimensionalised by M and Mω as in Section 2). This gives

µw
j1 + iνw

j1 = −
4

π

[

∞
∑

n=0

c(j)
n (V a

n + Y aa
n ) + d(j)

n Y sa
n

]

(3.34)

and

µw
j2 + iνw

j2 = −
4

π

[

∞
∑

n=0

c(j)
n Y as

n + d(j)
n (V s

n + Y ss
n )

]

(3.35)

for i = j, 2, where for n ≥ 1 we have

Y ss
n = (−1)n

[

−
π

4

Ka

2n − 1
k1,2n−1 +

∞
∑

j=0

k2j,2n

1 − (2j)2

]

(3.36)

Y as
n = (−1)n

[

π

4

Ka

2n
k1,2n −

∞
∑

j=0

k2j,2n+1

1 − (2j)2

]

(3.37)

Y sa
n = (−1)n

[

−
π

4
k1,2n −

Ka

2n − 1

∞
∑

j=0

(2j)k2j,2n−1

1 − (2j)2

]

(3.38)

Y sa
n = (−1)n

[

π

4
k1,2n+1 +

Ka

2n

∞
∑

j=0

(2j)k2j,2n

1 − (2j)2

]

(3.39)

Again, the calculations are more complicated for n = 0 where we find

Y ss
0 = −(I

(r)
0 + πie2iKb)

[π

4
Ka + H+

1

]

−
π

4
(a/2b)W

(r)
1 +

∞
∑

j=0

(−1)j(a/2b)2jW
(r)
2j

1 − (2j)2
(3.40)

and

Y as
0 = −(I

(i)
0 − πe2iKb)

[π

4
Ka + H+

1

]

− H2 −
π

4
(a/2b)W

(i)
1 +

∞
∑

j=0

(−1)j(a/2b)2jW
(i)
2j

1 − (2j)2
(3.41)

where

H+
1 =

∞
∑

j=0

(−1)j(Ka)2j

(2j)!((2j)2 − 1)
= −1

2
(cos(Ka) + sin(Ka)/Ka + Ka Si(Ka)) (3.42)

and Si(·) is the sine integral (Abramowitz & Stegun (1964)),

H2 =
1

2Kb

∞
∑

j=0

(a/2b)2j

1 − (2j)2
=

1

4Kb

(

1 +

(

2b

a
−

a

2b

)

tanh−1(a/2b)

)

(3.43)

Also,

Y sa
0 = (I

(i)
0 − πe2iKb)

[π

4
Ka + H−

1

]

+
π

4
(a/2b)W

(i)
1 −

∞
∑

j=1

(−1)j(a/2b)2j(2j)W
(i)
2j

1 − (2j)2
(3.44)
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and

Y aa
0 =

π(a/2b)

8Kb
− (I

(r)
0 + πie2iKb)

[π

4
Ka + H−

1

]

−
π

4
(a/2b)W

(r)
1 +

∞
∑

j=1

(−1)j(a/2b)2j(2j)W
(r)
2j

1 − (2j)2
.

(3.45)
where

H−
1 =

∞
∑

j=1

(−1)j(Ka)2j

(2j − 1)!((2j)2 − 1)
= −1

2
(cos(Ka) − sin(Ka)/Ka + Ka Si(Ka)) (3.46)

The changes required to consider a Dirichlet condition on the wall x = −b are simply
that the sign between the two sets of functions defining Ψs,a

n are to be reversed. This has
the effect of reversing the sign in front of the matrix coefficients Bsa,sa

mn and Y sa,sa
n .

4 Low frequency asymptotics

In this section, we consider the effect of letting Ka → 0. For a single cylinder in isolation,
this was considered in infinite depth by Ursell (1949) and in finite depth again by Ursell
(1976). We can infer Ursell’s asymptotic results from our systems of equations by taking the
limit as Ka → 0 and retaining leading order terms only. Thus,

Aa
00 ∼ −

π

4Ka
, As

00 ∼ −
π

2
,

and
Aa

mn ∼ −
π

4
(2m + 1)δmn, As

mn ∼ −
π

4
(2m)δmn, n 6= 0

with

F a
0 ∼ −i

π

4
Ka, F a

n ∼ o(Ka), and F s
0 ∼ Ka, F s

n ∼ Ka
(−1)n

(1 − (2n)2)
, n 6= 0.

Thus, we find that asymptotically, the coefficients defined by the solution of the heaving and
swaying problems are, as Ka → 0,

ba
0 ∼ −Ka, ba

n ∼ 0 and bs
0 ∼ −

2

π
, bs

n ∼ −
4

π

1

(2n)

(−1)n

(1 − (2n)2)

In order to work out the added mass and radiation we need the following estimates

V a
0 ∼ π/(4Ka), V a

n ∼ 0, n 6= 0

and

V s
0 ∼ − log(Ka) − γ + πi, V s

n ∼
(−1)n

(1 − (2n)2)
,

This now means that

µ1 + iν1 ∼ −
4

π
(−Ka)

( π

4Ka

)

= 1

so that µ1 ∼ 1, ν1 ∼ 0. For the heave added mass and damping we have

µ2 + iν2 ∼ −
4

π

[

2

π
(log(Ka) + γ − πi) −

4

π

∞
∑

n=1

1

(2n)(1 − (2n)2)2

]
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This latter sum is readily evaluated to 3
4
− log 2 so that

µ2 ∼ −
8

π2

(

log(Ka) + γ − 3
2

+ 2 log 2
)

, and ν2 ∼
8

π
.

These are the results derived by Ursell (1949, 1976).
We move onto the consideration of the low frequency asymptotics for a cylinder in motion

next to a wall. First, we equip ourselves with estimates of certain terms, needed for later
calculations. For example

W0 = 0, W1 = −i, Wn ∼
(−1)nin

n

so W
(r)
2n ∼ (−1)n/(2n), W

(i)
2n+1 ∼ −(−1)n/(2n + 1) with W

(r)
2n+1 ∼ 0 and W

(i)
2n ∼ 0.

Also,
I

(r)
0 ∼ − log(2Kb) − γ, I

(i)
0 ∼ π/2

Using this, we find that, for n ≥ 1,

Bss
mn ∼ (−1)m+n π

4
(2m)

(2m + 2n − 1)!

(2m)!(2n − 1)!

( a

2b

)2m+2n

with

Bss
0n ∼ −Ka(−1)n

∞
∑

j=0

(2j + 2n − 1)!

(2j + 1)!(2n − 1)!

( a

2b

)2j+2n

and, when n = 0, but m 6= 0,

Bss
m0 ∼ (−1)m π

4

( a

2b

)2m

,

else Bss
00 = O(Ka). Next, for n ≥ 1,

Bas
mn ∼ −(−1)m+n π

4
(2m)

(2m + 2n)!

(2m)!(2n)!

( a

2b

)2m+2n+1

with

Bas
0n ∼ Ka(−1)n

∞
∑

j=0

(2j + 2n)!

(2j + 1)!(2n)!

( a

2b

)2j+2n+1

and, when n = 0,

Bas
m0 ∼ −(−1)m π

4

(2m)

Ka

( a

2b

)2m+1

+ f1(m, a/2b)

where

f1(m, a/2b) =
∞
∑

j=0

(−1)m(a/2b)2j+1

(2j + 1)(1 − [(2m)/(2j + 1)]2)

Moving on, for n ≥ 1, we have

Bsa
mn ∼ −(−1)m+n π

4

(2m + 2n)!

(2m)!(2n − 1)!

( a

2b

)2m+2n+1
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and, when n = 0,

Bsa
m0 ∼ −(−1)m π

4

( a

2b

)2m+1

.

Finally, for n ≥ 1,

Baa
mn ∼ (−1)m+n π

4

(2m + 2n + 1)!

(2m)!(2n)!

( a

2b

)2m+2n+2

with

Baa
m0 ∼ (−1)mπ

4

(2m + 1)

Ka

( a

2b

)2m+2

Inserting this into the system of equations for the coefficients for c
(1)
n and d

(1)
n and retaining

leading order gives the following. For m = 0, we have from the first equation

c
(1)
0

Ka

(

( a

2b

)2

− 1

)

− d
(1)
0

( a

2b

)

+
∞
∑

n=1

c(1)
n (−1)n(2n + 1)(a/2b)2n+2

−

∞
∑

n=1

d(1)
n (−1)n(2n)(a/2b)2n+1 = 1 (4.1)

whilst for m ≥ 1 we have

c
(1)
0

Ka

( a

2b

)2m+2

− d
(1)
0

(

1

(2m + 1)

( a

2b

)2m+1
)

− (−1)mc(1)
m

+
∞
∑

n=1

c(1)
n (−1)n (2m + 2n + 1)!

(2m + 1)!(2n)!

( a

2b

)2m+2n+2

−
∞
∑

n=1

d(1)
n (−1)n (2m + 2n)!

(2m + 1)!(2n − 1)!

( a

2b

)2m+2n+1

= 0 (4.2)

Similarly, for the second system of equations, we have for m = 0,

c
(1)
0 tanh−1(a/2b) −

π

2
d

(1)
0 + Ka

∞
∑

n=1

c(1)
n (−1)n

∞
∑

j=0

(2j + 2n)!

(2j + 1)!(2n)!

( a

2b

)2n+2j+1

+Ka

∞
∑

n=1

d(1)
n

(−1)n

(2n − 1)
− Ka

∞
∑

n=1

d(1)
n (−1)n

∞
∑

j=0

(2j + 2n − 1)!

(2j + 1)!(2n − 1)!

( a

2b

)2n+2j

= 0 (4.3)

and f1(0, a/2b) = tanh−1(a/2b) has been used. In the above, we have retained terms to
O(Ka) for reasons which will become clear.

For m ≥ 1 we have

−
c
(1)
0

Ka

( a

2b

)2m+1

+ d
(1)
0

(

1

(2m)

( a

2b

)2m
)

− (−1)md(1)
m

−
∞
∑

n=1

c(1)
n (−1)n (2m + 2n)!

(2m)!(2n)!

( a

2b

)2m+2n+1

+
∞
∑

n=1

d(1)
n (−1)n (2m + 2n − 1)!

(2m)!(2n − 1)!

( a

2b

)2m+2n

= 0(4.4)

In the system of equations for c
(2)
0 and d

(2)
0 , the right-hand sides of (4.1), (4.3) and (4.4) are

replaced by 0, 1 and (4/π)/(2m(1 − (2m)2)) respectively
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What is immediately apparent is that c
(j)
0 ∼ O(Ka) for both j = 1, 2. It follows from the

homogeneous equation () when j = 1 that d
(1)
0 ∼ O(Ka) whilst the inhomogeneous version for

j = 1 immediately yields d
(2)
0 ∼ −2/π as Ka → 0. Beyond this immediate observation, the

systems of equations are still coupled and to complicated to produce explicit approximations
to the coefficients as we were able to do in the case of a single cylinder in motion.

Instead, we assume use the fact that a/2b < 1
2

and propose an expansion in terms of
the parameter ǫ ≡ a/2b. This has been done using the symbolic algebra package Maple and
gives the following series

c
(1)
0

Ka
∼ −(1 + ǫ2 + ǫ4 + 3ǫ6 + . . .),

d
(1)
0

Ka
∼ −

2

π
(ǫ − 1

3
ǫ3 − 6

5
ǫ5 + . . .) (4.5)

and
c
(2)
0

Ka
∼

2

π
(ǫ + 1

3
ǫ3 + 6

5
ǫ5 + . . .), d

(2)
0 ∼ −

2

π
(4.6)

We can also make leading order approximation estimate to the remaining coefficients, by
balancing terms in (4.2), (4.4) which gives

c
(1)
n ∼ −(−1)nǫ2n+2

d
(1)
n ∼ (−1)nǫ2n+1

}

,
c
(2)
n ∼

(2/π)(−1)nǫ2n+1

(2n + 1)

d
(2)
n ∼ −

(4/π)(−1)n

((2n)(1 − (2n)2))















(4.7)

and we will also need the next order of approximation in d
(1)
1 ∼ −ǫ3 − ǫ5.

We turn to the expressions for the added mass and damping. Before this, we derive
estimates to various terms. Hence

Y ss
0 ∼ − log(2Kb) − γ + πi + f2(a/2b), f2 =

∞
∑

j=1

(a/2b)2j

(2j)(1 − (2j)2)

Y as
0 ∼ −

Ĥ2

Ka
, Ĥ2 = (a/2b)(1

2
+ 1

2
((2b/a) − (a/2b)) tanh−1(a/2b))

Y sa
0 ∼ −

π

4
(a/2b)

Y aa
0 ∼

π

4Ka
(a/2b)2

In addition to this,

Y ss
n ∼ (−1)n

∞
∑

j=0

(2j + 2n − 1)!

(1 − (2j)2)(2j)!(2n − 1)!

( a

2b

)2n+2j

Y as
n ∼ −(−1)n

∞
∑

j=0

(2j + 2n)!

(1 − (2j)2)(2j)!(2n)!

( a

2b

)2n+2j+1

Y sa
n ∼ −(−1)n π

4
(2n)

( a

2b

)2n+1

Y aa
n ∼ (−1)n π

4
(2n + 1)

( a

2b

)2n+2
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Now, we can use this to approximate the added mass and damping coefficients. Starting
with

µw
j1 + iνw

j1 ∼ −
4

π

[

c
(j)
0

(

π

4Ka
+

π

4Ka

( a

2b

)2
)

− d
(j)
0

π

4

( a

2b

)

+
π

4

∞
∑

n=1

c(j)
n (−1)n(2n + 1)(a/2b)2n+2 −

π

4

∞
∑

n=1

d(j)
n (−1)n(2n)(a/2b)2n+1

]

= −δj1 − 2
c
(j)
0

Ka
(4.8)

after (4.1) has been used. We note that when considering the low frequency asymptotics of
a single cylinder in the absence of the wall in heave and sway, the result for sway was very
simple, but the result for heave required more work. The same occurs here in that the result
above in (4.8) is simple, but the next result much less so. Thus, we have

µw
j2 + iνw

j2 ∼ −
4

π

[

c
(j)
0

(

−
Ĥ2

Ka

)

+ d
(j)
0

(

− log(2K2ab) − 2γ + 2πi + f2(a/2b)
)

−
∞
∑

n=1

c(j)
n (−1)n

∞
∑

m=0

(2m + 2n)!

(1 − (2m)2)(2m)!(2n)!

( a

2b

)2m+2n+1

+
∞
∑

n=1

d(j)
n (−1)n

∞
∑

m=0

(2m + 2n − 1)!

(1 − (2m)2)(2m)!(2n − 1)!

( a

2b

)2m+2n

+

∞
∑

n=1

d(j)
n

(−1)n

(1 − (2n)2)

]

. (4.9)

Note that from taking (4.4), dividing by (1− (2m)2) and summing over m = 1, 2, . . . we have

−
c
(j)
0

Ka
(Ĥ2 − a/2b) + d

(j)
0 f2(a/2b) −

∞
∑

n=1

d(j)
n

(−1)n

(1 − (2n)2)

−
∞
∑

n=1

c(j)
n (−1)n

∞
∑

m=1

(2m + 2n)!

(1 − (2m)2)(2m)!(2n)!

( a

2b

)2m+2n+1

+
∞
∑

n=1

d(j)
n (−1)n

∞
∑

m=1

(2m + 2n − 1)!

(1 − (2m)2)(2m)!(2n − 1)!

( a

2b

)2m+2n

= δj2

∞
∑

m=1

(4/π)

(2m)(1 − (2m)2)2
.

This can be substituted into (4.9) above to eliminate many of the terms to give

µw
j2 + iνw

j2 ∼ −
4

π

[

−
c
(j)
0

Ka

( a

2b

)

+ d
(j)
0

(

− log(2K2ab) − 2γ + 2πi
)

−
∞
∑

n=1

c(j)
n (−1)n

( a

2b

)2n+1

+
∞
∑

n=1

d(j)
n (−1)n

( a

2b

)2n

+2

∞
∑

n=1

d(j)
n

(−1)n

(1 − (2n)2)
+

4

π
(3

4
− log 2)δj2

]

(4.10)

We can now put everything together and formulate approximate asymptotic expressions
for the added mass and damping coefficients, first using (4.5), (4.6) in (4.8) to give

µ11 ∼ 1 + 2(ǫ2 + ǫ4 + 3ǫ6 + . . .) ν11 ∼ 0
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and

µw
21 ∼ −

4

π
(ǫ + 1

3
ǫ3 + 6

5
ǫ5 . . .), νw

21 ∼ 0.

Now using both (4.5), (4.6) and (4.7) in (4.10) and retaining all terms to O(ǫ5) gives

µw
12 ∼ −

4

π
(ǫ + 1

3
ǫ3 + 6

5
ǫ5 . . .), νw

12 ∼ 0.

confirming the reciprocity relations, and

µw
22 ∼ −

8

π2

(

log(2K2ab) + 2γ − 3
2

+ 2 log 2
)

, νw
22 ∼

16

π
.
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