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This paper concerns the modelling of the wave energy absorbing qualities of a three-
dimensional hinged flap-type wave energy converter closely related to the Oyster device‡.
An analytic approach is taken to solving a set of boundary-value problems which arise
from the decomposition of the linear water wave problem describing the interaction of the
flap converter with waves into scattering and radiation potential problems. A novel inte-
gral equation formulation and numerical solution for approximating the solution of these
boundary-value problems involving fixed and radiating thin barriers is also presented.
Results concentrate on parameters likely to be close to those representing the Oyster
device and attempt to expose features of Oyster that make it a successful wave energy
absorber, despite theoretical results suggesting otherwise. Amongst the conclusions, it is
shown that the length of flap is crucial in determining the optimal performance of the
device.

1. Introduction

In this paper we develop an analytical approach for analysing a wave energy converter
which models the Oyster device being developed by Aquamarine Power Ltd‡. A full scale
prototype of the Oyster device has recently been deployed at the EuropeanMarine Energy
Centre (EMEC) off the coast of Orkney in Scotland in late 2009. The mathematical model
consists of a thin flat rectangular flap – or paddle – which is hinged along a horizontal axis
above a sea bed in water of constant depth. The flap is buoyant and is thus orientated
vertically upwards in calm water. Parallel-crested waves are incident on the flap and
power is taken from the device from the rotation of the flap about the hinge. The Oyster
device uses pistons attached at one end to the flap and at the other to a submersible
base to drive a hydraulic system which generates power at an onshore generator, see
(Whittaker & Folley 2012, figure 15).
Flap-type wave energy converters were largely overlooked in the early years of wave

power development during the late 1970’s and early 1980’s. Inventors and engineers de-
veloping the first types of wave energy converters tended to be drawn towards more
sophisticated devices often directed by the theoretical results being developed simultane-
ously by mathematicians. Thus, symmetrical devices such as flaps and paddles operating
in surge/pitch were shown (independently by Mei (1976), Evans (1976) and Newman
(1976)) to be at most 50% efficient in two-dimensions (that is, for a device spanning a
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narrow wave tank, where many of the ideas were first tested). When the fore-aft sym-
metry is broken greater efficiencies can be gained and such thinking led to the iteration
of the Salter duck from an initial paddle design. Thus, efficiencies of close to 100% were
reported for the Salter Duck, after Salter (1974), whose final design possessed a flat
‘paddle’ section at the front and a rounded section at the rear. Other examples in the
class of ‘terminator’ device include the Bristol submerged cylinder (Evans et al. (1979))
which uses independent heave and surge modes of motion to again theoretically attain
100% efficiencies in two-dimensional wave tanks. Another cause for concern with flap-
type converter centres on the issue of resonance. Most wave energy devices are naturally
conceived and designed around the principle of resonance in which large resonant motions
of the wave energy capturing device, when excited by incident waves, can be exploited
to harness energy. Buoyant flap/paddle-type devices that are large enough to be used
offshore beyond the surf zone typically have natural resonant periods which are too large
compared to the range of periods found within sea spectra. This is true in the case of the
Oyster which has a natural period reportedly around 20 seconds, see Whittaker & Fol-
ley (2012). Numerical modelling reported in Folley et al. (2007) and Whittaker & Folley
(2012) suggests reducing the length of the flap or increasing its width can make the flap
resonant within the range of periods of interest.
Despite these issues, the Oyster device has been successfully demonstrated in terms

of numerical modelling, laboratory testing and now operationally at full scale. Thus,
the 18m long prototype Oyster 1 unit rated at 315kW reportedly generates a mean
power output of around 100kW: not exceptional given its size, but not insignificant and
promising enough to attract further financial investment. The second-generation Oyster
800 project aims to install 3 separate units each with an installed capacity of 800kW
and having a revised length of 26m. With theory suggesting that buoyant flap-type surge
converters are not the most promising of solutions, it emerges as an intriguing prospect
to investigate the analytical components and features of the model that allow this device
to perform better than might be expected.
Despite the current interest in the Oyster device there are no sophisticated analytical

models of the device and modelling is performed largely, it seems, using numerical panel-
based hydrodynamic codes (see for example (Cruz 2008, §5)). However, recently Renzi
& Dias (2012) have made some analytic progress considering infinite periodic arrays of
flap-type devices as a means of determining interaction effects when a long array of flap-
type devices are placed in a line. Yet it seems that an analytical approach to the problem
of a single flap has not yet been tackled.
It is therefore the purpose of the present paper to carry out an analysis of a single

flap-type converter. It is hoped that the results obtained from this analysis will be useful
in verifying numerical methods and for quickly determining optimal parameters. One key
parameter that emerges is the length of the flap as this sets, amongst other things, the
so-called capture factor, being defined as the ratio of the length of incident wave crest
absorbed by the device divided by the length of the device. If the flap is long compared to
the wavelength, then it will react to the waves approximately as a two-dimensional device
along most of its length and then the capture factor, according to the 50% maximum
efficiency result in two-dimensions will be close to 0.5. If the device is short compared
to the incident wavelength then it may react approximately as a point absorber (see
Evans (1981) for example) and the capture factor may increase without bound; however,
device motions must become increasingly large as the device becomes smaller to absorb
the same amount of energy and eventually the theoretical basis for the model becomes
redundant.
Analytically-based models of wave energy devices are often restricted to simple geome-
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Figure 1. Some of the key parameters imposed on side and plan views of the flap converter
configuration used in the hydrodynamic model.

tries and mainly in two-dimensional settings. In three-dimensions, calculations based on
semi-analytical methods are often confined to single devices or arrays of devices consisting
of absorbers with geometries having circular or spherical boundaries.

To investigate three-dimensional terminator-type devices of constant cross-section and
finite length, one often has to resort to using numerically-basedmethods such as boundary-
element panel-based codes. Approximations can be made to measure the effect of a finite
length absorbers (see Evans (1980)). The flap-type device considered here is genuinely
three dimensional, but the geometry of the flap being aligned in a plane of Cartesian
coordinates allows analytic progress to be made, and we exploit the decomposition ideas
recently presented by Renzi & Dias (2012) which were applied to a related problem of
an infinite array of flap-type devices.

In §2 of the paper we derive expressions for the power absorption and relate them
to certain properties of scattering and radiation potentials satisfying linear water wave
problems. Much of this section is guided by principles of wave power conversion calcu-
lations set out, for example, in Thomas (2008). In §3, the boundary value problems are
formulated for each of the two potentials and in §4, a new integral equation formulation
and approximation to two-dimensional wave scattering and radiation problems involving
thin barriers is derived and presented. §5 presents various useful relations that simplify
the solution procedure including an outline of how embedding results are used to solve for
all incident wave directions in terms of just one direction. In §6 we present results using
parameters closely associated with the Oyster device and describe how the device works
so well, giving some suggestions for further optimisation. Finally, we give conclusions and
suggestions for future work in §7.

2. Formulation of the problem

Cartesian coordinates are defined with the origin in the mean free surface and z point-
ing vertical upwards. The bottom of the fluid of density ρ is on z = −h, a constant.

The hydrodynamic model assumes that the flap is thin and, at rest, that it occupies
the vertical plane {x = 0,−a < y < a,−h < z < 0}. The flap is hinged along a horizontal
axis (x, z) = (0,−c) denoted in figure 1 by P , below which it remains fixed and above
which it is free to move. We assume use of the standard small-amplitude theory of water
waves.

The time-dependent problem is as follows. We define a velocity potential Φ(x, y, z, t)
satisfiying

∇2Φ = 0, in the fluid (2.1)
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with linearised dynamic and kinematic free surface conditions

Φt + gζ = 0, and ζt = Φz, on z = 0 (2.2)

where ζ(x, y, t) denotes the free surface and g is gravitational acceleration. On the bottom
of the fluid

Φz = 0, on z = −h. (2.3)

On the flap, the linearised kinematic condition is

Φx(0
±, y, z, t) = Θ̇(t)u(z), where u(z) =

{
0, −h < z < −c
z + c, −c < z < 0

(2.4)

for −a < y < a where Θ(t) is the (assumed small) angle measured anticlockwise from
the vertical through which the flap has moved. Again, under the assumption of small
angles, Newton’s law applied to the rotational motion of the flap about the pivot, P ,
along (x, z) = (0,−c) for −a < y < a states that

IΘ̈(t) = −CΘ(t) +Xw(t) +Xe(t) (2.5)

where I is the moment of inertia of the flap about the pivot P and C is the restoring
torque/couple due to (presumed) buoyancy of the flap about P . These quantities can be
calculated with some knowledge of the constitution of the flap (see §6). Thus C acts as
a linear spring restoring force. Also in (2.5) Xw and Xe represent time dependent wave
torques and external mechanical torques about P . These will be defined later.
Assuming an incident wave with time-harmonic dependence, all dependent variables

respond with the same time dependence. Thus we write

Φ(x, y, z, t) = Re{φ(x, y, z)e−iωt}, ζ(x, y, t) = Re{η(x, y)e−iωt}, Θ̇(t) = Re{Ωe−iωt}
(2.6)

and

Xw,e(t) = Re{Fw,ee
−iωt}. (2.7)

We note that Θ(t) = Re{(iΩ/ω)e−iωt} and the choice of using the complex angular
velocity Ω as a proxy for the angular variation Θ(t) follows the typical approach to
formulating wave energy problems. Now (2.5) is written

−iωIΩ = − iC

ω
Ω+ Fw + Fe. (2.8)

In the problem for φ we use linearity of the governing equations to decompose into two
components, writing

φ(x, y, x) = AφS(x, y, z) + ΩφR(x, y, z) (2.9)

where φS is responsible for scattering of incident waves of height H from a fixed flap
and φR is responsible for wave radiation from the flap’s own motion in the absence of an
incident wave field. Here A = −igH/(2ωψ0(0)) where ψ0 will be defined a little below in
(2.16).
Specifically, φS,R now satisfy the following:

∇2φS,R = 0, in the fluid (2.10)

with a combined linear free surface condition

φS,Rz −KφS,R = 0, on z = 0 (2.11)

where K = ω2/g and

φS,Rz = 0, on z = −h (2.12)
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with

φSx (0
±, y, z) = 0, φRx (0

±, y, z) = u(z), for −h < z < 0, |y| < a. (2.13)

Since the radiation of waves by an oscillating flap generates a motion in x > 0 which is
180 degrees out of phase with the motion in x < 0 we must also impose an antisymmetry
condition

φR(0, y, z) = 0, for −h < z < 0, |y| > a (2.14)

along with radiation conditions. For the scattering problem we first need to define the
incident wave. Thus, for an incident wave of height H (amplitude 2H) propagating at
an anti-clockwise angle β ∈ (−π/2, π/2) to the positive x-axis,

φI(x, y, z) = eik(x cos β+y sin β)ψ0(z) (2.15)

where k is the positive wavenumber satisfying K = k tanhkh, the usual dispersion rela-
tion, and

ψ0(z) = N
−1/2
0 coshk(z + h), N0 =

1

2

(
1 +

sinh 2kh

2kh

)
(2.16)

is a normalised depth eigenfunction associated with propagating waves. We require both
φR and φD ≡ φS − φI to represent outgoing waves at large distances from the flap.
The total couple on the pivot P due to wave forces is given by the integrated moment

of the pressure forces acting in the positive x direction, or

Xw(t) = ρ

∫ a

−a

∫ 0

−h

[
Φt(0

+, y, z, t)− Φt(0
−, y, z, t)

]
u(z) dz dy (2.17)

using (2.4) which gives

Fw = −iωρ

∫ a

−a

∫ 0

−h

[
φ(0+, y, z)− φ(0−, y, z)

]
u(z) dz dy. (2.18)

We mimic the decomposition of φ by writing

Fw = AFS(β) + ΩFR (2.19)

where FS(β) is the exciting torque about P on a fixed flap due to an incident wave of
normalised amplitude propagating at an angle β and FR is the torque about P due to
the forced motion of the flap itself. Thus we write

FS,R = −iωρ

∫ a

−a

∫ 0

−h

[
φS,R(0+, y, z)− φS,R(0−, y, z)

]
u(z) dz dy. (2.20)

Moreover, it is typical to reduce the complex radiation torque into real and imaginary
components which are in phase with angular velocities and accelerations respectively
with

FR = iωA(ω)− B(ω) (2.21)

where A(ω) and B(ω) are real coefficients called the added inertia and the radiation
damping which vary with frequency and are computed by taking real and imaginary
parts of (2.20), assuming the potential φR has been determined.
Then, according to (2.8) we have

−iωIΩ = − iC

ω
Ω+ AFS(β) + (iωA− B)Ω + Fe. (2.22)
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In other words,

ZΩ = AFS + Fe, with Z = B(ω)− iω(I +A(ω)− C/ω2). (2.23)

We now specify the external force, envisaged to be a damping torque acting linearly
against the angular velocity about the pivot P through which power is extracted by the
flap. In other words we write

Fe = −ΛΩ (2.24)

where Λ is the power-take off parameter used to control the damping. Combining (2.24)
with (2.23) gives

(Z + Λ)Ω = AFS(β). (2.25)

Now the mean power is computed from the rate of working of the wave torque against
the motion of the flap averaged over a period. In other words

W =
1

2π/ω

∫ 2π/ω

0

Xw(t)Θ̇(t)dt ≡ 1

2
Re{FwΩ

∗} (2.26)

(∗ denotes complex conjugation) in terms of time-independent quantities. From (2.8) we
see that this gives

W = −1

2
Re{FeΩ

∗} =
1

2
Λ|Ω|2 (2.27)

after using (2.24) and assuming (fairly realistically) that Λ is real. Substituting in from
(2.25) we have

W =
1

2

Λ|AFS(β)|2
|Z + Λ|2 . (2.28)

Using the identity, for real Λ, that 2Λ(Re{Z}+ |Z|) = |Λ+Z|2− (Λ− |Z|)2 we find that

W =
|AFS(β)|2
4(B + |Z|)

(
1− (Λ − |Z|)2

|Λ + Z|2
)
. (2.29)

For any given frequency W may take its optimal value of

W =Wopt =
2B

B + |Z|
|AFS(β)|2

8B (2.30)

provided Λ = |Z|. If, in addition, Im{Z} = 0 and Λ = Re{Z}, or
I +A(ω) = C/ω2 and Λ = B(ω) (2.31)

then W takes a maximum value of

W =Wmax =
|AFS(β)|2

8B . (2.32)

The first of (2.31) is determined by hydrodynamics alone, and is satisfied when resonance
is achieved; it states that inertia, including added inertia, is balanced by spring restoring
forces. The second condition is tuneable. That is to say, if the first condition is satisfied
at ω = ω∗, then setting the damping to Λ = B(ω∗) ensures that the maximum power is
extracted at ω = ω∗.
The power W , or indeed the maximum power Wmax, is determined by the exciting

force due to the incident wave. To determine a measure of the effectiveness of the device
we need to normalise this. So, for example, the power per unit width of crest in an
incident wave is given by

Winc =
1

8
ρg|H |2cg, cg =

g

2ω
(tanh kh+ kh sechkh) (2.33)
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and then the so-called ‘capture width’ of the wave energy converter is defined by

l =W/Winc having a maximum determined by lmax =Wmax/Winc. (2.34)

It is clear to see that by dividing the definition of Winc into W and Wmax that the
dependence on the height of the wave vanishes, as it should. However, the dependence on
β does not. The Haskind relation in three dimensions (e.g. Wehausen & Laitone (1960))
gives

Winc =
k

16πB

∫ 2π

0

|AFS(θ)|2dθ. (2.35)

Thus it follows from (2.29) and (2.32) that

l = lmax
2B

B + |Z|

(
1− (Λ− |Z|)2

|Λ + Z|2
)

(2.36)

where

lmax =
2π|FS(β)|2

k
∫ 2π

0 |FS(θ)|2 dθ
(2.37)

is the maximum capture width attained when (2.31) are both satisfied. The optimal
capture width is

lopt =
2B

B + |Z| lmax (2.38)

which can be achieved when Λ = |Z|.
The capture width represents the equivalent crest-length of incident wave from which

all the energy has been absorbed. It does not take into account the physical size of the
absorbing device. Thus the ‘capture factor’ is defined as the capture width divided by
the total length of the device. According to our problem this is,

l̂ =
l

2a
. (2.39)

Economically, it makes sense to maximise this capture factor under certain constraints
(for example, constraints on the amplitude of motion). This will be considered in the
Results section.
In summary then, power and its other measures such as capture width and capture

factor require the solution to two hydrodynamic problems, for φS,R. In particular, it
requires certain coefficients to be determined. These are FS(θ) for all θ, the exciting
forces on a fixed flap and A and B, the added inertia and radiation damping for a
radiation problem.

3. Specification of the scattering and radiation problems

3.1. The scattering problem

The problem for a fixed flap has been considered previously by many authors (e.g., Morse
& Rubinstein (1938), Carr & Stelzriede (1952)). In this case we simply remove the depth
dependence from the problem by writing

φS(x, y, z) = ψ(x, y;β)ψ0(z) (3.1)

satisfying both (2.11), (2.12) whilst (2.10) reduces to
(
∂2

∂x2
+

∂2

∂y2
+ k2

)
ψ = 0, (3.2)
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in the plane of the free surface with (2.13) converted to

∂ψ

∂x
(0±, y;β) = 0, |y| < a, (3.3)

and ψD ≡ ψ − ψI represents diffracted outgoing waves at infinity where

ψI(x, y;β) = eik(x cos β+y sin β). (3.4)

The exciting wave torque about the pivot P is, from (2.20),

FS(β) = −iωρ

∫ a

−a

∫ 0

−h

[
ψD(0+, y;β)− ψD(0−, y;β)

]
ψ0(z)u(z) dz dy (3.5)

(since ψI is continuous). It helps now to decompose u(z) in terms of the complete set of
normalised depth eigenfunctions

ψn(z) = N−1/2
n cos kn(z + h), Nn =

1

2

(
1 +

sin 2knh

2knh

)
(3.6)

where kn for n = 1, 2, . . . are the positive roots of K = −kn tan knh and ψn(z) including
the definition for n = 0 satisfy the orthogonality relation

1

h

∫ 0

−h

ψn(z)ψm(z)dz = δmn. (3.7)

We can incorporate the definition of ψ0(z) into the above by writing k0 = −ik. Then we
write

u(z) =

∞∑

n=0

Unψn(z) (3.8)

which implies that

Un =
1

h

∫ 0

−h

u(z)ψn(z) dz =
N

−1/2
n

k2nh
[knc sinknh+ cos knh− cos kn(h− c)] (3.9)

after using the definition of u(z) from (2.4). The integration in z in (3.5) evaluates to
hU0 from (3.7), and so (3.5) reduces to

FS(β) = −iωρU0h

∫ a

−a

[
ψD(0+, y;β)− ψD(0−, y;β)

]
dy. (3.10)

3.2. The radiation problem

For the wave radiation problem we exploit the fact that the condition (2.13) on the flap
extends throughout the depth and depends only on z. That is, from (2.13) and (3.8)

φRx (0
±, y, z) =

∞∑

n=0

Unψn(z). (3.11)

We can express the potential everywhere as a superposition of modes associated with the
same set of depth modes, thus

φR(x, y, z) =

∞∑

n=0

Unφn(x, y)ψn(z) (3.12)

in which (2.10) now implies
(
∂2

∂x2
+

∂2

∂y2
− k2n

)
φn = 0, (3.13)
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(when n = 0, k0 = −ik) in the plane of the free surface, with

∂φn
∂x

(0±, y) = 1, −a < y < a (3.14)

and φn(x, y) represents outgoing waves (n = 0) or decaying waves (n > 1) far from the
origin. Also from (2.14)

φn(0, y) = 0, |y| > a (3.15)

whilst antisymmetry implies that φn(x, y) needs only be found in x > 0 with φn(−x, y) =
−φn(x, y) providing the extension to x < 0.
The property of this solution needed is again the wave torque about P defined by

(2.20) and using (2.4), (3.8) and (3.12) this turns out to be given by

FR = −2iωρh

∞∑

n=0

U2
n

∫ a

−a

φn(0
+, y) dy. (3.16)

4. Solution of the scattering and radiation problems

4.1. Scattering problem

Solutions based on Green’s functions are well documented (see for example, Linton &
McIver (2001)). However, a much more direct solution is possible using Fourier transforms
and the approach outlined below we believe to be new. First we note that (e.g. Linton &
McIver (2001)) ψD(x, y;β) = −ψD(−x, y;β) and so we only need the solution in x > 0
whilst the condition ψD(0, y;β) = 0 applies for |y| > a.
We define the Fourier transforms of ψD(x, y) in x > 0, by

ψ̄D(x, l) =

∫ ∞

−∞

ψD(x, y;β)e−ily dy. (4.1)

Then, taking Fourier transforms of the governing Helmholtz equation (3.2) gives
(
d2

dx2
+ (k2 − l2)

)
ψ̄D(x, l) = 0. (4.2)

The solution is given by

ψ̄D(x, l) = P̄ (l)e−λ(l,k)x (4.3)

where

λ(l, k) =
√
l2 − k2 = −i

√
k2 − l2, when |l| < k (4.4)

to ensure the correct outgoing wave behaviour at infinity. The integration constant is
defined by letting x→ 0 so that

P̄ (l) =

∫ ∞

−∞

ψD(0+, y;β)e−ily dy =

∫ a

−a

P (y;β)e−ily dy (4.5)

where we have used the abbreviation P (y;β) = ψD(0+, y;β) when |y| < a. Invoking the
inverse transform we have, for x > 0,

ψD(x, y;β) =
1

2π

∫ ∞

−∞

P̄ (l)e−λ(l,k)xeily dl

=
1

2π

∫ ∞

−∞

e−λ(l,k)xeily
∫ a

−a

P (y′;β)e−ily′

dy′ dl (4.6)
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after using (4.5). If the order of integration is reversed, which can be done safely for
x > 0, we find

ψD(x, y;β) =

∫ a

−a

P (y′;β)
1

2π

∫ ∞

−∞

e−λ(l,k)xeil(y−y′) dl dy′ (4.7)

which is the convolution result for inverse Fourier transforms. It is easy to confirm that
this is equivalent to the Green’s function approach described by Linton & McIver (2001)
once the standard integral representation

H
(1)
0 (kρ) =

1

πi

∫ ∞

−∞

e−λ(l,k)|x−x′|eil(y−y′)

λ(l, k)
dl (4.8)

with ρ2 = (x − x′)2 + (y − y′)2 has been used for the Hankel function, being the key
component of the Green’s function for this problem. That is, (4.7) with (4.8) can be
converted into the integral equation

ψD(x, y;β) =
i

2

∫ a

−a

P (y′;β)
∂

∂x′
H

(1)
0 (kρ)

∣∣∣∣
x′=0

dy′ (4.9)

which coincides with Linton & McIver (2001, equation (4.142)). Pursuing the Green’s
function approach leads to some difficulties, as the account in Linton & McIver (2001)
highlights. One possibility is to impose the boundary condition in such a way as to leave
an integro-differential equation which can be integrated up; use can subsequently be made
of Babinet’s principle (see Linton & McIver (2001)) to relate solutions P (y;β) to com-
binations of solutions to the complementary problem of a gap in an infinite breakwater
where kernels in the integral operators are log-singular.
Another possibility is to impose the boundary condition on the flap in such a way as

to leave a hypersingular integral equation for ψD on the flap, thus

−∂ψ
I

∂x
(0, y;β) =

i

2

∫ a

−a

× P (y′;β)
∂2

∂x∂x′
H

(1)
0 (kρ)

∣∣∣∣
x,x′=0

dy′, |y| < a (4.10)

where the integral is interpreted as a finite-part integral (see, for example, Linton &
McIver (2001)). This approach requires some effort to manually integrate the singular
parts of the kernel though this can be done with particular types of numerical approxi-
mation.
Instead we return to (4.6) and take derivatives in x throughout before letting x→ 0+

for |y| < a so that the boundary condition on the barrier (3.3) can be imposed. This
gives

−∂ψ
I

∂x
(0, y;β) = − 1

2π

∫ ∞

−∞

λ(l, k)eily
∫ a

−a

P (y′;β)e−ily′

dy′ dl, |y| < a. (4.11)

It can be confirmed that the known behaviour of the unknown function P (y′;β) ∼
(a2 − y′2)1/2 leads to the inner integral behaving like O(|l|−3/2) for large |l|, and this
ensures convergence of the outer integral.
We now consider a numerical solution method to (4.11). Bearing in mind the end-point

behaviour of P (y;β) we write

P (y;β) ≈
2P+1∑

p=0

αpwp(y/a), |y| < a, where wp(t) =
eiπp/2

(p+ 1)

√
1− t2 Up(t),

(4.12)
where Up(cos θ) = sin(p+1)θ/ sin θ are Chebychev polynomials of the second kind and αp



Wave energy absorption by a flap-type converter 11

are coefficients to be determined. The numerical scaling factors anticipate later algebraic
simplification.
Substituting (4.12) into (4.11), multiplying through by (−1/π)w∗

q (y/a) and integrating
over |y| < a (for q = 0, 1, . . . , 2P + 1), a process characteristic of the Galerkin method,
leads us to the following system of equations for the coefficients αp:

2P+1∑

p=0

αpKpq = Dq(ka sinβ), q = 0, 1, . . . , 2P + 1 (4.13)

where

Kpq =
1

2π2

∫ ∞

−∞

λ(l, k)

∫ a

−a

eilyw∗
q (y/a) dy

∫ a

−a

e−ily′

wp(y
′/a) dy′ dl

= 1
2

∫ ∞

−∞

D∗
p(ξ)Dq(ξ)

λ∗(ξ, ka)
dξ, (4.14)

after a change of variables (la = ξ, y/a = t, y′/a′ = t′), where we have defined

Dq(ξ) = −λ(ξ, ka) e−iπq/2

(q + 1)π

∫ 1

−1

eiξt(1− t2)1/2Uq(t) dt. (4.15)

Using Gradshteyn & Ryzhik (1981, §3.715 (13), (18)), for example, and properties of
Bessel functions, Jq, we arrive at the results

Dq(ξ) = −λ(ξ, ka)Jq+1(ξ)/ξ, ξ > 0, and Dq(0) =
1
2 ikaδq0. (4.16)

It follows, using the relation Jp(−ξ) = (−1)pJp(ξ), that Dq(−ξ) = (−1)qDq(ξ) and so

Kpq = 1
2

∫ ∞

−∞

λ(ξ, ka)

ξ2
Jp+1(ξ)Jq+1(ξ) dξ =

1
2 (1+(−1)p+q)

∫ ∞

0

λ(ξ, ka)

ξ2
Jp+1(ξ)Jq+1(ξ) dξ

(4.17)
whilst

Dq(ka sinβ) = i[sgn(β)]q cot |β|Jq+1(ka sin |β|), β 6= 0 (4.18)

with the case of β = 0 covered by (4.16). We note that, from (4.17),Kpq = 0 if p+q is odd.
This redundancy is typical of geometric configurations which possess lines of symmetry
(as we have here along y = 0) which have not been exploited in the formulation. That
is, we could have decomposed the scattering problem into components symmetric and
antisymmetric about y = 0 from the outset.
An integral result involving products of Bessel functions (Gradshteyn & Ryzhik 1981,

§6.538(2)) can be used to write

K2p+ν,2q+ν =
δpq

4q + 2 + 2ν
+ K̃2p+ν,2q+ν (4.19)

where

K̃2p+ν,2q+ν =

∫ ∞

0

(
λ(ξ, ka)

ξ2
− 1

ξ

)
J2p+1+ν(ξ)J2q+1+ν(ξ) dξ (4.20)

for ν = 0, 1, p, q = 0, 1, . . .. Thus (4.13) is finally reduced to the decoupled pair of systems
given by

α2q

4q + 2
+

P∑

p=0

α2pK̃2p,2q = D2q(ka sinβ), q = 0, 1, . . . , P (4.21)
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and

α2q+1

4q + 4
+

P∑

p=0

α2p+1K̃2p+1,2q+1 = D2q+1(ka sinβ), q = 0, 1, . . . , P. (4.22)

When β = 0, Dq(0) = 1
2 ikaδq0, and with the forcing now absent in (4.22), α2q+1 = 0

for q = 0, 1, . . .. This reflects the fact that normal incidence generates only a symmetric
response and the antisymmetric component of the solution is absent.
The pair of systems (4.21), (4.22) have certain desirable properties including being

symmetric and second-kind in structure. The integrals defining K̃pq in (4.20) can be
divided into separate parts from 0 < ξ < ka which are pure imaginary and from ka <
ξ <∞ which are real and in which the integrands decay like O((ka)2/ξ4).
The final part of the solution requires us to calculate FS(β) given by (3.10). Substi-

tuting (4.12) into (3.10) after using the fact that ψD is an odd function gives

FS(β) = −2iωρU0ha
2P+1∑

p=0

αp

∫ a

−a

wp(y/a) dy = −iωρU0haπα0 (4.23)

using (4.15), (4.16) so that the integral evaluates to 1
2πδp0.

We remark that the result (4.23) shows that, for the purposes of computing the ex-
citing moment on the flap, only the symmetric system (4.21) for even coefficients is
needed, although numerically one gets the system (4.22) for very little extra cost in the
computational scheme.

4.2. Radiation problem

This problem can be solved in a manner identical to the scattering problem previously.
Indeed, for n = 0, it is identical apart from the change to the boundary condition imposed
on the flap and it is easy to confirm that

φ0(x, y) = ψD(x, y; 0)/(−ik). (4.24)

For n > 1 we follow the method used from the scattering problem to derive the integral
equation for φn(0

+, y) on |y| < a as

1 =
∂φn
∂x

(0+, y) = − 1

2π

∫ ∞

−∞

γ(l, kn)e
ily

∫ a

−a

φn(0
+, y′)e−ily′

dy′ dl, |y| < a, (4.25)

the significant changes being the replacement of λ(l, k) by γ(l, kn) ≡
√
l2 + k2n and the

revised forcing term, whilst the potential in x > 0 is given by the integral representation

φn(x, y) =
1

2π

∫ ∞

−∞

e−γ(l,kn)xeily
∫ a

−a

φn(0
+, y′)e−ily′

dy′ dl. (4.26)

We again use the Galerkin method to approximate the solution of the integral equation
by following (4.13) and writing

φn(0
+, y) ≈ a

P∑

p=0

α
(n)
2p w2p(y/a) (4.27)

where wp(t) has been defined in (4.12) and α
(n)
2p are coefficients to be determined. Note

that we have anticipated, through the inclusion of the set of even Chebychev polynomials
only, that the uniform forcing on the flap in radiation will only generate solutions even
in y.
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Thus, following the approximation methods shown in the scattering problem, it is
eventually found that we have a single even system given by

α
(n)
2q

4q + 2
+

P∑

p=0

α
(n)
2p K̃

(n)
2p,2q = DR

2q, q = 0, 1, . . . , P (4.28)

where, due to the boundary condition (3.14) on the flap, it turns out that

DR
2q = −δq0

2
(4.29)

and where K̃
(0)
2p,2q = K̃2p,2q is already given in (4.20) whilst for n > 1,

K̂
(n)
2p,2q =

∫ ∞

0

(
γ(ξ, kna)

ξ2
− 1

ξ

)
J2p+1(ξ)J2q+1(ξ) dξ (4.30)

for p, q = 0, 1, . . .. The noticable change in the above is the replacement of λ(ξ, ka) by
γ(ξ, kna) which is as a result of the change of governing equation for φn when n > 1.

Note that (4.30) is both real and symmetric for n > 1 and so α
(n)
2p are real for n > 1.

On account of the relation (4.24) and the extra scaling factor of a in (4.27) we have

immediately that α
(0)
2p = α2p/(−ika) in terms of the solution to (4.21) for β = 0.

For fixed n, the integrand in (4.30) decays like O((kna)
2/ξ4) but kn ∼ nπ/h so the

integration range is increased for larger n and larger a/h. There may be some merit in
subtracting off the leading order oscillatory behaviour of the Bessel functions explicitly
although this is not explored here.
Finally, from (3.16) we have

FR = −iωρha2π
∞∑

n=0

U2
nα

(n)
0 . (4.31)

5. Embedding and other relations

Embedding has been used to connect far-field diffracted wave amplitudes by expressing
the solution for a wave incident from an angle β in terms of solutions for other indepen-
dent wave angles β1 and β2. See Linton & McIver (2001) for a survey of the embedding
literature.
Here it will be used to connect exciting moments for an arbitrary incident wave angle

β ∈ (− 1
2π,

1
2π) in terms of one incident angle β1.

First, we return to (4.9) and used the large-argument asymptotics of the Hankel func-
tion to deduce, after some algebra, that

ψD(x, y;β) ∼ i

2

(
2

πkr

)1/2

ei(kr−π/4)D(θ;β), as kr → ∞ (5.1)

where r = (x2 + y2)1/2 and tan θ = y/x and where

D(θ;β) = ik cos θ

∫ a

−a

P (y′;β)e−iky′ sin θ dy′ (5.2)

plays the role of the diffraction coefficient, measuring the amplitude of circular waves
travelling in the direction θ away from the fixed flap as a function of the incident wave
angle, β, on which P (y;β) depends. It is known that D(θ;β) = D(β; θ) and modifying
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previous work by Biggs (2006) we see that two embedding formulae are available:

(sin θ − sinβ)D(θ;β) =
2∑

j=1

Cj(sin θ − sinβj)D(θ;βj) (5.3)

and

P (y;β) =

2∑

j=1

Cj

[
P (y;βj)− ik(sinβj − sinβ)

∫ y

−a

P (y′;βj)e
−ik(y′−y) sin β dy′

]
(5.4)

where

C1 =
(sinβ2 − sinβ)D(β;β2)

(sinβ2 − sinβ1)D(β1;β2)
, C2 =

(sinβ1 − sinβ)D(β;β1)

(sinβ1 − sinβ2)D(β2;β1)
(5.5)

and β1, β2 are any two distinct angles in (−π/2, π/2). The dependence on two solutions
P (y;β1) and P (y;β2) can be reduced to dependence on just one by choosing β2 = −β1 6=
0 and noting that the symmetry of the flap about y = 0 implies that P (y;−β1) =
P (−y;β1).
By comparing the exciting force, given by (3.10) with (5.2) we see that

FS(β) = −2iωρU0hD(0;β)/(ik). (5.6)

Assuming solutions for incident wave angles β1 and β2 have been determined and that,
consequently, FS(β1) and FS(β2) are known then combining (5.3), (5.5) and (5.6) shows
that

FS(β) =
sinβ1(sinβ2 − sinβ)D(β;β2)FS(β1)− sinβ2(sin β1 − sinβ)D(β;β1)FS(β2)

sinβ(sinβ2 − sinβ1)D(β2;β1)
.

(5.7)
In fact choosing β2 = −β1 6= 0 and using symmetry to show that FS(−β1) = FS(β2)
whilst D(β;−β1) = D(−β;β1) means that (5.7) can be expressed more simply in terms
of one angle β1 as

FS(β) =
FS(β1)

2 sinβD(−β1;β1)
[(sinβ1 + sinβ)D(−β;β1)− (sinβ1 − sinβ)D(β;β1)] (5.8)

for β 6= 0. Thus, in order to calculate FS(β) for any angle, β of incidence, we calculate
the solution for a non-zero angle, β1 of incidence and calculate FS(β1) from (4.23), or
from (5.6) where

D(θ;β) = −π
2P+1∑

p=0

αpD
∗
p(ka sin θ) = iπ cot |θ|

2P+1∑

p=0

αp[sgn(θ)]
qJp+1(ka sin |θ|) (5.9)

if θ 6= 0 and D(0;β) = 1
2 iπkaα0 which follows after use of (4.16).

Some care is needed computing FS(0) in (5.8) and taking limits as β → 0 shows that

FS(0) =
FS(β1)

D(−β1;β1)
[
1
2 iπkaα0 − 1

8 iπ(ka)
2 sinβ1α1

]
. (5.10)

Use can be made of the particular relation in this problem between FS and the diffrac-
tion coefficient D in (5.6) combined with a result commonly referred to as the optical
theorem (see (Mei 1983, pp.323–325)) expressed using the current definitions as

∫ 2π

0

|D(θ; 0)|2 dθ = −4πIm{D(0; 0)}. (5.11)
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Then, using D(β; 0) = D(0;β) and (5.6) in (5.11) we get

∫ 2π

0

|FS(θ)|2 dθ = −4π

(
2ωρU0h

k

)2

Im{D(0; 0)} = 4π

(
2ωρU0h

k

)
Im{FS(0)}. (5.12)

This relation is important as it simplifies the calculation of the denominator of (2.36),
(2.37).
If DR(θ) is the far-field radiated wave amplitude associated with the n = 0 component

of the series defining φR in (3.12) defined by

φ0(x, y) ∼
i

2

(
2

πkr

)1/2

DR(θ)e
i(kr−π/4), as kr → ∞ (5.13)

then it follows from (4.24), (5.1) that DR is related to the diffraction coefficient in the
scattering problem by

DR(θ) =
D(θ; 0)

−ik
. (5.14)

This means, from (5.6), that

FS(β) = 2iωρU0hDR(β) (5.15)

which is a (scaled) version of the Haskind relation (see Mei (1983), for example) noting
that DR(β) = −DR(π±β) are implied by symmetries in the radiation problem, a general
result for arbitrary bodies connecting exciting forces to radiated wave amplitudes and
established by using φR and φS in Green’s second identity.
Note however that the connection in (5.14) seems rather more particular to this prob-

lem.

6. Results

The flap is of width 2b, and length 2a, extends from the pivot at z = −c to the free
surface and has a mean density of ρs. Then its mass Ms = 4ρsbca and its moment of
inertia in rotation about P is I = 1

3Ms(c
2 + b2). The constant of proportionality in the

buoyancy torque is given by C = 1
2Mw(1 − s)gc where the mass of water displaced by

the flap is given by Mw = 4ρbca, where ρ is the fluid density, and s = ρs/ρ =Ms/Mw is
the specific gravity of the flap.
We define the following dimensionless quantities

µ =
A

1
3Mwc2

, ν =
B

1
3Mwc2ω

, Λ̂ =
Λ

1
3Mwc2ω

(6.1)

so that

Ẑ =
Z

1
3Mwc2ω

≡ ν − i
(
s(1 + (b/c)2) + µ− 3

2 (1− s)/Kc
)

and

F̂S(β) = FS(β)/(4iρωU0ha) (6.2)

which non-dimensionalises the torque on the flap by the torque on a section of length
2a of normally-incident waves on an infinitely-long flap. Under the definition (6.2) and
according to (4.23), F̂S(β) = − 1

4πα0 which is independent of all geometrical parameters
associated with the flap and only depends on ka and β. In figure 2 we show the variation
of |F̂S(β)| with ka for β = 0◦, 15◦ , 30◦ and 60◦. These curves are generated either
directly by setting β to each angle in turn or by using the embedding result given in
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Figure 2. Modulus of the dimensionless exciting torque on a fixed plate against ka for
different angles of incidence (shown against curves).

(5.8) with β1 set to any non zero angle. We see from figure 2 that as ka → 0, or the
wavelength becomes large compared to the flap, the torque tends to zero, as expected.
On the other hand, as ka increases and the wavelength becomes small compared to the
flap, the torque due to normally incident waves (β = 0) tends to the torque for a section
of equivalent length from an infinitely-long flap, again as expected. As β → 90◦, the
force tends to zero, and there are signatures of interference from ‘end effects’ evident in
the curves of β = 15◦ and β = 30◦. The result (5.12) has been confirmed numerically
also by discretising the integral on the left-hand side and integrating numerically. The
dimensionless version of (5.12) is (2π/ka)Re{F̂S(0)} and consequently, the dimensionless

version of l̂max is |F̂S(β)|2/(2Re{F̂S(0)}).
The numerical method relies on various numerical truncation parameters. The infinite

integrals defining matrix entries in the numerical systems have been computed using
10-point Guass quadrature on a truncated integration range and with a discretisation
scheme based on the 2π-oscillation period of Bessel functions. Numerical experimentation
suggests that as few as n = 5 evanescent modes in the radiation problem and P = 6
modes in the Galerkin approximation are sufficient to achieve results which are accurate
enough for graphical purposes in all cases presented. Accurate results are very quick to
compute. Results have been computed independently using a collocation method applied
to a hypersingular integral equation formulation to verify their accuracy.
We next consider the variation of added inertia µ and radiation damping ν with ka

due to a flap in forced motion. As a means of verifying the results, we compare three-
dimensional results defined by (6.1) with (2.21) and (4.31) with the equivalent flap in a
two-dimensional setting. Thus, it is a simple matter to derive that the complex radiation
torque on a section of length 2a from an infinitely-long flap, non-dimensionalised by the
same factor used for the three-dimensional flap is

F̂R
2D =

FR
2D

1
3Mwc2ω

= iµ2D − ν2D =
3ih

c3b

∞∑

n=0

U2
n

kn
(6.3)

where Un is given by (3.9). The corresponding two-dimensional radiation potential, odd
in x, is given, for x > 0, by

φR2D(x, z) = −
∞∑

n=0

Un

kn
e−knxψn(z). (6.4)
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Figure 3. The variation of dimensionless added inertia µ (solid curve) and radiation damping
ν (dashed curve) with ka and their two-dimensional counterparts (dotted curves): (a) a/h = 1;
(b) a/h = 2.

We should expect that, for a long flap (a/h large) and for a high frequency (ka large) that
the three-dimensional added inertia and damping tend to the equivalent two-dimensional
results as the motion induced by the oscillating flap becomes more and more two-
dimensional. This is clearly illustrated in figure 3(a), (b). Here we have chosen s = 0.25,
b/h = 0.1, c/h = 0.8 and a/h = 1 in (a) and a/h = 2 in (b). The figures also illus-
trate typical behaviour namely, that radiation damping tends to zero in the low and
high frequency limit and that the added inertia has non-zero limits at zero and infinity
frequency.

Attention now turns to the energy absorping capacity of the flap-type converter whose
hydrodynamic ingredients are the complex exciting torques and added inertia and damp-
ing coefficients previously discussed. Interest focuses on the capture factor, l̂, defined by
(2.39) and being the capture width of the device, l, defined by (2.36), divided by the

length of the device, 2a. Also of interest are maximum and optimal capture factors, l̂max

and l̂opt defined by (2.37) and (2.38) divided by 2a.

For a long device we expect l̂max to tend to a half, as an infinitely-long device is two-
dimensional with a maximum efficiency of a half owing to the fore-aft symmetry of the
flap and its antisymmetric motion. For a short device l̂max will increase towards infinity
since a → 0 but the capture width l tends to the point absorber result of 2/k for surge

motion. So we expect to see l̂max → 1/ka as ka → 0. This behaviour is seen clearly in

figures 4(a)–(d) where l̂max is plotted alongside dotted curves of l̂ = 0.5 and l̂ = 1/(ka)
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Figure 4. Capture factors as a function of wave period T in seconds for a flap of various
lengths in water of depth 12m: (a) a/h = 2 (2a = 48m); (b) a/h = 1.5 (2a = 36m); (c) a/h = 1
(2a = 24m); (d) a/h = 0.5 (2a = 12m). In each case b/h = 0.1, c/h = 0.8 and s = 0.25, β = 0.

The chained curve represents l̂max and dotted curves are two-dimensional and point absorber

asymptotes. The dashed curve is l̂opt and the solid curves are particular simulations of l̂ for fixed

Λ̂: (a)–(c) Λ = 8; (d) Λ = 2.

and variations in the length of the flap affect how rapidly one limit is approached over
the same range of wave periods.
In figures 4(a)–(d) we have fixed certain parameters close to those that might represent

the Oyster, so s = 0.25, h = 12m, b/h = 0.1 (so the width is 2b = 2.4m) and c/h = 0.8
(hinged close to the sea-bed). For other parameters close to these the qualitative nature
of the results shown in 4(a)–(d) remains largely the same. Thus, the variation throughout
the sequence of four figures shows the effect of the length of the flap as it is varied from
48m in (a) to 12m in (d). Waves are normally-incident (β = 0) in all cases and it is
assumed that the range of periods of interest lie between 5 and 12 seconds. It can be
observed that l̂opt can be very close to l̂max over a broad range of periods (most notably
small periods) even though it is never resonant over those periods. Resonance periods
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Figure 5. Variation of: (a) Im{Ẑ}/ν and (b) |Ẑ| with period T in seconds for the four cases in
figure 4(a)–(d) (values of a/h shown against curves).

are indicated larger values of T where l̂opt = l̂max. As a/h is reduced the resonant period

is also reduced and can eventually be identified as the tall narrow peak in l̂opt in figure
4(d). These calculations seem to match those reported for the 18m long Oyster which has
a 20s period and the numerical modelling of Whittaker & Folley (2012) which suggest
capture factors over 0.7 and sea-spectrum averaged capture factors of around 0.5. For
longer flaps than a/h = 2.0, the results are dominated by two-dimensional effects and
capture factors are reduced to below 0.5 across the range of periods of interest. Likewise,
for shorter flaps, the narrow resonant peak becomes dominant at the expense of high
capture factors at periods outside the peak. Thus, a flap of intermediate length appears
to enjoy a broad-banded capture factor which is mainly greater than 0.5. The results
shown here suggest that the optimal length of flap might be close to 36m, but that figure
could be dependent on other parameters assigned to the flap.
There are three ingredients in the determination of the capture factor. The first is

decided by the geometry of the wave absorber being

|FS(β)|2∫ 2π

0 |FS(θ)|2 dθ
(6.5)

as this sets lmax and depends on scattering of waves by the fixed absorber. In order for
this to be as high has possible, one needs a highly directional force profile as a function
of wave angle. The flap offers this feature. The second factor is

2B
B + |Z| =

2

1 + (1 + (Im{Z}/B)2)1/2 (6.6)

which multiplies lmax to set lopt. This is the most important feature and depends on
hydrodynamic coefficients associated with radiation. The key to making lopt as close
to lmax is making the factor Im{Z}/B as small as possible over a range of periods.
Figure 3 illustrates two factors that makes this possible in the cases of a/h = 1 and
a/h = 2, where the range of values of ka of interest are from ka = 2 up to ka = 5.
Firstly, ν is much greater than µ and secondly, µ is decreasing with increasing ka (and
hence increasing ω). The second observation allows the A(ω) (along with the fixed I) to
balance (not exactly, but at least approximately) the effect of the restoring force −C/ω2.
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Figure 6. Variation of: (a) Im{Ẑ}/ν and (b) capture factors l̂max, l̂opt and l̂ with period T in

seconds for: s = 0.2, h = 12, c/h = 0.8, a/h = 0.75, b/h = 0.2, Λ̂ = 2.25.

These observations are shown graphically in figure 5(a) where the dimensionless quantity
Im{Ẑ}/ν ≡ Im{Z}/B is plotted against period for each of the four flap lengths in figure
4(a)–(d). To allow the vertical scale to be put into perspective, when |Im{Ẑ}/ν| > 2

√
2,

lopt <
1
2 lmax and |Im{Ẑ}/ν| < 1 means that lopt is more than 80% of lmax.

The final factor to play a part is

1− (Λ− |Z|)2
|Λ + Z|2 (6.7)

the only point at which the controllable power take off is introduced. Here, we are looking
for Λ to be close to |Z| over a broad range of periods. Thus in figure 5(b) we plot |Ẑ| for
the four cases in figure 4(a)–(d). There is substantial variation in all cases. However, in
the case of a/h = 1.5 corresponding to a flap length of 36m, there is a turning point in
|Ẑ| in the middle of the range of periods of interest, favouring the maximisation of (6.7)
over that range of periods.
Optimisation of the performance of the device involves finely tuning these three com-

ponents so that each is optimised in unison. But the explanation given above suggests
mathematical reasons as to why the flap-type wave energy converter works so well.
Figure 5(a) also indicates that there may be the possibility of generating multiple

resonances (periods when Im{Z} = 0) spanning the range of periods of interest and this
might be a route to optimising the power output of the flap. Without having performed a
sophisticated optimisation process, we present a case arrived at by hand which illustrates
such features. Thus we have chosen some parameters which might stretch the validity of
the model. They are: s = 0.2, c = 0.8, h = 12m, b/h = 0.2 and a/h = 0.75; the flap is
twice the width and more buoyant than in previous examples. Figure 6(a) presents the
variation of Im{Ẑ}/ν with period and shows there are 3 resonant periods, the crucial
difference being the rebalancing of the rotational inertia effects against hydrodynamic
effects. The corresponding capture factors (maximum, optimal and a simulation for Λ̂ =
2.25) are given in 6(b) illustrating that broad-banded capture factors over periods 5-10
seconds averaging roughly 0.8 are attainable. Whittaker & Folley (2012, figure 10), have
also suggested multiple resonances are possible and they considered a 50m flap, increasing
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Figure 7. Angles (in degrees) of excursion of the flap per metre height of incident wave
against period for the four cases in figure 4(a)–(d) and the ‘optimised’ flap in figure 6.

the flap-width to 5m. We have not been able to reproduce multiple resonances for such
a configuration using our thin-barrier hydrodynamic model.
The final part of the results needs to address the question of flap excursion. From

(2.25) we are able to calculate the maximum angle of rotation of the flap per unit height
of incident wave, equivalent to

∣∣∣∣
Ω

Hω

∣∣∣∣ =
1

h

3h3

8Kc3b

|F̂S(β)|
|Ẑ + Λ̂|

(6.8)

This is a dimensional quantity. For linear theory to retain validity, this quantity should be
as small as possible although it is probably acceptable for angles below 15◦. Figure 7 shows
the variation of this quantity for the four cases in figure 4(a)–(d) and the ‘optimised’ flap
of figure 5, and in each case |Ω/Hω| < 13◦.
A smaller device needs to move further to exploit this energy capture, and hence

there is a play-off between the potential for a higher capture factor and amplitudes of
motion/acheivable power absorption.
We have not shown results for power absorption from angles of wave incidence other

than normal incidence here; there is a reduction, as expected, in capture factor with
increasing wave obliqueness. A measured sea spectrum which includes a wave spread-
ing function could be used to determine actual power take off in a particular marine
environment and help optimise flap parameters.

7. Conclusions

In this paper, an analytical approach to calculations assessing the efficacy of a three-
dimensional flap-type wave energy converter model of the Oyster device have been made.
The conclusions of the results presented appear to align with those used by Whittaker
& Folley (2012) in the design process of the Oyster device. In particular, results suggest
that there is an optimal length of flap which is somewhere around 30m and close to
the 26m being proposed as part of the second-generation ‘Oyster 800’ project. A rough
estimate of the results produced here would suggest a mean capture factor of about 0.65
for a 26m device and if the total incident wave energy were estimated at about 24kW/m
then the mean power output would equate to approximately 400kW. Once compensation
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is made for non-linear effects and losses in power take off mechanisms, this would again
appear to be in line with recorded power outputs from Oyster.
Despite a lack of resonance within the range of energy-dense periods in the sea spec-

trum, the device exhibits near-resonance and hence broad-banded power absorption char-
acteristics especially at low to intermediate wave periods. This feature is attributed to
the large ratio between radiation damping and added inertia and it is supposed that
this is presumably because of the high wave making capacity of a long oscillating flap
which protrudes through the water surface. Suggestions, similar to those presented by
Whittaker & Folley (2012) for making the flap multi-resonant leading to a larger capture
factor of around 0.8 have been made.
The analytical treatment of this three-dimensional wave energy problem has produced

a novel semi-analytical approach to solving problems involving finite barriers excited by
incident waves or in motion. The numerical solution is simple to implement and fast and
accurate. A simple adaptation of this method could be applied to the classic problem of
wave scattering by an infinite thin breakwater with one, or a finite number, of gaps; see
Linton & McIver (2001), Biggs et al.Biggs et al. (2000).
The solution method, based on Fourier transforms, allows an extension to be considered

which considers the effects of a finite number of flaps in arbitrary parallel arrangements.
Here, the interest would lie in how to optimise the so-called q-factor which measures the
benefits of mutual wave interaction over isolated devices. More complicated extensions
could include adding non-zero thickness to the flap in the hydrodynamic model. Two
flaps placed back-to-back could improve wave energy absorption, as Srokosz & Evans
(1979) illustrated in two-dimensions where maximum efficiencies were raised from 50%
to 100%.
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