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Abstract4

A closely-spaced periodic array of identical thin rigid plates illuminated by incident waves is shown5

to act as a negative refraction metamaterial. The close-spacing assumption is used as a basis for6

an approximation in which the region occupied by the plate array acts as an effective medium.7

Effective matching conditions on the plate array boundary are also derived. The approximation8

allows explicit expressions to be derived to wave scattering problems involving titled plate arrays.9

This approximation is tested for its accuracy against an exact treatment of the problem based on10

Bloch-Floquet theory.11

Both the exact and effective medium theory predict perfect wave transmission at all wave

frequencies through the array when the tilt angle of plates in the array is the reverse of the inci-

dent wave direction: the array acts as an all-frequency perfectly-transmitting negative-refraction

medium. For certain frequencies the array is also shown to act as an all-angle perfectly-transmitting

negative-refraction material.

Keywords: Staggered plates; periodic array; homogenization; metamaterial; negative refraction.12

1. Introduction13

In this paper we consider the two-dimensional problem of the scattering of waves by a staggered14

infinite periodic array of thin parallel plates. The problem has a long history in acoustics with15

application to blade rows in turbomachinery. More recent papers in this application area often16

relate to circular duct geometries and include effects such as swirling flow in addition to basic mean17

flow; for example [1]. In earlier papers the simpler two-dimensional linear blade row was considered18

by [2], [3] and [4]. These three papers all consider periodic arrays of thin plates with stagger in the19

presence of mean flow (equations for the pressure field include a Mach number, M). The work of20

[3] and [4] employ the Wiener-Hopf method to derive solutions, extending earlier work of [5], [6]21

and [7] for arrays without stagger. They sought to improve upon the simple approximate method22

of [2] who matched solutions outside the array with a continuum model for the field inside the array23

based on infinitesimal separation between adjacent blades.24
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[2] highlighted that zeros of transmission at frequencies dependent on M could be found at25

incident angles opposed to the inclination of elements in array. In the three papers cited above26

involving stagger much of the focus of results concerns the influence of mean flow as this is pertinent27

to the application area. However, [2] also point out that without mean flow the transmitted and28

reflected wave amplitudes are symmetric with respect of the incident wave heading, regardless of29

stagger. This is certainly not an intuitive result. In this paper we confirm and extend this result30

with a different application area in mind.31

The last 20 years has seen a vast expansion of interest in the science of so-called metamaterials.32

These are manufactured materials having properties not usually found in nature. A metamaterial33

typically possesses a microstructure whose effect upon the macroscopic field variables allows it to34

exhibit complex and counter-intuitive phenomena. The design and realisation of metamaterials35

have provided researchers with a range of new problems that can be considered. One of the key36

demands of metamaterials in wave engineering problems such as invisibility cloaking or perfect37

lensing is the ability to be able to redirect the path of waves without reflection and with a negative38

refractive index. For example, see [8], [9], [10] and [11] for examples related closely to the current39

work.40

In this paper we bring together the ideas of closely-spaced plate arrays and metamaterials to41

illustrate two principal effects: (i) all-frequency perfectly-transmitting negative refraction based42

wave shifting; and (ii) all-angle perfectly-transmitting negative refraction wave shifting. We shall43

also illustrate trapping of waves by long finite-width staggered plate arrays.44

Two approaches are taken to the solving the staggered plate array problem. After defining45

the problem in §2 we focus in §3 on formulating an approximation to the solution based on a46

close-spacing assumption. This is, in essence, the approach adopted by [2]. The effect of the47

microstructure is captured by reducing (through a formal asymptotic procedure) the wave equation48

to allow wave motion only in directions aligned with plates in the array. This process might49

be referred to as homogenisation/continuum modelling or effective field theory depending on the50

context. With the addition of effective boundary conditions between the plate array and the exterior51

domain we derive explicit solutions to a variety of problems illustrating various interesting wave52

effects indicated in the paragraph above as well as considering edge waves trapped within the plate53

array and their excitation by point sources in the neighbourhood of the plate array.54

To confirm the validity of the approximation of §3, the problem of plane wave scattering,55

without approximation, by an infinite periodic array of thin staggered plates is considered in §4.56

Usual arguments, based on periodicity, are adopted to reduce the boundary-value problem to57
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one that lies within a fundamental periodic strip of the domain and the application of Fourier58

transforms lead to integral equations which can be solved accurately and efficiently using well-59

established approximation methods. An analysis of the structure of this solution shows that all60

of the key symmetry and transparency relations present in the approximation are shared by this61

exact treatment of the problem. This approach appears to be much simpler than the ones used by62

[3] and [4].63

Results are produced throughout the paper to demonstrate various aspects of the theory and64

the paper is concluded in §5.65

2. Description of the problem66

A periodic array is comprised of thin plates each of length 2L, separated from their neighbours67

by a perpendicular distance d, with centres lying along y = 0 and tilted at an angle δ to the positive68

y-axis (see Fig. 1). The array occupies the strip −b < y < b, −∞ < x < ∞ such that b = L cos δ69

and along the edges y = ±b the edges of adjacent plates are separated by a distance l = d/ cos δ.70

The overlap (or stagger) between two adjacent plates in the array is a = d tan δ.71

Reflected wave

Transmitted wave

Incident wave

a
d
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2L 2b
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Y

Figure 1: Definition sketch showing three thin plates within the periodic array.

The periodic array of plates is embedded in an infinite two-dimensional domain occupied by72

a homogeneous medium which supports wave propagation with phase speed c. Assuming time-73
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harmonic motion of angular frequency ω the function φ(x, y) describing the field within the medium74

satisfies the two-dimensional wave equation75

(

∂2

∂x2
+

∂2

∂y2
+ k2

)

φ = 0 (2.1)

where k = ω/c is the wavenumber. On both sides of each plate within the array φ satisfies a76

homogeneous Neumann boundary condition. Thus the problem can be interpreted in a number77

of different physical settings including low-Mach number linearised acoustics, linearised surface78

gravity waves on a fluid of constant depth and TM-polarised waves in electromagnetics.79

An incident plane wave making an angle θ0 with respect to the positive y-axis arrives from80

infinity in y < −b. It is described by the function81

φinc(x, y) = eiα0xeiβ0y (2.2)

where α0 = k sin θ0, β0 = k cos θ0 are wavenumber components in the x- and y-directions.82

Far away from the array of plates, φ is assumed to satisfy83

φ(x, y) ∼







φinc(x, y) +Reiα0xe−iβ0y, as y → −∞
T eiα0xeiβ0y, as y → ∞

(2.3)

where R and T are the reflection and transmission coefficients and are the principal unknowns84

in the problem. The form of (2.3) holds provided kd is sufficiently small (otherwise higher-order85

diffraction modes are cut on) and we assume this to be the case here.86

We also employ coordinates (X,Y ) perpendicular and parallel (respectively) to the plates,87

related to (x, y) by88




x

y



 =





cos δ sin δ

− sin δ cos δ









X

Y



 . (2.4)

Under this transformation (2.1) is replaced by89

(

∂2

∂X2
+

∂2

∂Y 2
+ k2

)

ψ = 0 (2.5)

for ψ(X,Y ) = φ(x, y) with boundary conditions on the plates are expressed as90

ψX(X±
n , Y ) = 0, for −L < Y −Xn tan δ < L, n ∈ Z (2.6)

where Xn = nd.91

3. Approximation for closely-spaced plates92

An approximation is developed under the assumption that the spacing between the plates is93

small in relation to the plate length: ǫ = d/L ≪ 1. It is also assumed that kL = O(1) which implies94
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that kd = O(ǫ) ≪ 1. This implies the wavelength is much larger than the perpendicular distance95

between adjacent plates.96

We start by considering the solution in |y| < b in the domain occupied by the plate array.97

Every point in this domain can be written as X = Xn + dX ′ and Y = Xn tan δ + LY ′ where98

X ′ ∈ (0, 1), −1 + ǫ tan δ < Y ′ < 1 and −∞ < n < ∞ and the corresponding solution is referenced99

as ψ(X,Y ) ≡ ψn(X
′, Y ′). Under this transformation, ψn(X

′, Y ′) satisfies, from (2.5),100

1

ǫ2
∂2ψn

∂X ′2
+

(

∂2

∂Y ′2
+ k2L2

)

ψn = 0 (3.1)

for 0 < X ′ < 1 in which ∂X′ψn = 0 on X ′ = 0, 1 from (2.6). The local solution is expanded powers101

of ǫ2 as102

ψn(X
′, Y ′) ≈ ψ(0)

n (X ′, Y ′) + ǫ2ψ(1)
n (X ′, Y ′) + . . . (3.2)

where ∂X′ψ
(m)
n = 0 on X ′ = 0, 1 for each m. At leading order ∂X′X′ψ

(0)
n = 0 for 0 < X ′ < 1 and103

along with the boundary conditions this gives us ψ
(0)
n ≡ ψ

(0)
n (Y ′).104

At next order (3.1) reads105

∂2ψ
(1)
n

∂X ′2
+

(

∂2

∂Y ′2
+ k2L2

)

ψ(0)
n = 0 (3.3)

for −1 + ǫ tan δ < Y ′ < 1, 0 < X ′ < 1. Integrating (3.3) over 0 < X ′ < 1 and using the boundary106

conditions at X ′ = 0, 1 results in107

(

∂2

∂Y ′2
+ k2L2

)

ψ(0)
n = 0 (3.4)

over |Y ′| < 1 (to leading order in ǫ) and so it follows that108

ψ(0)
n (Y ′) = Cne

ikLY ′

+Dne
−ikLY ′

(3.5)

for arbitrary coefficients Cn and Dn. The solution (3.5) is as we expect on physical grounds: at109

leading order the waves are confined to propagate along in each narrow channel and amplitudes in110

different channels are independent.111

3.1. Plane wave scattering112

The values of Cn and Dn in (3.5) are determined by matching the solution in each channel to113

the solution in the regions exterior to the plate array and we consider this now. Since the geometry114

is periodic in x with period l, general solutions in |y| > b can be determined using Bloch-Floquet115

theory which requires φ(x+ l, y) = eiα0lφ(x, y) and there is only a change in phase relating to the116
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incident wave in the solution from one period to the next (this is revisited in §4). Thus, the general117

solution in y < −b can be written118

φ(x, y) = eiα0x

(

eiβ0y +Re−iβ0y +

∞
∑

n=−∞
6=0

ane
γnye2πnix/l

)

(3.6)

where an are undetermined coefficients and γn =
√

(α0 + 2nπ/l)2 − k2. A similar expansion holds119

for y > b. Thus, terms contained in the infinite sum contribute to oscillations on the scale of120

the channel width, d = l cos δ, a scale not captured by approximation developed above. The first121

consequence of this is that the leading-order solution in y < −b is reduced from (3.6) to122

φ(x, y) ≈ eiα0x(eiβ0y +Re−iβ0y), (3.7)

coinciding everywhere with the far-field representation, (2.3). Similarly for y > b we approximate123

the solution by124

φ(x, y) ≈ T eiα0xeiβ0y. (3.8)

A second consequence is that the coefficients Cn and Dn introduced in (3.5) vary spatially with n,125

to leading order, over the lengthscale L and this justifies expressing the coefficients Cn ≡ C(Xn)126

and Dn ≡ D(Xn) as discrete evaluations of continuous functions. Under this assumption we can127

approximate the solution in the array (3.5) as128

ψ(X,Y ) = ψn(X
′, Y ′) ≈ C(X)eikY +D(X)e−ikY . (3.9)

Transforming this solution back into original (x, y) variables through the use of (2.4) gives129

φ(x, y) ≈ C(x cos δ − y sin δ)eik(x sin δ+y cos δ) +D(x cos δ − y sin δ)e−ik(x sin δ+y cos δ) (3.10)

within |y| < b. Matching the field variable, φ, across y = ±b over −∞ < x <∞ in (3.7), (3.8) with130

(3.10) allows us to infer that the functions introduced in (3.9) must take the form131

C(t) = C ′ei(α0−k sin δ)t/ cos δ, D(t) = D′ei(α0−k sin δ)t/ cos δ (3.11)

where C ′,D′ ∈ C are constants. Using the definitions (3.11) in (3.10) reduces that equation to132

φ(x, y) ≈
(

C ′eiky/ cos δ +D′e−iky/ cos δ
)

eiα0(x−y tan δ). (3.12)

Additionally, matching the field variable φ across y = −b and y = b gives, respectively,133

e−iβ0b +Reiβ0b = (C ′e−ikL +D′eikL)eiα0L sin δ (3.13)
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and134

T eiβ0b = (C ′eikL +D′e−ikL)e−iα0L sin δ. (3.14)

Fluxes must also be matched across boundaries between neighbouring domains. Equating flux135

within two adjacent plates, dψY , at Y = ±L to the flux, lφy, across the boundaries y = ±b between136

the edges of those plates into the exterior domain through small connecting right-angled triangles137

(see Fig. 1) with sides of length a, d and l gives138

β0(e
−iβ0b −Reiβ0b) = k cos δ(C ′e−ikL −D′eikL)eiα0L sin δ (3.15)

and139

β0T e
iβ0b = k cos δ(C ′eikL −D′e−ikL)e−iα0L sin δ. (3.16)

It is now simply a matter of eliminating between (3.13), (3.14), (3.15) and (3.16), a process which140

results in the following closed-form expressions for the reflection and transmission coefficients141

R =
(cos2 θ0 − cos2 δ) sin(2kL)e−2ikL cos θ0 cos δ

(cos2 θ0 + cos2 δ) sin(2kL) + 2i cos(2kL) cos θ0 cos δ
(3.17)

and142

T =
2i cos θ0 cos δe

−2ikL cos(θ0−δ)

(cos2 θ0 + cos2 δ) sin(2kL) + 2i cos(2kL) cos θ0 cos δ
, (3.18)

noting that b = L cos δ.143

Several things are worthy of note here. First, the conservation of energy relation, |R|2+|T |2 = 1,144

is easily verified from the expressions above. Next, various properties emerge from the relations145

(3.17), (3.18). Writing R ≡ R(θ0, δ, kL), T ≡ T (θ0, δ, kL) helps list those properties below.146

(i) Symmetry, meaning147

R(θ0, δ, kL) = R(−θ0, δ, kL), and R(θ0, δ, kL) = R(θ0,−δ, kL) (3.19)

with the same relations applying to |T |.148

(ii) Transparency, meaning that: (a)149

R(θ0,±θ0, kL) = 0,







T (θ0, θ0, kL) = 1,

|T (θ0,−θ0, kL)| = 1;
(3.20)

and (b)150

R(θ0, δ, nπ/2) = 0, (3.21)

with |T | = 1 at kL = nπ/2.151
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(iii) Reciprocity in angles, meaning152

R(θ0, δ, kL) = −R(δ, θ0, kL), T (θ0, δ, kL) = T (δ, θ0, kL). (3.22)

(iv) Wavenumber periodicity, meaning153

|R(θ0, θ0, kL+ nπ/2)| = |R(θ0, θ0, kL)| (3.23)

and154

|R(θ0, θ0, π/2− kL)| = |R(θ0, θ0, kL)| (3.24)

with the same relations applying to |T |.155

Amongst these results, most remarkable is the result (ii)(a) which states that total transmission156

occurs for all wavenumbers when θ0 = −δ and the angle of plates in the array is the reverse of the157

incident wave direction. An illustration of this result is given in Fig. 2 which shows the instantaneous158

wave field for a wave propagating at θ0 = 45◦ across an array of dimensionless width 2 tilted at159

δ = −45◦. In the left-hand and right-hand panels, kb = 1 and kb = 2. Incoming waves are perfectly160

impedance matched at the boundary of the array and wave fronts are transmitted through the161

plate array in the reverse orientation before continuing in their original direction as they emerge162

at the far boundary of the array. Later figures in the paper help with this interpretation.163
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Figure 2: The instantaneous wave field for incident waves propagating at θ0 = 45◦ into an array of plates tilted at

δ = −45◦ for kb = 1 (left) and kb = 2 (right).

Fig. 3 shows the modulus of the reflection coefficient as a function of incident wave angles164

θ0 ∈ [0◦, 90◦) for different array inclinations, δ, each for a fixed value of kb = 2. The results are165

symmetric in θ0 (property (i) above) and we observe the vanishing of R when θ0 = δ (which must166

occur on physical grounds) and that |R| → 1 as θ0 approaches the grazing angle.167
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Figure 3: The variation of |R| with θ0 for δ = 0◦, 15◦, 30◦, 45◦, 60◦, 75◦ when kb = 2.

3.2. Gaussian wavepacket168

In Fig. 4 we provide an alternative illustration of the same features described in Fig. 2 by169

showing the evolution of a dispersive Gaussian wavepacket defined at t = 0 in the left-hand plot170

and evolving to the surface shown in the right-hand plot at t = 6s later. The wave field in Fig. 4171

is defined to be the real part of172

b√
4σ

∫ ∞

−∞
φ(x, y; k)e−(kb−k0b)2/(4σ) e−iωt dk (3.25)

where the linear water wave dispersion relation ω =
√
gk tanh kh has been used with g = 9.81ms−2

173

and h the water depth. Here, φ(x, y; k) is the solution of §3.1, the dependence upon the wavenumber174

k having been made explicit. For the computation of Fig. 4 we have taken k0b = π, h = 0.1m,175

g = 9.81ms−2, b = 0.1m, σ = 0.2 and all frequency components are propagating at θ0 = 45◦. The176

integral in (3.25) is approximated by the rectangle rule and truncation of limits. Fig. 4 reinforces177

the perfect transmission of all frequency components of dispersive surface waves on water through178

a plate array tilted against the incident wave direction.179

We have established that the plate array acts as a perfectly-transmitting negative refraction180

medium and the finite width of the array provides us with a ‘metamaterial wave shifter’ of the type181

described by [11]. An example of the potential application of such a device is shown in the sketch182

in Fig. 5 in which two parallel waveguides, offset laterally and connected by a junction, contains183

a closely-spaced array of plates oriented at the reverse angle to the waveguide walls. Ignoring any184

local effects caused in practice by the finite separation of the plates in the array, plane waves of all185

frequencies will propagate without reflection through the junction. Note however that wave signals186
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Figure 4: The instantaneous surface wave amplitude for a θ0 = 45◦ directed Gaussian wave packet defined in (a) at

t = 0 and evolving to (b) at t = 6s for an array of plates tilted at δ = −45◦ in water of constant depth.

will not be perfectly reconstructed beyond the junction since the phase shift in the transmission187

coefficient is frequency dependent.188

Figure 5: A schematic of an all-wavenumber perfectly-transmitting waveguide junction.

3.3. Gaussian beam189

The result listed (ii)(b) in §3.1 is the well-known resonance effect due coherent interference of190

waves propagating between the two ends of the narrow channels in the array. In contrast to the191

first listed result (ii)(a) this phenomenon is independent of incident wave direction, θ0, and array192

inclination, δ. Thus the titled plate array can act as an all-angle perfectly-transmitting negative-193

refraction metamaterial waveshifter at specific frequencies. It also provides us with better way of194

visualising the negative refraction property of the plate array by illuminating it with a Gaussian195

beam. A Gaussian beam field can be constructed by weighting plane wave solutions over a range196
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of incident wave angles (see, for e.g. [11, §3]) according to197

φb(x, y) =
√
4π

∫ θb+∆θb

θb−∆θb

cos(θb − θ0)e
−4π2 sin2(θb−θ0)φ(x, y; θ0) dθ0 (3.26)

where φ(x, y; θ0) refers to the plane wave solution of §3.1 under an incident angle θ0. The principal198

direction of the beam is given by θb and ∆θb provides a numerical cut-off to the Gaussian envelope199

chosen, for simplicity, so that only real scattering angles are selected in the integration. Again,200

this is computed using the rectangle rule. A snapshot of the wave amplitude of the time-harmonic201

solution provided by ℜ{φb(x, y)} is shown in Fig. 6 for θb = 45◦ and δ = −45◦ and the wavenumber202

kL = 9π/2 satisfies the criterion for total transmission.203
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Figure 6: Perfect transmission of a Gaussian beam incidence at 45◦ on a staggered array δ = −45◦ at kL = 9π/2.

3.4. Edge waves204

In this section we consider the existence of localised wave modes capable of propagating along205

the plate array whilst decaying away from the array. Such waves are commonly referred to as206

trapped waves, guided waves or edge waves depending upon the physical context. Although they207

cannot be excited by plane incident waves considered in §3.1 the importance of such solutions is208

highlighted in the next section where we will show that they are excited by a wave source in the209

vicinity of the effective medium; a related problem in electromagnetic theory can be found in [12].210

The solution in |y| < b is still described by (3.10) but instead of incident, reflected and trans-211

mitted waves in |y| > b the general solution in y < −b is replaced by212

φe(x, y) = Ae±iαexeγe(y+b) (3.27)

and in y > b,213

φe(x, y) = Be±iαexe−γe(y−b) (3.28)
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where A and B are to be determined and αe > k while γe =
√

α2
e − k2. In the scattering problem214

of §3.1 α0 = k sin θ0 < k in modulus was used in place of αe and the choice αe > k forces the wave215

field to decay away from the array. This alone is insufficient to establish the existence of localised216

waves as these general expressions need to be matched to the general expression for the wave field217

in |y| < b.218

There is no difference to the matching procedure used in §3.1 and matching φ(x,−b) from inside219

and outside the plate array using (3.10) and (3.27) gives220

C ′e±iαeb tan δe−ikb/ cos δ +D′e±iαeb tan δeikb/ cos δ = A (3.29)

where C ′ and D′ are related to the functions C and D via (3.11) with ±αe replacing α0. This221

simplifies to222

C ′e−ikb/ cos δ +D′eikb/ cos δ = A′ (3.30)

after use of the abbreviation A = A′e±iαeb tan δ. Matching fluxes across y = −b provides a second223

relation between the coefficients C ′, D′ and A′ of224

ik cos δ(C ′e−ikb/ cos δ −D′eikb/ cos δ) = γeA
′. (3.31)

Following the same process of matching φ and the fluxes across y = b readily gives two further225

relations, namely226

C ′eikb/ cos δ +D′e−ikb/ cos δ = B′ (3.32)

where B = B′e∓ciαeb tan δ and227

ik cos δ(C ′eikb/ cos δ −D′e−ikb/ cos δ) = −γeB′. (3.33)

Using L = b/ cos δ and eliminating A′ and B′ from (3.30), (3.31) and (3.32), (3.32) results in the228

system229




(γe − ik cos δ)e−ikL (γe + ik cos δ)eikL

(γe + ik cos δ)eikL (γe − ik cos δ)e−ikL









C ′

D′



 = 0 (3.34)

and it follows that non-trivial solutions correspond to the vanishing of the determinant which can230

be written as the condition231

(γ2e − k2 cos2 δ) sin(2kL) + 2γek cos δ cos(2kL) = 0. (3.35)

This equation is quadratic in γe and solutions given by either γe = k cos δ tan(kL) or γe =232

−k cos δ cot(kL). Since cos δ > 0 and we require γe > 0 for decay at infinity, values of kL such that233

tan(kL) is positive give edge waves defined by234

αe = k(1 + cos2 δ tan2(kL))1/2 (3.36)
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and in complementary intervals − cot(kL) is positive whence235

αe = k(1 + cos2 δ cot2(kL))1/2. (3.37)

We finish this section with a discussion of the special case δ = 0 since the edge wave solutions

derived here can be compared to the results of [13]. They considered the problem of edge waves

along a periodic array of thin plates without stagger but made no assumption on the spacing

between neighbouring plates. Their expression (eqn. (2.49) in [13]) for edge waves having a plane

of symmetry along y = 0 expressed in the current notation is

kL = (n+ 1
2)π + (kd/π) ln 2− sin−1(k/αe)

−
∞
∑

m=1

[

sin−1

(

k

αe + 2mπ/d

)

+ sin−1

(

k

αe + 2mπ/d

)

− sin−1

(

kd

mπ

)]

(3.38)

(n ∈ Z) and was derived using a powerful Modified Residue Calculus method. In the limit d/L → 0236

with kL = O(1) (3.38) reduces to237

αe = k(−1)n/ cos(kL) (3.39)

coinciding with our condition (3.36) for δ = 0. The ambiguity in the sign of αe is reflected in the238

opening assumption (3.27). These represent guided modes which are symmetric about y = 0. For239

modes antisymmetric about y = 0, the result of [13] only requires (n + 1
2)π to be replaced by nπ240

in (3.38) and it follows that (3.39) is replaced by αe = k(−1)n/ sin(kL) which coincides with our241

condition (3.37) when δ = 0.242

3.5. Diffraction from a source243

We can use the description of the plate array under effective medium theory developed in §3.1244

to solve more general wave diffraction problems. The canonical problem is radiation from a wave245

source placed outside the plate array. We replace the incident plane wave field of §3.1 by a a246

two-dimensional outgoing wave source at (x, y) = (0,−c) where c > b which is given by247

φinc(x, y) = H
(1)
0 (k

√

x2 + (y + c)2) =
1

π

∫ ∞

−∞

eiαxeiβ|y+c|

β
dα, (3.40)

using the standard Fourier transform representation of the Hankel function H
(1)
0 . In the above248

β =
√
k2 − α2 = iγ ≡ i

√
α2 − k2, the former appropriate for |α| ≤ k, the latter for |α| ≥ k. For249

y > −c, (3.41) is250

φinc(x, y) =
1

π

∫ ∞

−∞

eiβc

β
eiαxeiβydα (3.41)

which is a weighted integral over plane incident waves with wavenumber components α and β in251

the x and y directions. Thus, we can infer the total field in y < −b to be the sum of the source252
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and same weighted integral over plane waves reflected from the effective medium occupying |y| < b253

and written as254

φs(x, y) = φinc(x, y) +
1

π

∫ ∞

−∞

eiβc

β
R(sin−1(α/k), δ, kL)eiαxe−iβydα (3.42)

whilst in y > b the field is written255

φs(x, y) =
1

π

∫ ∞

−∞

eiβc

β
T (sin−1(α/k), δ, kL)eiαxeiβydα (3.43)

where R and T represent the reflection and transmission coefficients defined in (3.17) and (3.18).256

Note that, in the notation of §3, α represents the value k sin θ0 and so cos θ0 thus equates to β/k.257

This equality extends to non-real scattering angles (that is when |α| > k) when cos θ0 equates to258

iγ/k.259

For example, in y < −b (3.42) explicitly reads260

φs(x, y) = φinc(x, y) +
1

π

∫ ∞

−∞

eiβc

β

(β2 − k2 cos2 δ) sin(2kL)e−2iβL cos δ

(β2 + k2 cos2 δ) sin(2kL) + 2iβk cos(2kL) cos δ
eiαxe−iβy dα.

(3.44)

Careful consideration of the integrand for values of |α| > k, when we replace β = iγ (γ real),261

reveals that there are poles in the integrand for real values of α = ±αe satisfying (3.36) or (3.37)262

where γ = γe = k cos δ tan(kL) or −k cos δ cot(kL) (respectively) and (3.35) is satisfied. Therefore263

the integral in (3.44) originating from the inverse Fourier integral in the definition (3.40) must264

be deformed from the real α-axis to avoid these poles. Physically, the energy from a wave source265

crossing a straight boundary consists of an appropriately-weighted spectrum of plane waves over266

all real and non-real scattering angles and some this energy may feed into the edge waves predicted267

by §3.4 and supported by the effective medium.268

The sense in which the deformation around the poles is made must ensure those edge waves

propagate energy away from the source. The definitions of (3.36) or (3.37) ensure that dαe/dk > 0

and this implies the contour should be deformed under/over at α = ±αe respectively. We can

shrink this deformation onto the real α-axis, thereby evaluating the contribution from vanishly-

small semi-circular indentations around the poles to give

φs(x, y) = φinc(x, y) +
2

π

∫ π/2

0

(cos2 θ − cos2 δ) sin(2kL)eik(c−y−2b) cos θ cos(kx sin θ)

(cos2 θ + cos2 δ) sin(2kL) + 2i cos θ cos δ cos(2kL)
dθ

−2i

π

∫ ∞

0
− (sinh2 v + cos2 δ) sin(2kL)e−k(c−y−2b) sinh v cos(kx cosh v)

(sinh2 v − cos2 δ) sin(2kL) + 2 sinh v cos δ cos(2kL)
dv

+tanh vee
−k(c−y−2b) sinh veeik|x| cosh ve) (3.45)

where the semi-infinite integral is of Cauchy principal-value type and αe = cosh ve, γe = sinh ve is269

as a result of a change of integration variable.270
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An analogous decomposition of the field in y > b can be made to find that (3.43) can be

expressed as

φs(x, y) =
4i

π

∫ π/2

0

cos θ cos δ eik(c+y−2b) cos θ cos{k(x− 2b tan δ) sin θ}
(cos2 θ + cos2 δ) sin(2kL) + 2i cos θ cos δ cos(2kL)

dθ

−4i

π

∫ ∞

0
− sinh v cos δ e−k(c+y−2b) sinh v cos{k(x− 2b tan δ) cosh v}

(sinh2 v − cos2 δ) sin(2kL) + 2 sinh v cos δ cos(2kL)
dv

+tanh vee
−k(c+y−2b) sinh veeik|x−2b tan δ| cosh ve . (3.46)

The field within the plate array can be similarly represented using the information in §3.1 to define

φ(x, y) in |y| < b. For completeness, we provide the result of this algebraically complex calculation

here as

φs(x, y) =
2i

π

∫ π/2

0

cos θ eik(c−b) cos θ cos{k(x− (y + b) tan δ) sin θ}
(cos2 θ + cos2 δ) sin(2kL) + 2i cos θ cos δ cos(2kL)

M(θ, y) dθ

−2i

π

∫ ∞

0
− sinh v cos δ e−k(c−b) sinh v cos{k(x− (y + b) tan δ) cosh v}

(sinh2 v − cos2 δ) sin(2kL) + 2 sinh v cos δ cos(2kL)
N(v, y) dv

+1
2 tanh vee

−k(c−b) sinh veeik|x−(y+b) tan δ| cosh veN(ve, y). (3.47)

for |y| < b, where271

M(θ, y) = (1 + cos θ/ cos δ)e−ik(b−y)/ cos δ + (1− cos θ/ cos δ)eik(b−y)/ cos δ

and272

N(v, y) = (1 + i sinh v/ cos δ)e−ik(b−y)/ cos δ + (1− i sinh v/ cos δ)eik(b−y)/ cos δ.

As in the Gaussian beam problem of §3.4, when a point source is excited at a frequency which273

coincides with all-angle perfect transmission of the plate array (i.e. sin(2kL) = 0) the only effect of274

the array will be to shift the position of the source on the far side of the array by the amount 2b tan δ.275

For example in (3.45) the solution when sin(2kL) = 0 in y < −b is just φinc, the source, with no276

reflection from the plate array. An example of perfect transmission is illustrated in Fig. 7(a) where277

kL = 4π is used for a δ = 60◦ plate array. In contrast, Fig. 7(b) uses kL = 5/ cos(π/6) ≈ 5.77 a value278

of no special significance for a δ = 30◦ array and now there is partial reflection and transmission279

by the array whilst some of energy from the source is transported to infinity along the array itself280

in the form of edge waves which appear as the repeating oscillations confined to the plate array.281

4. Exact treatment of the scattering problem282

In this section we set about solving the problem of plane wave scattering by a periodic array of283

titled plates without making a close-spacing approximation.284
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Figure 7: The instantaneous surface wave amplitudes for: (a) a δ = 60◦ plate array with a wave source at c/b = 1.3

with kL = 4π; and (b) δ = 30◦, c/b = 1.1 with kL = 5.77.

On account of the periodicity of the geometry and the form of the incident wave it must be that285

φ(x+ l, y) = eiα0lφ(x, y). (4.1)

The idea is to exploit the periodicity and to solve the problem in a single fundamental strip, aligned286

with the array, allowing the solution outside this strip to be determined by (4.1). Thus, we are287

required to consider the problem in rotated (X,Y ) coordinates as defined by (2.4).288

First, from (2.2) we write φinc(x, y) ≡ ψinc(X,Y ) = eiA
+

0
XeiB

+

0
Y where A±

0 = k sin(θ0 ∓ δ) and289

B±
0 = k cos(θ0 ∓ δ). Likewise, φ(x, y) ≡ ψ(X,Y ), and periodicity, (4.1), under the transformed290

coordinates implies291

ψ(X + d, Y + a) = eiα0lψ(X,Y ) ≡ eiA
+

0
deiB

+

0
aψ(X,Y ) (4.2)

where we note that α0l = A+
0 d + B+

0 a = A−
0 d − B−

0 a. Far away from the grating the conditions292

(2.3) are transformed into293

ψ(X,Y ) ∼







eiA
+

0
XeiB

+

0
Y +ReiA

−
0
Xe−iB−

0
Y , as Y → −∞,

T eiA
+

0
XeiB

+

0
Y , as Y → ∞.

(4.3)

The periodicity allows us to restrict attention to a single strip 0 < X < d and −∞ < Y < ∞. It294

follows that within this strip295

ψX(0+, Y )− e−iα0lψX(d−, Y + a) = 0 (4.4)

for all Y since ψX = 0 on both sides of the plates. Additionally we have296

ψ(0+, Y )− e−iα0lψ(d−, Y + a) =







p(Y ), |Y | < L,

0, |Y | > L
(4.5)
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since ψ is continous across the boundaries X = 0 and X = d when |Y | > L but not otherwise. In297

(4.5) p(Y ) represents the jump in ψ across the plate centred at the origin.298

We define Fourier transforms in Y , writing299

Ψ(X,β) =

∫ ∞

−∞
(ψ(X,Y )− ψinc(X,Y ))e−iβY dY. (4.6)

Taking transforms of the wave equation gives solutions in 0 < X < d of300

Ψ(X,β) = C(β) cosh γX +D(β) cosh γ(X − d) (4.7)

where γ =
√

β2 − k2 = −i
√

k2 − β2. This general solution must satisfy the two transformed301

conditions (4.4) and (4.5) namely302

ΨX(0, β) − e−iα0leiβaΨX(d, β) = 0 (4.8)

and303

Ψ(0, β) − e−iα0leiβaΨ(d, β) = P (β) (4.9)

where304

P (β) =

∫ L

−L
p(Y )e−iβY dY (4.10)

acts as a proxy in for p(Y ) in what follows. Applying (4.8) and (4.9) to (4.7) to determine the305

Fourier coefficients C and D in terms of P results in306

Ψ(X,β) = P (β)
(ei(α0 l−βa) cosh γX − cosh γ(X − d))

2(cos(α0l − βa)− cosh γd)
(4.11)

and so, by the inverse transform,307

ψ(X,Y ) = ψinc(X,Y ) +

∫ ∞

−∞

P (β)(ei(α0 l−βa) cosh γX − cosh γ(X − d))eiβY

4π(cos(α0l − βa)− cosh γd)
dβ (4.12)

which is a representation for the function ψ(X,Y ) everywhere in the strip 0 < X < d in terms of308

the unknown p(Y ).309

There are poles in the integrand at real values of β < k satisfying310

iγ =
√

k2 − β2 = (α0l − βa+ nπ)/d, (4.13)

where n is an integer and the inverse contour in (4.12) must be defined appropriately to avoid these311

poles.312

Provided kd is small enough (as is assumed the case here), the only solutions (4.13) occur when313

n = 0 and when β = ±B±
0 with corresponding values of γ = −iA±

0 . That is, there are two poles on314

the line of integration in the inverse transform representation of the solution in (4.12) at β = ±B±
0315
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and the contour of integration is chosen to pass above the pole at β = −B−
0 and below the pole316

at β = B+
0 . This choice is made to fulfil the radiation conditions as Y → ±∞ as stated in (4.3).317

Note that both −B−
0 and B+

0 can be either positive or negative depending on θ0 and δ although318

−B−
0 < B+

0 .319

Thus, as Y → ±∞ we can deform the contour into the upper (lower) half β-plane and pick up320

the residue at β = ±B±
0 to give321

ψ(X,Y ) ∼ ψinc(X,Y ) +
A±

0 P (±B±
0 )

2kl cos θ0
eiA

±
0
Xe±iB±

0
Y (4.14)

as Y → ±∞ and so it follows, by comparison with (4.3), that322

T = 1 +
A+

0 P (B
+
0 )

2kl cos θ0
, R =

A−
0 P (−B−

0 )

2kl cos θ0
. (4.15)

To determine the function p(Y ) we impose on (4.12) the condition ∂Xψ(0
+, Y ) = 0 for |Y | < L to323

obtain the integral equation324

4πiA+
0 e

iB+

0
Y =

∫ ∞

−∞
(E(β) + |β|)eiβY

∫ L

−L
p(Y ′)e−iβY ′

dY ′ dβ, |Y | < L (4.16)

in which325

E(β) =
γ sinh γd

cosh γd− cos(α0l − βa)
− |β| (4.17)

and E(β) ∼ −1
2k

2/|β| as |β| → ±∞.326

4.1. Numerical solution327

In order to solve (4.16) numerically we first expand the unknown p(Y ) in a truncated finite328

series as follows:329

p(Y ) ≈ 4πiA+
0 L

N
∑

n=0

anwn(Y/L), |Y | < L (4.18)

where330

wn(t) =
eiπn/2

(n+ 1)

√

1− t2Un(t) (4.19)

and Un(cos θ) = sin(n + 1)θ/ sin θ is a second-kind Chebychev polynomial. This choice explicitly331

accounts for the anticipated square-root behaviour in the function p(Y ) as |Y | → L and provides332

the maximum simplification in the expressions that result. In particular we note the following333

results334

Wn(ξ) =

∫ 1

−1
wn(t)e

−iξtdt =







Jn+1(ξ)/ξ, ξ 6= 0

1
2δn0, ξ = 0

(4.20)

and335

∫ ∞

−∞

Jn+1(ξ)Jm+1(ξ)

|ξ| dξ =
δmn

n+ 1
(4.21)
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([15, §6.538(2)])336

Substituting (4.18) into (4.16), multiplying through by w∗
m(Y/L) for m = 0, . . . , N and inte-337

grating over −L < Y < L results in the linear system of equations338

am
m+ 1

+
N
∑

n=0

anKmn =Wm(B+
0 L) (4.22)

where339

Kmn =

∫ ∞

−∞

LE(t/L)

t2
Jn+1(t)Jm+1(t)dt. (4.23)

The integrals defining Kmn decay like O(1/t4) as |t| → ∞ and are approximated by truncating

at t = ±100. They must be calculated by evaluating the contributions from the poles at t = ±β±0 L
and leaving principal-value integrals behind. Specifically, this gives

Kmn =

∫ ∞

−∞
− LE(t/L)

t2
Jn+1(t)Jm+1(t)dt (4.24)

− πi

kl cos θ0
{A+

0
2
Wn(B

+
0 L)Wm(B+

0 L) +A−
0
2
Wn(−B−

0 L)Wm(−B−
0 L)}. (4.25)

Once solutions of (4.22) are calculated, R and T can be approximated by using (4.18) in (4.15)340

which leads to341

T ≈ 1 +
2πikL2 sin2(θ0 − δ)

l cos θ0

N
∑

m=0

amWm(B+
0 L) (4.26)

and342

R ≈ 2πikL2 sin(θ0 − δ) sin(θ0 + δ0)

l cos θ0

N
∑

m=0

amWm(−B−
0 L) (4.27)

after use of the definition of A±
0 .343

It is evident that R = 0 and T = 1 when θ0 = δ, as required. Also clear is R = 0 when θ0 = −δ.344

What is not evident from the results derived above is how solutions for an incident angle −θ0 are345

related to those for θ0.346

4.2. A scattering matrix formulation347

In order to address the various properties that R and T possess, but which are not evident348

in the form expressed in (4.26), (4.27), it helps to adopt a more general but also slightly more349

complicated approach to solving the problem in which waves are allowed to be incident, with350

arbitrary amplitudes A± (say) from y = ±∞ respectively and give rise to outgoing waves of351

amplitudes B± as y → ∓∞. The same general methodology can be applied in this case and352

leads to the development of a scattering matrix, S which connects the incoming and outgoing wave353

amplitudes by354




B−

B+



 = S





A−

A+



 (4.28)
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where355

S =





T− R+

R− T+



 (4.29)

in which R±, T± denote reflected and transmitted wave amplitudes due to incident waves from356

y = ±∞ respectively. In the previous sections R and T have been used for an incoming wave from357

y = −∞ and so R− ≡ R and T− ≡ T . The details of how this more general approach applies to358

the solution are ommitted (but see [14] to see the method applied to a similar problem) and it can359

be shown that360

S = (I− iµAPA)−1(I+ iµAPA) (4.30)

where µ = π/(kl cos θ0), I is the 2× 2 identity matrix,361

A =





A+
0 0

0 A−
0



 and P =





P+(B+
0 ) P−(B+

0 )

P+(−B−
0 ) P−(−B−

0 )



 . (4.31)

Here, P±(β) satisfy362

∫ ∞

−∞
− P±(β)eiβY (E(β) + |β|)dβ = e±iB±

0
Y , |Y | < L (4.32)

which is a modified version of (4.15) in which the integral is of Cauchy principal-value type.363

Useful properties of the solution can be inferred from these two integral equations. First, by364

taking the complex conjugate of (4.32) and then replacing Y by −Y we find that the complex365

conjugate P±(β) satisfy the same equation as P±(β) and hence P±(β) are real.366

Next, if we multiply (4.32) respectively by the two surrogate functions p±(Y ) and integrate over367

|Y | < L we find that368

P−(B+
0 ) =

∫ ∞

−∞
− P+(β)P−(β)(E(β) + |β|)dβ = P+(−B−

0 ) (4.33)

after using the realness of P±.369

Also, we may take complex conjugates of (4.32), make the substitution β → −β in the integral370

and simultaneously switch δ → −δ (using relations E(−β;−δ) = E(β; δ) and B±
0 (−δ) = B∓

0 (δ)) to371

get372

∫ ∞

−∞
− P±(−β)eiβY (E(β) + |β|)dβ = e∓iB∓

0
Y , |Y | < L (4.34)

and it therefore follows that P±(−β) = P∓(β). Thus, we infer that only one solution P+(β), say,373

is required and the other follows from it. In particular, we conclude that374

P =





P+(B+
0 ) P+(−B+

0 )

P+(−B−
0 ) P+(B−

0 )



 , (4.35)
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expressed entirely in terms of P+ and is real and symmetric. It follows from (4.30) that SS = I375

which can be used to prove various identities satisfied by R± and T±. However, as these do not376

include conservation of energy it turns out to be a distraction. Thus it is more straightforward to377

make a direct computation of the reflection and transmission coefficients from (4.30) as378

R+ = R− =
2iµA+

0 A
−
0 P12

(1− iµA+
0
2
P11)(1− iµA−

0
2
P22) + µ2A−

0
2
A+

0
2
P2
12

(4.36)

and379

T± =
(1∓ iµA+

0
2
P11)(1± iµA−

0
2
P22)− µ2A−

0
2
A+

0
2
P2
12

(1− iµA+
0
2
P11)(1− iµA−

0
2
P22) + µ2A−

0
2
A+

0
2
P2
12

(4.37)

implying that |T−| = |T+|. With more work, not shown here, the conservation of energy relations380

can be shown to be satisfied exactly.381

We can now readily confirm that R± = 0 when θ0 = ±δ and that T+ = 1, |T−| = 1 when382

θ = −δ and that T− = 1, |T+| = 1 when θ0 = δ.383

We can also confirm the all properties relating to angles listed in §3.1. For example, letting384

δ → −δ is geometrically equivalent to reversing the direction of the incident wave so that values385

of R+ and R− and T+ and T− are interchanged. It follows that R(θ0, δ, kL) = R(θ0,−δ, kL).386

Similarly, negating θ0 and δ simultaneously does not alter the problem and so R(−θ0,−δ, kL) =387

R(θ0, δ, kL) = R(−θ0, δ, kL) by the preceding result and this proves symmetry with respect to θ0.388

Finally, it is evident from (4.36) that R(θ0, δ, kL) = −R(δ, θ0, kL).389

The exact R and T do not share wavenumber periodicity, expressed by property (iv) in §3.1. In390

particular, extra channel modes and diffraction modes will eventually be cut on as the frequency391

increases.392

Implementation of a numerical solution for this scattering matrix approach is virtually the same393

as in §4.1, but instead of (4.22) we only need to solve a real system of equations for real coefficients394

an as Kmn is replaced by ℜ{Kmn}, then395

P11 ≈ L
N
∑

n=0

anWm(B+
0 L), P12 ≈ L

N
∑

n=0

anWm(−B+
0 L), (4.38)

and396

P22 ≈ L

N
∑

n=0

anWm(B−
0 L). (4.39)

define the real elements of P and R±, T± are subsequently determined by (4.36), (4.37).397

In Fig. 8 we compare the results of the exact problem with results from the approximation in398

§3.1. Although the exact results (dashed curves) in Fig. 8(a) appear to be periodic, they are not:399

only in the limit d = 0 (solid curve).400
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Figure 8: The convergence exact results for |R| towards approximate results (solid curves) as the array spacing

decreases. In the left-hand panel |R| against kb for δ = 45◦, θ0 = 0 and d/L = 0.1, 0.01 and solid curve computed

using (3.16). In right-hand panel, exact |R| as θ0 varies for δ = 45◦, kb = 2 and d/L = 0.5, 0.1, 0.02 (dashed curves)

converging to the solid curve computed from (3.16).

5. Conclusion401

Scattering of waves by an infinite periodic array of inclined (or staggered) thin parallel plates402

occupying a region of finite width and infinite length has been considered. An approximation has403

been developed based on close spacing between plates, relative to their length, within the array404

allowing region occupied by the plate array to be replaced by an effective medium and matching405

conditions on the boundary of the plate array replaced by effective matching conditions. This406

reduction in complexity leads to simple explicit expressions for wave scattering of plane incident407

waves, wave sources and for guided waves along the array.408

Solutions to the exact geometrical description of the problem have been computed by formu-409

lating solutions using Bloch-Floquet theory and integral equations. These have been shown to410

converge to the close-spacing approximation when the separation between plates tends to zero,411

confirming that the approximation can be used with good accuracy for sufficiently small spacing to412

plate length ratios. Moreover they confirm that several key properties of the reflection and trans-413

mission coefficient are shared by the approximation and the exact treatment of the problem. This414

includes total transmission for all wavenumbers when the inclination of the plates within the array415

are opposed to the incident wave direction and for all wave angles and plate inclinations for certain416

specific frequencies. This allows us to use the finite width plate array as an perfectly-transmitting417

negative refraction material allowing perfect waveshifting across the plate array. For example, wave418

sources can be shifted to ‘spoof’ the location of a source through an array. Plate arrays can also419

be used to perfectly transmit wave energy of all frequencies through a junction in a waveguide.420
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The anisotropic scattering provided by plate arrays are being considered in other settings, using421

the effective medium theory developed here to simplify solutions. Recently they have been used by422

[16] as a broadbanded sound absorption device when embedded in a trapezoidal cavity attached423

to the walls of a waveguide. They have also been used by [17] to redirect and absorb energy in424

cylinders formed by plate arrays in a water wave setting.425
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