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Abstract. A linearised model is proposed for the transmission of waves through
thin vertical porous barriers, where both the inertial and dominant quadratic drag
effects are included. A boundary-value problem is developed in which linear bound-
ary conditions holding along the length of the screen are derived from a pair of
canonical wave problems, one including an exact geometric description of a slatted
screen to determine an inertia coefficient and the other using a quadratic drag law
to determine an equivalent linear drag coefficient.

The model is then applied to range of wave scattering and sloshing problems
involving thin vertical slatted screens in various settings. In each case results are
verified by comparison to the solution of a direct nonlinear calculation where the ef-
fects of drag have been isolated. We show that the solution to our canonical problem
provides a good approximation to the solution of each of the model problems.
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1. Introduction

There is a wide range of problems that have been studied involving
fluid flow and wave transmission through porous barriers and thin
screens. Research has been conducted with application to their use
as breakwaters within harbours and as damping devices such as those
used in Tuned Liquid Dampers (TLDs).

In the context of porous barriers, Sollitt and Cross (1972) inves-
tigated the reflection and transmission of waves through permeable
structures of finite width such as rubble mound breakwaters. The au-
thors analysis begins with the unsteady equations of motion for fluid
flow within the structure in which the convection term is neglected.
Two sources of drag are included, one linear in velocity and associated
with viscous effects and the other quadratic in velocity and associ-
ated with turbulent drag. These terms are then linearised, using the
principle of equivalent work, such that the pressure gradient through
the permeable breakwater is given in terms of a linear resistance co-
efficient and an added mass coefficient of the medium. The former is
then determined via an iterative procedure, whilst the latter must be
determined experimentally - but in practice is taken to be zero by
the authors (and others Madsen (1974), Dalrymple el al. (1991), Yu
(1995), Isaacson (1998) although Sulisz (1985) shows better correlation
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with experimental data when the added mass coefficient is taken to be
unity in dimensionless units). Either side of the breakwater linear wave
theory is adopted and general solutions in those regions are matched
to a solution within the porous breakwater with appropriate continuity
of pressure and flux conditions applied across the matching interfaces.

The effect of horizontal porous plates on waves has also been ex-
tensively studied using linear water-wave theory. Wu, Wan and Fang
(1998) provide a good literature review on the subject, implementing
a continuous approximation via a porous effect parameter making the
assumption that the material structure of the plate consists of very
fine pores and thus the normal velocity of the fluid passing through the
plate is linearly proportional to the pressure jump across it - akin to a
viscous Darcy type law.

In this paper however, we are concerned with thin slatted vertical
screens as opposed to those considered by Sollitt and Cross (1972) of
some finite width. Yu (1995) derives a porous boundary condition based
on the formulation of Sollitt and Cross (1972) but for the diffraction of
waves by thin porous barriers - assuming the length scale of the wave
motion within the porous medium to be significantly longer than the
thickness of the breakwater, such that the thickness can be neglected.
The condition assumes that the jump in pressure is proportional to the
velocity of the flow through the barrier, where, rather than determining
a linear resistance coefficient via an iterative method, the author simply
assumes it to be known. Initially, Yu solves a two dimensional problem
in which an incident wave propagates towards a vertical thin porous
barrier. Comparison between theory and experimental data gathered
by Kondo and Toma (1972) is made, however the data was collected
from experiments in which the small thickness assumption does not
hold. This solution is then used to provide the outer solution when Yu
goes on to investigate the three-dimensional problem of the diffraction
of waves by a semi-infinite porous plate via the application of boundary
layer theory. Yu (1995) concludes that neglecting the inertial effect of
flow through the porous medium underestimates the actual damping
effect of a porous breakwater.

McIver (1999) also follows Yu’s formulation to obtain a boundary
condition at a thin vertical porous breakwater of semi-infinite horizon-
tal extent and shows that this three-dimensional diffraction problem
has an explicit solution, found via the Wiener-Hopf technique, valid
for arbitrary angle of wave incidence. McIver (2005) later applies the
same boundary condition in order to consider the diffraction of an
incident wave by discrete sections of thin vertical porous breakwater
each of finite length. In both McIver (1999) and McIver (2005), the
actual parameters used at the porous breakwaters to simulate the effect
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of inertia and damping appear to have little connection to physical
quantities.

Evans (1990) considered analytically the possibility of using a series
of vertical thin porous screens in narrow wave tanks experiments to
dissipate waves and reduce reflections back into the tank. Evans (1990)
chose in his work to follow the linear screen conditions derived by
Tuck (1975). As in Sollitt and Cross (1972) and Yu (1975) these are
again represented by averaged conditions over the vertical extent of
the screen in which inertial and drag effects are considered separately
before combining through addition. Unlike Sollitt and Cross (1972),
Tuck (1975) assumes dominance of viscous dissipation by adopting a
Darcy type law for the pressure drop across the screen. Whilst this
may be appropriate for slow flow, in general the Reynolds numbers in
problems of practical importance being considered here imply viscous
effects should be small. Tuck (1975) also provides an expression for
the inertia or blockage coefficient at the screen on the basis of long
wavelengths compared to the gap/slat structure of the screen using a
method based on matched asymptotics.

Continuing with thin porous barriers, Bennett et al. (1992) adopt a
nonlinear condition based on work by Mei et al. (1983) to determine
the reflection coefficient from a breakwater with and without a backing
wall, the method is validated by comparison to experimental results.
Similarly to Yu (1995) and McIver (1999), linearised wave theory is
adopted either side of the barrier and matching conditions applied
across the barrier which is regarded mathematically as a line. The jump
in pressure across the screen is described by a quadratic drag law with
a head loss coefficient CD, and a screen-averaged inertial (or blockage)
coefficient L - both empirically determined based on the porosity of
the barrier. Mei et al. (1983) uses long wavelength analysis to suggest
a form for L, which coincides with that given by Tuck (1975).

Baffles and thin porous screens are also installed in tanks in order
damp the sloshing motion of the contained fluid. Such tanks have spe-
cific application to act as TLDs of which Tait et al. (2005), (2008) have
researched extensively. Tait et al. (2005) develop both a linear and non-
linear numerical model of a TLD with multiple screens. In each case
inertial effects are neglected, but an empirically determined pressure-
loss coefficient is proposed, following Baines and Peterson (1951) for
steady flow, and dependent on the solidity ratio of the screen. Faltinsen
et al. (2010) utilise the same screen-averaged nonlinear pressure drop
condition in deriving a two-dimensional model for liquid sloshing in
a rectangular tank with a single centrally-placed slatted screen, again
choosing to neglect inertia. Faltinsen and Timokha (2011) go on to
consider again the same sloshing problem but this time for a slatted
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screen of a prescribed geometry. The authors are concerned with the
effect of varying the porosity and the number and position of slots in the
screen on the resonant frequencies associated with the tank. They adopt
a similar approach to that introduced by Porter & Evans (1995) based
on a Galerkin approximation but with a different choice of expansion
function which arguably is more complicated to compute. Faltinsen et

al. (2011) then return to using a nonlinear pressure drop condition, but
use the method of Faltinsen and Timokha (2011) to approximate the
approach velocity of the flow through the screen.

It is evident that there is no clear consensus on what conditions
should be applied at porous barriers and thin screens when considering
scattering and sloshing problems. With this in mind, we focus our
attention on the propagation of waves through thin vertical porous
barriers and the conditions to be applied there.

In order to obtain the mathematical solution to such problems we
require a screen-averaged linear relationship between the flux and pres-
sure drop at the screen. This is modelled via a complex coefficient
which includes a real part associated with the added inertia (a blockage
coefficient) provided by the constrictions in the screen and an imaginary
part associated with damping. We take aspects of several of the models
reviewed above and develop a model which includes both the inertial
and the dominant quadratic drag effects with the aim to model the pair
of effects as accurately as possible.

For the inertia coefficient, rather than the analytic description used
by Tuck (1975) and Mei et al. (1983) based on long wavelength analysis,
Section 2.1 outlines a method for relating a screen-averaged coefficient
to a calculation based on an exact description of the slatted screen
structure. This is shown numerically to tend to the results of Tuck
(1975) and Mei et al. (1983) as the wavelength to gap width ratio
becomes large. In Section 2.2, we derive a screen-averaged equivalent
linear drag coefficient from a calculation based on the implementation
of a quadratic drag law. In both cases we consider a single canonical
problem; the scattering of a normal incident wave by a single thin
porous barrier. The purpose of this canonical problem is to act as the
basis of an approximation to a variety of more complicated but related
problems.

In order to assess the accuracy of this approximation in the problems
considered we compare the equivalent linear results using the nonlinear
canonical problem with a direct nonlinear calculation of drag effects
only. Starting with a simple wavemaker next to a screen, we increase
the complexity of the problems studied and culminate in considering
the fluid response due to the forced motion of a rectangular tank with a
single centrally-placed slatted screen. In most situations, the agreement
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is found to be excellent. For the case of waves incident to a single
screen when both isolated and in front of an impermeable wall, we
make comparisons with experiments and numerical results produced
by a Bennett et al. (1992). Agreement is again shown to be good.

2. Waves incident on a single slatted screen

Parallel-crested small-amplitude waves propagate on a fluid of constant
depth h and are normally-incident on a thin horizontally-slatted screen
occupying the plane x = 0. The resulting fluid motion takes place in
the two-dimensional (x, y) plane and we assume linearised kinematic
and dynamic conditions apply on the mean free surface of the fluid,
y = 0. The fluid is incompressible and, in the bulk of the fluid away
from the screen, the flow is assumed to be irrotational. Thus, the fluid
is governed in the bulk by a velocity potential Φ(x, y, t) satisfying

∇2Φ = 0 (2.1)

with

Φy = 0, on y = h, and gΦy+Φtt = 0, on y = 0, (2.2)

g being gravitational acceleration. We require conditions relating prop-
erties of the flow on one side of the screen to the other. Formally,
we isolate a narrow strip of fluid either side of the slatted screen and
examine the effects of the local flow field in the presence of the slatted
barrier, before contracting those conditions onto the line occupied by
the screen thereby allowing us to formulate approximate boundary
conditions on the screen. See Bennett et al. (1992) whose work closely
follows that of Mei (1983).

Such a process readily results in a condition expressing continuity
of horizontal velocity across the screen, or

[Φx]
x=0+

x=0− = 0, 0 < y < h, (2.3)

where [u] denotes the jump in u, whilst (2.1) now holds throughout the
fluid domain. A dynamic condition is also derived in the form

[Φt(x, y, t)]
x=0+

x=0− = 1
2CDV (y, t)|V (y, t)|+ LVt(y, t), 0 < y < h,

(2.4)
where V (y, t) ≡ Φx(0, y, t) is the horizontal velocity of the fluid relative
to that of the screen and CD and L are empirically determined. Here,
CD represents a drag coefficient for the screen, and L represents an
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inertia (or blockage) coefficient accounting for the added inertia felt by
the fluid as it accelerates through the constrictions in a slatted screen.

Mei (1983) uses a local analysis of the flow field to suggest forms for
CD and L, the latter also based on a long wavelength analysis equivalent
to that used by Tuck (1975).

We take a different approach, and empirically determine the drag
and inertia effects from idealised mathematical models, outlined in fol-
lowing two subsections, in which the two effects of inertia and drag are
isolated from one another and treated separately. Whilst the condition
(2.4) should be regarded as an ‘averaged condition’ which does not
distinguish the local gap/slat structure of the screen, the approximation
of an equivalent inertia coefficient L outlined in §2.1 is derived from
an exact description of the screen. In contrast, the drag term is ap-
proximated through a continuous description of the screen properties,
the emphasis in §2.2 being on developing an equivalent linear drag law
from a model quadratic drag law calculation.

The aim of such an approach is to derive simple, but realistic, linear
relations between the pressure jump and the velocity across a screen
having constant properties along its length which can then be used in
other settings.

2.1. The screen inertia coefficient

The aim here is to develop an accurate description of the blockage effect
of a perforated screen which can be applied uniformly across the entire
screen. We follow and extend the approach introduced by Porter &
Evans (1995) to consider the scattering of waves by a vertical slatted
barrier with multiple gaps.

We consider a two-dimensional wave scattering problem involving a
single perforated screen at x = 0 in a horizontally-unbounded domain
under forcing from an incident wave from x = −∞.

The screen is thin and rigid, and contains N gaps of equal size 2d,
equally-spaced along the screen, occupying y ∈ Lj , Lj = (y−j , y

+
j ),

j = 1, . . . , N , as in figure 1. Specifically, we choose the centre of the
gaps to be positioned at y = cj = (2j − 1)h/2N where y = h is the
bottom of the fluid, with d = hp/2N and p is the porosity of the screen.
Thus, rigid parts of the screen extend through the surface and connect
to the fluid bottom, a choice which simplifies the solution process. Of
course, other arrangements could be chosen.

With CD set to zero in (2.4), the governing boundary-value problem
for Φ is linear and assuming incident waves of a single radian frequency
ω and amplitude A from x = −∞ allows us to write the total potential
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Figure 1. Definition sketch for scattering by a vertical porous screen.

as

Φ(x, y, t) = ℜ

{

ighÂ

ωψ0(0)
φ(x, y)e−iωt

}

(2.5)

where Â = A/h and ψ0 is defined below in (2.11). The complex dimen-
sionless potential φ now satisfies

∇2φ = 0, in the fluid (2.6)

with

φy = 0, on y = h and φy −Kφ = 0, on y = 0 (2.7)

where K = ω2/g. Additionally,

[φx]
x=0+

x=0− = 0, 0 < y < h, (2.8)

with

φx = 0, for y ∈ Lb and [φ]x=0+

x=0− , for y ∈ Lg. (2.9)

where Lg = ∪N
j=1Lj is the union of the gaps and Lb = (0, h)\Lg is the

union of the slats.
The conditions (2.9) satisfy the exact conditions on the screen and

the solution of (2.6)–(2.9) will be connected to a screen-averaged con-
dition towards the end of this section.

The solution is based on expanding in depth eigenfunctions, defined
as

ψn(y) = N−1/2
n cos kn(h− y), Nn =

1

2

(

1 +
sin 2knh

2knh

)

(2.10)
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for n = 0, 1, 2, . . . where kn (n ≥ 1) are the real positive roots of
K = −kn tan knh whilst k0 = −ik where k is the real positive root of
K = k tanh kh so that

ψ0(y) = N
−1/2
0 cosh k(h− y), N0 =

1

2

(

1 +
sinh 2kh

2kh

)

(2.11)

The eigenfunctions in (2.10) are normalised so that

1

h

∫ h

0
ψn(y)ψm(y)dy = δmn, m, n = 0, 1, . . . (2.12)

where δmn is the Kronecker delta.
We can now write separation solutions in x < 0 and x > 0 as

φ(x, y) = (eikx +Re−ikx)ψ0(y)−
∞
∑

n=1

ane
knxψn(y), (2.13)

and

φ(x, y) = T eikxψ0(y) +
∞
∑

n=1

ane
−knxψn(y), (2.14)

where the expansion coefficients an are the same in x < 0 and x > 0
such that (2.8) is satisfied provided R + T = 1 where R, T are the
reflection and transmission coefficients.

Letting U(y) = φx(0, y) and using (2.12) allows us to express all
unknowns in (2.13) and (2.14) in terms of U(y) as

an = −
1

knh

∫

Lg

U(y)ψn(y)dy, n ≥ 1, (2.15)

and

ikh(1−R) =

∫

Lg

U(y)ψ0(y)dy, (2.16)

since U(y) = 0 on any rigid part of the screen. Applying the remain-
ing condition of continuity of fluid pressure across each of the gaps,
expressed as [φ]+− = 0 for y ∈ Lg, gives

∫

Lg

U(t)K(y, t)dt = −Rψ0(y), y ∈ Lg, (2.17)

after use of (2.15) where

K(y, t) =
∞
∑

r=1

ψr(y)ψr(t)

krh
, (2.18)
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is a weakly singular kernel. The integral operator in (2.18) is real and
symmetric (hence self-adjoint) and positive in the space L2(Lg). A re-
scaling U(y) = −Ru(y) eliminates the unknown from (2.17), replacing
this equation with

∫

Lg

u(t)K(y, t)dt = ψ0(y), y ∈ Lg, (2.19)

whilst the re-scaling, used in (2.16), allows us to write

R = (1 + iAu/(kh))
−1 where Au =

∫

Lg

u(y)ψ0(y)dy. (2.20)

The solution u(t) to (2.19) is used to determine R through (2.20). This
is done by application of the Galerkin variational method in which we
write u(y) ≡ ui(y) for y ∈ Li, i = 1, . . . , N ,

ui(y) ≈
P
∑

p=0

α(i)
p vp(y − ci), (2.21)

where α
(i)
p are expansion coefficients to be determined and vp are de-

fined as

vp(y) =
Tp(y/d)

π(d2 − y2)1/2
, (2.22)

(see, for example, Porter & Evans (1995)) in terms of Tchebychev poly-
nomials Tp(·). The form chosen for (2.22) incorporates the anticipated
inverse square root singularities in ui(y) (a function proportional to the
fluid velocity) at each of the sharp edges of the perforated screen and
that the bounded function (d2 − (y − ci)

2)1/2ui(y) has been expanded
in a complete orthogonal set of functions.

Faltinsen and Timokha (2011) used expansions of the form given in
(2.21) but with a different choice of expansion function to (2.22) that
also includes the square-root behaviour at the end points. The resulting
coefficients here (see (2.25) and (2.26)) are arguably easier to compute.

Substitution of (2.22) into (2.21), multiplication through by vq(y −
cj) for q = 0, . . . , P , j = 1, . . . , N , and integration over y ∈ Lj is a
process which characterises the Galerkin variational method and gives
rise to a linear system of algebraic equations for the unknown expansion
coefficients written as

N
∑

i=1

P
∑

p=0

α(i)
p K(i,j)

pq = F
(j)
q0 , (2.23)
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for q = 0, . . . , P , j = 1, . . . , N , where

K(i,j)
pq =

∞
∑

r=1

F
(i)
pr F

(j)
qr

krh
, (2.24)

and

F (i)
pr =

∫

Li

vp(y − ci)ψr(y)dy = N−1/2
r cos

(

kr(h− ci)−
1
2πp

)

Jp(krd),

(2.25)
for r ≥ 1 and with

F
(i)
p0 =

{

N
−1/2
0 cosh (k(h− ci)) Ip(kd), p even,

−N
−1/2
0 sinh (k(h− ci)) Ip(kd), p odd,

(2.26)

(for a detailed account of these calculations, see Porter & Evans (1995))
where Jp(·) and Ip(·) are Bessel functions. Typically, numerical results
are accurate to 4 decimal places with P = 2, and for a truncation of
the infinite series in (2.24) at 2000 terms (though the convergence of
the series can be accelerated as described in Porter & Evans (1995)).
Finally, R is found from (2.20) with the numerical approximation giving

Au ≈
N
∑

i=1

P
∑

p=0

α(i)
p F

(i)
p0 . (2.27)

In contrast to the exact analysis above for a perforated screen with
N discretely-defined gaps and an overall porosity of p, we assume a
porous screen with constant properties along its vertical extent. Then
the expansions for the potential left and right of x = 0 are still given
by (2.13), (2.14) satisfying (2.8) with R + T = 1 but we now pose a
condition across the screen of

[φ]x=0+

x=0− =
C

k
φx(0, y), 0 < y < h, (2.28)

which is equivalent to (2.4) with CD = 0 and with (2.5) used, replacing
L by C/k. The aim is to find the real dimensionless coefficient C that
best models the exact results. Tuck (1975) used a long-wavelength the-
ory based on matched asymptotics (also repeated in Mei (1983, p.121))
to estimate C by

C = −
4kd

πp
log

(

sin
πp

2

)

, (2.29)

where p is the porosity of the screen. Using (2.13), (2.14) and ap-
plying (2.28), assuming that C is given, readily yields reflection and
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Figure 2. |R| and |T | for a screen of porosity p = 0.5 with an increasing number of
gaps.

transmission coefficients

R =
C

C+ 2i
and T =

2i

C+ 2i
, (2.30)

in terms of C. Alternatively, if R and T are known then the value of C
is defined by

C =
2iR

T
, (2.31)

which is readily shown to be real. Hence, with the exact R and T
computed from the first part of this section for a screen with N discrete
gaps along its length (2.31) defines a C for a screen with continuous
properties assumed along its length which gives exactly the same values
of R and T .

In figure 2 we show results for |R| and |T | against kd for N =
1, 2, 5, 20 gaps in a screen with constant porosity of p = 0.5. It is
seen that curves of reflection and transmission converge rapidly as N
increases, and we are able to infer accurate approximations to R and T
for a porous screen and hence C from (2.31) from results with N = 5.
Figure 3(a) shows the variation of |R| with kd for different values of
porosity, p. The reflected amplitude increases monotonically from zero
as the wavelength decreases and does so more rapidly for less porous
screens. Shown in figure 3(b) are curves of |R| and |T | given by the
Tuck (1975) and Mei (1983) relation (2.28) with (2.29). As expected,
Tuck’s model only agrees with our computed results when kd≪ 1.
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Figure 3. In panel (a): |R| for a screen with 5 gaps of varying porosity,
p = 0.7, 0.5, 0.3 and 0.1. In panel (b): |R| and |T | for a screen of porosity p = 0.3,
compared with Tuck’s (1975) long wavelength results.

2.2. Estimating the screen drag coefficient

In this section we isolate the effects of drag by setting L = 0 in (2.4).
It is not obvious how to determine a screen-averaged drag coefficient
from an exact description of the screen, thus in contrast to the previ-
ous section here the aim is to determine a linear screen-averaged drag
coefficient from a calculation based on a quadratic drag law based on
empirical experimental results for the quadratic drag coefficient CD in
terms of the porosity, p (see later). There are some similarities in our
approach to Mei (1983) and Bennett et al. (1992).

With L = 0, (2.4) expresses the condition for pressure drop across
the screen and is written in terms of the usual turbulent drag law

[P (x, y, t)]x=0+

x=0− = −1
2ρCDV (y, t)|V (y, t)|, 0 < y < h, (2.32)

where P = −ρΦt is the dynamic pressure and V = Φx(0, y, t). The
quadratic velocity dependence in the boundary condition implies that
an incident wave of a single radian frequency ω introduces a multi-
frequency response. Thus expanding Φ in a Fourier time-series in mul-
tiples of ω and retaining just the fundamental frequency response (the
Fourier coefficient of first term is 8/3π whilst the next term at frequency
3ω is much smaller than ω and justifies this assumption) transforms
(2.32), using (2.5), into the condition

[φ(x, y)]x=0+

x=0− = i
KNL

k2
φx(0, y)|φx(0, y)|, 0 < y < h, (2.33)
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where φ(x, y) is the complex potential associated with the time varia-
tion e−iωt and

KNL =
4CDk

2gh|Â|

3πω2ψ0(0)
≡

4CDN
1/2
0 kh|Â|

3π sinh kh
(2.34)

is a dimensionless proxy for the drag coefficient, CD. In the above,
K = ω2/(gk) = tanh kh has been used and N0 is given in (2.11).

The problem now to be solved for φ includes the non-linear condition
(2.33) at the screen alongside the usual linear conditions (2.6)–(2.8).

For a wave incident from x = −∞ on the screen, we could reuse the
expansions for φ given in (2.13), (2.14) already satisfying (2.6)–(2.8)
provided R + T = 1 when it remains only to apply (2.33). In view of
later developments in the paper however, we choose to take a more
general scattering problem in which waves of amplitudes A and AB (A
and B both given) are incident from x = −∞ and x = +∞ respectively.
Then expansions in x < 0 and x > 0, satisfying (2.6)–(2.8) are given
by

φ = (eikx +R−e−ikx)ψ0(y)−
∞
∑

n=1

ane
knxψn(y) (2.35)

and

φ = (Be−ikx +R+eikx)ψ0(y) +
∞
∑

n=1

ane
knxψn(y) (2.36)

respectively, where the amplitude of the incident wave has been nondi-
mensionalised to unity and (2.8) requires that 1 + B = R− + R+ and
R± are the outgoing wave amplitudes to ±∞. It helps to introduce a
coefficient a0 defined such that a0 = 1−R−. It follows that

φx(0, y) = −
∞
∑

n=0

knanψn(y), (2.37)

and

[φ]x=0+

x=0− = (2B − 2)φ0(y) + 2
∞
∑

n=0

anψn(y) (2.38)

Applying the non-linear screen condition (2.33), multiplying by ψm(y)
and integrating over 0 < y < h gives the infinite system of complex
non-linear equations

(2−2B)δm0−2am = iKNL

∞
∑

n=0

knan
kh

∫ h

0

∣

∣

∣

∣

∣

∞
∑

r=0

krarψr(y)

k

∣

∣

∣

∣

∣

ψn(y)ψm(y)dy,

(2.39)
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for m = 0, 1, . . .. Numerically, this system is truncated to a system of
M+1 equations, which determine am for form = 0, 1, . . . ,M . Typically
M = 10 is sufficient for convergence of a0 to a number of decimal places.
We note that when KNL = 0, the explicit solution is am = (1−B)δm0.
We use this to solve the non-linear equations by numerically replacing
KNL by the factor βKNL in which β is numerically increased from
zero to unity, as a means of introducing non-linearity. We find roots
by implementing the Newton-Raphson method at each increment of β,
computing the integral in (2.39) via a NAG library routine. Once the
solution to (2.39) has been determined numerically, then R− = 1− a0
and R+ = B + a0 defines outgoing reflected wave amplitudes and

Ploss = 1 + |B|2 − |R−|2 − |R+|2, (2.40)

represents the flux of energy (power) dissipated by the screen, as a
proportion of the incoming wave energy.

We note the special case when waves are incident from x = −∞
only and then B = 0 and R± represent reflection and transmission
coefficients denoted by R = R− and T = R+.

An equivalent screen-averaged linear drag law assumes that (2.33)
is replaced by

[φ]x=0+

x=0− = i
KL

k
φx(0, y), 0 < y < h, (2.41)

and applying this to the general expansions (2.35) and (2.36) which
yield (2.38) results in

R− =
KL + 2B

2 +KL
and R+ =

2 +BKL

2 +KL
. (2.42)

Alternatively, if R± are known then KL may be defined by

KL =
2(R− −B)

(1−R−)
. (2.43)

Hence, to determine an equivalent linear drag coefficient KL from a
non-linear drag law, we simply use the values of R± computed from
the non-linear calculation (2.39) in (2.43). When B = 0, the reflection
and transmission coefficients are R = R− and T = R+ = 1−R− whilst
KL = 2R/T .

A crude, but simple, approximate linear drag law can derived by
estimating the size of |φx(0, y)| in (2.33) to reduce (2.33) to (2.41).
Thus, assuming that there is near total transmission at the screen so
that am ≈ (1−B)δm0 and estimating φx(0, y), by its average over the
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Figure 4. Results of the application of a quadratic drag law at a screen: (a) |R| (the
thinner horizontal lines are the long wavelength/low porosity linear approximation
given by (2.45)); and (b) Ploss for a screen of varying porosity, p and fixed wave
amplitude |Â| = 0.1.

vertical extent of the screen implies

|φx|

k
≈ |(1−B)ψ0(y)| ≈

|1−B|

h

∫ h

0
ψ0(y)dy = N

−1/2
0 |1−B|

sinh kh

kh
,

(2.44)
and so

KL ≈ N
−1/2
0 |1−B|

sinh kh

kh
KNL =

4CD|1−B||Â|

3π
. (2.45)

We might expect this approximation to work well for high porosity and
long wavelengths when there is little reflection, but not so well at higher
frequencies or for smaller porosity.

Finally, we require an expression for the pressure loss coefficient CD

in terms of p, the porosity. Both Tait (2005) and Mei (1983) write

CD =

(

1

pCc
− 1

)2

, (2.46)

where, according to Tait (2005), empirical evidence suggests that,

Cc = 0.405eπ(p−1) + 0.595, (2.47)

whilst Mei (1983) suggests that Cc can be represented by

Cc = 0.4p3 + 0.6. (2.48)

In fact, as can be seen, the two representations are very similar and
match well when plotted as a function of p.
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In figure 4(a) we plot the variation of |R| with kh for different
values of porosity, calculated from (2.35) using the quadratic drag
law. In these figures, we imposed a fixed incident wave amplitude of
|Â| ≡ |A|/h = 0.1 and B = 0 and used (2.48) to determine CD. Also
plotted in figure 4 are the reflected wave amplitudes using (2.42) with
the approximate linear drag coefficient in (2.45). As previously antici-
pated, the linear approximation is good for small kh and high porosity
and works less well away from this regime. Considering figure 10(b) of
Bennett et al. (1992) we see that the theoretical results presented for
screens of varying porosity are comparable to ours, with the effects of
drag isolated, as shown in figure 4(a). Note that Bennett et al. (1992)
measure the incident wave height from peak to trough as opposed to the
incident wave amplitude measured as the distance from the mean free
surface as in this paper. In figure 4(b) we plot the associated fraction
of energy, Ploss, defined by (2.40) lost at the screen which we observe
is bounded by 1/2. This confirms the well-known result from wave
energy absorption that no more than half the available power in the
incident wave can be absorbed by a wave energy converter with left-
right symmetry (see Evans (1976), Mei (1975), Newman (1976)). The
general trends seen are that a higher porosity implies less power loss
and that as the wavelength shortens, more power is lost although these
are rules are not observed across all parameter values.

2.3. Combining coefficients

In the previous two subsections we have presented methods for deter-
mining linear screen-averaged conditions when inertia and drag effects
are isolated. According to (2.4) where these two effects are added to-
gether, we suggest a linear condition replacing (2.4) to be the sum of
the two linearised screen-averaged effects of drag and inertia, namely

[φ(x, y)]x=0+

x=0− =
γ

k
φx(0, y) where γ = C+ iKL, (2.49)

whose components are determined according to the prescription given
in §2.1 and §2.2. A condition involving a complex coefficient has been
used previously in the context of porous barriers, such as Tuck (1975),
Yu (1995) and Isaacson et al. (1998).

For a wave of amplitude A from x = −∞ (i.e. B = 0 in §2.2) the
reflection and transmission coefficients are easily found by using the
general expansions (2.35) and (2.36) and applying (2.49) from which
we derive reflection and transmission coefficients

R =
γ

γ + 2i
and T =

2i

γ + 2i
, (2.50)
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Figure 5. |R| for a screen of porosity p = 0.072 and p = 0.209 against frequency in
Hz. compared with experimental results from Bennett et al. (1992). The experiments
were performed for two wave spectra producing two sets of results for incident waves
of amplitude Â = 0.0372 and Â = 0.0581 covering frequencies relating to wave
periods of 4.5− 14 s and 2.9− 6.2 s respectively.

which is in agreement with (2.30) and (2.42) if either drag or inertia
effect is switched off.

Having solved each of the preceding problems of §2.1 and §2.2 indi-
vidually, the blockage coefficient C is then determined via (2.31) and
KL via (2.43). Combining these coefficients as prescribed by (2.49),
we evaluate the reflection and transmission coefficients |R| and |T | of
an incident wave acting on a single thin vertical porous barrier using
(2.50).

In figure 5 we compare the results of our proposed model, including
the effects of both drag and inertia at the screen, with experimental
results from Bennett et al. (1992). The reflection from the screen seems
to be mostly overestimated by our model, however this discrepancy may
be due to the empirical formula (2.48) used to determine the discharge
coefficient Cc. Bennett et al. (1992) plot theoretical results obtained
with the two limiting values of this formula, Cc = 0.6 and Cc = 1.
Most of the experimental results fall within this range, suggesting that
an improved empirical formula should still produce theoretical results
within these bounds.
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3. Using the single-screen solution to approximate the

solution in other settings

In this section we present a variety of problems involving slatted screens
in other settings, the purpose in each case to show that the solution of
§2 can be used to approximate the solution in each example.

3.1. A wavemaker next to a fixed slatted screen

We consider a fluid of depth h with a fixed slatted screen at x = 0.
The fluid is unbounded in the positive x direction, and bounded by a
vertical impermeable wall oscillating sinusoidally with radian frequency
ω and amplitude ǫ≪ a about a mean position of x = −a. The wall acts
as a piston wavemaker and the waves created are partly transmitted
through the screen at x = 0. The governing equations are thus (2.1)–
(2.4) supplemented by a linearised kinematic condition

Φx = ωǫ cosωt, on x = −a. (3.1)

We follow earlier arguments to make the single frequency decomposition
of the potential

Φ(x, y, t) = ℜ
{

ωǫφ(x, y)e−iωt
}

, (3.2)

such that (3.1) is satisfied by

φx(−a, y) = 1 ≡
∞
∑

n=0

Lnψn(y), (3.3)

where

Ln =
1

h

∫ h

0
ψn(y)dy = N−1/2

n

sin knh

knh
, (3.4)

after decomposing the forcing into depth eigenfunctions, whilst the
usual conditions (2.6)–(2.8) apply to φ in addition. We shall consider
the application of a screen-averaged flow condition later but first set
out a general solution.

In the region −a < x < 0 we write

φ(x, y) =
1

ik

(

a0e
ik(x+a) − b0e

−ikx
)

ψ0(y)

−

∞
∑

n=1

1

kn

(

ane
−kn(x+a) − bne

knx
)

ψn(y), (3.5)

and in x > 0 we write

φ(x, y) =
c0
ik
eikxψ0(y)−

∞
∑

n=1

cn
kn

e−knxψn(y). (3.6)
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The isolated terms in the pair of equations above will hereafter be
subsumed into summations starting at n = 0 using the definition k0 =
−ik; they are left exposed in (3.5) and (3.6) to allow the reader to
identify n = 0 terms as propagating waves. Then, applying (3.3) to (3.5)
and a subsequent application of the screen flux continuity condition
(2.8) to (3.5) and (3.6) gives the relations between the coefficients of

an = Ln − bne
−kna and bn =

cn − Lne
−kna

1− e−2kna
, n ≥ 0. (3.7)

Using these relations in (3.5) and (3.6) gives

[φ]x=0+

x=0− = −2
∞
∑

n=0

(cn − Lne
−kna)

kn(1− e−2kna)
ψn(y), (3.8)

and

φx(0, y) =
∞
∑

n=0

cnψn(y). (3.9)

Posing a linearised screen-averaged condition

[φ(x, y)]x=0+

x=0− =
γ

k
φx(0, y), 0 < y < h, (3.10)

as in (2.49) where γ = C+ iKL then it follows that

c0 − L0e
ika

1− e2ika
= −µ0c0, (3.11)

where µ0 = −iγ/2 so that

c0 =
L0e

ika

(1 + µ0(1− e2ika))
, (3.12)

is the far-field radiated wave coefficient. It remains to decide on how
to map the values of the components of γ from the canonical problems
of §2. The value of C is straightforward and defined by (2.31) which
depends implicitly on the porosity p and the number of slats N which
defines kd. Of course, its value is approximate, since the problem defin-
ing the inertia coefficient C is different to the one being solved here,
but it does not rely upon any extra information about the wave field.
The value of KL to be used is more complicated because of the inherent
non-linearity of the problem from which it is derived. First, we have
to map the amplitude of the wavemaker into the amplitude of surface
waves incident on the screen. We note that the free surface elevation
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ζ(x, t) is defined by the Bernoulli condition gζ = −Φt and assuming
ζ(x, t) = ℜ{η(x)e−iωt} and using (3.2) we have

η(x) = −iKǫφ(x, 0). (3.13)

In this problem only propagating waves are incident on the slatted
screen from x < 0 and the free surface elevation, associated with those
incident waves from (3.5) is

ηinc(x) = −iKǫ
ψ0(0)

ik
a0e

ikaeikx. (3.14)

In other words, the non-dimensional amplitude of the incident wave on
the screen in this wavemaker problem is

|Â| =

∣

∣

∣

∣

−
Kǫψ0(0)e

ikaa0
kh

∣

∣

∣

∣

= N
−1/2
0 ǫ̂ sinh kh|a0| (3.15)

where ǫ̂ = ǫ/h is a nondimensional wavemaker amplitude. For a given
value of ǫ̂ and |a0|, (3.15) defines the amplitude of a wave incident
on the screen. Hence, for a given screen porosity, p, we can use the
process outlined in §2.2 with B = 0 to define an equivalent linear drag
coefficient KL to be used to determine the far-field waves via (3.12).
However, since KL is implicitly a function of |a0|, the solution must be
arrived at by numerical iteration using the value of a0 resulting from
the solution

a0 =
L0(1 + µ0)

(1 + µ0(1− e2ika))
(3.16)

which is found from using (3.12) in (3.7). The added complexity of
iterating the solution is simply an expected by-product of including
non-linearity in the screen condition.

A different approach, and one which we will use to determine the
accuracy of the procedure outlined above, is to determine the drag
induced by the screen directly. That is, we assume only drag effects
hold and using (3.2) in (2.4) with L = 0 we see that the non-linear
condition at the screen can be written

[φ]x=0+

x=0− = i
KNL

k2
φx(0, y)|φx(0, y)| (3.17)

where now KNL = (4/3π)CD(ωǫ)k
2 = 4CDkhǫ̂/(3π) is a proxy for

the non-linear drag coefficient in terms of the wavemaker amplitude.
Applying (3.17) to (3.8) gives rise to a non-linear system of equations
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Figure 6. The damping effect |c0|/L0 for a wavemaker next to a fixed screen with
a

h
= 5 for ǫ

h
= 0.025, 0.05 and 0.1. In panel (a): For a screen of porosity p = 0.25;

(b): p = 0.75. Dashed lines show the fully non-linear results and the crosses the
equivalent linear results.

similar to those in (2.39), and given by

− 2
(cm − Lme−kma)

kmh(1− e−2kma)
=

iKNL

∞
∑

n=0

cn
h

∫ h

0

∣

∣

∣

∣

∣

∞
∑

r=0

crψr(y)

∣

∣

∣

∣

∣

ψn(y)ψm(y)dy (3.18)

for m = 0, 1, . . .. As in §2.2 truncating this numerically to a small
number (10) of terms is sufficient for the convergence we require and
non-linearity can be introduced by a scaling factor on the right-hand
side which increases from zero, where the solution cm = Lme−kma is
explicit, to unity. Once the solution to (3.18) is found numerically, we
use various measures to assess the accuracy of the linearised solution
via comparison to the solution of the nonlinear problem.

We first consider the power lost through damping over a cycle at
the screen at x = 0. This given by,

Wout = −1
2ℜ

{

iωρ

∫ h

0
[φ]+−φ̄xdy

}

, (3.19)

where the bar represents complex conjugation and [φ]+− = φ(0+, y) −
φ(0−, y). Applying Green’s identity to the potential φ and its conjugate
φ̄ in both regions x > 0 and x < 0,

∫∫

V

φ̄∇2φ− φ∇2φ̄dxdy =

∫

S

φ̄
∂φ

∂n
− φ

∂φ̄

∂n
dS, (3.20)

where ∂/∂n is the derivative of the outward normal to the surface S
bounding the volume V . The left-hand side of (3.20) is clearly zero.
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Evaluating the components of the line integral along the boundary S,
we see that the integrand along y = 0 and y = h is zero and only
contributions along x = −a, x = ±0 and as x → ∞ remain. At the
wavemaker we have that φx = 1, whilst as x→ ∞ the evanescent terms
in the potential decay to zero and we are only left with the propagating
mode. Thus application of (3.20) to x > 0 gives,

0 = −

∫

x=0+

ℑ
{

φφ̄x
}

dy −
|c0|

2h

k
, (3.21)

and in −a < x < 0 gives

0 =

∫

x=0−

ℑ
{

φφ̄x
}

dy −

∫

x=−a

ℑ{φ} dy. (3.22)

We note that the latter integral is just proportional to the imaginary
part of the pressure force on the wavemaker and so

∫

x=−a

ℑ{φ} dy = −
m

ρ
νw (3.23)

where νw is the damping on the wavemaker and m = 2ρah the mass of
water contained between the wavemaker and the screen. Thus summing
the contributions from each region we have,

∫

x=0

ℑ
{

[φ]+−φ̄x
}

dy = −
|c0|

2h

k
+
m

ρ
νw, (3.24)

where we evaluate the damping coefficient at the wavemaker to be,

m

ρ
νw =

(

2b0e
ika − L0

) L0

ik
+

∑

n=1

(

2bne
−kna − Ln

) Ln

−kn
. (3.25)
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The rate of work done to displace the wavemaker, which can be ex-
pressed as

Win = 1
2ℜ

{

iωρ

∫ h

0
φφ̄xdy

}

= −1
2ωρ

∫ h

0
ℑ{φ} dy = 1

2mωνw, (3.26)

is then used to nondimensionlise the power loss at the screen and thus
we write,

Ploss =
Wout

Win
= 1−

|c0|
2

kaνw
. (3.27)

We also determine the far-field radiated wave amplitude Â∞. The
far-field radiated wave coefficient is c0 and the dimensionless far-field
waves, from (3.6) in (3.13), are described by

η(x)

h
= Â∞eikx, x→ ∞ (3.28)

where

Â∞ = N
−1/2
0 ǫ̂ sinh khc0. (3.29)

Thus, we can use the solution to the non-linear problem (3.18) to
compare far-field radiated wave amplitudes from the linearised solution
(3.12) when blockage effects are switched off (C = 0 or γ = iKL).

These comparisons are shown in figure 6 and 7. When no screen is
present, the solution is (3.29) with L0 replacing c0. Thus, we consider
the damping effect c0/L0. Figure 6(a) and (b) show results for a screen
of porosity p = 0.25 and p = 0.75 respectively. The bay width is taken
to be a

h = 5 and oscillation amplitudes are varied. The agreement
between the fully non-linear and equivalent linear results is excellent.
In figure 7 we narrow the bay width, an arrangement where we might
expect slightly less good agreement as we are using a drag coefficient
determined from an unbounded problem, however results still fit across
a full range of kh.

Once could argue that solving (3.18) directly is an easier route to
determining an equivalent linear drag condition, rather than iterating
towards a solution which itself calculates a linear drag coefficient from a
different problem. However, once a blockage coefficient is included, the
value of a0, the wave amplitude incident upon the screen is altered and
the iterative scheme takes this into account, whilst the calculation of
(3.18) has isolated the drag from the inertia. The argument is therefore
made in favour of the iterative scheme.

In figure 8 we combine the both the drag and inertia coefficients,
as in (2.49). For a screen of given porosity, as the number of gaps
in the screen are increased and it tends to a porous screen, kd → 0.
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Considering figure 2 and (2.31), in this limit C → 0 and the inertial
effects are diminished. In panel (a) of figure 8 we show results for a
screen with 5 gaps and panel (b) 50 gaps and compare with the results
obtained when we isolated the effects of drag. As expected for a screen
with 50 gaps there is less influence of the inertial effects. Figure 8 show
results for a screen of porosity p = 0.25, for screens of higher porosity,
the inertial coefficient C will be smaller for fixed wave number k as in
(2.29).

Points at which c0/L0 = 1 in figure 6 relate to sloshing frequencies
of the bay region between the wavemaker and the screen. Notice that
in figure 8 (a), for a screen with 5 gaps there are some frequencies at
which c0/L0 > 1 when we include the inertial effects of the screen.
This is more pronounced for smaller forcing amplitudes. This is an
unexpected result which suggests that the wave amplitudes at infinity
in the presence of a screen are larger in those frequency intervals than
if the screen were not present. Note that the screen is still taking power
out of the system, as in figure 8 (e) and (f), though presumably the work
done in moving the wavemaker is much greater than in the absence of
the screen.

3.2. Waves incident in a screen in front of a wall

In the previous demonstration, waves were incident on the screen from
only one direction (x < 0) due to the wavemaker. Here, we send in

a wave from x = −∞ of prescribed dimensionless amplitude Â to a
fixed screen at x = 0, but by placing a vertical perfectly reflecting
wall at x = a allow travelling waves to approach the screen from both
directions.

We set up eigenfunction expansions in x < 0 as

φ = (eikx +Re−ikx)ψ0(y)−
∞
∑

n=1

ane
knxψn(y) (3.30)

and in and 0 < x < a

φ = (b0e
−ik(x−a) + c0e

ikx)ψ0(y) +
∞
∑

n=1

(

bne
kn(x−a) + cne

−knx
)

ψn(y),

(3.31)
which satisfies Laplace’s equation throughout the fluid and the bound-
ary conditions on y = 0 and y = h given by (2.2). We also need to
impose

φx = 0 on x = a, (3.32)

a no flow condition on the wall, which gives us that

bn = cne
−kna, n ≥ 0. (3.33)
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Figure 8. |c0|/L0, |Â∞| and Ploss for a wavemaker next to a fixed screen of porosity
p = 0.25, with a

h
= 5 for varying oscillation amplitudes ǫ

h
= 0.025, 0.05 and 0.1,

including inertial effects. In panel (a), (c) and (e): For a screen with 5 gaps. In panel
(b), (d) and (f): For a screen with 50 gaps. Lines show results when the effects of
drag are isolated and the crosses the results when the effects of both drag and inertia
are included.

Additionally, continuity of velocity at the screen, (2.3) gives the relation

cn =
an

1− e−2kna
, n ≥ 0, (3.34)

slattedscreen_withchanges.tex; 28/10/2011; 12:45; p.25



26

where a0 = 1 − R. Finally, it remains to apply our screen averaged
condition (3.10). Matching the n = 0 mode, it follows that

1−
a0

1− e2ika
= µ0a0, (3.35)

such that,

a0 =
1− e2ika

1 + µ0(1− e2ika)
, (3.36)

where we recall that R = 1 − a0 is the reflection coefficient, and µ0 =
iγ/2 with γ = C+ iKL. Thus, if KL is known - after being found using
the same iterative procedure as in the previous section - then R can be
determined.

Notice that if KL → ∞, and the screen becomes solid then a0 → 0
and R = 1 as expected. Additionally if KL → 0, as if there were no
barrier in the way, then R = e2ika. Here the dimensionless power loss
at the screen is simply Ploss = 1 − |R|2, therefore in this section we
only consider the reflection coefficient |R|.

As opposed to making comparisons with results obtained through
solving the fully non-linear system and considering the effects of in-
cluding or neglecting inertia, as in the previous section, here we can
compare our theoretical results with scaled experiments conducted by
Bennett et al. (1992) to determine the reflection coefficient R for a
porous screen with an impermeable backing wall.

As an additional measure of the accuracy of our results, it is useful
to note that the screen at x = 0 were solid then resonant behaviour
would be expected near the sloshing frequencies of the region con-
tained by the wall and the screen. These frequencies are given by
Kh = nπh/a tanh(nπh/a).

In figure 9 we compare the results of our equivalent linearised prob-
lem, including both drag and inertia, with the experimental results
of Bennett et al. (1992) and use this as a measure in determining
the accuracy of our model approximation. The reflection coefficient
is plotted against the frequency f (in Hz.), where f = ω/(2π). Our
results show much similarity to the theoretical solutions presented by
Bennett et al. (1992), with good correspondence between the location
of peaks in the reflection coefficient and frequencies at which standing
waves would be expected if the screen were impermeable. Although
there is still some disparity when the screen is of very low porosity in
figure 9(f), and when the screen is closer to the wall as in figure 9(a),
our model shows better agreement with experimental results here than
in figure 5.
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Figure 9. |R| against frequency in Hz. for a wave incident to a screen of varying
porosity in front of a wall compared with experimental data from Bennett et al.
(1992). The two sets of results seen in each plot correspond to the experimental
tests that were performed for two wave spectra for incident waves of amplitude
Â = 0.0372 (+) and Â = 0.0581 (×) covering frequencies relating to wave periods
of 4.5− 14 s and 2.9− 6.2 s respectively.

3.3. Forced sloshing of waves in a rectangular tank

A study not reported in this paper, on a wavemaker next to a moving
slatted screen, shows very good agreement between fully nonlinear and
linear calculations even though the screen condition has been modified
to account for the relative velocity between the fluid and the moving
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screen. On this basis, we feel confident that this procedure will work
effectively in this tank sloshing problem where both walls and screen
are moving simultaneously.

The configuration is now of a rectangular tank filled with fluid to a
depth h with vertical sides at x = ±a and a centrally-placed screen at
x = 0, all forced to oscillate in tandem with dimensionless amplitude ǫ̂
and frequency ω. Thus, the tank includes features from both previous
examples. The aim is to determine the solution using linearised screen-
averaged conditions derived from the canonical problems considered in
§2. In particular we focus on the components of the complex horizontal
force induced by the fluid motion on the tank, the so-called added mass
and damping coefficients.

The governing equations for this system are again given by (2.1)–
(2.4), where now V (y, t) ≡ Φx(0, y, t) − ωǫ cosωt is the relative hori-
zontal velocity of the fluid to that of the screen.

As before, we decompose the potential as in (3.2). It is clear that
the oscillations will be antisymmetric, such that φ(x, y) = −φ(−x, y),
then we only need consider the boundary conditions on the half tank
in x < 0. On the vertical wall of the tank, the horizontal velocity of the
fluid, when linearised is equivalent to

φx = 1, on x = −a, 0 < y < h. (3.37)

At the screen, the condition for continuity of velocity (2.8) still
holds, however the dynamic linearised screen-averaged condition with
antisymmetry is now written as

−2φ(0−, y) =
γ

k

(

φx(0
−, y)− 1

)

, 0 < y < h. (3.38)

We construct eigenfunction expansions in the region x < 0 of the form,

φ(x, y) =
1

ik

(

a0e
ik(x+a) − b0e

−ikx
)

ψ0(y)

−
∞
∑

n=1

1

kn

(

ane
−kn(x+a) − bne

knx
)

ψn(y). (3.39)

Applying (3.37) to (3.39) we obtain a relation between coefficients,

an = −bne
−kna + Ln for n ≥ 0. (3.40)

To simplify the algebra, we introduce coefficients dn for n = 0, 1, 2 . . .
such that

φx(0, y)− 1 = d0ψ0(y) +
∞
∑

n=1

dnψn(y), (3.41)
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where

dn = Ln

(

e−kna − 1
)

+ bn

(

1− e−2kna
)

for n ≥ 0. (3.42)

Thus, applying (3.38) to (3.39) using the relations (3.40) and (3.42),
multiplying by ψm(y) for m ≥ 0 and integrating over the depth [0, h]
we obtain,

1

−kn

(

Ln(e
−kna − 1)2 + dn(1 + e−2kna)

1− e−2kna

)

=
γ

2k
dn. (3.43)

Rearranging, we have that

dn

(

µn(1− e−2kna) + (1 + e−2kna)
)

= −Ln(e
−kna − 1)2, (3.44)

for n ≥ 0, where µn = γkn/(2k). Once the dn’s are known we find
the added mass and damping and compare with the fully non-linear
counterpart for our sloshing problem to assess the accuracy of our
equivalent linearised results. The non-linear condition at the screen,
isolating the drag effects assuming that L = 0, is given by

[φ]x=0+

x=0− = i
KNL

k2
(φx(0, y)− 1) |φx(0, y)− 1|. (3.45)

Applying this we obtain a non-linear system of equations,

− 2
dm

(

e−2kma + 1
)

+ Lm

(

e−kma − 1
)2

kmh(1− e−2kma)
=

iKNL

∞
∑

n=0

dn
h

∫ h

0

∣

∣

∣

∣

∣

∞
∑

r=0

drψr(y)

∣

∣

∣

∣

∣

ψn(y)ψm(y)dy. (3.46)

We implement the same numerical procedure as before, introducing a
scaling factor to the right-hand side which increases from zero, where

now the solution dm = −Lm

(

e−kma − 1
)2
/
(

e−2kma + 1
)

is explicit, to
unity.

Once the dm’s have been found, we can calculate the hydrodynamic
forces exerted on the tank by the sloshing motion of the fluid, using
the integrated pressure over the tank walls and screen, to be

F = −2iωρ

∫ h

0

(

φ(0−, y)− φ(−a, y)
)

dy, (3.47)

where the factor of two comes from the fact that φ(x, y) is antisymmet-
ric. Decomposing F into its real and imaginary parts and nondimen-
sionalising with respect to the mass of the water in the tank m = 2ρah
gives,

F = −iωm (µ+ iν) , (3.48)
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where µ is the non dimensional added mass and ν the damping. The
net horizontal force can be explicitly integrated to be

F =− iωm

(

L0

ika

(eika − 1)2

(e2ika − 1)
(d0 + 2L0)

+
∞
∑

n=1

Ln

−kna

(e−kna − 1)2

e−2kna − 1
(dn + 2Ln)

)

. (3.49)

Figures 10 and 11 plot the added mass and damping coefficients µ
and ν for tanks of aspect ratio a/h = 4 and a/h = 2 respectively. We
notice that in the limit of the forcing frequency going to zero µ → 1,
that is to say that the added mass tends to the mass of water in the
tank, and ν → 0 which is as to be expected. We look to compare the
effect of varying a/h, ǫ/h and the porosity of the screen. As before we
consider the effect of linearised drag (i. e. ignore inertia) on the screen
and compare the approximate with the full nonlinear drag calculations.
As expected better agreement with the fully non-linear results is seen
for wider tanks and thus, screens of higher porosity also. Consider
panels (a), (b) and (c) of figures 10 and 11 as ǫ/h is increased from
0.0125 to 0.05, greater deviation is seen from the solution to the non-
linear problem. Further numerical investigations with screens of mid
porosity, give good agreement across a range of forcing amplitudes.

In figure 12 we look at the absolute value of the equivalent linear
drag coefficient |KL| that the iterative method outlined in §3.1 outputs.
We note that for small kd there is an approximate linear relationship
between |KL| and ǫ/h, which will be useful when applying this approach
to more complicated problems involving multiple screens in tanks for
example.

Finally we include inertia in our screen boundary condition. Inertial
effects, shown in figure 13, despite altering the results to a lesser degree
than in previous settings considered, are seen to be more pronounced
for screens of lower porosity as predicted by Tuck’s (1975) and Mei’s
(1983) long wavelength result (2.29).

4. Conclusions

In this paper an investigation has been conducted into the effect of a
thin slatted barrier upon the propagation of waves. A canonical problem
of waves from infinity incident on a single slatted barrier, incorporating
a detailed model of the non-linear flow conditions across the screen,
has been used to develop equivalent linear screen-averaged conditions.
These linear conditions have been applied across screens in a series of
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Figure 10. Added mass and damping coefficients µ and ν, shown by a solid and
dashed line respectively, for a forced tank with a centrally placed screen. Tank
aspect ratio a

h
= 4 for each panel. Lines show the fully non-linear results and the

crosses the equivalent linear results.

model problems involving slatted barriers in other settings. The aim of
this paper has been to show that these equivalent linear conditions de-
rived from the canonical problem provide a good approximation to the
exact solutions in a variety of problems. This has been demonstrated
by comparing results with a direct non-linear calculation arising from
application of the quadratic drag law directly to each of these settings.

The work of Mei et al. (1983) and Bennett et al. (1992) form the
basis of the approach for the canonical problem of waves incident on
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Figure 11. Added mass and damping coefficients µ and ν, shown by a solid and
dashed line respectively, for a forced tank with a centrally placed screen. Tank
aspect ratio a

h
= 2 in each panel. Lines show the fully non-linear results and the

crosses the equivalent linear results.

a single screen. The effects of drag and inertia are isolated from one
another and treated separately. An equivalent screen averaged inertia
coefficient is found from a considering the precise slat/gap structure of
the screen and is shown to agree with the asymptotic result of Tuck
(1975) in the long wavelength limit. An equivalent linear drag coefficient
has been derived from consideration of the solution of the non-linear
problem in which a quadratic turbulent drag law is imposed across the
screen.
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Figure 12. The absolute value of the equivalent linear drag coefficient |KL| for a
single centrally placed screen of porosity p = 0.5 in a forced tank with aspect ratio
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h
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h
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Figure 13. Added mass and damping coefficients µ and ν, shown by a solid and
dashed line respectively, for a forced tank with a centrally placed screen with five
gaps. In all panels ǫ

h
= 0.05. Lines show the equivalent linear results with drag

effects only, crosses with both drag and inertial effects included.
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The results of the linearised approximation are shown to give good
qualitative agreement with those from an exact non-linear solution of
each of the model problems. Comparisons of the calculated reflection
coefficient from waves incident on a vertical slatted screen in front of
a backing wall with the experimental results of Bennett et al. (1992)
show excellent agreement.

We find that for a screen of given porosity and for fixed wavenumber,
k, as the number of gaps in the screen is increased and the barrier tends
to a thin porous screen the inertial effects are diminished. Similarly for a
screen with a given number of gaps, inertial effects are seen to decrease
with an increase in screen porosity, for fixed wavenumber k.

It is envisaged that this approach could be extended to more com-
plicated problems, such as problems involving more than one screen
or with application to TLDs, where a direct nonlinear calculation be-
comes algebraically difficult. Numerical evidence suggests that for low
frequency wave motion the equivalent linear drag coefficient is approx-
imately proportional to the forcing amplitude, it may be possible to
take advantage of this fact when looking at low frequency oscillations
of rectangular tanks with multiple screens, for example.
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