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Summary

Two popular and computationally-inexpensive class of methods for approximating
the propagation of surface waves over two-dimensional variable bathymetry are “step
approximations” and “depth-averaged models”. In the former, the bathymetry
is discretised into short sections of constant depth connected by vertical steps.
Scattering across the bathymetry is calculated from the product of 2 × 2 transfer
matrices whose entries encode scattering properties at each vertical step taken in
isolation from all others. In the latter, a separable depth dependence is assumed in
the underlying velocity field and a vertical averaging process is implemented leading
to a 2nd order Ordinary Differential Equation (ODE).

In this paper the step approximation is revisited and shown to be equivalent to an
ODE describing a depth-averaged model in the limit of zero-step length. The ODE
depends on how the solution to the canonical vertical step problem is approximated.
If a shallow-water approximation is used, then the well-known linear shallow water
equation results. If a plane-wave variational approximation is used, then a new variant
of the Mild-Slope Equations is recovered.

1. Introduction

A problem of longstanding interest in the setting of classical linearised water wave theory
is how to determine the two-dimensional scattering of incident plane-crested surface waves
by changes in the fluid depth. Only one exact solution is known, due to (1), for a particular
class of bathymetry described by a smooth transition from one depth to another. In all
other cases an approximate solution must be sought and a number of approaches can be
employed.
Numerical methods that apply directly to the original boundary-value problem fall into

two main classes. Finite element methods place the governing equation and boundary
conditions on a discretised domain and connecting boundary. They are normally applied
to problems posed with a non-linear free surface condition (e.g. (2)). Boundary
integral methods use Green’s functions to reformulate the boundary-value problem, without
approximation, into integral equations over one-dimensional curves in space. Those integral
equations can subsequently be approximated by discretisation, whence they are referred to
as boundary element methods (hydrodynamic solvers including WAMIT and NEMOH are
based on this – e.g. see (3)), or by employing spectral methods (e.g. (4), (5)).
The approaches described above have the property that approximations converge to the

exact solution with increasing refinement of the numerical scheme. However, these methods
also come with a relatively high computational cost and it has long been recognised in
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practical coastal engineering applications that accurate solutions of the exact linear problem
(itself already an approximation to the full non-linear problem) are not always necessary
and it can often be sufficient to obtain good, less numerically expensive, approximations.
A number of approaches have been developed over the years with this goal in mind. This

is typically done either by simplifying the governing Laplace equation or the boundary or
both. One such method, termed the ‘step approximation’, developed about 30 years ago
(e.g. (6), (7), (8), (9), (10), (11), (12), (13)), involves approximating the continuous
function representing the depth, h(x), by piecewise constants and the bed is therefore
represented by a finite number of discrete sections of constant depth connected by vertical
steps. Besides this approximation to the geometry, a further approximation is usually
introduced to simplify the calculation of the scattering process which is that the influence of
evanescent waves generated at each step on neighbouring steps is neglected. An exception
was (10) who extended the basic method to include the influence of a finite number of
evanescent waves. In addition, the solution to the canonical problem that remains, that of
the scattering by single isolated step, is required and this is typically approximated also.
Again there are exceptions: (13) solved the two-dimensional problem in a mapped domain
of uniform height in which the step manifested itself as an abrupt change in one of the lateral
boundary condition conditions allowing the solution to be found without approximation.
Combining all three approximations described above results in a fast numerical scheme
in which the scattering process over a local change in depth can be represented by the
multiplication of N two-by-two matrices (where N is the number of steps describing h(x))
whose entries are given explicitly. Numerical results (e.g. (13)) have shown the method can
provide a good approximation to independently-derived exact or accurate computational
results. More recent applications of the step approximation include (14) and (15).
However, until now it has been unclear whether the step approximation method converges

to the solution of the original problem in the limit N → ∞, as the step size is reduced to
zero. In this paper we consider this limit and show it does not. In fact, it will be shown that
the limiting step-approximation calculation of scattering can be recast in terms of solutions
of a 2nd order ODE whose coefficients are related to the solution of the canonical problem
of scattering across a single step. When the single step scattering is approximated using
shallow-water (or long-wave) assumptions, we will show that the corresponding limiting
2nd order ODE is the Shallow Water Equation (or SWE – see, e.g. (16)). When scattering
at a step is approximated by a variational principle involving a plane-wave solution (an
approximation due to (17)) we will show that corresponding limiting 2nd order ODE is a
new version of the Mild-Slope Equation (MSE) recently derived by (18).
The SWE and MSE are themselves popular approximate models of wave scattering which

have, prior to this work, been considered independent to the step-approximation approach.
In particular, the bathymetry is regarded as continuous whilst simplifying assumptions
are made about the structure of the solution in the domain. Classified as depth-averaged
models, their popularity arises from the simultaneous removal of the complication of the
variable depth and reduction in the order of the underlying equations. Both the SWE and
MSE models are underpinned by an assumption that the bed gradients are small when
compared to h/λ, λ being the wavelength; the SWE distinguishes itself from the MSE in
that it also requires h/λ to be small. A consequence of this connection made in this paper
is that the restriction on bed gradients needs to apply to step approximations also. This
conclusion is supported by the following comment found in (13): “Thus, according to a
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referee, although the Devillard method works surprisingly well for the sinusoidal bottom
profile considered by OHare & Davies (1992) (sic) it does not work for any rapidly varying
bottom profiles.”
The SWE can be derived in many different ways. Stoker’s (16) account describes the

derivation as the leading order equation that results from an expansion, in the small
parameter h/λ, of velocities, pressures and surface elevations in the governing mass
and (linearised) momentum equations. The derivation reveals that the velocity field
is independent of depth at leading order. When this assumption is forced upon the
approximation to the velocity field in a variational principle, as in (18), the Shallow Water
Equations result also. The MSE results from the same variational principle as the SWE but
using a depth dependence whose functional form coincides with that for waves propagating
over a locally-flat bed.
The MSE has a long history, with the earliest models attributed to (19) and (20). (21)

provides an account of the rich background to the MSE and builds from the paper of
(22) who introduced the so-called Modified MSE (MMSE). At the time of writing a new
‘fundamental’ version of the MSE has emerged (18) which is established by adopting a more
general variational principle, relaxing constraints placed on earlier derivations including
those of (22) and (21). Thus the underlying variational principle is capable of reproducing
both the MMSE of (22) and the Complementary MSE (CMSE) of (23) and (24), in each
case by introducing additional constraints on the approximation.
The structure of the paper is as follows. Sections 2 & 3 provide the background and

details to the step approximation method. Much of this material can be found in (17) and
elsewhere. However, these details are required to set up the new theory developed in Section
4 in which the step approximation is considered in the limit as the step size tends to zero
using an approach which the author believes to be new. Section 5 summarises the work and
suggests how it might be extended or developed to help shed light on other problems.

2. Setting up the step approximation

Cartesian coordinates (x, z) are used with z = 0 coinciding with the mean free surface and z
pointing upwards. The fluid bed is described by z = −h(x) where h is a continuous function
which tends to h1 as x → −∞ and to hN+1 as x → +∞. Waves are incident from x = −∞
and are partially reflected back to −∞ and partially transmitted to x = ∞. It is supposed
that we define the points xn, 1 ≤ n ≤ N and make an approximation HN (x), say, to h(x)
of the form

HN (x) = h(1
2
(xn + xn+1)) = hn+1, xn < x < xn+1

for n = 1, . . . , N − 1 with HN (x) = h1 for x < x1 and HN (x) = hN+1 for x > xN . We do
not elaborate on strategies for choosing xn here, but assume whatever strategy is adopted
ensures that limN→∞ HN (x) approaches h(x) under some reasonable measure.
Wave scattering over the piecewise-constant fluid depth, HN (x), is considered under the

step-approximation method in which propagating waves across each section of constant
depth are connected by discrete scattering processes at the discontinuities, x = xn, of
HN (x). It is also assumed that the calculation of scattering at x = xn is made in isolation of
all other discontinuities. Thus, the canonical problem at the heart of the step-approximation
method is to determine the relation between incoming and outgoing propagating wave
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amplitudes as waves pass across a vertical step from one constant depth to another. This
problem is considered in the next section.

3. Transfer matrix for a single step

In x < 0 suppose the fluid depth is h1 and in x > 0 it is h2. To consider a general step at
x = xn we can replace h1 by hn and h2 by hn+1 and x by x− xn throughout. For now, we
assume h2 < h1 and will comment on the reversal of this case later. A vertical wall runs over
−h1 < z < −h2 on x = 0. Linearised time-harmonic assumptions apply to the governing
equations. That is the fluid is assumed to be incompressible and inviscid and its motion
irrotational of angular frequency ω and of small amplitude. Thus the two-dimensional fluid
velocity is u(x, z, t) = ℜ{[∇φ(x, z)]e−iωt} where

∇2φ = 0 (3.1)

in the fluid domain and
φz − (ω2/g)φ = 0 (3.2)

where g is gravity. Where the fluid connects to rigid boundaries with outward normal n

n · ∇φ = 0. (3.3)

Far away from both the left and right of the step, we assume incoming and outgoing waves.
We write

φ(x, z) ∼
{

(A1e
ik1x +B1e

−ik1x)Z0(h1, z), x → −∞
(A2e

ik2x +B2e
−ik2x)Z0(h2, z), x → ∞ (3.4)

where ki = k(hi), i = 1, 2, are defined as the real positive roots of the dispersion relation
ω2/g = k(h) tanh(k(h)h) and

Z0(h, z) = C0(h) cosh[k(h)(h+ z)] (3.5)

where C0(h) is an arbitrary real scale factor whose definition affects the scaling of the surface
amplitudes given by ℜ{(iω/g)φ(x, 0)e−iωt}.

3.1 Formulation of integral equations

We follow (17) and (25). Solutions in x < 0 and x > 0 are expressed in terms of separation
series. In x < 0 we write

φ(x, z) = (A1e
ik1x +B1e

−ik1x)Z0(h1, z) +

∞
∑

n=1

a1,ne
γ1,nxZn(h1, z) (3.6)

and in x > 0

φ(x, z) = (A2e
ik2x +B2e

−ik2x)Z0(h2, z)−
∞
∑

n=1

a2,ne
−γ2,nxZn(h2, z) (3.7)

where
Zn(hi, z) = cos[γi,n(hi + z)] (3.8)



step approximations and depth-averaged models 5

for i = 1, 2 and γi,n, n ≥ 1, are the real roots of ω2/g = −γi,n tan(γi,nhi). We note the
orthogonality condition

1

h

∫ 0

−h

Zn(h, z)Zm(h, z) dz = δmnNn(h) (3.9)

for n,m ≥ 0 where

N0(h) =
1

2

(

1 +
sinh(2k(h)h)

2k(h)h

)

C2
0 (h) (3.10)

and

Nn(hi) =
1

2

(

1 +
sin(2γi,nhi)

2γi,nhi

)

(3.11)

for i = 1, 2. We let U(z) = φx(0, z), −h2 < z < 0 noting that φx(0, z) = 0 for −h1 < z <
−h2 and apply the orthogonality result to the two expansions to give

ikihiN0(hi)(Ai −Bi) =

∫ 0

−h2

U(z)Z0(hi, z) dz (3.12)

and

γi,nhiNn(hi)ai,n =

∫ 0

−h2

U(z)Zn(hi, z) dz (3.13)

each for i = 1, 2. Matching expressions for φ(0, z) from (3.6) and (3.7) across −h2 < z < 0
and reusing (3.13) then results in

(KU)(z) ≡
∫ 0

−h2

U(z′)K(z, z′) dz′ = −(A1 +B1)Z0(h1, z) + (A2 +B2)Z0(h2, z), (3.14)

over −h2 < z < 0 where the kernel of the integral operator K is defined by

K(z, z′) =

∞
∑

n=1

{

Zn(h1, z)Zn(h1, z
′)

Nn(h1)γ1,nh1

+
Zn(h2, z)Zn(h2, z

′)

Nn(h2)γ2,nh2

}

. (3.15)

Linearity of (3.14) allows us to write

U(z) = −(A1 +B1)U1(z) + (A2 +B2)U2(z) (3.16)

where Ui(z), i = 1, 2 satisfy

(KUi)(z) = Z0(hi, z), on −h2 < z < 0. (3.17)

We next define

Sij =

∫ 0

−h2

Uj(z)Z0(hi, z) dz (3.18)

for i, j = 1, 2 and find, using (3.16) in (3.12) with (3.18), that

ikihiN0(hi)(Ai −Bi) = −(A1 +B1)Si1 + (A2 +B2)Si2. (3.19)
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This pair of equations for i = 1, 2 can be organised as
(

−B1

A2

)

= (D+ iS)−1(D− iS)

(

−A1

B2

)

(3.20)

in which vectors representing outgoing wave amplitudes are related to those representing
incoming wave amplitudes via a 2× 2 scattering matrix (as in (17)) where

D =

(

k1h1N0(h1) 0
0 k2h2N0(h2)

)

, S =

(

S11 S12

S21 S22

)

. (3.21)

Since K(z, z′) is symmetric and real and Z0(hi, z) is real then so are Sij , whilst the
symmetry relation Sij = Sji is also readily confirmed. Using just these properties and
the particular structure of the matrix equation (3.21) alone allows us to prove energy
conservation, implying it is automatically satisfied by any approximation to Sij which retains
those properties. Key to this is showing that

(D− iS)−1D(D+ iS)−1 = [(D+ iS)D−1(D− iS)]−1 (3.22)

= [(D− iS)D−1(D+ iS)]−1 = (D+ iS)−1D(D− iS)−1(3.23)

from which

(−B∗

1 , A
∗

2)D

(

−B1

A2

)

= (−A∗

1, B
∗

2)D

(

−A1

B2

)

(3.24)

follows from (3.20) and the properties of S previously stated. This identity equates, once
(3.21) is used, to

k1h1N0(h1)(|A1|2 + |B1|2) = k2h2N0(h2)(|A2|2 + |B2|2) (3.25)

and this expresses conservation of energy. Note the presence of the factors N0(h) which
depend quadratically on the amplitude scaling factor C0(h) according to (3.10).
We have been diverted temporarily from the principal focus of the paper and are actually

concerned with a different arrangement of the equations (3.19) in which amplitudes to the
left of the step connect to those on the right of the step through a transfer matrix (also
sometimes referred to as a transition matrix). Thus, with some work, (3.19) can be arranged
into the form

(

A2

B2

)

=

(

c1 d1
d∗1 c∗1

)(

A1

B1

)

(3.26)

where the asterisk denotes complex conjugation and

c1 =
∆S+ ik1h1N0(h1)S22 + ik2h2N0(h2)S11 − k1h1k2h2N0(h1)N0(h2)

2iS12k2h2N0(h2)
(3.27)

and

d1 =
∆S− ik1h1N0(h1)S22 + ik2h2N0(h2)S11 + k1h1k2h2N0(h1)N0(h2)

2iS12k2h2N0(h2)
(3.28)

with ∆S = det{S} = S11S22 − S12S21.
Again, we observe that the scattering process is therefore determined by the evaluation

of the three real quantities S11, S12 = S21 and S22.



step approximations and depth-averaged models 7

3.2 Variational approximation

In what follows we continue to assume h2 < h1. Consider the definition of the functional

Sij(v, w) = 〈Zj , v〉+ 〈w,Zi〉 − 〈Kw, v〉 (3.29)

for i, j = 1, 2 where Zj represents the function Z0(hj , z), v, w are real functions defined
over −h2 < z < 0 and

〈v, w〉 ≡
∫ 0

−h2

v(z)w(z) dz (3.30)

represents the real inner product. Then

δSij = Sij(v + δv, w + δw)− Sij(v, w) = 〈Zj , δv〉+ 〈δw, Zi〉 − 〈Kw, δv〉 − 〈δw,Kv〉 (3.31)

to first order in the variations δv, δw and using the self-adjointness of the integral operator
K (its kernel is real and symmetric). This shows that the stationary values of Sij coincide
with solutions of the integral equations; that is when v = Ui, w = Uj . At these stationary
values, Sij(Ui, Uj) = Sij . Moreover, approximations to exact values of Sij are second-order
in deviations of the functions v, w from Ui, Uj .
Let us consider using v = αf , w = βf where α, β are real coefficients and f is a prescribed

real function, in Sij and setting ∂Sij/∂α = 0 and ∂Sij/∂β = 0, gives α = 〈f, Zi〉/〈Kf, f〉
and β = 〈f, Zj〉/〈Kf, f〉 which allows us to infer that

Sij ≈
〈f, Zi〉〈f, Zj〉

〈Kf, f〉 . (3.32)

The accuracy of this approximation depends upon how close f is to the exact functional
form of Ui, i = 1, 2, with errors proportional to terms like 〈f − Ui, f − Uj〉; that is in an
averaged, not local, sense.
Of course, we can improve on the approximation to Sij by expanding v and w in a set

of (more than one) basis functions and the variational approximation outlined above leads
to systems of equations which coincide with an application of Galerkin’s method to the
integral equations. This is pursued in (25), but is not immediately relevant to the current
work.
Under the step approximation we envisage small step heights (h2 − h1 ≪ h2) and thus

weak scattering at isolated steps. Indeed, as the discretisation of the topography becomes
increasingly refined then the scattering at each step, whose height is reduced in proportion,
becomes weaker. Of course, simultaneously the steps become shorter in length too, but
the propagation of information from one step to another is a separate issue, dealt with
by scattering matrices. Moreover, throughout most of the depth of the fluid and away
from the step itself, the principle underlying fluid behaviour will be that associated with
a propagating wave, with some local correction to account for the step. In relation to
the remarks made after (3.32) it is reasonable to suppose that choice f = Z0(h2, z) is an
obvious candidate for the approximation. This is the choice made by (17) albeit for steps of
arbitrary height not just small step heights. We will not need the details of the calculation
of Sij according to (3.18) and this can be found in (17). A different choice could have been
to use the function f = 1/(h2

2 − z2)1/3 advocated by (25); this is the first term in a set of
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functions used within Galerkin’s method. This choice sacrifices the representation of the
fluid motion through the depth in order to capture its local behaviour close to the corner
of the step and is accurate for large steps rising close to the surface but is not as accurate
as the choice of (17) for the shallow steps under consideration here.

3.3 Shallow water

Under a long wave/shallow water assumption approximations to the governing equations
can be made, the consequence of which means the potential in x < 0 where the depth is h1

can be written as
φ(x, z) ≈ ϕ(x) = (A1e

ik1x +B1e
−ik1x) (3.33)

and in x > 0 where the depth is h2,

φ(x, z) ≈ ϕ(x) = (A2e
ik2x +B1e

−ik2x) (3.34)

where, now, ki are connected to the depth hi by the shallow water relation k2i hi = ω2/g.
The formal assumptions of shallow water theory are violated near the step, but (26)

provides the justification for the application of matching conditions at the step itself. Across
x = 0, the requirement that the free surface (proportional to ϕ(x)) be continuous gives
ϕ(0−) = ϕ(0+) whilst continuity of mass flux requires h1ϕ

′(0−) = h2ϕ
′(0+). Application of

these two conditions to (3.33) and (3.34) results in a transfer matrix with the same structure
as in (3.26) but with (3.27), (3.28) replaced by the simpler expressions

c1 = 1

2
(1 + k1h1/k2h2), d1 = 1

2
(1− k1h1/k2h2). (3.35)

4. Scattering across variable bathymetry under the step approximation

In the previous section we have put in place a transfer matrix for a single step from depth h1

to h2 expressed in the form (3.26) which is established either by an exact integral equation
formulation paired with a variational approximation or by using shallow water/long wave
theory. We now use this transfer matrix to determine overall scattering by the piecewise
constant depth HN (x) as described at the beginning of §2.
Over the section xn−1 < x < xn where HN (x) = hn we assign An and Bn to amplitudes

of right and left-propagating waves (a temporary extension is made to existing notation so
that x0 = −∞ and xN+1 = ∞.) Consider the step at x = xn and letting X = x − xn we
have, sufficiently far away from the vertical step at X = 0 joining depths hn to hn+1, the
conditions

φ(x, z) ∼ (Ane
iknxneiknX +Bne

−iknxne−iknX)Z0(hn, z), xn−1 ≪ x ≪ xn (4.1)

and

φ(x, z) ∼ (An+1e
ikn+1xneikn+1X +Bn+1e

−ikn+1xne−ikn+1X)Z0(hn+1, z), xn ≪ x ≪ xn+1

(4.2)
apply. Using the transfer matrix for the step, established in the previous section, it follows
that

(

An+1e
ikn+1xn

Bn+1e
−ikn+1xn

)

=

(

cn dn
d∗n c∗n

)(

Ane
iknxn

Bne
−iknxn

)

(4.3)
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in which cn and dn depend on hn and hn+1 in a natural extension of the definitions of c1
and d1 in terms of h1 and h2. We apply this relation recursively to give

(

An+1e
ikn+1xn

Bn+1e
−ikn+1xn

)

= Qn

(

A1

B1

)

(4.4)

(for mathematical convenience we now redefine the auxiliary point, x0 = 0) where

Qn = PnPn−1 . . .P1 (4.5)

and

Pn =

(

cn dn
d∗n c∗n

)(

eiknδn 0
0 e−iknδn

)

(4.6)

with δn = xn − xn−1. On account of the particular structure of Pn we can write

Qn =

(

βn γn
γ∗

n β∗

n

)

(4.7)

where the entries satisfy the recurrence relation

βn = cne
iknδnβn−1 + dne

−iknδnγ∗

n−1 (4.8)

and

γn = cne
iknδnγn−1 + dne

−iknδnβ∗

n−1 (4.9)

with β1 = c1e
ik1x1 and γ1 = d1e

−ik1x1 . Making the following change of variable

Γn = βn + γ∗

n, and Υn = i(βn − γ∗

n) (4.10)

allows us to express the pair of recurrence relations above as

Γn = (cn + dn)(cos knδnΓn−1 + sin knδnΥn−1) (4.11)

and

Υn = (cn − dn)(cos knδnΥn−1 − sin knδnΓn−1) (4.12)

with Γ1 = (c1 + d∗1)e
ik1x1 and Υ1 = i(c1 − d∗1)e

ik1x1 .
For a wave incident of unit amplitude from x = −∞, partially reflected back to x = −∞

with reflection coefficient R and partially transmitted with transmission coefficient T , then
we set A1 = 1, B1 = R, AN+1 = T , BN+1 = 0, so that from (4.4), (4.7) with n = N

R = −γ∗

N

β∗

N

, T = e−ikN+1xN (βN +RγN). (4.13)

In terms of the transformed variables (4.10), we have

R = −ΓN + iΥN

Γ∗

N + iΥ∗

N

, T = e−ikN+1xN (ΓN − iΥN +R(Γ∗

N − iΥ∗

N )). (4.14)
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4.1 The zero step-size limit: shallow water assumption

For the shallow water case the expressions c1 and d1 in (3.35) give us

cn + dn = 1 (4.15)

and

cn − dn =
knhn

kn+1hn+1

=

√
hn

√

hn+1

(4.16)

since k2nhn = ω2/g. But hn+1 = h(xn + 1

2
δn) ≈ h(xn) +

1

2
δnh

′(xn). This leads to

cn − dn ≈ 1− 1

4
(δn−1 + δn)

h′(xn)

h(xn)
(4.17)

to leading order in δn. For simplicity let us assume xn are equally spaced so that δn = δ
for all n, and then

cn − dn ≈ 1− 1

2
δ
h′(xn)

h(xn)
. (4.18)

We return to (4.11), (4.12) which we consider in the limit δn = δ → 0 in conjunction with
the results established above so that, to leading order, we have

Γn − Γn−1 ≈ knδΥn−1, and Υn −Υn−1 ≈ − 1

2
δ
h′(xn)

h(xn)
Υn−1 − knδΓn−1. (4.19)

Additionally it is assumed that Γn = Γ(xn), Υn = Υ(xn), kn = k(h(xn)) form discrete
evaluations of continuous functions and so, under the limit δ → 0 (4.19) becomes

Γ′(x) ≈ k(h(x))Υ(x) and Υ′(x) ≈ − 1

2

h′(x)

h(x)
Υ(x)− k(h(x))Γ(x). (4.20)

The second of these equations can be written

(
√

h(x)Υ(x))′ ≈ −k(h(x))
√

h(x)Γ(x) (4.21)

and when combined with the first equation, with the local shallow water dispersion relation
ω2/g = k2h, gives

(h(x)Γ′(x))′ + (ω2/g)Γ(x) = 0 (4.22)

which may also be expressed as

(k−2Γ′(x))′ + Γ(x) = 0. (4.23)

This ODE is the well-known Shallow Water Equation (SWE).

4.2 The zero step-size limit: non-shallow assumption

We now consider the case of a more general depth in which the one-term variational
approximation has been used to approximate scattering at a step. We have already
advocated the use of the function f = Z0(h2, z) in the approximation (3.32) of Sij . The
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first thing to notice is that the definition (3.32) implies that ∆S = 0 and so from (3.27),
(3.28) we have

cn + dn =
S11

S12
(4.24)

and

cn − dn =
knhnN0(hn)

kn+1hn+1N0(hn+1)

(

S22

S12
+ i

kn+1hn+1N0(hn+1)

S12

)

(4.25)

where, now, the elements of S are calculated assuming hn to the left of the step and hn+1

to its right.
Now, with h2 ≡ hn+1 and f = Z0(hn+1, z), we have

〈f, Z0(hn+1, z)〉 = hn+1N0(hn+1) (4.26)

by the orthogonality definition, (3.9). If we assume equally-spaced points {xn} separated
by δ, a sufficiently small number, then

Z0(hn, z) ≈ Z0(hn+1 − δh′(xn), z) ≈ Z0(hn+1, z)− δh′(xn)
∂Z0

∂h
(hn+1, z) (4.27)

to leading order in δ. This means that

〈f, Z0(hn, z)〉 ≈ hn+1N0(hn+1)− δh′(xn)W1(hn+1) (4.28)

where

W1(h) =

∫ 0

−h

∂Z0

∂h
(h, z)Z0(h, z) dz. (4.29)

The explicit calculation of this term is not needed in this paper. We can now return to
(4.24) and determine, to leading order in δ, that

cn + dn =
〈f, Z0(hn, z)〉

〈f, Z0(hn+1, z)〉
≈ 1− δ

h′(xn)

h(xn)

W1(h(xn))

N0(hn+1)
. (4.30)

For the second term in (4.30) we also need to consider the leading order contribution from
〈Kf, f〉 which is calculated using methods similar to above and found to be O(δ2). That
is to say, evanescent effects do not contribute at leading order in the step length δ. Thus,
(4.25) is represented to leading order as

cn − dn ≈ knhnN0(hn)

kn+1hn+1N0(hn+1)

〈f, Z0(hn+1, z)〉
〈f, Z0(hn, z)〉

. (4.31)

The second part of this fraction is just the reciprocal of the expression for cn + dn and, for
example, the denominator in the first part of the fraction can be expanded using Taylor
series about the nth state to give, ultimately,

cn − dn ≈
(

1− δ
(khN0(h))

′

khN0(h)

∣

∣

∣

∣

x=xn

)

(

1 + δ
h′(xn)

h(xn)

W1(h(xn))

N0(hn)

)

(4.32)
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to leading order in δ. Now we use the two expressions (4.30) and (4.32) in (4.11) and (4.12)
to give

Γn − Γn−1 ≈ −δ
h′(xn)

h(xn)

W1(h(xn))

N0(hn)
Γn + knδΥn−1, (4.33)

and

Υn −Υn−1 ≈ δ

(

h′(xn)

h(xn)

W1(h(xn))

N0(hn)
− (khN0(h))

′

khN0(h)

∣

∣

∣

∣

x=xn

)

Υn−1 − knδΓn−1. (4.34)

Taking the limit δ → 0 in the manner described in §4.1 transforms these equations into the
coupled ODEs

Γ′(x) ≈ −h′(x)W1(h)

h(x)N0(h)
Γ(x) + k(h(x))Υ(x) (4.35)

and

Υ′(x) ≈
(

h′(x)W1(h)

h(x)N0(h)
− (k(h(x))h(x)N0(h))

′

k(h(x))h(x)N0(h)

)

Υ(x)− k(h(x))Γ(x). (4.36)

This latter equation can be arranged as

(khN0Υ)′ ≈ kh′W1Υ− k2hN0Γ (4.37)

(removing arguments to make it read more easily) and the former equation as

(hN0Γ
′)′ ≈ −(h′W1Γ)

′ + (khN0Υ)′ (4.38)

which is enough to eliminate Υ and leaves the equation, after tidying up terms,

(hN0Γ
′)′ +

(

k2hN0 + (h′W1)
′ − (h′W1)

2

hN0

)

Γ = 0. (4.39)

This can also be written as

(W0(h)Γ
′)′ +

(

k2W0(h) +W1(h)h
′′(x) +W2(h)(h

′(x))2
)

Γ = 0 (4.40)

where

W0(h) =

∫ 0

−h

Z2
0 (h, z) dz ≡ hN0(h) (4.41)

and

W2(h) = Ẇ1 −
W 2

1

W0

(4.42)

where Ẇ1 ≡ dW1/dh. We also note that we can write

W1(h) =
d

dh

∫ 0

−h

1

2
Z2
0 (h, z) dz −

1

2
Z2
0 (h,−h) = 1

2
(Ẇ0 − C2

0 (h)). (4.43)

This is a good point at which to take stock. We have shown that (4.40) is the 2nd order
ODE that is derived from taking the limit of step size tends to zero under the plane-wave
variational approximation of (17). We note that (4.40) is very nearly, but not quite, the
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Modifield Mild-Slope Equation of (22): there is a difference in the definition of the final
term defining W2(h). We come back to this point in a moment.
We recall from that the coefficients in the ODE (4.40) are defined in terms of the factor

C0(h) which scales Z0(h, z), introduced in (3.5). It is an arbitrary real function. Thus we
can use the definition of C0(h) to reshape the ODE and we aim to simplify the equation
as far as possible. This process is reminiscent of the rescaling of the Modified Mild-Slope
Equation in (21).
Consider the definition C2

0 = 2/(k(2kh + sinh 2kh)). Then it follows from (4.41), using
the definition (3.9) that

W0(h) =
1

2k2(h)
. (4.44)

It then follows that

Ẇ0(h) = −2k̇

k3
=

2

k(2kh+ sinh 2kh)
(4.45)

after using the dispersion relation to determine k̇. Now from (4.43) we find that W1(h) = 0
and this implies from (4.42) that W2(h) = 0 also. So the under this particular scaling the
ODE (4.40) has been reduced to

(k−2Γ′)′ + Γ = 0. (4.46)

This equation is once again very nearly, but not quite, the transformed Modified Mild-Slope
Equation of (21) which includes an additional term of small magnitude proportional to h′2

multiplying Γ. Instead, however, (4.46) does coincide with a new, simpler, variant of the
Mild-Slope Equations developed recently by (18). Porter describes this new variant as the
‘fundamental Mild Slope Equation’ since it is established within a more general framework
than previous versions of the Mild-Slope Equations that removes bias from the underlying
governing equations and constraints on how they are approximated. It is consequently of no
surprise that the scaling C0(h) used above coincides precisely with that used by (18). Since
the fundamental MSE, (4.46), is derived from the variational principle of (18) with the
fewest constraints it should be expected to be the least accurate of the variants discussed
in (18) including the Modified Mild-Slope Equation of (21). On the other hand, both (18)
and (21) highlight the relative insignificance on the results of the additional term in the
latter model.
It is also noteworthy that (4.46) is exactly the same as the version of the Shallow Water

Equation expressed by (4.23). The difference, of course, is that k(h) in (4.23) is defined by
the shallow water limit of the full dispersion relation which applies to the definition of k(h)
in (4.46).
We finish this section by commenting on how to recover the reflection and transmission

coefficients from the solution of the ODE. We must solve (4.46) subject to initial conditions
which are determined by the initial values Γ1 and Υ1 originating from the discrete system
and determined in the line after (4.12). Assuming xn = nδ and that δ = L/N , in the limit
as N → ∞, the ODE (4.46) holds over 0 < x < L with k0 = k(h(0)) and kL = k(h(L)). The
initial conditions are deduced from (4.30), (4.31) in the limit δ → 0 and with W1(h) = 0 in
(4.35) to give the relation k(x)Υ(x) = Γ′(x) and leads to

Γ(0) = 1, Γ′(0) = ik0. (4.47)
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SWE MSE
N |R| error |R| error
8 0.19755 0.00809 0.18753 0.01032
16 0.20151 0.00413 0.19253 0.00532
32 0.20356 0.00208 0.19516 0.00268
64 0.20460 0.00104 0.19649 0.00136
128 0.20512 0.00052 0.19717 0.00067
256 0.20538 0.00026 0.19751 0.00034
ODE 0.20564 0.19784

Table 1 Convergence of step approximation implementation with number of steps, N ,
to the solution of the corresponding ODE in the case of a linear ramp of length l between
depths h1 and hN+1 with l/h1 = 2, hN+1/h1 = 1

3
and at a wavenumber k1h1 = 1

2
.

Also from (4.13), (4.14) we readily find

R = − kLΓ(L) + iΓ′(L)

(kLΓ(L)− iΓ′(L))∗
(4.48)

whilst
T = e−ikLL(Γ(L)− iΓ′(L)/kL +R(Γ(L) + iΓ′(L)/kL)

∗). (4.49)

5. Remarks on numerical methods

In Tab. 1 and Fig. 1 numerical computations have been made of |R| for a bed comprised
of a plane shoaling ramp over 0 < x < l between two depths h1 and hN+1. In both cases,
l/h1 = 2 and hN+1/h1 =

1

3
, but these are not special values and similar conclusions can be

drawn from other parameters and bed shapes. In Tab. 1, the step-approximation has been
implemented under the two different approximation using: (a) the shallow water variables
(3.35) and (b) the variational method of (17) (3.27), (3.28). The results confirm that the
step approximation tends to the results derived from solving the shallow water and mild
slope equation ODEs as the number of steps, N , are increased. Moreover the convergence
rate is commensurate with the use of Euler’s method for integrating ODEs. From this
point of view, the step approximation is an inefficient method for solving wave scattering
by variable beds, being slow to converge and requiring an unnecessary level of detailed
computation (e.g. (3.27), (3.28)) compared to a higher-order solver applied to the much
simpler ODE (e.g. (4.46)).
Fig. 1 provides a typical comparison of the MSE of (4.46) and the SWE (4.23) with

precise numerical computations of (5).

6. Conclusion

This paper has determined the mathematical link between two previously unconnected
approximations for calculating wave scattering over variable beds. The step approximation
involves describing the bed as a piecewise constant representation of the continuous function
h(x) and neglecting the evanescent wave field in interactions between neighbouring steps.
By approximating the scattering at each step under the shallow water assumption, it has
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Fig. 1 Computations of |R| against frequency parameter, Kh1, for a linear ramp of length l
between depths h1 and hN+1 with l/h1 = 2, hN+1/h1 = 1

3
: exact formulation (solid line), MSE

(dashed line), SWE (dotted line).

been shown the Shallow Water Equation (a depth averaged 2nd order ODE) results in the
limit as the step size tends to zero. If, instead, the scattering at each step is calculated
under the plane-wave variational approximation of (17) it has been shown that a different
depth-averaged model ODE results, being a new simpler variant of the Mild-Slope Equation
(MSE) derived recently by (18).
It is not clear why the particular variant of the MSE, described by (18) is selected. Nor is

it clear how changes to the approximation may lead to different, perhaps more sophisticated
2nd order ODEs describing wave scattering over variable beds. For example, an extended
transfer matrix which includes evanescent effects in the interactions between neighbouring
steps such as that used in (10) may lead to a coupled ODE system similar to that described
in the extended MSE of (27). It should also be possible to apply the ideas of this paper
to the particular embodiment of the step approximation considered by (13); it would not
be surprising if the limiting step-size analysis resulted in something very close to the ODE
developed in (29).
Beyond the present topic, there are possibilities to extend the current idea to other

settings. Other scatterers in different physical settings can be treated similarly. Indeed,
the current work was stimulated by a toy problem considered in (28) involving waves on
a long string connected to a finite number of perpendicular strings of finite length. There
it was shown that the scattering process could be replaced, for small step lengths between
neighbouring junctions, by an approximate 2nd order ODE which could not have been
derived by alternative means. The solutions of that ODE turn out to be very useful in
identifying certain features of the solution to the toy problem which would be hard to access
otherwise. One future direction of this work will be to consider how wave propagation by
small broken ice floes might be approximated by ODEs and to use this to shed light on
wave attenuation in large regions of broken ice. Current theoretical models are not able to
capture the attenuation rates measured experimentally; see (30), (31).
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