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Abstract

In this paper, a variety of problems concerned with the interaction of water waves with fixed

horizontal plates lying on the surface of a fluid are investigated.

Firstly, solutions are presented to the problem of the scattering of incident waves by: (i)

infinitely-long plates of constant finite width (often referred to as the two-dimensional ‘finite dock

problem’) and (ii) finite plates which are either rectangular or parallelogram-shaped. Secondly,

hydrodynamic coefficients due to forced motions of plates are also considered. Finally, eigenvalue

problems associated with free oscillations of the surface in long channels of uniform width and finite

rectangular holes in an otherwise infinite rigid plate covering the surface are considered.

A common method of solution is applied to all problems which involves using Fourier transforms

to derive integral equations for unknown potentials over finite regions of space occupied by either

plates or the free surface. Integral equations are converted, using the Galerkin method, into second-

kind infinite systems of algebraic equations. In each problem numerical approximations to the

solutions are found to converge rapidly with increasing truncation size of the infinite system making

this approach both numerically efficient and accurate. Some comparisons with existing results are

made, and new results for finite plates are demonstrated.

Keywords: Finite dock, ice fishing hole, Fourier transform solution, integral equations.

1. Introduction

The reflection and transmission of surface gravity waves by a rigid plate or ‘dock’ on the surface

of a fluid is a classical problem in the study of linearised water waves. For example, when the plate

covers the half-plane – the so-called semi-infinite dock problem – an explicit expression for the

reflection coefficient can be found using the Wiener-Hopf technique ([1], [2], [3] for example). For

a plate that is infinitely-long in one direction and of uniform constant width in the perpendicular

direction – the so-called ‘finite dock problem’ – exact solutions are no longer possible and various

techniques have been employed all leading to approximations of the reflection and transmission
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coefficients. See, for example, [3], [4] who base solutions on short wave asymptotic approximations

and [5], [6] who use domain decomposition in finite water depth combined with a modified residue

calculus technique, and references therein.

We start this paper by revisiting the finite dock problem in fluid of infinite depth. The detailed

changes required for constant finite depth are easily implemented following the methods we employ

(or consult [7]) but are omitted here in order to retain simplicity. Owing to the geometry, the

problem under consideration is quasi two-dimensional, the obliqueness of the plane monochromatic

incident waves implying that the governing equation is transformed from Laplace’s to the modified

Helmholtz equation. Investigation of the oblique finite dock problem allows us to establish the basic

method of solution and assess the performance of the numerical method against known results.

The solution is derived by initially using Fourier transforms to formulate an integral equation for

the unknown potential under the plate. This is expanded in a series of Legendre polynomials

and the integral equation is thus transformed into a second-kind infinite system of equations for

the coefficients in the expansion. This is shown to involve matrix elements which are easy to

compute accurately. Furthermore, results show that the system of equations converges rapidly

with increasing truncation size. This general approach forms the basis of recent work on similar

problems involving submerged plates by [7] and has similarities to work by [8] for radiation of

internal gravity waves by discs oscillating in a stratified fluid and [9] for scattering of surface waves

by cracks in elastic solids.

The application of the approach adopted here appears new. Unlike modified residue calculus

methods (e.g. [6]) the method can be applied in water of infinite depth and finite depth. For

finite depth, knowledge of the all roots of dispersion relations in the complex plane is not necessary

– this is not an issue in the problems illustrated here, but could be if the method were applied

to problems with more complex boundary conditions such as those involving elastic or porous

plates. The general approach is restricted to those problems for which taking Fourier transforms is

possible but has the advantage over approaches based on Green’s functions of bypassing technical

difficulties with singularities (see [10] for example). From a practical perspective the numerical

implementation of the solution is very simple and for low frequency/short plates results in rapidly

convergent numerical solutions requiring little computational effort. For high frequency/longer

plates, the numerical method requires more effort as it aims to reconstruct properties of the field

along the plate in a finite series of functions. In these cases, methods which incorporate the explicit

solutions to the solution of a semi-infinite dock (see [6]) have an advantage.

One major factor in adopting this method of solution is that it lends itself to being extended to a
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more general class of problem and this is pursued throughout the remainder of the paper. Thus, we

continue the paper by considering the three-dimensional scattering of waves by a thin finite plate of

arbitrary shape fixed in the free surface. Apart from where the plate is circular (when separation of

variables can be used, e.g. [11]) there appears to be little work on this problem. For floating elastic

plates of arbitrary planform [12], [13] have derived a semi-analytical approach based on Green’s

function combined with a boundary element discretisation. For certain geometrically simple shapes

of plate shown in this paper (rectangles, circles, parallelograms) the Fourier transform approach

avoids this level of complication.

To extend the approach used for the finite dock problem to this new problem we simply im-

plement a double Fourier transform to develop integral equations which retain the same overall

structure of the solution as before. The reduction to an infinite algebraic system of equations

now involves terms which are more computationally intensive, being defined by double integrals

over Fourier space as opposed to single integrals previously. However, since the numerical method

converges rapidly with increasing truncation size, numerical solutions remain quick to compute.

Another advantage of the method described in the paper is that solutions are easily adapted for

parallelogram-shaped plates.

In the last main section, we consider a set of problems in which the regions occupied by the free

surface and the plate are interchanged. Thus the fluid is now bounded above by an infinite rigid lid

within which a finite hole is cut to leave the fluid exposed to the atmosphere. The problem is one

of determining the natural sloshing modes in this so-called ‘ice fishing problem’; see [14]. Again,

this is a problem with a long history particularly in two dimensions; papers of particular note in

this respect include [15], [16], [17].

2. The oblique-incidence finite-dock problem

Cartesian coordinates are used with z = 0 coinciding with the mean free surface and the fluid

extending into z < 0. A rigid horizontal plate is placed on the surface, z = 0, and extends

uniformly in the y direction and from x = −a to x = a in the x-direction. Assuming time-harmonic

incident waves of angular frequency ω making an angle θ0 ∈ (−1
2π,

1
2π) with respect to the positive

x direction, the velocity field can be found from the gradients of ℜ{Φ(x, y, z)e−iωt} where the

velocity potential Φ(x, y, z) satisfies

∇2Φ = 0, z < 0 (1)
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the linearised free surface condition

(

∂

∂z
−K

)

Φ = 0, z = 0 (2)

where K = ω2/g and g = 9.81ms−2 is gravity, and

|∇Φ| → 0, z → −∞. (3)

The incident wave is represented by the potential

Φinc = eiα0xeiβ0yeKz (4)

where α0 = K cos θ0, β0 = K sin θ0.

In this problem where the plate in the surface is uniform in y, the total potential responds with

the same y-variation imposed by the incident wave allowing us to write Φ(x, y, z) = φ(x, z)eiβ0y.

Then the reduced two-dimensional potential φ(x, z) satisfies

(∇2 − β20)φ(x, z) = 0, z < 0, (5)

with (2) and (3) applying to φ(x, z). The zero-velocity condition to be applied on the plate is

φz(x, 0) = 0, |x| < a (6)

and at the ends of the plate (as x approaches ±a) the potential should be bounded, though the

velocity is logarithmically singular (see [18] or [15]). Finally radiation conditions are required as

|x| → ∞. We write

φ(x, z) ∼











φinc(x, z) +Rφinc(−x, z), x→ −∞

Tφinc(x, z), x→ ∞
(7)

where R and T are the complex reflection and transmission coefficients and φinc(x, z) = eiα0xeKz.

The Fourier transform of the scattered part of the potential is defined by

φ(α, z) =

∫

∞

−∞

(φ(x, z) − φinc(x, z))e
−iαx dx. (8)

Applying (5) to (8) gives

(

d2

dz2
− k20

)

φ(α, z) = 0, z < 0 (9)

where k20 = α2 + β20 with φ(α, z) → 0 as z → −∞ and

(

d

dz
−K

)

φ(α, 0) = −KP (α), where P (α) =

∫ a

−a
φ(x, 0)e−iαx dx (10)
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after (6) and the free surface condition have been used. Solving (9) and (10) gives

φ(α, z) =
KP (α)ek0z

K − k0
(11)

and taking inverse transforms gives

φ(x, z) = φinc(x, z) +
K

2π

∫

∞

−∞

ek0zeiαx

K − k0
P (α) dα. (12)

There are poles on the real α-axis at α = ±α0 where k0 = K. The contour of integration is taken

to pass over the pole at −α0 and under the pole at α0 in order to satisy the radiation condition

that φ− φinc is outgoing. An alternative approach it to assign a small positive imaginary part to

the frequency, ω, which is eventually set to zero. This manifests itself by moving poles at α = ±α0,

above and below the real α-axis respectively, allowing the contour of integration to sit on the real

α-axis.

Under either approach, as we let x→ ±∞ in (12) we can deform the contour respectively into

the upper-half or lower-half α-plane, capturing the residues at ±α0 resulting in

T = 1− iµP (α0), and R = −iµP (−α0) (13)

when (7) is used along with the abbreviation µ = K2/α0 ≡ K sec θ0. As θ0 approaches 1
2π, µ→ ∞

and simultaneously P (±α0) → 0 in order to balance the integral (12) in with the other bounded

terms due to the two poles ±α0 both approaching the origin. Numerically T → 0 and R → −1 as

θ0 → 1
2π. With some effort, this can also be deduced from an arduous asymptotic analysis of the

numerical system of equations formulated in the next subsection.

Since (6) has already been applied in the transform solution, we may now simply set z = 0 in

(6) to obtain

φ(x, 0) + (K0φ)(x) = eiα0x (14)

where

(K0φ)(x) =
K

2π

∫

∞

−∞

eiαx

k0 −K

∫ a

−a
φ(x′, 0)e−iαx′ dx′ dα. (15)

Thus φ(x, 0) is determined for |x| < a from (14), a second-kind integral equation when restricted

to |x| < a. Subsequently, φ(x, 0) can be used in (10) to determine R and T from (13). Also, (14)

can be used to represent φ(x, 0), and hence the free surface, for |x| > a, in terms of those values

determined for |x| < a.

We remark here that an alternative approach (see [7]) is possible in which the integral in (12)

is expressed as a real Cauchy principal-value integral plus contributions from each of the two poles

at α = ±α0, being one half of the residues calculated in (13). Such an approach leads to real
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integral equations in which R and T can ultimately be found from a scattering matrix formulation

involving real inner products. The structure of this formulation of the problem allows the energy

relation |R|2 + |T |2 = 1 to be shown to be satisfied exactly, whatever approximation is made to

the solution of the integral equation. However, it is not an approach which is readily generalised

to later problems of interest so we have not pursued it here. The rearrangement just described

is manifested in the solution below as a reorganisation of complex systems of equations into real

systems of equations and thus the satisfaction of |R|2 + |T |2 = 1 is also guaranteed by our solution

approach and confirmed numerically to machine precision.

2.1. Solution of integral equations

The unknown in (14) is expanded in terms of a set of prescribed functions,

φ(x, 0) =

∞
∑

n=0

anpn(x/a), |x| ≤ a (16)

with unknown complex-valued coefficients an where

pn(t) =
1
2e

inπ/2Pn(t) (17)

and Pn are orthogonal Legendre polynomials. Other choices of expansion function are possible,

but this choice arguably provides the maximum simplification to subsequent results. Of particular

note is the identity
∫ 1

−1
pn(t)e

−iσt dt = jn(σ) (18)

(see [19, eqn. 10.1.14]) where jn is a spherical Bessel function and jn(−σ) = (−1)njn(σ) with

jn(0) = δn0. For example,

j0(σ) =
sinσ

σ
, j1(σ) =

sinσ − σ cos σ

σ2
(19)

whilst jn+1(σ) = (2n + 1)jn(σ)/σ − jn−1(σ). We also note the relation

jn(σ) =

√

π

2σ
Jn+1/2(σ) (20)

to the standard Bessel function.

The expansion (16) is substituted into (14) which is multiplied through by p∗m(x/a) and inte-

grated over −a < x < a. This procedure results in the following infinite system of equations for

the unknown coefficients an:

am
2(2m+ 1)

+
∞
∑

n=0

anKm,n = jm(α0a), m = 0, 1, 2, . . . (21)
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where

Km,n =
Ka

2π

∫

∞

−∞

jn(αa)jm(αa)

k0 −K
dα. (22)

In deriving this system of equations we have used the orthogonality relation satisfied by the Legendre

polynomials (e.g. [20, §7.221(2)]).

Noting from (22) that Kmn = 0 if m+ n is odd implies a decoupling of (21) into its symmetric

and antisymmetric parts for a2n and a2n+1. Hence, (21) is most efficiently expressed as

a2m+ν

2(4m+ 1 + 2ν)
+

∞
∑

n=0

a2n+νK2m+ν,2n+ν = j2m+ν(α0a), m = 0, 1, 2, . . . (23)

for ν = 0, 1 where now

K2m+ν,2n+ν =
Ka

π

∫

∞

0

j2n+ν(αa)j2m+ν (αa)

k0 −K
dα (24)

is symmetric with respect to m and n. For numerical purposes we now deform the contour of

integration (or let the imaginary part of K tend to zero) so that (24) may be written

K2m+ν,2n+ν =
Ka

π

∫

∞

0
−

j2n+ν(αa)j2m+ν(αa)

k0 −K
dα+ iµaj2n+ν(α0a)j2m+ν(α0a). (25)

Since k0 = (α2 + β20)
1/2, and jn(σ) ∼ O(σ−1) as σ → ∞ it can be seen that the integrand in the

definition of K2m+ν,2n+ν decays like O(1/α3) as α → ∞. This rate of decay can be increased by

adding and subtracting the leading order behaviour to the integrand, and using a result in [20,

§6.574.2] to explicitly calculate the leading order contribution. There is one exception where this

cannot be applied, when m = n = ν = 0. For practical purposes this accelerated convergence is

not necessary as accurate computations of (25) are numerically inexpensive. The computation of

(25) involves principal-value integrals which are arranged as

∫

∞

0
− f(t) dt =

∫ t0

0
{f(t) + f(2t0 − t)} dt+

∫

∞

2t0

f(t) dt

for an integrand f(t) which has a simple pole at t = t0. Spherical Bessel functions are computed

using a Fortran routine, [21]1.

Using (16) in (13) with (10) gives

T = 1− iµ

∞
∑

n=0

anjn(α0a) = 1− iµ

∞
∑

n=0

{a2nj2n(α0a) + a2n+1j2n+1(α0a)} (26)

whilst

R = −iµ

∞
∑

n=0

anjn(−α0a) = −iµ

∞
∑

n=0

{a2nj2n(α0a)− a2n+1j2n+1(α0a)}. (27)

1http://fresco.org.uk/programs/barnett/SBESJY.FOR
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Figure 1: Modulus of the reflected wave amplitude as a function of Ka = ω2a/g for (a) normal incidence (θ0 = 0◦)

and (b) oblique incidence (θ = 45◦). Solid curve shows results for N ≥ 2; dashed and dotted curves for N = 1, N = 0

approximations.

2.2. Approximation and results

In order to compute numerical results we truncate the infinite system of equations (23) at

n,m = N .

Choosing a truncation size of N = 0 constitutes a one-term approximation to the solution to

the integral equations in which the variation in φ across the plate is assumed to be a constant. We

may expect such an approximation to be valid when the x-component of the incident wavelength,

2π/α0, is much larger than 2a, the length of the plate, or Ka cos θ0 ≪ π. By extension of this

hypothesis we expect larger values of N to be needed in order to accurately resolve the scattering

problem as the frequency of motion increases.

Figures 1(a),(b) show |R| and |T | against Ka for incident wave angles of θ0 = 0 and θ0 = 45◦

for N = 0, 1, 2. It can be seen that the N = 0 approximation performs well over a range of

low frequencies, where the variation of |R| and |T | is at its greatest. The three-term (N = 2)

approximation resolves the scattering amplitudes for Ka < 5 to an accuracy sufficient for any

practical purpose being indistinguishable from results with higher values of N over the range of

frequencies shown.

In order to compare results from our method with existing results we have also computed

reflection and transmission coefficients (as well as heave forces and roll moments) for water of

finite depth, h. The changes to the method are minimal, requiring the denominator k0 − K in

(25) to be replaced by k0 tanh k0h − K and the definition of µ = K2/α0 to be replaced by µ =
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κ2K/(α0(κ
2h − K2h + K)) where κ satisfies the usual dispersion relation K = κ tanhκh. With

a/h = 1 and θ0 = 45◦ we have reproduced exactly the figures shown in Table 2 of [6].

In passing, we remark that in, contrast to [6] and any method based on separation solutions,

the present method avoids having to calculate the imaginary roots of the dispersion relation.

3. Three-dimensional scattering of waves by a finite dock

The problem is as stated previously apart from now the plate is no longer infinitely long but

occupies a simply connected region (x, y) ∈ D in the surface z = 0. Special attention will eventually

be paid to the case of a rectangular dock, where D = {−a < x < a,−b < y < b} although such

restrictions are not needed initially.

The governing equations for Φ(x, y, z) are represented by (1)–(3), the incident wave potential

is given by (4) and the zero-velocity condition on the plate is

Φz = 0, (x, y) ∈ D. (28)

It is useful to introduce polar coordinates, x = r cos θ, y = r sin θ, into this problem. Then the

radiation condition in three-dimensional scattering problems require that

Φ(x, y, z)− Φinc(x, y, z) ∼

√

2

πKr
eiKr−iπ/4A(θ; θ0)e

Kz Kr → ∞ (29)

where A(θ; θ0) is the unknown complex diffraction coefficient measuring the complex wave ampli-

tude in the direction θ for an incident wave in the direction θ0.

We define a double Fourier transform in x and y of the scattered part of the potential with

Φ(α, β, z) =

∫

∞

−∞

∫

∞

−∞

(Φ(x, y, z) − Φinc(x, y, z))e
−iαxe−iβy dx dy. (30)

Then it follows, taking transforms of (1), (3) that
(

d2

dz2
− k2

)

Φ(α, β, z) = 0, z < 0 (31)

where k2 = α2 + β2 and Φ(α, β, z) → 0 as z → −∞, whilst
(

d

dz
−K

)

Φ(α, β, 0) = −KP (α, β) (32)

where

P (α, β) =

∫∫

D

Φ(x, y, 0)e−iαxe−iβy dx dy (33)

after the free surface condition (2) has been used for values of (x, y) 6∈ D and the condition (28)

has been used for (x, y) ∈ D. It follows that

Φ(α, β, z) =
KP (α, β)

K − k
ekz (34)

9



and taking inverse transforms results in

Φ(x, y, z) = Φinc(x, y, z) +
K

4π2

∫

∞

−∞

∫

∞

−∞

ekzeiαxeiβy

K − k
P (α, β) dα dβ. (35)

The integrand is singular along the circle k ≡
√

α2 + β2 = K ≡
√

α2
0 + β20 in the (α, β)-plane. It

helps to make a change of variable, α = k cosψ, β = k sinψ so that (35) may be written

Φ(x, y, z) = Φinc(x, y, z) +
K

4π2

∫ 2π

0

∫

∞

0

ekzeikr cos(θ−ψ)

K − k
P (k cosψ, k sinψ) kdk dψ (36)

and it is clear from what follows that the contour of integration in the k-plane must pass below the

pole at k = K on the axis of integration in order that scattered waves be outgoing at infinity.

We consider the limit Kr → ∞ in the above, first collecting the contribution from the pole at

k = K in the k-integral and then using the method of stationary phase in the ψ-integral to obtain

the dominant radiated wave contribution from the integral in (36). Lighthill [22] gives a formal

account of this procedure, which is most easily justified by including a small imaginary part to the

frequency ω so as to shift poles off real axes of integration.

Thus, the asymptotic behaviour for large Kr of the integral in (36) may be equated to

−iK2

2π
eiKr−iπ/4

√

2π

Kr
P (K cos θ,K sin θ)eKz. (37)

Comparing (37) with (29) via (35) gives

A(θ; θ0) =
−iK2

2
P (K cos θ,K sin θ) (38)

and P is still an unknown function, having implicit dependence upon θ0. Returning to (35) and

setting z = 0 results in

Φ(x, y, 0) + (KΦ)(x, y) = eiα0xeiβ0y (39)

where

(KΦ)(x, y) ≡
K

4π2

∫

∞

−∞

∫

∞

−∞

eiαxeiβy

k −K

∫∫

D

Φ(x′, y′, 0)e−iαx′e−iβy′ dx′ dy′ dα dβ (40)

after reinstating the definition of P from (33). Thus (39) acts as a second-kind integral equation

for Φ(x, y, 0) when (x, y) ∈ D. For (x, y) 6∈ D it serves as a representation of Φ on the surface (and

hence related to the free surface elevation) in terms of values of Φ on D.

3.1. Solution for a rectangular dock

The plate is defined by D = {−a < x < a,−b < y < b}. We naturally extend the method used

for the two-dimensional problem of §2 by first writing

Φ(x, y, 0) =

∞
∑

n=0

∞
∑

m=0

an,mpn(x/a)pm(y/b) (41)
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where pn(t) are, as before, defined in (17). Substituting (41) in (39), multiplying by p∗p(x/a)p
∗
q(y/b)

and integrating over D results in the infinite system equations for coefficients an,m:

ap,q
4(2p + 1)(2q + 1)

+

∞
∑

n=0

∞
∑

m=0

an,mKp,q,n,m = jp(α0a)jq(β0b), p, q = 0, 1, 2, . . . (42)

where

Kp,q,n,m =
Kab

4π2

∫

∞

−∞

∫

∞

−∞

jp(αa)jq(βb)jn(αa)jm(βb)

k −K
dαdβ (43)

in terms of spherical Bessel functions, using (18).

Using symmetry properties of jn we note that Kp,q,n,m = 0 if either n+ p or m+ q is odd and

this implies a decoupling of (42) into separate uncoupled systems for the four sets of coefficients

a2n,2m, a2n+1,2m, a2n,2m+1 and a2n+1,2m+1, thus

a2p+ν,2q+µ
4(4p + 1 + 2ν)(4q + 1 + 2µ)

+
∞
∑

n=0

∞
∑

m=0

a2n+ν,2m+µK2p+ν,2q+µ,2n+ν,2m+µ = j2p+ν(α0a)j2q+µ(β0b),

(44)

for p, q = 0, 1, 2, . . . and for ν, µ = 0, 1 where

K2p+ν,2q+µ,2n+ν,2m+µ =
Kab

π2

∫

∞

0

∫

∞

0

j2p+ν(αa)j2q+µ(βb)j2n+ν(αa)j2m+µ(βb)

k −K
dαdβ. (45)

By first expressing this in polar form with α = k cosψ, β = k sinψ and using the fact that the

contour in k has been chosen to run under the pole at k = K we can indent around the pole to

extract the imaginary contribution to this integral and leave a real principal-value integral behind

which decays like O(1/k4). Specifically,

K2p+ν,2q+µ,2n+ν,2m+µ =

iK2ab

π

∫ π/2

0
j2p+ν(Ka cosψ)j2q+µ(Kb sinψ)j2n+ν(Ka cosψ)j2m+µ(Kb sinψ) dψ

+
Kab

π2

∫ π/2

0

∫

∞

0
−

j2p+ν(αa)j2q+µ(βb)j2n+ν(αa)j2q+µ(βb)

k −K
k dk dψ. (46)

It seems there is no further analytic simplification that can be made and the integrals must be

approximated numerically.

Once the coefficients an,m are found from (44) then the diffraction coefficient is readily given in

terms of these coefficients after insertion of (41) in (38) with (33) to give

A(θ; θ0) =
−iK2ab

2

∞
∑

n=0

∞
∑

m=0

an,mjn(Ka cos θ)jm(Kb sin θ)

≡
−iK2ab

2

∑

ν,µ=0,1

∞
∑

n=0

∞
∑

m=0

a2n+ν,2m+µj2n+ν(Ka cos θ)j2m+µ(Kb sin θ). (47)

The free surface elevation, normalised by the incident wave height, is Φ(x, y, 0).

11



3.2. Solution for a parallelogram-shaped dock

The numerical method described above for a rectangular dock can be easily adapted to consider

scattering by other shapes of dock which are defined by a linear map of a square. This is because

a linear map preserves the separable nature and structure of the complex exponentials embedded

in the integral equations (39).

Linear mappings of the square include a rectangle (which has already been considered), a

rotation (which is equivalent to a rotation of the incident wave) and a parallelogram. Thus we

consider here a parallelogram-shaped dock defined by D = {−a + λy < x < a + λy,−b < y < b}

for some real parameter λ. We write

Φ(x, y, 0) =
∞
∑

n=0

∞
∑

m=0

an,mpn((x− λy)/a)pm(y/b) (48)

for (x, y) ∈ D. Consequently, application of the solution method in conjunction with the linear

map t = (x− λy)/a, u = y/b, readily results in the system

ap,q
4(2p + 1)(2q + 1)

+

∞
∑

n=0

∞
∑

m=0

an,mKp,q,n,m = jp(α0a)jq(β0b+ λα0b), p, q = 0, 1, 2, . . . (49)

where, now,

Kp,q,n,m =
Kab

4π2

∫

∞

−∞

∫

∞

−∞

jp(αa)jq(βb+ λαb)jn(αa)jm(βb+ λαb)

k −K
dαdβ. (50)

Now we can see (most easily after converting the integration to polar coordinates) that Kp,q,n,m = 0

if p+ q + n+m is odd, and

Kp,q,n,m =
Kab

2π2

∫ π

0

∫

∞

0
−

jp(αa)jq(βb+ λαb)jn(αa)jm(βb+ λαb)

k −K
kdk dψ (51)

(with α = k cosψ, β = k sinψ as usual) if p + q + n +m is even. This allows the general system

of equations (49) to be decoupled into two systems, one for an,m when n+m is even applied over

values of p+q even and one for an,m when n+m odd applied over p+q odd. This decoupling reflects

the rotational symmetry of the parallelogram and aids the efficiency of the numerical solution.

3.3. Other dock shapes

There are more direct methods for dealing with circles, such as using Hankel transforms in a

radial direction and Fourier series in the azimuthal direction, so these will not be considered here.

For arbitrary domains D it is possible to fit a mesh to D and expand Φ over the mesh using

a finite-element basis. The Galerkin method can still be employed and one would want to choose

a mesh and basis such that integrals over spatial variables can be done exactly. Of course, this

would lead to a large matrix system to invert and all the advantages of the method described so

far are lost. In this respect it is probably easiest to return to a Green’s function formulation of the

problem for arbitrary domains, in a manner similar to [12].

12



3.4. Forces, moments and radiated waves

The heave exciting force, Xh, and the pitch and roll exciting moments, Xp, Xr, about the y

and x axes respectively, on the plate due to incident waves are given by

Xh,p,r = −iωρ

∫∫

D

Φ(x, y, 0){1, x, y} dxdy. (52)

For a rectangular plate, we use the fact that P0(x) = 1 and P1(x) = x in conjunction with the

expansion for Φ(x, y, 0) in (41) to give

Xh,p,r = −iωabρ{a0,0,
1
3 iaa1,0,

1
3 iba0,1}. (53)

It is also straightforward to develop solutions to a variant of the scattering problem described

above in which the plate radiates waves due to forced motion in heave, roll or pitch in the absence

of incident waves. Since forced roll and pitch are related for a rectangular plate, we consider just

heave and roll in what follows. We start with potentials Φ(h,p)(x, y, z) satisfying Laplace’s equation,

the free surface condition, and deep water condition, (1)–(3). The revisions to the formulation of

integral equations for Φ(h,p)(x, y, 0) include, obviously, removing the incident wave and replacing

(28) with the forced-motion condition

∂Φ(h,p)

∂z
= {1, x}, on z = 0, (x, y) ∈ D. (54)

The incident wave potentials are also removed from the definition (30) of the Fourier transform.

Following the methods described for the scattering problem earlier in this section, the transform

solution incorporates this forcing as

Φ
(h,p)

(α, β, z) =
KP

(h,p)
(α, β) − F

(h,p)
(α, β)

K − k
ekz (55)

where

F
(h,p)

(α, β) =

∫∫

D

{1, x}e−iαxe−iβy dxdy

≡ 4ab{j0(αa)j0(βb),−iaj1(αa)j0(βb)} (56)

and P
(h,p)

is defined by (33) but with Φ replaced by Φ(h,p). The final calculations in (56) above

have been made using P0(x) = 1, P1(x) = x and the relation (18). Taking inverse transforms and

setting z = 0 results in the integral equation

Φ(h,p)(x, y, 0) +
(

KΦ(h,p)
)

(x, y) = F (h,p)(x, y) (57)

13



for (x, y) ∈ D where the integral operator K is identical to (40) used in the scattering problem.

The difference between (39) and (57) is that the incident wave forcing of the integral equation has

been replaced by

F (h,p)(x, y) =
1

4π2

∫

∞

−∞

∫

∞

−∞

F
(h,p)

(α, β)

k −K
eiαxeiβy dαdβ. (58)

Following an application of the Galerkin method to reduce the integral equations to infinite systems

of equations, in which we write

Φ(h,p)(x, y, 0) =

∞
∑

n=0

∞
∑

m=0

a(h,p)n,m pn(x/a)pm(y/b) (59)

we find that the expansion coefficients are determined from

a
(h)
2p,2q

4(4p + 1)(4q + 1)
+

∞
∑

n=0

∞
∑

m=0

a
(h)
2n,2mK2p,2q,2n,2m =

4

K
K2p,2q,0,0, (60)

and
a
(p)
2p+1,2q

4(4p + 3)(4q + 1)
+

∞
∑

n=0

∞
∑

m=0

a
(p)
2n+1,2mK2p+1,2q,2n+1,2m =

−4ia

K
K2p+1,2q,1,0, (61)

each for p, q = 0, 1, 2, . . .. All other components of the coefficients other than those determined

by the above systems of equations are zero. For example, heave motion of a rectangular plate

generates a fluid motion which is symmetric in both planes x = 0 and y = 0 and hence all but the

coefficients a
(h)
2n,2m must be zero. We also note that, from a computational perspective, the solutions

to the two sets of equations in (60) and (61) are essentially ‘free’ once the scattering problem has

been computed since the most expensive parts of the calculation (the formulation and inverse of

the matrix on the left-hand side of the equations) are common to both scattering and radiation

problems.

Quantities of interest associated with the radiation problem typically involve the added mass

and radiation damping coefficients, being associated with the real and imaginary components of the

complex forces and moments on the plate induced by its own motion. For example, these quantites

are required for calculating the response of a constrained or freely-floating plate in the surface. For

the problems outlined above these are readily found, using formulae (52), (53) applied to heave

and roll potentials, to be given by

−iωAhh +Bhh = −iωρaba
(h)
0,0

−iωApp +Bpp = ωρ1
3a

2ba
(p)
1,0 (62)

where Ahh refers to the heave added mass due to forced heave motion etc. Note there is no heave

induced added mass or damping due to roll motion and vice versa by symmetry.
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Figure 2: Exciting and radiation force components against frequency parameter Ka on a rectangular dock with b/a =

2 (long-dashed) b/a = 5 (short-dashed) b/a = 10 (dotted) and the comparison with results from two-dimensional

dock (solid): (a) heave exciting force and (b) roll exciting moment due to θ = 0 incident waves; (c) Heave added

mass and (d) heave radiation damping due to heave motion; (e) roll added inertia and (f) roll radiation damping due

to roll motion. Series truncated to five terms.
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3.5. Results

For the heave exciting forces and moments we define the non-dimensional quantities

X̂h =
Xh

4ρabω
, X̂p =

Xp

4ρa2bω
, X̂r =

Xr

4ρab2ω
, (63)

and for the radiated waves, we define non-dimensional quantities with

Âhh =
Ahh
4ρa2b

, B̂hh =
Bhh

4ρωa2b
, and Âpp =

App
4ρa4b

, B̂pp =
Bpp

4ρωa4b
. (64)

In a simplified but similar fashion to §3.4 hydrodynamic forces can be calculated for the two-

dimensional plate considered in the previous section. This allows us to compare results for retan-

gular plates of finite length and width from §3.4 with the corresponding two-dimensional results

for infinitely-long plates of the same finite width. Thus, in figures 2(a)–(f) the hydrodynamic force

coefficients have been plotted for plates of length-to-width ratios b/a of 2, 5 and 10 alongside the

corresponding two-dimensional results for an infinitely-long plate. Both sets of results have been

non-dimensional per unit length of the plate to allow this comparison to be made. We see quite

clearly in figures 2(a)–(f) that as b/a increases the curves approach the two-dimensional results.

Indeed, we can infer that, for most of the hydrodynamic force coefficients, the three-dimensional

forces are similar to the two-dimensional counterparts for most values of frequency. There are some

quite interesting differences in behaviour at low and high frequencies. For example, from figure 2(d)

B̂hh has a non-zero limit as Ka→ 0 for the infinitely-long two-dimensional plate but tends zero as

Ka→ 0 for a finite rectangular plate. Also, in constrast to all other coefficients, figure 2(b) shows

the low frequency agreement between X̂p for finite and infinite length plates to be remarkably good,

but the agreement is less good for higher Ka. These effects are not understood, but appear not to

be a result of poor numerical resolution.

In figure 3(a,b) we illustrate examples of shaded plots of maximum free surface amplitudes.

Here, a/b = 1 and the axes are scaled so that the plate (shaded black) occupies the square |x/a| < 1,

|y/a| < 1. Plots are shown for incident waves propagating in the directions θ = 0 and θ = 45◦.

There is clear graphical evidence of reflected plane waves from the plane edges of the dock and a

shadow zone downwave of the dock. The free surfaces were calculated here using 4×4 terms in the

expansion of Φ(x, y, 0) under the plate, with no difference being noted when more terms are taken

in the series.

Results for a parallelogram-shaped dock are illustrated by the two free-surface plots in figures

4(a,b). The first is the maximum amplitude and the second is a snapshot in time of the surface.

The waves are propagating in the positive x-direction with Ka = 4 and a/b = 1, λ = 1 so that

the sides of the parallelogram are titled at 45◦ to top and the bottom edges. Computations are
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Figure 3: Modulus the total wave field |Φ(x, y)| for an incident wave of unit amplitude with Ka = 4, θ0 = 0◦ in (a)

and θ0 = 45◦ in (b) for a dock with a = b. The dock is shaded black.
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Figure 4: (a) Maximum amplitude, |Φ(x, y, 0)|, and (b) snapshot in time, ℜ{Φ(x, y, 0)}, of the total wave field for an

incident wave of unit amplitude with Ka = 4, a/b = 1, λ = 1 and θ0 = 0◦. The dock is shaded black in (a).

performed using a decoupling of (49) into odd and even systems with (51). Again we see that for

this relatively high-frequency incident wave there is a clear signal of a reflected wave propagating

in the positive y-direction from the leading edge of the dock and a shadow region upwave of the

dock.

3.6. Freely-floating plates

For a freely-floating rectangular plate, horizontal dimensions 2a × 2b, thickness h and density

ρs < ρ, a straightforward application of Newton’s law (e.g. [23, §6.19]) allows the heave excursion

and roll angle per unit incident wave amplitude to be expressed as ℜ{ze−iωt}, ℜ{θe−iωt} where

z =
igXh

ω2(Bhh − iω(M +Ahh − Ch/ω2))

and

θ =
igaXp

ω2(Bpp − iω(I +App − Cp/ω2))
.
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In the above M = 4ρsabh, I = 1
6ρsah(4a

2 + h2), Ch = 4ρabg and Cp = 2
3ρga

3. For a plate under

oblique incidence, there is a corresponding independent equation expressing the pitch angle. No

computations of these quantities are shown here.

4. The ‘ice fishing problem’

A rigid lid along z = 0 covers a fluid occupying z < 0 apart from over the finite-width channel

|x| < a, −∞ < y < ∞ where there is a free surface. That is, the plate is taken to occupy the

complementary region of z = 0 to that considered in §2. This problem is often referred to (e.g.

[14]) as the ‘ice fishing problem’. Assuming a β0 wavenumber component in the y-direction we

find, using a straightforward application of methods outlined previously the homogeneous integral

equation

φ(x, 0) −
K

2π

∫

∞

−∞

eiαx

k0

∫ a

−a
φ(x′, 0)e−iαx′ dx′dα = 0, |x| < a (65)

where k0 =
√

α2 + β20 , which determines the eigenfrequencies, related to K, of sloshing modes in

the free surface. Using expansions in terms of Legendre polynomials as before leads to the two

decoupled infinite systems of equations

πa2m+ν

2Ka(4m+ 2ν + 1)
−

∞
∑

n=1−ν

a2n+νK2m+ν,2n+ν = 0, m ≥ 1− ν, (66)

where

K2m+ν,2n+ν =

∫

∞

0

j2m+ν(t)j2n+ν(t)
√

t2 + (β0a)2
dt (67)

where ν = 0 for symmetric modes and ν = 1 for antisymmetric modes. There is a small change

required in the application of the expansion, being the omission of the n = 0 term on account of

it violating mass conservation. Consequently the starting value of n in the infinite series in (66) is

n = 1 for ν = 0 and n = 0 for ν = 1.

In other words the values of π/Ka for the sloshing modes are given by the eigenvalues of the

infinite symmetric matrices with entries

I(ν)m,n = 2(4m + 2ν + 1)1/2(4n+ 2ν + 1)1/2
∫

∞

0

j2m+ν(t)j2n+ν(t)
√

t2 + (β0a)2
dt (68)

for m,n ≥ 1− ν.

In the particular case of two-dimensional sloshing modes in which the denominator of (68)

reduces simply to t further analytic progress can be made. We first substitute Bessel functions in

place of spherical Bessel functions using (20) so that (68) becomes

I(ν)n,m = π(4m+ 2ν + 1)1/2(4n + 2ν + 1)1/2
∫

∞

0

J2m+ν+1/2(t)J2n+ν+1/2(t)

t2
dt. (69)
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and the integrals above may be evaluated directly using [20, §6.574.2] resulting in

I(ν)n,m =
(−1)n+m(4m+ 2ν + 1)1/2(4n+ 2ν + 1)1/2

(m+ n+ ν)(m+ n+ ν + 1)(1 − 4(n−m)2)
. (70)

These expressions are identical to those given by Davis [15], modulo a factor of (−1)n+m which

does not affect the eigenvalues. This is not surprising as we have, in effect, used the same approach

as [15] in formulating integral equations for the unknown potential across the hole |x| < a. [15]

used a Green’s function to formulate his integral equation with expansions of the unknown φ(x, 0)

in terms of Legendre polynomials. The derivation of the final result required more effort than in

our approach.

There are no obvious results which allow similar analytic progress of the evaluation of integrals

in (68) to be made when β0 6= 0.

A selection of results, computed in all cases, including when β0 = 0, using (68), are given

in table 1 for three different values of β0a. A matrix truncation size of 40 was used to ensure

convergence of the eigenvalues to the five decimal places shown. It appears that the eigenvalues of

the truncated infinite matrix are more sensitive to truncation than solutions to truncated infinite

systems of equations encountered in earlier scattering problems. When β0a = 0, the values coincide

with those computed in [15]. No effort has been made to replicate or extend the methods of [15]

in considering the asymptotic forms for the eigenvalue distribution for β0 6= 0

The quasi two-dimensional problem of sloshing modes in an infinitely-long channel is readily

extended to a finite rectangular fishing hole. Now it is found that the eigenvalues of infinite matrices

with entries

I(ν,µ)n,m,p,q = (4q + 2µ+ 1)1/2(4p + 2ν + 1)1/2(4m+ 2µ+ 1)1/2(4n+ 2ν + 1)1/2

×

∫

∞

0

∫

∞

0

j2p+ν(αa)j2q+µ(βb)j2n+ν(αa)j2m+µ(βb)
√

α2 + β2
dαdβ

are π2/(4Kab) for ν, µ = 0, 1 corresponding to mode symmetry/antisymmetry in x = 0 and y = 0.

The matrix entries are for n,m, p, q ≥ 0 in all cases except where ν = µ = 0 where n,m, p, q ≥ 1 is

used on account of mass conservation considerations. For computational purposes truncated square

matrices have been constructed from the elements I
(ν,µ)
n,m,p,q by an appropriate indexing mechanism.

Again, there is no obvious way of simplifying the integrals in the above. The numerical inte-

gration is performed by the change of variables α = k cosψ, β = k sinψ used previously in this

paper.

Table 2 shows the first ten eigenvalues, Ka/π, for the four different symmetry groupings cor-

responding to sloshing motions in a rectangular fishing hole with a/b = 1
4 . For example, (Ka)sa
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β0a = 0 β0a = 1 β0a = 5

n (Ka)s/π (Ka)a/π (Ka)s/π (Ka)a/π (Ka)s/π (Ka)a/π

1 1.09923 0.63856 1.16893 0.77919 2.02935 1.81400

2 2.10995 1.63143 2.14613 1.69086 2.73070 2.39096

3 3.11432 2.62923 3.13851 2.66574 3.56754 3.16489

4 4.11671 3.62815 4.13482 3.65434 4.46973 4.03456

5 5.11822 4.62752 5.13268 4.64788 5.40592 4.95248

6 6.11927 5.62710 6.13129 5.64375 6.36146 5.89686

7 7.12003 6.62680 7.13031 6.64087 7.32886 6.85696

8 8.12062 7.62658 8.12960 7.63876 8.30402 7.82706

9 9.12108 8.62641 9.12905 8.63714 9.28450 8.80387

10 10.1215 9.62627 10.1286 9.63586 10.2688 9.78539

Table 1: The first 10 values of Ka for symmetric and antisymmetric sloshing motions for a fishing hole of width 2a

in the two-dimensional problem for three different values of wave obliqueness, β0a. Columns 2 and 3 coincide with

tabulated values in [15].

implies symmetry about y = 0 and antisymmetry about x = 0. Numerically the size of the trun-

cated system has been increased until the values of Ka/π shown have converged to the five decimal

places shown. This has happened with truncation sizes of 16 in n,m, p, q implying that the eigen-

values of a 256 × 256 matrix have been determined for each of the four symmetry groups. The

distribution of eigenvalues are similar to those one would find when considering the wave equation

with free wavenumber K on a rectangular domain, |x| < a, |y| < b, with Neumann conditions on

the domain boundaries.

It has been confirmed numerically that the first entries in columns 2 and 4 tend to the first two

entries in columns 2 and 3 in table 1 as a/b becomes larger. This is evidently on account of the

first eigenmode becoming increasingly two-dimensional as the length of the hole is increased. As

expected, interchanging a and b results in the same eigenvalues, whilst if a/b = 1 columns 3 and 4

are found to be identical.

With some further effort, calculations of eigenvalues for the fishing-hole problem for parallelogram-

shaped holes could also be made.
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n (Ka)ss/π (Ka)sa/π (Ka)as/π (Ka)aa/π

1 1.17425 0.31519 0.66333 0.71834

2 1.29457 0.53873 0.78794 0.86744

3 1.44543 0.76652 0.95392 1.04597

4 1.61733 0.99960 1.14234 1.24235

5 1.80441 1.17912 1.34529 1.45075

6 2.00277 1.23706 1.55822 1.66380

7 2.15119 1.28582 1.64179 1.67025

8 2.20936 1.42109 1.70070 1.74353

9 2.22311 1.47803 1.77781 1.84912

10 2.31908 1.58089 1.79430 1.89156

Table 2: The first 10 values of Ka for sloshing motions with symmetry/antisymmetry about y = 0 and x = 0 for a

rectangular fishing hole with sides 2a, 2b and a/b = 1

4
.

5. Conclusion and further work

In this paper we have applied Fourier transform methods to solve wave scattering and radiation

problems associated with rigid plates, or docks, held fixed on the surface of a fluid. We first

demonstrated the method in the simple setting of a two-dimensional problem, in which the dock

is infinitely long in one direction and upon which waves are obliquely incident. The extension to

the three-dimensional problem in which a finite two-dimensional dock is held fixed in the surface

is treated similarly leading to a more complicated problem but of essentially the same structure

as the simpler problem in a reduced dimension. In both cases, second kind integral equations are

formulated and solved using a Galerkin method. Numerical results are shown to converge rapidly

with increasing terms in the expansion and key properties such as diffracted wave ampltiudes and

hydrodynamic forces readily expressed in terms of the numerical solutions.

In both this work and the earlier work of [7] it has been demonstrated that the application

of transforms methods can lead to substantially simpler solution when compared to, for example,

eigenfunction matching methods (e.g. [5]) or the application of Green’s function (e.g. [10]). They

are also equally applicable in finite or infinite depth with little modification required in the formu-

lation or the numerical solution. However, they are restricted to a certain class of problems where

boundaries of domain are aligned.

Flexible plates on the surface have been considered using an extension of the current approach

and will be reported elsewhere. An extension to consider waves interaction with multiple plates,
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connected by hinges through which power is extracted, is also being considered as a model of certain

types of articulated pontoon-type wave energy converters.

A final extension to consider is that of a dock of finite width and semi-infinite length. Progress

(not reported here) has been made in combining the solutions to the infinite two-dimensional dock

problem in §2 with the finite dock problem in §3. However, the solution is not fully resolved, at

least in terms of exactly how to implement an effective and efficient numerical method.
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