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Abstract

Tuned Liquid Dampers (TLDs) have been installed in large engineering structures
to suppress unwanted motions. They function by allowing fluid to slosh in a tank
mounted rigidly to the structure which contain devices for dissipating energy. In this
paper, the TLD is comprised of a rectangular tank fitted with a number of vertical
slatted screens to provide damping when the fluid is in motion.

The rectangular tank TLD is coupled to a simple mechanical model for the dis-
placement of an externally-forced structure of large mass. The influence of the fluid
motion in the rectangular tank is included in this model through two components of
the complex-valued net horizontal force provided by the fluid on the tank, namely the
added mass and damping coefficients. These depend on both the forcing frequency and
the magnitude of the tank displacement. The calculation of these key coefficients is
performed by developing an analytical solution to a linearised boundary-value problem
representing the forced motion of a rectangular tank having an arbitrary configuration
of vertical slatted screens. The tank problem is formulated using classical water wave
theory with linearised boundary conditions both on the free surface and across the
screens. These latter linearised screen conditions are designed to accurately capture
both the added inertia effects of a slatted screen and the damping effects from an
equivalent non-linear turbulent drag law, whose successful implementation is reported
in Crowley and Porter (in press). Advantage is also taken of the linearised theory used
to demonstrate key qualitative features of TLD systems analytically.

Numerical results are shown to compare very well with experimental results for
particular screen arrangements. Different screen configurations are then considered
to indicate general criteria for ‘optimising’ the TLD performance, by reducing overall
displacement across all forcing frequencies by altering the number, placement and
porosity of the slatted screens in the tank.

1 Introduction

The suppression of unwanted large amplitude motions in large engineering structures such
as bridges and tall buildings that are subject to excitation from external forces is an im-
portant part of engineering design. Typically, the inherent damping of such large structures
is small and the structures will possess resonant frequencies which can be responsible for
large amplitude response when excited by forcing with those frequency components. In tall
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buildings, for example, vortex shedding from wind loading or earthquake-induced vibrations
can supply such a forcing. Engineers mitigate against these resonances by building damping
systems into the structure and tuning the damping systems to minimise motion over a range
of frequencies, not just the resonant frequencies.

The forces induced by the sloshing of liquid in a tank can be utilised to damp the
unwanted motions of various structures in which they are housed. So-called Tuned Liquid
Dampers (TLDs) have previously been used to stabilise ships and satellites, but have most
recently been employed to mitigate the dynamic response of tall buildings; Tamura et al.

(1995) and Kareem et al. (1999) consider some specific examples in more detail. Such devices
have been predominantly adopted by engineers in Japan, including in the Shin-Yokohama
Prince Hotel and the control tower at the Narita Airport (Tamura et al., 1992). Tamura
et al. (1992) concluded that the presence of the TLD reduced the acceleration response of the
tower to about 50% of that without a damper. Their study also found that after the onset of
seismic excitations, the TLD significantly reduced the duration of the vibrations. TLDs have
lower maintenance costs than the commonly used alternative Tuned Mass Damper (TMD)
systems, their natural frequency can be easily adjusted and they can be utilised for water
supply whereas a TMD has no other function. Often they can be easily retro-fitted into
existing structures (e.g. Tamura et al., 1995).

The more general study of liquid sloshing in tanks mounted within structures has been
a subject of study over many decades, mainly motivated by the desire to suppress sloshing
motions in moving containers such as oil transporters and space vehicles (see Abramson
(1966), Dodge (2000) for example).

The damping that develops due to the viscosity of the fluid in the tank is usually insuffi-
cient in reducing the sloshing response (e.g. Ibrahim, 2005). Various devices are used to not
only suppress the liquid sloshing response, but to also shift the natural frequencies of the
liquid in the tank. Numerous studies have been conducted into the damping force in tanks
of differing shapes – including rectangular, cylindrical and spherical (Abramson et al., 1963)
– compartmented and those fitted with screens, both solid and perforated.

A TLD works by tuning the fundamental sloshing frequency of the liquid in a tank to
the natural frequency of the structure. Tanks with no added sloshing suppression systems
installed rely upon violent sloshing at resonance to dissipate vibration energy, the external
forces between the structure and hydrodynamic forces due to the liquid motion in the tank
being transmitted through the walls of the tank. Even so, the inherent damping this provides
has been found to be insufficient without extra dissipating devices installed in the tank (Fediw
et al., 1995; Tait and El Damatty, 2004).

Various approaches have been analysed to increase the inherent damping of the tank.
Gardarsson et al. (2001) studied the effectiveness of a TLD with a sloped bottom. Tamura
et al. (1992) analysed the adding of particles to the fluid on the performance of the TLD.
Others have inserted devices such as screens and obstacles to dissipate the energy.

Fediw et al. (1995) found vertical, sharp-edged lattice screens located close to the centre
of the tank to effective in increasing the inherent damping of the tank. Warnitchai and
Pinkaew (1998) developed a TLD model to investigate the damping effect of three different
type of flow dampening devices. In all cases the structure was placed in the middle of
the tank. The wire mesh screen was found to provide significantly more damping to liquid
sloshing than the vertical flat plate or two vertical circular poles. The wire mesh screen was
also shown to have a negligible effect on the sloshing frequency which is important in TLD
design.
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Tait and El Damatty (2004) developed an equivalent mechanical model that has the
same effect on the structure as a TLD. Tait et al. (2005) then conducted experiments to
verify both linear, based on that of Fediw et al. (1995), and non-linear numerical models of
a TLD with vertical slatted screens placed in various locations inside the tank. Investigation
of the sloshing of fluid showed that if properly designed the screens were able to provide
sufficient damping. Tait (2008) went on to give an equivalent linear mechanical model of
a TLD that takes into account the energy dissipated by the slatted screens. This model is
validated with scaled experiments, subjecting the structure-TLD system to both sinusoidal
and random excitation. A preliminary procedure for designing an optimally-tuned TLD for
a given structure is given.

Frandsen (2005) also considers the effectiveness of a TLD but using a fully non-linear
model. However, here the TLD is modelled as a clean tank with no screens and instead the
structure is given some associated damping.

Other recent work on investigating the effect of a slatted screen on sloshing in TLDs
related to the current work includes that of Faltinsen and Timokha (2011). They provide an
analytic solution of the natural sloshing frequencies in a rectangular tank with a centralised
slat screen and show how these results depend on local properties of the screen such as the
number and positioning of the slats.

Despite the previous work on TLDs, both numerical, experimental and mathematical,
there appears to be little clear indication on how to systematically design an optimally-
damped slatted-screen TLD device. Questions such as what shape of tank should be used,
how many screens and what type of screen should be used appear to remain largely unan-
swered. We attempt to shed light on these issues by considering a two-dimensional rectan-
gular tank TLD design and provide a mathematical model for the solution due to forced
harmonic vibration of a structure containing a TLD.

In the first part of this paper we consider the fluid response and horizontal component
of the hydrodynamic forces due to the forced motion of a rectangular tank with a single
centrally-placed screen. The governing equations are based on classical linearised water wave
theory, whose accuracy is questionable for large fluid responses but since we are attempting
to damp optimally, we argue that it is a reasonable tool to use. Fediw et al. (1995) confirms
this, finding that increasing the number or decreasing the porosity of the screens in the
water tank results a more linear sloshing response. Indeed, recent results of Faltinsen et al.

(2011b) indicate that linear theory matches experimental Faltinsen et al. (2011b) indicate
that linear theory matches experimental results even for large amplitude free surface motions.
Love and Tait (2010) use experimental results of structure-TLD systems subject to random
forcing in order to verify proposed models. They conclude that a linear model is sufficient
for preliminary TLD design. A similar theoretical basis has been used by Tait (2008) and
Faltinsen et al. (2011a) in their related investigations.

In order to advance the mathematical solution given in section 2, we require a screen-
averaged linear relationship between flux and pressure drop to provide a condition at the
slatted screen. This is modelled via a complex coefficient which includes a real part associated
with the added inertia (a blockage coefficient) provided by the constrictions in the screen
and an imaginary part associated with damping.

Crowley and Porter (in press) describe an approach to model these two effects accurately
by equating the coefficients with equivalent, more accurate, models of flow past a single slat-
ted screen. The same approach is adopted here in determining a screen-averaged boundary
condition at a number of screens along the tank.
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In section 3, we show how the analysis of section 2 can be developed to deal with any
number of screens in the tank showing that an exact description of the solution can be
found by applying simple transfer matrices to each component of the depth dependence to
produce a simple solution technique. This is similar to the approach used by Evans (1990)
when considering analytically the reflection of waves by a number of vertical, equally spaced
porous screens in both an open ended and closed narrow rectangular wave tank.

In section 4 a TLD design is considered by coupling the solution of section 3 for the tank
sloshing to a mechanical model of the large structure. Key features of the behaviour of a TLD
are demonstrated analytically by our theoretical model, such as the suppression of resonance
of the structure by the tank and the development of two new resonances at frequencies above
and below the original resonance. Numerical results show excellent agreement with the scale-
model experiments of Tait (2008). Having verified our theoretical model, we then consider
a range of TLD designs and produce numerical results showing TLD operation. For given
sets of parameters, such as the tank fill ratio and the structural mass/fluid mass ratio, we
investigate what are the optimal number, placement and characteristics of the screens such
that the structural motion is reduced to a minimum over all excitation frequencies. The
paper is summarised in section 5.

2 A horizontally-forced rectangular container with a

single screen

We use Cartesian coordinates (x, y) with y = 0 coinciding with the undisturbed free surface
of a fluid contained in a two-dimensional rectangular tank with base at y = h. When at
rest, the sidewalls of the tank are positioned at x = ±a and a single thin vertical slatted
screen extends through the depth at x = 0. The system is forced into horizontal oscillations
of amplitude ǫ ≪ a and with angular frequency ω, and we are considering the long-time
behaviour of the motion (i.e. transients in an initial-value problem have died away). The
screen provides damping through the production of turbulent eddies shed from the sharp
edges of the slats, and the standard arguments suggest that these eddies remain largely
localised to the screen on account of the oscillating fluid motion – see Mei et al. (1983).
Then it is usual to assume the bulk flow is irrotational and inviscid whilst the fluid is taken
to be incompressible. Regions close to the screen are treated separately and eventually
collapsed onto the screen to form boundary conditions across the screen.

We use classical linearised water wave equations to describe the fluid motion (see the
discussion in the Introduction) in which the fluid velocity is given by the gradient of a
potential Φ(x, y, t) = ℜ{ωǫφ(x, y)e−iωt}. Then φ satisfies

∇2φ = 0, in the fluid, (2.1)

φy = 0, on y = h, (2.2)

the linearised free surface condition

Kφ+ φy = 0, on y = 0, (2.3)

where K = ω2/g and g is gravitational acceleration. On the vertical walls of the tank, the
horizontal velocity of the fluid is imposed by

Φx = ωǫ cosωt, on x = ±a+ ǫ sinωt, (2.4)
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which, when linearised, is equivalent to requiring

φx = 1, on x = ±a, 0 < y < h. (2.5)

Finally, we require conditions relating properties of the flow on one side of the screen
to the other. For this, we follow the recent work of Crowley and Porter (in press) who
themselves followed closely ideas of Bennett et al. (1992) and Mei et al. (1983). The effects
of the local flow field in the presence of the slatted barrier are considered, initially isolating
a narrow strip either side of the screen before contracting those conditions onto the line
occupied by the screen thereby allowing us to formulate approximate boundary conditions
on the screen.

As a result we obtain a condition expressing continuity of horizontal velocity across the
screen,

[φx]
x=0+

x=0− = 0, 0 < y < h, (2.6)

where the square brackets denote the jump in the enclosed quantity.
A dynamic condition is also derived that takes into account both the non-linear turbulent

drag and added inertial effects felt by the fluid as it accelerates through the constrictions
of the slatted screen. Adopting the approach used in Crowley and Porter (in press) the
drag and inertia effects are determined empirically from idealised mathematical models the
condition is written

[φ]x=0+

x=0− = k−1γ (φx(0, y)− 1) , 0 < y < h, (2.7)

the right-hand side involving the relative velocity of the fluid and the moving screen. In the
above, γ = C+ iKL, C and KL are, respectively the blockage and linearised drag coefficients
found using the methods described in Crowley and Porter (in press) and k is defined to be
the positive real root of the dispersion equation

K = k tanh kh. (2.8)

Note that whilst C is determined by the geometry of the screen, the depth and the wave
frequency, the linearised drag coefficient, KL, is determined by an iterative procedure, being
dependent also on free surface amplitudes either side of the screen which themselves are
part of the solution. This is simply a by-product of linearising a non-linear drag law. The
iterative procedure is itself not an onerous numerical task and the advantages of being able
to solve a linearised hydrodynamic problem outweigh the numerical effort of iteration.

In the case being considered in this section, of a single screen centrally placed in the
rectangular tank, it is clear that oscillations will be antisymmetric, implying that φ(−x, y) =
−φ(x, y) and then equations (2.1), (2.2), (2.3) and (2.5) may be solved in x > 0 only with
(2.6) and (2.7) replaced by the single condition

2φ(0+, y) = k−1γ
(

φx(0
+, y)− 1

)

, 0 < y < h, (2.9)

and with the relation φ(−x, y) = −φ(x, y) providing the extension into x < 0.
However, with a few to developing more general configurations of multiple screens, we

choose not to take advantage of this symmetry condition. Thus, we expand the potential in
each subdomain x < 0 and x > 0 in terms of separation solutions, writing

φ(j)(x, y) =
∞
∑

n=0

χ(j)
n (x)ψn(y), (2.10)
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with
χ(j)
n (x) =

(

a(j)n e−knx + b(j)n eknx
)

/kn, (2.11)

where j = 0 refers to −a < x < 0 and j = 1 to 0 < x < a. In the above, a
(j)
n and b

(j)
n are

expansion coefficients to be determined, whilst

ψn(y) = N−1/2
n cos kn(y − h), Nn =

1

2

(

1 +
sin 2knh

2knh

)

, (2.12)

for n ≥ 0 are vertical eigenfunctions with kn given as the real positive roots of

K = −kn tan knh, n ≥ 1, (2.13)

and k0 ≡ −ik where k is already defined by (2.8). The functions ψn satisfy the orthogonality
relation

1

h

∫ h

0

ψn(y)ψm(y)dy = δmn, m, n ≥ 0. (2.14)

Writing

1 =
∞
∑

n=0

Lnψn(y), (2.15)

with

Ln =
1

h

∫ h

0

ψn(y)dy =
N

−1/2
n sin knh

knh
, (2.16)

it is clear that the structure of the boundary conditions (2.5), (2.6) and (2.7) with (2.15)
allow us to apply these conditions separately to each Fourier mode. In other words we have

χ(0)
n

′

(−a) = χ(1)
n

′

(a) = Ln, χ(0)
n

′

(0) = χ(1)
n

′

(0), (2.17)

and
χ(1)
n (0)− χ(0)

n (0) = k−1γ
(

χ(0)
n

′

(0)− Ln

)

, (2.18)

where primes denote differentiation. Using the second condition in (2.17) and (2.18) first
and substituting in from (2.11), we find that

(

a
(0)
n

b
(0)
n

)

= T (λn)

(

a
(1)
n

b
(1)
n

)

+ λnLn

(

1
1

)

, (2.19)

where

T (x) =

(

1 + x −x
x 1− x

)

, (2.20)

is a transfer matrix, connecting modal amplitudes from one side of the screen to the other,
and

λn = knγ/(2k). (2.21)

Finally, applying the lateral boundary conditions (2.17) leads, after considerable algebra, to

(

a
(1)
n

b
(1)
n

)

=
Ln

2(λn sinh kna+ cosh kna)

(

λn(1− ekna)− 1
λn(1− e−kna) + 1

)

, (2.22)
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Figure 1: Magnitude of the free surface at the left hand wall x = −a, for a tank of aspect ratio
a/h = 1 with a centered screen of varying porosity. The tank is forced to oscillate with an amplitude
of ǫ/h = 0.01. In (b) the screen has no damping.

and then it follows from (2.19) that

(

a
(0)
n

b
(0)
n

)

=
Ln

2(λn sinh kna+ cosh kna)

(

λn(e
−kna − 1)− 1

λn(e
kna − 1) + 1

)

. (2.23)

The total potential can be reconstructed using (2.11) with (2.22) and (2.23) and this gives

χ(0)
n (x) =

Ln(λn(cosh kn(x+ a)− cosh knx) + sinh knx)

kn(λn sinh kna+ cosh kna)
, (2.24)

whilst it can also be shown that χ
(1)
n (x) = −χ(0)

n (−x), as expected illustrating the potential
to be antisymmetric.

Note that in the special case of γ = 0, then the solution coincides with a forced rectangular
container of width 2a with no screen present, namely

φ(x, y) =
∞
∑

n=0

Ln sinh knxψn(y)

kn cosh kna
, (2.25)

for −a < x < a, 0 < y < h.
Also, when γ → ∞, it is straightforward to confirm that the solution is equivalent

to a forced rectangular container of width a (i.e. the tank is divided equally into two
compartments with an impermeable wall between them) and then

φ(0) =
∞
∑

n=0

Ln sinh kn(x+
1
2
a)ψn(y)

kn cosh
1
2
kna

, (2.26)

and φ(1)(x, y) = −φ(0)(−x, y).
Figure 1(a) plots the magnitude of the dimensionless free surface at the left hand wall

x = −a of a tank with a single centrally placed screen and tank aspect ratio a/h = 1. In
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Figure 2: N screens inserted at x = aj , j = 1, . . . , N with walls at x = ±a. The labelling indicates
the N + 1 separate regions of the tank.

agreement with (2.25) as γ → 0 (which occurs when the screen porosity p → 1) resonant
behaviour is seen at the first and second sloshing frequencies associated with a tank with no
screens, ka = 1

2
π, 3

2
π or Kh ≈ 1

2
π, 3

2
π respectively. As the porosity of the screen decreases,

γ → ∞, the peaks at those frequencies vanish. However, another peak emerges relating to
the natural frequency of a completely divided tank at ka = π, or Kh ≈ π, as expected by
(2.26).

More generally, if γ = C is real (i.e. there is no damping), then the potential is undefined
at values of frequency determined by (2.8) where k satisfies cot ka = 1

2
C (where k0 = −ik)

determined from (2.24), (2.21), and these are the sloshing frequencies of the undamped
tank. If there are no screens present then these occur at k = pm where pm = (m + 1

2
)π/a

for m = 0, 1, . . ., as the porosity of the screen decreases (hence γ = C increases), the first
sloshing frequency of the tank will decrease from these values as shown in Figure 1(b).

3 Multiple screens

We extend the previous case of one screen in the centre of the tank to N vertical screens
placed at arbitrary positions x = aj, j = 1, . . . , N . For convenience, we extend this notation
to include the two end walls by defining a0 = −a and aN+1 = a.

Within each of the separate N + 1 fluid-filled sections of the container, bounded by two
screens aj < x < aj+1, the velocity potential is given φ = φ(j) as defined by (2.10) with χ

(j)
n

a slightly modified version of (2.11) given by

χ(j)
n (x) =

(

a(j)n e−kn(x−aj) + b(j)n ekn(x−aj)
)

/kn, (3.1)

for j = 0, . . . , N . For simplicity we will assume that each screen has the same porosity and
gap-slat structure, although the dependence of the imaginary component of γ (the linearised
drag coefficient) upon the surface wave amplitudes either side of the screen imply that
different values of γj must now be applied to each screen in the tank. Thus the conditions
across each screen are now written

χ(j−1)
n

′

(aj) = χ(j)
n

′

(aj), and χ(j)
n (aj)− χ(j−1)

n (aj) = k−1γj

(

χ(j)
n

′

(aj)− Ln

)

, (3.2)
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for j = 1, . . . , N whilst the end wall conditions remain as

χ(0)
n

′

(a0) = χ(N)
n

′

(aN+1) = Ln. (3.3)

The strategy is to successively connect solutions from one section to the next through
transfer matrices, before finally applying wall conditions. Such a process is reminiscent
of the wide-spacing approximation (e.g. Martin, 2006) widely applied to wave interactions
between multiple scatterers where evanescent wave effects are often discarded to make simple
connections between wave fields either side of a scatterer. Here, we are applying the same
methodology but do so mode-by-mode and therefore make no approximation to the solution.

Thus, applying (3.2) to (3.1) for each j = 1, . . . , N gives
(

a
(j−1)
n

b
(j−1)
n

)

= T (j)
n

(

a
(j)
n

b
(j)
n

)

+ λ(j)n Ln

(

ekncj

e−kncj

)

, (3.4)

where

T (j)
n =

(

(1 + λ
(j)
n )ekncj −λ(j)n ekncj

λ
(j)
n e−kncj (1− λ

(j)
n )e−kncj

)

≡ ∆(kncj)T (λ
(j)
n ), (3.5)

is the transfer matrix for the jth screen where T and λ
(j)
n are defined by (2.20) and (2.21)

with γ = γj, cj = aj − aj−1 and

∆(x) =

(

ex 0
0 e−x

)

, (3.6)

embodies the ‘phase shift’ of a wave between adjacent screens.
Applying (3.5) recursively across all N screens gives

(

a
(0)
n

b
(0)
n

)

= T
(N)
n

(

a
(N)
n

b
(N)
n

)

+ LnF n

(

1
1

)

, (3.7)

where, for j = 1, . . . , N ,
T

(j)
n = T (1)

n T (2)
n . . . T (j)

n , (3.8)

and

F n =
N
∑

j=1

T
(j)
n λ(j)n . (3.9)

In deriving (3.7) we have made use of the fact that

T (j)
n

(

1
1

)

=

(

ekncj

e−kncj

)

. (3.10)

Instead of relating the coefficients a
(0)
n , b

(0)
n in terms of a

(N)
n , b

(N)
n as given in (3.7), we could

equally well have related a
(N)
n , b

(N)
n in terms of a

(0)
n , b

(0)
n . Of course, this can be done directly

by operating through (3.7) by the inverse of T (N)
n and it can be shown that the two approaches

give the same result.
We continue by writing

T
(N)
n ≡

(

t11 t12
t21 t22

)

and F n

(

1
1

)

≡
(

f1
f2

)

. (3.11)
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Then it only remains to apply the wall conditions (3.3), a process which eventually gives

(

a
(N)
n

b
(N)
n

)

=
Ln

D

(

t12 − t22 + ekncN+1(1− (f2 − f1))
t21 − t11 + e−kncN+1(1− (f2 − f1))

)

, (3.12)

where D = (t21−t11)ekncN+1+(t22−t12)e−kncN+1 . For a single screen placed centrally in a tank
of width 2a, (3.12) can be shown to reduce to (2.22). To recover the remaining expansion
coefficients for j < N , we simply use (3.7) and the solution is complete.

3.1 Horizontal force on the tank

The sloshing motion of the fluid exerts hydrodynamic forces on the tank expressed as
ℜ{Fte

−iωt}, and we can now find these analytically using the integrated pressure P =
ℜ{pe−iωt}, over all vertical surfaces including the tank walls and screens. Here, P = −ρΦt

so that p = iωρφ and thus the net horizontal force for N screens is

Ft = iωρ

∫ h

0

(

φ(a0, y)− φ(aN+1, y) +
N
∑

j=1

[φ(x, y)]
x=a+j

x=a−
j

)

dy. (3.13)

On account of the decomposition in (2.10) the depth dependence can be explicitly integrated
to give

Ft = iωρh
∞
∑

n=0

Ln

N
∑

j=0

(

χ(j)
n (aj)− χ(j)

n (aj+1)
)

= iωρh
∞
∑

n=0

Ln

kn

N
∑

j=0

(

a(j)n (1− e−kncj+1) + b(j)n (1− ekncj+1)
)

. (3.14)

It is usual practice to decompose F into its real and imaginary components by writing

Ft = −iω

(

A+
iB

ω

)

, (3.15)

where A is the termed the added mass and B the damping coefficient. These quantities can
be non dimensionalised using m = 2ρah, the mass of water in the tank, such that

Ft = −iωm (µ+ iν) , where
A

m
= µ and

B

mω
= ν. (3.16)

We can also obtain an independent expression for the damping component of the force
ν. With reference to figure 2, we apply Green’s Identity to the potential φ and φ∗ in each
sub-region of the tank, where the asterisk denotes the complex conjugate. Thus,

∫∫

V

φ∗∇2φ− φ∇2φ∗ dx dy =

∫

S

φ∗
∂φ

∂n
− φ

∂φ∗

∂n
dS, (3.17)

where ∂/∂n is the derivative of the outward normal to the surface S bounding the volume
V .
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The left-hand side of (3.17) is clearly zero whilst evaluating the components of the line
integral along the boundary S of each sub-region V , on y = 0 and y = h the integrand is
zero, and we are left with contributions along the vertical walls and screens. At x = ±a, we
have φx = 1, and at each screen x = aj we have [φx]

+
−
= 0 and k−1γj(φx − 1) = [φ]+

−
.

Summing the contributions from each sub-region of the tank results, after considerable
algebra, in

N
∑

j=0

∫ h

0

(φ−φ∗)|x=a+
j
dy−

N+1
∑

j=1

∫ h

0

(φ−φ∗)|x=a−
j
dy =

N
∑

j=1

(

k

γj
− k

γ∗j

)
∫ h

0

∣

∣

∣

∣

[φ]
x=a+

j

x=a−j

∣

∣

∣

∣

2

dy. (3.18)

The left-hand side of (3.18) is proportional to the integrated pressure over the walls (see
equation (3.13)). Specifically it is (Ft + F ∗

t )/(iωρ), and so we find using (3.16) that

ν = −kρ
m

ℑ
N
∑

j=1

{

γ−1
j

}

∫ h

0

∣

∣

∣

∣

[φ]
x=a+j

x=a−j

∣

∣

∣

∣

2

dy. (3.19)

This equation relates the overall tank damping to the damping over individual screens since

ℑ{γ−1
j } = − K

(j)
L

C2 +K
(j)
L

2 , (3.20)

confirming that ν is non-negative and that, as the screen damping K
(j)
L for each screen tends

to zero, then the overall tank damping ν tends to zero also.
Using the modal decomposition of φ in (2.10) and the orthogonality condition (2.14),

(3.19) reduces to

ν = −khρ
m

N
∑

j=1

ℑ
{

γ−1
j

}

∞
∑

n=0

∣

∣χ(j)
n (aj)− χ(j−1)

n (aj)
∣

∣

2

= −khρ
m

N
∑

j=1

ℑ
{

γ−1
j

}

∞
∑

n=0

|a(j)n − a
(j−1)
n e−kncj + b

(j)
n − b

(j−1)
n ekncj |2

|kn|2
, (3.21)

after (2.11) is used. This provides and alternative, independent, method for computing ν
and can be used to check the numerical method.

We also note that (3.19) is essentially a conservation of energy relation, which is unsur-
prising given its roots in (3.17). To see this, we may calculate the mean power over a cycle
exerted by the force on the tank which is simply the time-averaged product of the overall
force on the tank and the enforced (unit) velocity of the tank and given by

Win = 1
2
ℜ{Ft.1} = 1

2
mων, (3.22)

from (3.16) (the dimensions of power – and previously force – are recovered by re-scaling
φ appropriately). Conversely, the power lost over a cycle through damping at the screens
is the mean rate of working of the pressure summed over each of the screens, which can be
expressed as

Wout = −1
2
ℜ
{

N
∑

j=1

∫ h

0

(φx − 1) [−iωρφ∗]
x=a+j

x=a−j
dy

}

= −ωρk
2

N
∑

j=1

ℑ{γ−1
j }

∫ h

0

∣

∣

∣

∣

[φ]
x=a+j

x=a−
j

∣

∣

∣

∣

2

dy = 1
2
mων, (3.23)
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after use of (2.7) applied to the screen at x = aj and (3.19). Hence, the net power lost per
cycle is the same as the net input of power, as must be the case.

It helps to identify key features of sloshing and damping of multiple screens by examining
the forces on a tank with no screens and with a centrally-placed screen, where solutions (see
the end of section 2) are explicit.

3.1.1 Tank with no screens

Using (2.25) the total force on the walls at x = ±a can be calculated as

Ft = −2iωρh
∞
∑

n=0

L2
n tanh kna

kn
. (3.24)

Note that in this case, a tank with no screens, there is no damping. Then ν = 0 whilst

µ =
∞
∑

n=0

L2
n tanh kna

kna
, (3.25)

which is unbounded at sloshing frequencies.

3.1.2 Tank with a single central screen

For the case of one screen at x = 0 considered in §2, and exploiting the fact that φ is
antisymmetric,

Ft = −2iωρ

∫ h

0

(

φ(1)(a, y)− φ(1)(0+, y)
)

dy

= −2iωρh
∞
∑

n=0

L2
n(2λn(cosh kna− 1) + sinh kna)

kn(λn sinh kna+ cosh kna)
. (3.26)

In the limit as γ ≡ γ1 → 0, λn ≡ λ
(1)
n → 0 also, so the screen vanishes and (3.26) unsur-

prisingly coincides with (3.24), as shown in figure 3. When |γ| → ∞, the tank is effectively
divided into two separate compartments and now we find that

Ft → −4iωρh
∞
∑

n=0

L2
n tanh

1
2
kna

kn
, (3.27)

or, equivalently, ν = 0 and

µ→ 2
∞
∑

n=0

L2
n tanh

1
2
kna

kna
, (3.28)

twice the value as for a tank with no screen having double the width. In both case of
γ → 0 and |γ| → ∞ zero damping occurs, demonstrating that optimal damping occurs for
an intermediate value of γ, some way from zero and infinity in the complex plane.
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Figure 3: Non dimensional (a) damping and (b) added mass components of the force on the walls
and screen of a tank with aspect ratio a/h = 1. Screen centered and of varying porosity.

3.1.3 Zero frequency limit

Consider the limit of (3.25) or (3.28) as ω → 0. Then K → 0 in (2.8) and (2.13) which
implies k2 ∼ ω2/gh → 0 where k0 = −ik and knh → nπ for n ≥ 1, whilst N0 → 1 and
Nn → 1

2
for n ≥ 1. Then Ln → 0 for all n ≥ 1 and, according to either (3.25) or (3.28) for

tanks with no screen or a single screen, µ→ 1, as in Fig. 3(b). That is to say, the damping
tends to zero and the added mass tends to the mass of water in the tank in the limit of
frequency going to zero. This is entirely expected, as in the low frequency limit, the fluid
acts as a solid mass moving with the tank. Though not transparent in (3.14) which gives
the force for an arbitrary arrangement of screens, it is reasonable to assume that this result
should also hold.

4 Coupling tank sloshing motions to an external struc-

ture

4.1 Equations of motion

The fluid-filled rectangular tank with damping screens investigated in the previous section
can, when rigidly attached to a structure much larger than itself, can be used to model the
effect of a so-called Tuned Liquid Damper (TLD).

The system is shown in figure 4 and consists of a structure of mass M which is subject
to an external forcing Fe(t), a function of time, t, and whose horizontal displacement X(t) is
constrained by a linear restoring spring of stiffness κ. This is an idealised mechanical model
of, for example, a tall building subject to wind forces. It is typical then that M ≫ m where
m is the mass of fluid in the attached tank and it is assumed for simplicity that no external
damping mechanism is attached to the mass M .

The equation of motion for the system is given by,

MẌ(t) = −κX + Fe(t) + Ft(t), (4.1)

where Ft(t) is the force exerted on the tank by the motion of the fluid within the tank.
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κ

X(t)

M Fe(t)

Ft(t)

Figure 4: Structure-TLD system

It is clear that in the absence of the tank, the undamped structure is prone to resonance
at a frequency given by

Ω2 = κ/M. (4.2)

With the tank attached, the liquid in tank will be forced to slosh and the idea is to tune the
damping characteristics, the tank geometry and both the number and placement of screens
‘optimally’ such that it suppresses the structure’s response to the external forcing Fe. As we
shall demonstrate below, damping of the structural resonance can be achieved by tuning the
fundamental resonant sloshing frequency of the tank near to Ω, the natural frequency of the
structure. This is the well-known principle by which both TLD’s and tuned mass dampers
work, although it is superficially counterintuitive. See, for example, Ibrahim (2005).

We assume that excitation is time-harmonic of angular frequency ω, and then the response
of the structure and the TLD will be time-harmonic also and we write

Fe,t(t) = ℜ{fe,te−iωt}, X(t) = ℜ{xe−iωt}. (4.3)

The force supplied by the tank ft is proportional to the velocity of motion (−iωx) and can
written

Ft = ω2

(

A+
iB

ω

)

x, (4.4)

in terms of A is the added mass and B the damping coefficient, previously calculated in
section 3 for a tank moving with unit velocity.

Therefore the frequency-dependent equation of motion (4.1) becomes,

(

Mω2 + ω2

(

A+
iB

ω

)

− κ

)

x = −fe. (4.5)

Using the non-dimensionalisation of A and B in (3.16), we rearrange the above to give a
non-dimensional response

x̂ ≡
∣

∣

∣

∣

x

fe/(MΩ2)

∣

∣

∣

∣

=
Ω2/ω2

|1 + m̂(µ+ iν)− Ω2/ω2| , (4.6)

where m̂ = m/M and Ω is defined by (4.2).

14



 0

 10

 20

 30

 40

 50

 60

 70

 80

 0.8  0.85  0.9  0.95  1  1.05  1.1  1.15  1.2

No TLD
Tank with no screens

TLD

ω/Ω

(a)

x̂

 0

 10

 20

 30

 40

 50

 60

 70

 80

 0.8  0.85  0.9  0.95  1  1.05  1.1  1.15  1.2

p=0.1
p=0.3
p=0.4
p=0.5
p=0.6
p=0.7
p=0.9

ω/Ω

(b)

x̂

Figure 5: In (a), we show a comparison of the non dimensional displacement of a structure with
the addition of a tank with no screens and with a TLD consisting of a tank of aspect ratio a/h = 3
fitted with a single centrally placed screen of porosity p = 0.5. In (b), the porosity of a centered
screen in a TLD with a/h = 3 is varied to show the effect on the displacement of the structure.

4.2 Analysis of resonance

We first demonstrate that, for a tank with no screens and hence no damping, that the
structural resonance is suppressed simply by the presence of the tank. First, if no tank is
attached, then m̂ = 0 and (4.6) gives

x̂ =
Ω2

|ω2 − Ω2| , (4.7)

and x̂ is unbounded as ω → Ω, tends to unity for ω → 0 and to zero as ω → ∞.
For a tank with no screen, ν = 0 and µ is given by (3.25). The form of (3.25) does

not highlight the precise nature of resonance and so we re-approach the problem for forced
sloshing of an empty tank using a different method. Hence we define φ = ψ + x where ψ is
now harmonic in −a < x < a, 0 < y < h and satisfies homogeneous conditions on the tank
walls

ψx = 0, on x = ±a, ψy = 0, on y = h, (4.8)

with an inhomogeneous condition on the free surface,

ψy +Kψ = Kx, on y = 0. (4.9)

The problem for ψ can be solved by separating variables and finding eigenvalues associated
with the x-variable. Thus it is not difficult to show that

φ(x, y) = x− 2K
∞
∑

n=0

(−1)n sin pnx cosh pn(y − h)

p2na(K cosh pnh− pn sinh pnh)
, (4.10)
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where pn = (n+ 1
2
)π/a. Defining ωn to be the natural sloshing frequencies of an empty tank

with ω2
n/g = pn tanh pnh, and K = ω2/g as usual, (4.10) can be written

φ(x, y) = x− 2ω2

a

∞
∑

n=0

(−1)n sin pnx cosh pn(y − h)

p2n(ω
2 − ω2

n) cosh pnh
. (4.11)

The force exerted by the fluid on the tank is

F = iωρ

∫ h

0

(φ(−a, y)− φ(a, y)) dy = −iω

[

m− 4ρω2

ag

∞
∑

n=0

ω2
n

p4n(ω
2 − ω2

n)

]

, (4.12)

where m = 2ρah is the mass of the fluid. In other words, the non-dimensional added mass
is

µ = 1− 2ω2

a2gh

∞
∑

n=0

ω2
n

p4n(ω
2 − ω2

n)
, (4.13)

with ν = 0 and µ → 1 as ω → 0 as already observed in §3. Now we see from (4.13) that as
ω → ω0, say, that

µ ∼ α− βω2

ω2 − ω2
0

, for ω close to ω0, (4.14)

where the values of α and β (positive) can be identified from (4.13) but are not significant.
Substituting (4.14) into (4.6) we find

x̂ ∼ Ω2|ω2 − ω2
0|

|((1 + m̂α)ω2 − Ω2)(ω2 − ω2
0)− βm̂ω4| . (4.15)

Hence, x̂ = 0 when ω = ω0 and, in particular, we can choose a tank configuration for which
the fundamental sloshing frequency ω0 = Ω, the resonance frequency of the structure and
then a system previously exhibiting an infinite resonance is now completely at rest at that
frequency, by the addition of the tank of fluid.

However this process introduces two new frequencies at which the structure may exhibit
infinite resonance and these occur at zeros of the denominator of (4.15) or when ω is one of
the positive solutions of the equation

(1 + m̂(α− β))ω4 − (Ω2 + ω2
0(1 + m̂α)ω2 + Ω2ω2

0 = 0. (4.16)

If, as suggested, we set ω0 = Ω, then solutions of this equation are given by

ω2 = Ω2

(

1 + 1
2
m̂α± (m̂β + 1

4
m̂2α2)1/2

1 + m̂(α− β)

)

. (4.17)

This shows that a pair of new resonances occur in close proximity to the original resonance.
Assuming that m̂≪ 1, we estimate these values as ω2/Ω2 = 1+ 1

2
m̂(β−α)±

√
m̂β+O(m̂3/2)

occurring at values above and below unity with a lower order offset. This effect can be
observed in figure 5(a). For this configuration, values for α and β calculated from (4.13)
predict resonances at ω/Ω ≈

√
0.998± 0.109.

Consider now a tank with a small amount of damping. Thus, we may think of a tank
with a single centrally-placed screen for simplicity and, as before focus, on the fundamental
frequency. In the absence of the screen, the fundamental resonant frequency ω0 is defined
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TLD Configuration a/h a (m) h (m) m̂

T2 2 0.674 0.337 0.045
T3 3 0.494 0.165 0.016
T4 4 0.384 0.096 0.007

Table 1: Chosen TLD configurations: dimensions and mass ratios.

by ω2
n/g = pn tanh pnh with n = 0 where now pn satisfies the relation cot pna = 0 defining

pn = (n+ 1
2
)π/a. This corresponds to a singularity in the force at ω = ω0. In the presence of

the screen, the end of §2 showed that the condition for resonance, or a pole in the complex
force µ+iν, for a single screen is replaced by cot pna = 1

2
γ, γ = C+iKL. This relation defines

complex pn and hence complex ωn. If the screen is highly porous, so that the blockage and
damping effects are small (characterised by a parameter ǫ ≪ 1) the fundamental resonant
frequency moves into the complex plane from ω = ω0 to ω = ω0 +

1
2
ǫ(ωr − iωi), say where

ωi > 0 for reasons of causality. Detailed values attributed to quantities such as ωr, ωi, in
terms of values of C and KL, have been omitted for clarity. Appealing to the ideas of analytic
continuation and referring to (4.14) in which the screen was absent, we may now assume a
complex force of the form

µ+ iν ∼ α− βω2

ω2 − (ω0 +
1
2
ǫ(ωr − iωi))2

, for ω close to ω0, (4.18)

where α = αr + iǫαi and β = βr + iǫβi now to include a small imaginary component. The
added mass µ and damping ν are then of the form

µ(ω) ∼ αr −
βrω

2(ω2 − ω2
0 − ǫω0ωr)

(ω2 − ω2
0 − ǫω0ωr)2 + ǫ2ω2

0ω
2
i

,

ν(ω) ∼ βrǫω
2ωi(ω0 +

1
2
ǫωr)− βiǫω

2(ω2 − ω2
0 − ǫω0ωr)

(ω2 − ω2
0 − ǫω0ωr)2 + ǫ2ω2

0ω
2
i

, (4.19)

for ω close to ω0. The added mass clearly now varies rapidly about a mean value of µ = αr

as ω2 varies about ω2
0 + ǫω0ωr whilst ν reaches a peak value of βrω0/(ǫωi) +

3
2
βrωr/ωi when

ω2 = ω2
0 + ǫω0ωr. From the form taken for µ in (4.19) it can be shown that µ takes local

minimum/maximum values at ω2 = ω2
0 + ǫω0ωr ± ǫω0ωi + O(ǫ2) and that the jump in µ

from minimum to maximum is βrω0/(ǫωi), the same at the leading order peak value of the
damping. This is a well-known phenomenon first described by Kramers and Krönig, (e.g.
Kronig, 1926) and we illustrate these features in Figure 3.

Assuming the tank configuration is chosen such that the fundamental sloshing frequency
is tuned to ω0 = Ω, the displacement at ω = ω0 can be found from (4.6) using (4.19) and
one finds that

x̂ =
1

m̂ |µ(ω0) + iν(ω0)|
≈ ǫ(ω2

r + ω2
i )

1/2

m̂βrω0

, (4.20)

to leading order in ǫ. This now implies a finite value of the displacement x̂ at what was
resonance with no tank and zero displacement with a tank in the absence of damping. Note
also that though ǫ is assumed small, having the small quantity m̂ in the denominator implies
an amplification of x̂ at this point.
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Screen configuration Number of screens Screen locations

A 1 0
B 2 ±0.2a
C 2 ±0.7a
D 3 ±0.5a, 0
E 4 ±0.2a, ±0.6a

Table 2: Initial test screen configurations: number and locations

The pair of infinite resonances in the undamped tank, at frequencies determined by the
vanishing of (4.15) become large finite resonances in the presence of damping, due to the
complex expression that replaces the denominator of (4.15) once the assumed form (4.18)
is used in (4.6). A prolonged calculation whose details are suppressed here shows that the
height of these resonances is approximated by x̂ ∼ O(1/ǫ).

The presence of screens in the tank provides a damping force that will reduce the un-
wanted oscillations of the structure under excitation at the natural frequency of the structure.
With no tank, the structure has a resonant frequency Ω at which its response x → ∞. A
tank with no screens damps out the structure’s response completely at Ω, but creates two
new resonances either side. A tank with one or more screens if tuned optimally will minimise
the structure’s response across a range of frequencies.

4.3 Numerical Procedure

The dimensionless response of the TLD structure subject to time-harmonic forcing of angular
frequency ω is given by the seemingly straightforward equation (4.6). However, as highlighted
earlier in §2, the linearised drag coefficient used for determining the solution is, according to
the approach developed by Crowley and Porter (in press), a function of the free surface wave
amplitudes incident either side of each screen in the tank. Thus, for any given x̂ which can
be mapped onto values of ǫ, an iterative root-finding procedure must be undertaken to find
linearised drag coefficients for each of the screens which give solutions which are consistent
with the free surface wave amplitudes in the tank. Such a process is described in detail in
Crowley and Porter (in press). For the small number of screens being used here, this is not
an onerous numerical task. However, this implies that the solution and therefore the key
properties of the solution, µ and ν, depend upon x̂ and so (4.6) is an implicit equation for
x̂ which also has to be solved by numerical root finding.

4.4 Comparison with experimental results

First, we briefly present a comparison of our results with the recent experimental results
of Faltinsen et al. (2011b) for a tank, unconnected to a TLD system and forced with a
prescribed amplitude of motion. Thus Faltinsen et al. (2011b) considered a tank of aspect
ratio a/h = 1.25 containing a single slatted screen with varying porosity and number of
gaps. The tank and fitted screen were forced to oscillate with an amplitude of ǫ/h ≈ 0.0025
and the height of the free surface at the wall as a function of frequency in steady state (i.e.
after transient decay) was recorded. As examples, figures 6 (a) and (b) display the results of
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Figure 6: The non dimensional theoretical (solid curves) and experimental (dots) free surface
wave elevations at the vertical wall, non dimensionalised by the forcing amplitude ǫ, against the
forcing frequency ω which is scaled by the lowest sloshing frequency of the tank with no screens,
ω0. Forcing amplitude ǫ/h = 0.0025, tank ratio a/h = 1.25.

our numerical model (solid curves) with the experimentally measured amplitudes (dots) for
the two extreme cases of porosity considered by Faltinsen et al. (2011b) of p = 0.5275 and
p = 0.04875 for screens with N = 70 and N = 7 gaps respectively. We see the large peaks
in the response associated with tank resonances at frequencies ω/ω0 = 1 and

√
3 for high

porosity, and at ω/ω0 =
√
2 for low porosity centrally-placed screens in line with comments

made earlier at the end of section 2. The agreement between our model, the results of the
theoretical model used by Faltinsen et al. (2011b) and the experiments appears to be quite
good.

Now we move onto TLD systems in which we aim to determine the response x̂ as a
function of frequency. We make comparison with experimental results in Tait (2008) in order
to verify our numerical results. In these model experiments the structure had mass M =
4040 kg, stiffness K = 49656N/m and a coefficient of mechanical damping C = 14Ns/m
which we supplement into our system shown in figure 4. A tank of length 2a = 0.966m
and breadth 0.874m is fitted with two screens of porosity p = 0.58 at a1,2 = ±0.2a and
filled with water to a depth of h = 0.119m. We divide the structure properties M,K and
C, and the external force fe by the breadth of the tank in order to obtain quantities per
unit width of the experiment to substitute into our two dimensional model. Figure 7 plots
the non dimensional structural response when subject to sinusoidal excitation of amplitude
fe = 11.7N and fe = 22.9N respectively. Our numerical results show excellent agreement
with the experimental results in both cases.

4.5 Optimising the structural damping

Tait (2008), whose work is probably most closely connected to ours, Ostermann and Frand-
sen (2005) among others have all conducted scale model structure-TLD experiments. All
seem to be in agreement that a typical tall structure should have a first eigenfrequency
f = 1

2π

√

κ/M = Ω/2π between 0.3–1Hz and, in general, the mass of the TLD should be
1–5% of the mass of the structure. Our results have been based on the following model
parameters. We let the structure have mass M = 10000kg and stiffness K = 150000N/m,
each per unit length of the structure. Then f = 0.616Hz and the natural frequency of the
structure is Ω =

√
15s−1. Scaling fe appropriately from the forcing amplitudes used by Tait
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Figure 7: Comparison of analytical and experimental results from Tait et al. (2008) of the non
dimensional structural response when subject to sinusoidal excitation. The TLD is of aspect ratio
a/h = 4.059 filled to a depth of h = 0.119m and fitted with two porous screens of porosity p = 0.58
placed at aj = ±0.2a. In (a) Fe = 11.7N and (b) Fe = 22.9N.

(2008) based on the mass of our theoretical structure, we set fe = 60N such that the forcing
corresponds to expected full scale structural accelerations induced by the wind for example.

With these parameters fixed, we investigate with rectangular tanks set to have aspect
ratio a/h = 2, 3, 4, each tuned such that the first liquid sloshing frequency in a tank with no
screens is equal to the natural frequency of the structure, Ω. This process defines the size of
the tank and the associated mass ratios and fluid depths for each tuned tank are listed in
Table 1.

Figure 5(a) illustrates the effectiveness of a TLD. With the addition of a tank with no
screens with a/h = 3 (the T3 configuration) the structural resonance at ω = Ω, as in (4.7),
is suppressed and two new resonant frequencies are introduced either side of the original
resonance, given by (4.17). The addition of a screen of porosity p = 0.5 in centre of the tank
significantly reduces the resonant motions of the structure even when, in this case, the mass
of the water in the tank is just 1.6% of the mass of the structure.

Figure 5(b) shows the structural response for a centrally placed screen in a tank with
T3 configuration of a/h = 3 for a range of porosities, including the case p = 0.5 shown in
figure 5(a). If the screen is too porous the tank does not provide enough of a damping force
and two resonance peaks can be seen either side of ω = Ω – as for a tank with no screens.
If the screen is too solid, γ ≡ γ1 → 0, the damping becomes excessive and the sloshing
fails to effectively suppress the motion of the structure at ω = Ω. For large porosities and
hence small blockage and damping, the figures confirm the predictions made by the analysis
at the end of §4.2. The porosity for the T3 configuration with a single screen which most
effectively damps the motion (i.e. reduces the maximum response across all frequencies) of
the structure is seen to be near p = 0.5.

In figure 5(b), the curves appear to all pass through two common points. A magnification
of these areas reveal that they do not. Similar observations apply to later figures. For the
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Figure 8: Non dimensional structural response x̂ as a function of frequency for a single centrally-
placed screen in a tank with TLD configuration T2, T3, T4 (a/h = 2, 3, 4). In each case porosity,
p, chosen to give optimal damping.

related area of tuned mass dampers (TMDs), it has been shown that curves do all pass
through common points (Ibrahim (2005) p.612). Perhaps it is not surprising that this is
close to happening for TLDs as it is common to approximate TLDs as an equivalent TMD
– see Tait (2008) and Vandiver and Mitome (1979) for example.

Similarly for the T2 (a/h = 2) tank configuration, the optimal porosity of a single screen
is found to be near p = 0.4, whilst for the wider T4 (a/h = 4) tank, a porosity close to
p = 0.5 is found to be optimal. For each of the three configurations with a single screen, the
optimal parameters of porosity are used to compare the response in figure 8. Unsurprisingly
the results show that the larger the mass ratio, m̂, the better the damping performance.
From a practical perspective, one would have to balance the economic cost of a larger fluid
mass with the enhanced damping it provides.

The next question to address is whether we can improve the TLD efficiency through
both the choice of tank geometry and the number and placement of screens. For tank
configurations T3 and T4, we have considered screens of porosity p = 0.3, 0.4, 0.5 and 0.6
and p = 0.5, 0.6, 0.7 and 0.8 respectively. For each value of p we wish to optimise the position
of the screens in the tank in order to minimise the structural response. Table 2 lists the five
chosen initial screen locations in this process. Screens of porosity greater than 0.8 are not
considered as larger number of them would be required in order to gain the required amount
of inherent damping in the tank. Similarly for more impervious screens with p < 0.3, the
number of screen locations to obtain minimum structural displacement would be limited.

In figure 9 each screen configuration provides a different amount of damping. When
p = 0.3 (small porosity) the favoured configuration is case C (two screens at ±0.7a). Here
the tendency is to over damp if there are too many screens or they are placed centrally where
the fluid motion is largest. Increasing the porosity to p = 0.4, again case C is seen to provide
the best overall damping. When p is increased to 0.5, case C shows slight under-damping,
and now case A (one screen) shows the best overall damping. As p is increased further still
to 0.6, all configurations apart from case B (two screens at ±0.2a) and case E (four screens)
show varying amounts of under-damping. In general, then, we see that moving the screens
towards the centre of the tank, or increasing the number of screens in the tank increases the
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Figure 9: Non dimensional structure displacement x̂ with TLD T3, in (a) screen porosity p = 0.3,
(b) p = 0.4, (c) p = 0.5 and (d) p = 0.6.

inherent damping of the tank and vice versa.
We can use the fact that curves all appear to pass close to two common points, for each

fixed p, to fine tune the damping process. Thus, an ideal screen configuration would have a
curve which peaked at these two points. This fine tuning process is illustrated in figure 10
for the cases considered in figures 9(a), (b) and (d), with the configurations listed in table 3.
Thus figure 10(a) uses case E as a reference curve and shows how case C with screens located
at ±0.7a can be improved by placing them slightly further apart at ±0.75a to attain more
optimum damping. Similarly in 10(b) case E is used for reference. Case A, a central screen
has no flexibility in its placement, but the case C spacing of ±0.7a can again be optimised
and the spacing ±0.65a does this. For a screen of porosity p = 0.6, we find that adapting case
B and moving both of the screens to a more centralised position is insufficient in increasing
the inherent damping of the tank. However, in figure 10(c) we show that altering case D
(three screens) and moving the outer screens from a1,3 = ±0.5a to a1,3 = ±0.3a, case I,
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Figure 10: Non dimensional structure displacement x̂ with TLD T3, after further optimisation
of the screen locations. In panel (a) screen porosity p = 0.3, (b) p = 0.4, (c) p = 0.6.

results in a more optimal structural response.
We observe that the double peaks are not of equal height. It is possible to re-balance

these by offsetting the tuning of the TLD frequency from the structural frequency. This has
little effect on the optimal screen placements and we do not consider that level of detail here.

The same process is repeated for TLD configuration T4 and results are illustrated in
figure 11 with a further optimisation of the cases p = 0.5, p = 0.6 and p = 0.8 shown in
figure 12. For this wider tank, the general trends seen for the T3 configuration are repeated.
Thus for p = 0.5 two screens positioned at ±0.75a (case F, adapted from case C) are found
to be optimal. Case G (adapted from case C) is optimal for p = 0.6, and then case K (four
screens adapted from case E) is optimal for the highest porosity considered, p = 0.8. Details
of the further optimised screen configurations are given in table 3.

Once the optimal screen arrangements for screens of given porosity in the restricted range
have been chosen, the magnitude of the structural displacement for each of these two TLD
arrangements can be compared. From figure 13, for both tank configurations T3 and T4, it
appears that the only significant distinguishing feature between these optimised cases is the
relative height of the double peaks. As mentioned previously TLDs are often best designed
such that these peaks are of equal height which, for this test structure, is best achieved with
screens of porosity p = 0.6 and p = 0.8 in screen locations I (three screens) and K (four
screens) for tank configurations T3 and T4 respectively.

Thus, in the process of designing a TLD for a particular structure, given a screen where
the porosity known, the optimal arrangement and number, N , of these screens could be
chosen in order to minimise the structural displacement when under horizontal excitation.
The tank size would be determined by space limitations and liquid depth set in order to tune
the sloshing frequency of the tank to the natural frequency of the structure. Alternatively, if
a porous screen could be designed of any required permeability, then for simplicity it would
make sense to construct a TLD with just one screen in the centre of the tank - with screen
porosity optimised accordingly.
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Figure 11: Non dimensional structure displacement x̂ with TLD T4, in (a) screen porosity p = 0.5,
(b) p = 0.6, (c) p = 0.7 and (d) p = 0.8.

5 Conclusions

In this paper we have considered a two-dimensional tuned liquid damper system consisting of
a liquid-filled rectangular tank fitted with vertical slatted screens mounted on a mechanical
mass/spring system. The mathematical model that has been derived for forced liquid sloshing
gives simple exact solutions to a linear water wave problem in which a novel realistic screen-
averaged linear condition has been used for the slatted screen. Linearisation is the key to
producing a solution which can be expressed simply comprised in terms of a system of 2× 2
transfer matrices in each of the depth modes in the tank and applicable to any number of
screens. We have illustrated the key features of tuned liquid dampers explicitly using the
mathematical solutions that have been derived. Furthermore, numerical results produced
via this method to calculate the structural response show good agreement when compared
to existing experimental results.
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Figure 12: Non dimensional structure displacement x̂ with TLD T4 after further optimisation of
screen placement. In panel (a) screen porosity p = 0.5, (b) p = 0.6, (c) p = 0.8.

Tank size Porosity Configuration Number of screens Locations

T3 0.3 F 2 ±0.75a
0.4 G 2 ±0.65a
0.5 H 3 ±0.65a, 0
0.6 I 3 ±0.3a, 0

T4 0.5 F 2 ±0.75a
0.6 G 2 ±0.65a
0.7 J 3 ±0.6a, 0
0.8 K 4 ±0.2a, ±0.4a

Table 3: Near optimal configurations of both the number of screens and their location for tanks
T3 and T4 with screens of a prescribed porosity.

The ultimate goal of this investigation has been to determine optimal configurations of
screens including the number and position of the screen within the tank and well as the
porosity of the screen. The model has been applied to three prototype tank configurations
to illustrate that optimal screen configurations depend on the system being considered (in
particular the structure/liquid mass ratio and the tank aspect ratio). In the two configu-
rations considered in detail in the results, the optimal strategy involved either two or four
screens placed in the tank at specific locations and having relatively high porosity, illustrat-
ing that the need to use a model such as this to produce an optimal design of tuned liquid
damper in practical applications.
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