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Under the assumptions of the linearised theory of small-amplitude water waves, it is
proved that plane waves normally-incident upon a semi-immersed cylinder of uniform
circular cross-section floating freely on the surface of a fluid of infinite depth are capable
of being totally reflected. Numerically this is shown to occur at a single non-dimensional
frequency. This remarkable result is used to construct examples of motion trapped modes,
involving pairs of freely-floating cylinders moving either in phase or out of phase. The
former case is equivalent to having a motion trapped mode for a single such cylinder next
to a rigid vertical wall. In the latter out-of-phase case, the pair of cylinders move as if
they form the wetted sections of a single rigidly-connected catamaran structure.

1. Introduction

When a body which is floating on the free surface of a fluid which extends indefinitely in
a horizontal direction is given a small displacement from its equilibrium position and then
released, it is generally assumed that it will oscillate about that position with decreasing
amplitude before finally coming to rest. This is because the initial potential energy is
expended in creating waves on the free surface which are continually radiated away from
the body. In fluid of finite depth the later stages of the motion can be described by a
damped harmonic oscillation which is determined by the zero of the so-called ‘complex
force coefficient’ nearest the real axis in the complex frequency plane. The situation in
infinitely deep fluid is different however, and Ursell (1964) showed that when a two-
dimensional half-immersed circular cylinder is displaced and then released from rest, it
makes a finite number of damped oscillations before coming to rest monotonically from
below its equilibrium position. Mathematically this is because the force coefficient in
an infinitely-deep fluid has a branch cut at the origin of the complex frequency plane
which contributes a dominating term for large time which is algebraic in inverse time.
The method of solution used by Ursell was to take Fourier transforms of the initial-value
problem thereby converting it into a radiation problem in the frequency or transform
domain. The resulting displacement of the cylinder was then given by a Fourier integral
over frequency. The denominator of the integrand involved the force coefficient whose
imaginary part was related to the damping coefficient for the forced heaving motion of
the cylinder, whilst the real part of the denominator involved the added mass of the
cylinder in heave.

Recently the question has arisen as to whether there exists a structure, in either two
or three dimensions, which is free to move in a single degree of freedom, for which the
denominator in the Fourier integral describing its displacement, vanishes for real values
of the transform variable (or frequency). If this were possible it would mean that when
such a structure was displaced from equilibrium and released it would eventually oscillate
indefinitely at that frequency due to the pole of the integrand on the real frequency axis.
Such a structure has been termed by McIver & McIver (2006) a motion trapping structure
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and the corresponding localised oscillation of the surrounding fluid a motion trapped
mode to distinguish it from the usual type of trapped mode of a fluid in the vicinity of a
fixed body. The vanishing of the denominator provides two conditions for the occurrence
of a motion trapped mode at a particular frequency. First the wave damping should
vanish at that frequency and secondly, the inertia forces, involving the body’s inertia
(which includes its added inertia) should balance any spring restoring force such as the
hydrostatic force at the same frequency. It is not difficult to construct shapes in both two
and three dimensions for which the radiation damping vanishes at a particular frequency
and then the second condition can be satisfied by assuming an artificial restoring force
acts on the body. A recent example of this has been provided by Evans & Porter (2007)
who showed that a submerged two-dimensional circular cylinder exhibited zeros of the
sway radiation coefficient, and then showed that the second condition could be satisfied
by tethering the (buoyant) cylinder appropriately. However it is more interesting, and
also more difficult, to ensure that the second condition is satisfied simultaneously for a
freely floating body under natural (hydrostatic) restoring forces.

McIver & McIver (2006), who first derived the conditions described above for a motion
trapping structure moving in a single mode of motion, showed that in deep water, for
freely floating structures in heave motion under hydrostatic restoring forces only, the sec-
ond condition for trapping could be replaced by the requirement that the dipole moment
for the potential describing the motion should vanish at infinity. They then constructed
a potential from suitably spaced wave sources and dipoles which was both wave free and
which had a zero dipole moment at large distances. By sketching the streamlines they
were able to construct ‘mirror image’ pairs of identical freely floating bodies as trapping
structures. Later (McIver & McIver 2007), they were able to extend the idea to construct
an axisymmetric freely floating torus of a specific shape which acted as a motion trap-
ping structure. Recently Evans & Porter (2008) have used a direct method to show that,
for particular frequencies, spacing, thickness and draft, a pair of identical rectangular
cylinders in two dimensions could sustain a motion trapped mode whilst free to make
vertical heave motions. The method was extended to thick partly-immersed axisymmetric
cylinders of rectangular cross section in an axial plane.

In all cases to date, trapping structures in two dimensions moving under hydrostatic
restoring forces, have involved pairs of identical ‘mirror image’ floating cylinders moving
in a single mode of motion as if forming the wetted sections of a catamaran hull. Thus
the problem could be replaced by a single cylinder adjacent to a vertical wall on which a
Neumann condition is satisfied provided the cylinder was constrained to move in heave
only. But if an unconstrained cylinder next to a wall is displaced vertically from equi-
librium and released from rest under its natural hydrostatic forces only, the resulting
motion would of necessity involve a sway and roll component also even if the cylinder
itself was symmetric about a vertical plane. Thus the search for a such trapping struc-
ture now requires us to consider a coupled problem involving the equations of motion in
heave, sway and roll.

In this paper we shall revisit the Ursell (1964) problem of the half-immersed circular
cylinder but we shall include the effect of a vertical wall. Then in the subsequent motion
of the cylinder after its initial vertical displacement, there will be a sway component of
the motion due to the presence of the wall. Note, however, that because of the special
geometry of the circular cylinder there will be no roll component. In Section 2 we consider
the initial value problem and derive the conditions which need to be satisfied for the
cylinder in its subsequent coupled motion in heave and sway, to exhibit trapped modes
confined between the cylinder and the wall. The conditions can be expressed explicitly
in terms of the added mass and damping coefficients, including the cross coefficients for
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a cylinder in either sway or heave next to a rigid wall. By constraining the heave motion
the conditions are shown to reduce to those derived by McIver & McIver (2006) for a
trapping structure in a single mode of motion.

The computation of these coefficients for a cylinder in heave or sway next to a wall is
non-trivial and before embarking on the computations it is useful to gather evidence to
suggest that motion trapped modes might actually exist for this configuration. To this
end we consider a much simpler set of related problems involving a single cylinder in the
absence of a wall in a similar manner to Evans & Porter (2008). Thus, in Section 3, we
consider the problem of a plane wave from infinity incident upon the floating cylinder
which is free to respond in both heave and sway. Again, because of symmetry, there will
be no roll motion. We derive exact explicit formulae for the reflection and transmission
coefficients in terms of the added mass and damping of the cylinder in its forced motion in
both heave and sway and the reflection and transmission coefficients for the fixed cylinder.
In particular a real condition is derived under which the transmission coefficient vanishes
and we are able to demonstrate, using a variety of established asymptotic results for
circular cylinders lying in the free surface that this condition must be satisfied for at
least one frequency. This enables a simple wide-spacing approximation to be employed
to give an estimate for the wave frequency at which a trapped mode exists between the
cylinder and a vertical wall. Note that in this case the conditions rely solely on the added
mass and damping coefficients for a cylinder in heave and sway in the absence of the
wall, and the reflection and transmission coefficients for the fixed cylinder, all of which
are readily computed using Ursell’s multipole method (Ursell 1949 and Martin & Dixon
1983).

Numerical results connected with the scattering of incident waves by a single freely-
floating cylinder, including the curves of added mass and damping for cylinders in heave
and sway are presented in Section 3. The main results of the paper concerning trapped
modes between pairs of cylinders and including curves of added mass and damping coef-
ficients for cylinders next to walls are all presented in Section 4. The lengthy analytical
details associated with the computation of these various hydrodynamic coefficients used
to produce the results are contained in a separate technical report, available online (see
Porter (2008)). The work is summarised in Section 5.

2. Solution to the time-dependent problem

Cartesian coordinates (x, y) are chosen with y downwards and y = 0 in the free surface.
The fluid of density ρ occupies y > 0 outside the cylinder, which has radius a, and centre
(0, 0) in equilibrium, and the vertical wall which occupies x = −b on which the normal
fluid velocity vanishes. We assume no motion for t < 0 and denote the subsequent heave
and sway displacements and velocities of the centre of the cylinder by xj(t) and uj(t),
(j = 1, 2) where j = 1 refers to sway (horizontal motions) and j = 2 to heave (vertical
motions). The cylinder is given a small displacement vertically at t = 0 and released, so
that we have xj(0) = δj2x2(0) and uj(0) = 0, (j = 1, 2). On classical linear water wave
theory a velocity potential φw(x, y; t) exists which is harmonic in the fluid region and
satisfies

φw
tt − gφw

y = 0, on y = 0,

|∇φw | → 0, as y → ∞,

φw
x = 0, on x = −b,

φw
r = u1(t) sin θ + u2(t) cos θ, on r = a






(2.1)
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where x = r sin θ, y = r cos θ and where the superscript w indicates the presence of the
wall. During its motion the external force on the cylinder is just the vertical hydrostatic
restoring force fext

1 = 0 and fext
2 = −λx2(t) in sway and heave components where

λ = 2aρg. (2.2)

The force exerted by the fluid in sway and heave is denoted by fw
R1

(t) and fw
R2

(t). Thus
the equations of motion for the cylinder, in component form, are

M
duj

dt
= fw

Rj
(t) − δj2λxj(t), (j = 1, 2) (2.3)

where M = 1
2πρa2 is the mass of the cylinder. We introduce Fourier transforms in time

and denote transformed functions of the transform variable ω by capitalised variables.
For example,

Uw
j (ω) =

∫ ∞

0

uw
j (t)eiωtdt, with inverse uw

j (t) =
1

π
ℜ

{∫ ∞

0

Uw
j (ω)e−iωtdω

}
.

(2.4)
Thus, we have

Uw
j (ω) = −iωXj(ω) − δj2x2(0), (j = 1, 2) (2.5)

which may be used in the transformed equations of motion to give

(Mω2 − λδj2)U
w
j (ω) = λδj2x2(0) + iωFw

Rj
(ω), (j = 1, 2). (2.6)

The transformed potential Φw(x, y; ω) is harmonic in the fluid and satisfies

KΦw + Φw
y = 0, on y = 0,

|∇Φw| → 0, as y → ∞,

Φw
x = 0, on x = −b,

Φw
r = Uw

1 sin θ + Uw
2 cos θ, on r = a






(2.7)

where K = ω2/g is a parameter representing frequency. It is clear that with a suitable
radiation condition applied, we can write

Φw = Uw
1 Φw

R1
+ Uw

2 Φw
R2

(2.8)

where Φw
R1

(or Φw
R2

) is the radiation potential due to the forced unit sway (or heave)
velocity of the cylinder at frequency ω/2π. In the far-field, it is assumed

Φw
Rj

∼ Aw
j eiKx−Ky, x → ∞. (2.9)

Because of the presence of the wall, there are both horizontal and vertical components of
the wave force on the cylinder due to its sway (or heave) velocity Uw

1 (or Uw
2 ) and so it

follows that in terms of added mass and damping coefficients (see, for example, Newman
(1977)),

Fw
Rj

(ω) = −

2∑

k=1

(bw
jk(ω) − iωaw

jk(ω))Uw
k (2.10)

in which aw
12 = aw

21, bw
12 = bw

21. The following relationships are readily established by use of
the functions Φw

Rj
and Ψw

k ≡ Φw
Rk

−Φ
w

Rk
(where the overbar denotes complex conjugate)

in Green’s identity applied to the fluid domain, x > −b,

bw
jk = 1

2ρωAw
j A

w

k , j, k = 1, 2 (2.11)
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and Aw
1 A

w

2 = Aw
2 A

w

1 is real. This latter identity can be established by application of
Green’s identity to the potentials Ψw

1 and Ψw
2 . Thus (2.11) shows that bw

jk are real, and

bw
jj are non-negative. The pre-factor of 1

2 in (2.11) not present in (3.10) later, is because
waves are radiated to plus infinity only. It is also worth noting the identity

bw
11b

w
22 = bw

12b
w
21 (2.12)

which follows from (2.11).
Substitution of (2.10) into (2.6) gives

2∑

k=1

(Cw
jk + i)bw

jkUw
k = δj2λω−1xj(0), (2.13)

where

Cw
jk = {(Mδjk + aw

jk)ω2 − δj2δk2λ}/bw
jkω. (2.14)

The inverse transform now gives the time-dependent velocity of the cylinder by (2.4)
where (2.13) determines that

Uw
1 = −λx2(0)(Cw

12 + i)bw
12/(ω∆)

Uw
2 = λx2(0)(Cw

11 + i)bw
11/(ω∆)

}
(2.15)

with

∆ = (Cw
11 + i)(Cw

22 + i)bw
11b

w
22 − (Cw

12 + i)2bw
12b

w
21. (2.16)

In general the integrand in (2.4) defining the inverse transform will have poles in the
lower half-plane and a branch cut from the origin along the negative imaginary axis, but
will be regular in the upper half-plane since there is no motion for t < 0. Then it follows,
as in Ursell (1964), that for large time, u1(t), u2(t) → 0. If, however, ∆ = 0 for a real
value of ω = ω0 say, then the integration contour in the inverse Fourier integral will be
indented above the pole on the real axis and there will be a contribution for large time
proportional to e−iω0t corresponding to a motion trapped mode. We can constrain the
cylinder to move in heave only by repeating the above analysis and including a restoring
force in sway which is then allowed to become infinitely large. This turns out to be
equivalent to letting Cw

11 → ∞. In this case it follows that Uw
1 → 0 and the condition

∆ = 0 becomes

(Cw
22 + i)bw

22ω ≡ (M + aw
22)ω

2 − λ + iωbw
22 = 0 (2.17)

and the real and imaginary parts of this equation are the conditions first given by McIver
& McIver (2006) for a motion trapped mode for a structure moving freely in a single
(heave) mode of motion.

The condition ∆ = 0 in (2.16) is simplified on using (2.12) and splits easily into real
and imaginary parts to give Cw

11C
w
22 = (Cw

12)
2 and Cw

11 + Cw
22 = 2Cw

12 and these reduce to

Cw
11 = Cw

22 = Cw
12 (2.18)

as the two real conditions to be satisfied simultaneously for a motion trapped mode.
If we consider (2.15) we obtain

Uw
1

Uw
2

= −
(Cw

12 + i)bw
12

(Cw
11 + i)bw

11

= −
bw
12

bw
11

(2.19)

when (2.18) is used. Thus when conditions for a motion trapped mode are met, Uw
1 /Uw

2

is real, so that Uw
1 and Uw

2 are in phase and the centre of the cylinder next to the wall
moves in time harmonic motion along a straight line. Furthermore, using (2.11) in (2.19)
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shows that Uw
1 /Uw

2 = −Aw
2 /Aw

1 and so Uw
1 Aw

1 + Uw
2 Aw

2 = 0. This simply confirms that
the far-field amplitude due to the combined heave and sway motions under trapped mode
conditions is zero.

These conditions which involve calculations of the added mass and radiation damping
terms for cylinders next to walls are non-trivial to formulate and calculate and, at this
stage, there is no a priori guarantee that they have a real solution.

Thus, before embarking on this route therefore we consider a different problem having
an easier solution which, as described in the Introduction, will provide us with an ap-
proximate conditions for a motion trapped mode when the wall is some distance away
from the heaving and swaying cylinder. Thus we consider the scattering of a wave inci-
dent from infinity by a half-immersed semi-circular cylinder free to move in both heave
and sway, and obtain explicit expressions for the associated reflection and transmission
coefficients (which we call R̂, T̂ ) in terms of added mass and damping coefficients for the
cylinder in the absence of the wall. This is a much easier problem to approach, and has
already been considered by Martin & Dixon (1983). As will be shown, we find there is a

single value of the non-dimensional frequency parameter, K0a at which T̂ = 0, |R̂| = 1
and so total reflection occurs. Thus, at a sufficient distance downstream of the cylinder
for local effects to be negligible, the wave field is a standing wave, being the sum of the
incident wave plus the reflected wave of unit modulus. We may now insert a rigid wall
at a distance −b from the centre of the cylinder and the requirement of no flow through
the wall gives the condition

R̂ = e−2iK0b (2.20)

This can be translated into an approximate formula for the cylinder to wall spacing of
a/b = K0a/(nπ− 1

2arg{R̂}), where n is some integer, large enough to satisfy the geometric
constraint a/b < 1.

This wide-spacing argument therefore furnishes us with the approximate values of K0a
and a/b at which we expect to find a motion trapping structure for a cylinder next to a
wall.

3. The scattering of an incident wave by a freely floating circular

cylinder

We assume a plane wave of frequency ω/2π is incident from −∞ on the cylinder which
responds with the same frequency. Then we may write

Φ =

2∑

j=1

UjΦRj
+ ΦS (3.1)

where ΦS is the scattered potential due to a unit amplitude incident wave on the cylinder
assumed to be held fixed, ΦRj

and Uj are radiation potentials and component velocities
introduced in the previous section, but now in the absence of the wall. We have

ΦRj
∼ {sgn(x)}jAj eiK|x|−Ky, as |x| → ∞, (j = 1, 2) (3.2)

where Aj are far-field radiated wave amplitudes as x → ∞ in sway (j = 1) and heave
(j = 2), with

ΦS ∼

{
(gA/ω)(eiKx−Ky + Re−iKx−Ky), x → −∞

(gA/ω)T eiKx−Ky, x → ∞
(3.3)
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where R and T are the reflection and transmission coefficients for the fixed cylinder,
dependent on frequency, and A is the prescribed (complex) incident wave amplitude. It
follows that

Φ ∼

{
(gA/ω)(eiKx−Ky + R̂e−iKx−Ky), x → −∞

(gA/ω)T̂ eiKx−Ky, x → ∞
(3.4)

where

R̂ = R + (ω/gA)

2∑

j=1

(−1)jUjAj , T̂ = T + (ω/gA)

2∑

j=1

UjAj (3.5)

are the reflection and transmission coefficients for the freely-floating cylinder. Thus

R̂ + T̂ = R + T + 2(ω/gA)U2A2

R̂ − T̂ = R − T − 2(ω/gA)U1A1

}
(3.6)

The equations of motion in each component are

−iωMUj = FRj
+FSj

+F ext
j ≡ −(bjj − iωajj)Uj +FSj

− iδj1λUj/ω, (j = 1, 2) (3.7)

where FSj
is the horizontal (j = 1) and vertical (j = 2) exciting force on the fixed

cylinder which rearranges to

bjj(1 − iCjj)Uj = FSj
, (j = 1, 2) (3.8)

where the Cjj are defined by equation (2.14) but without the superscript since the wall
is absent here. Now there are a number of reciprocal relations which exist for radiation
and scattering problems. For example the Haskind relation connects the horizontal (or
vertical) exciting force on the fixed cylinder to the far-field amplitudes at infinity due to
forced unit heave (or sway) velocity of the cylinder. Thus

FSj
= (−1)jρgAAj , (j = 1, 2). (3.9)

Next we have the relation between the radiation damping coefficient and the far field
amplitude,

bjj = ρω|Aj |
2 (3.10)

and finally the Newman relations

R + (−1)jT = −Aj/Āj ≡ −e2iθj , (j = 1, 2) (3.11)

connecting the scattering coefficients and the phase of the far-field radiated heave and
sway amplitudes. If we make use of these we find that

(−1)j(ω/gA)UjAj = −(R + (−1)jT )/(1 − iCjj), (j = 1, 2). (3.12)

Substitution of the above into equations (3.6) gives

R̂ + T̂ = (R + T )(C22 − i)/(C22 + i)

R̂ − T̂ = (R − T )(C11 − i)/(C11 + i)

}
(3.13)

showing that |R̂ ± T̂ | = 1 and |R̂|2 + |T̂ |2 = 1, as expected. Thus, we have

2R̂ = (R + T )(C22 − i)/(C22 + i) + (R − T )(C11 − i)/(C11 + i)

2T̂ = (R + T )(C22 − i)/(C22 + i) − (R − T )(C11 − i)/(C11 + i).

}
(3.14)



8 R. Porter & D.V. Evans

It follows that T̂ = 0 provided

C11C22 + 1 + (C11 − C22)χ = 0. (3.15)

where R/T = iχ and χ is real from the results |R ± T | = 1 which arise from symmetry.
Since C11 > 0, it is convenient to replace this by

f(Ka) ≡ (C22 + χ) + C−1
11 (1 − C22χ) = 0 (3.16)

Since χ is real, it follows that χ = ±|R|/|T |. The sign which χ takes is crucial in what
follows and computations make it clear that for the cylinder, χ = −|R|/|T | for all values
of Ka. This is also true for the scattering by a thin vertical barrier submerged to a depth
a first derived by Ursell (1947) where R/T = πI1(Ka)/iK1(Ka). Indeed χ, regarded as
a function of Ka, can only change sign if there exists values of Ka at which R = 0 or
T = 0. Again, computations have already shown that this is not the case (see figure
1(a)). Accepting this, it suffices only to show that χ is negative in the limit Ka → 0,
for example. This can be confirmed analytically by looking at the system of equations
which are used to calculate R and T ; see Porter (2008). In the limit of small Ka a leading
order analysis shows that R ∼ −2iKa and T ∼ 1 − 2iKa to order Ka and hence that
χ ∼ −2Ka to leading order.

It is also insightful to write Cjj = tan δj , (j = 1, 2), with − 1
2π < δj < 1

2π and so
obtain from (3.15) an alternative form of the condition (3.16) given by

δ1 + θ1 = δ2 + θ2 + nπ, n ∈ Z (3.17)

where (3.11) has been used.
It is possible to prove that (3.16) does indeed have a real solution and hence that there

exists a frequency at which T̂ = 0. To do this, we first non-dimensionalise the added
mass and damping coefficients in the usual fashion, by writing

ajj = Mµj , bjj = Mνj/ω, (j = 1, 2) (3.18)

where M = 1
2πρa2 so that, with λ = 2ρag,

Cjj = (1 + µj − 4δj2(πKa)−1)/νj, (j = 1, 2). (3.19)

A variety of asymptotic results are used in the proof of the result.
First, Ursell (1976, p.22) states that as Ka → 0, µ1 ∼ 1 and ν1 → 0 whilst µ2 ∼

−(8/π2) log Ka and ν2 ∼ 8/π. These results are highlighted in the curves in figures
1(b,c). Also as Ka → 0, we have already provided the estimate χ → −2Ka. It follows
that as Ka → 0, C22 ∼ −1/(2Ka), C−1

11 → 0+ and hence f(Ka) ∼ −1/(2Ka), Ka → 0.
Next, we go to the opposite limit of Ka → ∞. From Greenhow (1986) we have the

results µ1 ∼ 4π−2 and ν1 ∼ 8/(π(Ka)2) whilst µ2 ∼ 1−4/(3πKa) and ν2 ∼ 32/(π(Ka)4).
Also |R| → 1, and Ursell (1961) shows that |T | ∼ 2/(π(Ka)4) as Ka → ∞. It follows that
C22 ∼ 1

16π(Ka)4 and C−1
11 ∼ 8π/((4+π2)(Ka)2) and hence that f(Ka) ∼ 1

4π3(Ka)6(π2+
4) as Ka → ∞.

Thus f(Ka) changes sign and there must exist a value of K = K0, say, for which
f(K0a) = 0. This remarkable result is confirmed by numerical calculations which show
that there is just one value of Ka = K0a ≡ ω2

0a/g ≈ 1.12593 satisfying equation (3.15)
or, alternatively, (3.17) with n = 0, when the principal arguments are used to define θj

and δj . The zero of transmission can be seen in figure 2(c).
We can consider the motion of a cylinder constrained to move in heave only, by letting

C11 → ∞ (as previously discussed). Then equation (3.15) ensuring total reflection is
modified to f(Ka) = C22 + χ = 0. By using the asymptotic expressions previously
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Figure 1. Results of the three canonical problems: (a) reflection and transmission amplitudes
|R|, |T | for a fixed cylinder; added-mass and radiation damping coefficients (b) µ1, ν1 for a cylin-
der in forced sway; (c) µ2, ν2 for a cylinder in forced heave. All as a function of non-dimensional
frequency Ka.
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Figure 2. Reflected and transmitted wave amplitudes for a cylinder (a) constrained in heave
only; (b) constrained in sway only; (c) freely floating. All as a function of non-dimensional
frequency Ka.

derived for C22 and χ it is seen that f(Ka) < 0 as Ka → 0 and that f(Ka) < 0 also in
the limit as Ka → ∞. Thus there is no change of sign in f and therefore no guarantee
of a solution of this equation. Taking the limit C11 → ∞ in (3.14) gives

R̂he = iT (C22χ − 1)/(C22 + i), T̂ he = T (C22 + χ)/(C22 + i) (3.20)

as the reflection and transmission coefficients in heave only. These expressions are identi-
cal to those appearing in Evans & Porter (2008) and, previously, Evans & Linton (1989).

Numerically generated curves of |R̂he| and |T̂ he| against Ka are given in figure 2(a),
where it is confirmed that there are no zeros of transmission. In contrast, figure 2(a)
exhibits a zero of reflection, a common feature of many water wave problems.

In a similar fashion to before, we can also consider a cylinder constrained to move in
sway only by letting C22 → ∞. Then the limiting form of (3.14) is

R̂sw = iT (C11χ + 1)/(C11 + i), T̂ sw = T (C11 − χ)/(C11 + i) (3.21)

as the reflection and transmission coefficients in sway only. Also see Evans & Linton
(1989). From either the above equation or (3.14), the condition for total reflection in
sway reduces to f(Ka) = C11−χ = 0. In both limits Ka → 0 and Ka → ∞ the function
f tends to plus infinity and again there is no guarantee of a solution of this equation.
The absence of a zero of transmission is confirmed numerically in figure 2(b).
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Figure 3. Variation of non-dimensional (a) added mass and (b) radiation damping coefficients
for a cylinder next to a wall as a function of Ka for a/b = 1

2
.

The velocities of the cylinder are given by equation (3.12) which may be written

(−1)jUj|Aj | = (Ag/ω)ei(θj+δj) cos δj , (j = 1, 2). (3.22)

It follows that

U1/U2 = −
|A2| cos δ1

|A1| cos δ2
ei(θ1+δ1−θ2−δ2) (3.23)

Now at the frequency at which total reflection occurs,

U1/U2 = −
|A2| cos δ1

|A1| cos δ2
(3.24)

where (3.17) with n = 0 has been used. The realness of (3.24) implies that when to-
tal reflection occurs, the cylinder oscillates along a straight line. Numerically we find
U1/U2 = −0.5674, so that cylinder moves along a line inclined at an angle 29.57◦ to the
vertical.

4. Results

We start by giving some more details to the results already mentioned briefly in the
previous section, relating to the scattering of incident waves by a freely-floating semi-
immersed circular cylinder. The results of Section 3 rely upon the quantities R, T , µj

and νj (j = 1, 2); properties of the solution to three canonical problems namely the
scattering of waves by a fixed cylinder and the radiation of waves by the forced motions
(of unit velocity) in sway and in heave. The solution method for these three problems
can be found in the Appendix of Martin & Dixon (1983) and is repeated in the technical
report of Porter (2008). Thus, the potential corresponding to waves generated by the
cylinder are expanded in a combination of a source, a horizontal dipole and an infinite
series of wave-free potentials, following Ursell (1949), and all expressed in local polar
coordinates. Application of the cylinder boundary condition yields an infinite system of
algebraic equations which are truncated to produce numerical results.

Thus figures 1(a,b,c) show the variation of these key quantities with Ka, the single
non-dimensional parameter in this problem. The reflection and transmission coefficients
for a freely-floating cylinder are now given in terms of these quantities by (3.14) and for
cylinders in constrained heave and sway motions by (3.20) and (3.21) and are presented
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Figure 4. Curves of Cw

11 − Cw

12 = 0 (solid curve) and Cw

22 − Cw

12 = 0 (dashed curve) in
(Ka, a/b)-parameter space. The crossing point gives exact parameter values for a motion trapped
mode.

in figures 2(a,b,c). The key result of Section 3 is that a semi-immersed cylinder allowed
to respond freely in combined heave and sway will reflect all incident wave energy at a
particular angular frequency ω0 where K0a ≡ ω2

0a/g ≈ 1.12593. At this frequency, the
cylinder oscillates along a straight line inclined at approximately 29.57◦ to the vertical.

This result allows us to return to Section 2, in which we considered the trapping of
waves between a cylinder and a wall, a distance b from the cylinder. The wide-spacing
arguments at the end of Section 2 give approximate formula for values for K0a and a/b
at which this is expected to occur. In order to determine exact parameter values at which
motion trapped modes occur, we now need to be able to calculate non-dimensional added
mass and radiation damping coefficients µw

jk = aw
jk/M and νw

jk = bw
jk/Mω (for a cylinder

in the presence of a wall) induced in the heave (k = 1) and sway (k = 2) directions due
to the forced motion of unit velocity in heave (j = 1) and sway (j = 2) directions.

The method of solution here is much more complicated than for a single cylinder. The
presence of the wall along x = −b can be accounted for by placing an image cylinder at
x = −2b so that the resulting pair move symmetrically about the line x = −b. Now the
radiation potentials due to forced sway and heave motions of unit velocity are expanded
in terms of sources, horizontal dipoles and wave free potentials about each of the pair
of cylinders. But the application of the boundary condition on the cylinder at the origin
requires the singularities from the image cylinder at (x, y) = (−2b, 0) to be expanded in
terms of polar coordinates centred at the origin. Whilst this turns out to be a relatively
trivial exercise for the wave-free potentials, some care is needed when translating the
coordinates in the source and dipole singularities. The details of this procedure are rather
lengthy and have been relegated to the online technical report of Porter (2008).

A typical set of results showing the variation of the hydrodynamic coefficients for a
cylinder next to a wall for a particular value of a/b = 1

2 are presented in figures 3(a,b).
Note that νw

jj are by definition non-negative and that whenever νw
12 crosses the zero axis,

one of νw
11 and νw

22 is simultaneously zero on account of the relation (2.12). It is well-known
that added mass coefficients can take negative values (see McIver & Falnes 1984).

We use these calculations of the hydrodynamic coefficients to numerically determine
the existence of motion trapped modes, which correspond to simultaneously satisfying
the pair of real conditions given in (2.18). The wide-spacing approximation, (2.20) pre-
dicts motion trapped modes for a cylinder next to a wall with K0a = 1.12593 (this is
fixed frequency parameter at which total reflection occurs for a single cylinder) and the
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exact (wide-spacing)

Mode type K0a a/b U1/U2

1st symmetric 1.12170 (1.12593) 0.60333 (0.60484) -0.57206 (-0.56742)
1st anti-symmetric 1.12612 (1.12593) 0.32808 (0.32804) -0.56702 (-0.56742)
2nd symmmetric 1.12590 (1.12593) 0.22504 (0.22505) -0.56746 (-0.56742)

Table 1. Table showing exact parameters and the corresponding approximations made under
the wide-spacing arguments in brackets against mode type.
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Figure 5. Animation of displacements of the free surface (solid lines) and the pair of cylinders
(dashed) for the fundamental symmetric mode. Grey curves are π/ω0-radians advanced in time
of black curves, and represent the extremes of the motion.

sequence a/b = 0.60484, 0.22505, . . ., (n = 1, 2, . . .) and these values are used as initial
guesses to the exact trapping parameters.

The exact parameters are detected by plotting curves in the (Ka, a/b)-plane along
which the two real quantities Cw

11 − Cw
12 and Cw

22 − Cw
12 vanish. A motion trapped mode

corresponds to the crossing of these two curves (as illustrated in figure 4). Although the
computation of the curves in figure 4 approximate, since involves numerical truncation of
infinite systems of equations, results are nevertheless computed to at least six significant
figure accuracy. Moreover, the intersection of the two curves is robust to changes in
numerical accuracy and hence the results provide compelling numerical evidence for the
existence of motion trapped modes.

The parameter values found for exact motion trapped modes are summarised in table
1. So far we have focussed our discussion on cylinders next to walls on which a Neumann
condition is enforced. These are equivalent to a mirror-image pair of cylinders moving
symmetrically about the line x = −b. These are termed symmetric modes in 1 and there
is an infinite sequence of modes. As the mode number increases the distance between the
cylinder and the wall increases (or a/b decreases) and the wide-spacing approximation,
unsurprisingly, becomes ever more accurate. Additionally, in table 1 we show the real-
valued ratio of sway to heave cylinder velocities for a cylinder next to a wall, as given by
(2.19), alongside the wide-spacing approximation as given by (3.24) when incident waves
are being totally reflected by a cylinder in isolation.

Snapshots in time of the displacements of the wetted sections of the pair cylinders and
(on the same scale) the free surface for the first symmetric mode is shown in figure 5.
The amplitude of motion is arbitrary, though the linearised theory applies to infinitesimal
motions, which accounts for the disjointness between the cylinder boundary and the free
surface in the sketch in figure 5.
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Figure 6. Animation of displacements of the free surface (solid lines) and the pair of cylinders
(dashed) for the first antisymmetric mode. Grey curves are π/ω0-radians advanced in time of
black curves, and represent the extremes of the motion.

Instead, we could have placed a Dirichlet boundary condition on the potential on
the line x = −b (i.e. φw(−b, y, t) = 0). In turn, this would correspond to a pair of
cylinders moving in anti-phase with respect to each other about the line x = −b. Whilst
a Dirichlet boundary condition on the fluid has no physical interpretation, two cylinders
oscillating in anti-phase move as it connected rigidly above the waterline to form a single
catamaran-type structure. There is no mathematical difficulty in replacing the Neumann
boundary condition on x = −b to a Dirichlet condition throughout the preceding analysis.
Indeed the change of boundary condition only alters the calculation of the hydrodynamic
coefficients in a trivial way (Porter (2008)) in addition to modifying the wide-spacing

formula to a/b = K0a/((n+ 1
2 )π− 1

2arg{R̂}). Motion trapped modes have been determined
numerically in this case also and the parameters for the first ‘anti-symmetric’ mode are
included in table 1.

The first antisymmetric mode cylinder and free surface displacements are shown in
figure 6, where it can be seen that the pair of cylinders form the wetted sections of
a single structure which undergoes simultaneous swaying and rolling motion about its
mean position.

5. Conclusions

We have shown that pairs of semi-immersed circular cylinders free to move in both
heave and sway under natural hydrostatic restoring can support trapped waves. In an
experiment, a cylinder positioned the correct distance from a vertical wall and initially
displaced from equilibrium would oscillate indefinitely at the particular frequency for
symmetric trapped modes. Alternatively, a pair of cylinders of particular spacings, con-
nected rigidly above the surface of the fluid and given an initial roll about the centre
of the structure will oscillate indefinitely at the particular frequency for antisymmetric
trapped modes.

Underpinning the existence of these examples of motion trapped waves is the ability
for a single semi-immersed circular cylinder freely-floating on the surface of the fluid to
totally reflect the incoming wave energy at a single frequency. This fact has not only
been demonstrated numerically but also proved using a variety of asymptotic results.

Given the examples presented both here and in Evans & Porter (2008), it seems highly
likely that many more examples of motion trapped modes can be found between pairs
of cylinders floating in the free surface. More intriguing is the possibility of generating
motion trapped modes for a single freely-floating cylinder. This possibility is currently
being explored.
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