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Abstract. The problem of an infinite periodic array of identical floating elastic
plates subject to forcing from plane incident waves is considered. This study is
motivated by the problem of trying to model wave propagation in the marginal ice
zone, a region of ocean consisting of an arbitrary packing of floating ice sheets. It
is shown that the problem considered can be formulated exactly in terms of the
solution to an integral equation in a manner similar to that used for the problem of
wave scattering by a single elastic floating plate, the key difference here being the
use of a modified periodic Green function. The convergence of this Green function in
its original form is poor, but can be accelerated by a transformation. It is shown that
the results from the method satisfy energy conservation and that in the particular
case of a fixed rigid rectangular plate which spans the periodicity uniformly the
solution reduces to that for a two-dimensional rigid dock. We also present solutions
for a range of elastic plate geometries.

Keywords: Ice sheet, elastic plates, periodic Green function, water waves

1. Introduction

The thin elastic plate of shallow draft floating on the surface of water
can be used to model a range of physical systems, for example ice
floes or so-called very large floating structures, which are of particular
interest in proposals to build offshore floating runways. It is also of
theoretical importance as one of the simplest models of hydroelasticity.
It is not surprising therefore that the floating elastic plate has been
the subject of a significant body of research. Much of this research,
especially that which was motivated by the construction of very large
floating structures, is summarised in the review papers by (Kashiwagi,
2000) and (Watanabe et al., 2004). The review paper by (Squire et al.,
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2 Wang, Meylan & Porter

1995) summarises the research prior to 1995 which was motivated by
modelling sea ice floes, but does not include the more recent work,
(Meylan and Squire, 1996) and (Meylan, 2002), in which the solution
for wave scattering by a three-dimensional ice floe is presented.

Our aim here is to present a method of solution to the problem of
wave scattering by an infinite periodic array of floating elastic plates.
This study is motivated by trying to further the understanding of the
problem of wave scattering in the marginal ice zone. The marginal ice
zone consists of a vast field of broken ice floes each of which have a
thickness (typically ≈ 1-2m) much smaller than the typical horizontal
lengthscale of the floe, or of the wavelength of waves supported by the
floe, and it is usual to model the ice floe as a thin elastic plate. These ice
floes are subject to intense wave forces whose source originates from the
open ocean. On account of the fact that that the floes are themselves
able to support wave propagation, wave energy is capable of travelling
large distances within the marginal ice zone where it can assist ice
breakup.

Previous work aimed at trying to model wave interaction by isolated
three-dimensional regular and irregular ice floes has been performed in
(Meylan and Squire, 1996) and (Meylan, 2002), respectively. For more
complicated arrangements involving an arbitrary, but finite, number
of irregular ice floes see (Peter & Meylan 2004) although the number
of floes that can be dealt with is limited by numerical considerations.
Although this latter work includes the effect of interaction between
neighbouring ice floes, it does not allow one to capture the effects of a
plane wave incident upon a large linear array of ice floes. One method
of overcoming this, which also allows significant analytic progress to
be made is to consider wave scattering by an infinite periodic array
of identical ice floes, being irregular in shape. Of course ice fields are
not periodic, but this arrangement does provide some information es-
pecially if some kind of statistical averaging of the results over the
floe geometries and spacings is performed. Furthermore, the solution
readily lends itself to a wide-spacing method similar to that used by
(Evans, 1995) which allows accurate approximations to wave scattering
by multiple rows of non-identical ice floes. Central to such a procedure
is knowledge of the scattering process for each row in isolation.

The problem of determining the scattering of waves by periodic
arrays of obstacles subject to wave forcing has received considerable
research attention and spans a broad range of physical disciplines in-
cluding solid-state physics, acoustics, optics, etc. In many applications,
the interest centres on arrangements which are periodic in two di-
rections (for example, the study of crystallography). In the present
context of water wave propagation and its interaction with flexible
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surface structures, (Chou, 1998) has investigated the effect of an in-
finite doubly-periodic array of elastic plates on wave propagation. In
the modelling of the plate equations, Chou incorporates both bending
stiffness and tension effects, so that the discussion of the results not only
includes the case of pure bending of elastic plates in the absence of com-
pression forces (as considered here), but also, by setting the stiffness to
zero, pure tensional effects which would describe, for example, periodic
arrays of taught membranes. However, in contrast to the work described
here, the doubly-periodic configuration allows significant simplification
in the solution procedure by applying Floquet’s theorem to reduce the
problem to one on a finite domain with periodic boundary conditions.
Moreover, problems involving infinite doubly-periodic structures only
offer information about the possibility of wave propagation throughout
the array (in the form of so-called pass-bands or stop-bands) and cannot
address the diffraction of plane waves from infinity.

For arrays which are periodic in one direction only, the situation
is different and diffraction grating effects occur. Thus, for an incident
plane wave of a particular given wave frequency, a finite number of
distinct plane waves propagating away from the array at certain discrete
angles will occur. In the context of water waves and fixed periodic
arrays, (Twersky, 1952) was able to solve the problem of a periodic
array of vertical circular cylinders. The uniformity of the configura-
tion in the depth coordinate implies that the resulting equations also
describe two-dimensional acoustic wave scattering, in this case by cir-
cular cylinders. The problem of (Twersky, 1952), who used Schlömilch
series to sum slowly-convergent series involving Hankel functions, was
re-considered by (Linton and Evans, 1993) who used a so-called mul-
tipole method. For periodic arrays of rectangular cylinders extending
uniformly through the depth, (Fernyhough and Evans, 1995), used do-
main decomposition and mode matching to derive an integral equation
formulation to the problem. In order to consider more general cylinder
profiles, boundary integral methods are inevitable and require the use
of a periodic Green function. In its most basic form, the Green function
consists of a series involving Hankel functions which is slowly conver-
gent and unsuitable for numerical computation. Hence (Linton, 1998)
compared a number of different representations of the periodic Green
function, designed to increase the convergence characteristics. (Evans,
1999) used the work of (Linton, 1998) to compute so-called Rayleigh-
Bloch waves (or trapped waves) along a periodic array of cylinders
of arbitrary cross-section. A number of papers in recent years have
concentrated on similar ideas, to those of (Evans, 1999), a primary
motivation being the connection between large wave responses in large
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finite arrays of cylinders and the trapped waves in infinite periodic
arrays (see (Maniar and Newman, 1997).

In contrast to the body of work cited in the previous paragraph, the
present work differs significantly in two respects. First, the problem
involving periodic elastic plates on the water surface implies that the
problem is fully three-dimensional. Secondly, the scattering obstacles
are neither fixed (as above) nor rigid, but are in fact themselves capable
of supporting wave motions. Thus the coupling between the plate mo-
tion and the motion of the water adds an extra degree of complication
to the problem.

The outline of the paper is as follows. In section 2 the non-dimensional
small-amplitude equations for time-harmonic motion are formulated. In
section 3, an integral equation is derived connecting the motion of the
plate to that of the water. In doing so the periodic Green function is
defined in terms of the three-dimensional free-surface Green function. In
section 4, a variational principle for the motion of the plate is defined
and a Rayleigh-Ritz approximation is used to reduce it to a linear
system of equations. The same approximation is used in the integral
equation to provide a second set of linear equations coupling the mo-
tion of the plate to the water. Section 5 concentrates on improving
the otherwise slow convergence of the periodic Green function and
section 6 describes how the far-field reflected and transmitted waves
are calculated from the integral formulation. Finally, in section 7 a
range of numerical results are presented and discussed and the work is
concluded in section 8.

2. Problem Formulation: An Infinite Array of Elastic Plates

We begin by formulating the problem. Cartesian coordinates (x, y, z)
are chosen with z vertically upwards such that z = 0 coincides with the
mean free surface of the water. An infinite array of identical thin elastic
plates float on the surface of the water, periodically spaced along the y-
axis with uniform separation l. The problem is to determine the motion
of the water and the plates when plane waves are obliquely-incident
from x = −∞ upon the periodic array of plates.

The plates are assumed to be of zero draft and occupy x ∈ ∆m,
−∞ < m < ∞ on z = 0 where x = (x, y) represents the Cartesian
vector lying in the mean free surface. The plates are assumed to have
arbitrary shape, and periodicity implies that if x ∈ ∆0, then xm =
(x, y + ml) ∈ ∆m, −∞ < m < ∞. This array of plates is shown in
Figure 1.
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2.1. Elastic plate equations

The equation of motion for the plate elevation W (x, y, t), where t is
time, is given by the thin elastic plate (or Kirchhoff) equation,

D∇4
hW + ρih

∂2W

∂t2
= p, (1)

(Timoshenko and Woinowsky-Krieger, 1959) where D is the flexural
rigidity, ρi is the density, and h the uniform thickness of the elastic
plate. Here, p is the excess pressure (i.e. excluding atmospheric pressure
and the weight of the plate) exerted by the fluid and ∇2

h is the two-
dimensional horizontal Laplacian in the plane z = 0 (we shall reserve
∇2 to mean the three-dimensional Laplacian). In addition, on the free
edges of the plates, x ∈ ∂∆m, boundary conditions expressing the van-
ishing of bending moment and shearing stress apply, which are written
as [

∇2
h − (1− ν)

(
∂2

∂s2
+ κ(s)

∂

∂n

)]
W = 0, (2)

[
∂

∂n
∇2

h + (1− ν) ∂
∂s

(
∂

∂n

∂

∂s
− κ(s) ∂

∂s

)]
W = 0, (3)

where ν is Poisson’s ratio and

∇2
h =

∂2

∂x2
+

∂2

∂y2
=

∂2

∂n2
+

∂2

∂s2
+ κ(s)

∂

∂n
.

Here, κ(s) is the curvature of the boundary, ∂∆m, as a function of
arclength s along ∂∆m; ∂/∂s and ∂/∂n represent derivatives tangential
and normal to the boundary ∂∆m.

Equations (2) and (3) can be established from (Porter and Porter,
2004) who considered the more complicated case of a plate of varying
thickness and derived the edge conditions from a variational principle
similar to the one used later in this paper. A direct derivation of the
edge conditions from the underlying constitutive equations for a thin
elastic plate can found elsewhere, for example (de Veubeke, 1979). We
remark that in the case where the boundary of the elastic plates is
piecewise linear, such that κ(s) = 0, the equations above reduce to the
simpler form (

∂2

∂n2
+ ν

∂2

∂s2

)
W = 0

and (
∂3

∂n3
+ (2− ν) ∂3

∂n∂s2

)
W = 0.
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2.2. Equations of motion for the water

We consider water of infinite depth. Under the usual assumptions of
small-amplitude waves above an incompressible and irrotational fluid,
there exists a velocity potential Φ(x, y, z, t) satisfying Laplace’s equa-
tion together with the appropriate linearised boundary conditions, namely

∇2Φ = 0, −∞ < z < 0,

Φ, |∇Φ| → 0, z → −∞,
∂Φ
∂z

=
∂W

∂t
, z = 0,

−ρ∂Φ
∂t
− ρgW = p, z = 0,


(4)

where the pressure, p, has already been introduced in (1), ρ is the water
density, and g is gravitational acceleration. W is the time-dependent
displacement of the plate when x ∈ ∆m. When x 6∈ ∆m, we take p = 0
in the above and now W represents the elevation of the water surface.
In addition to (4), radiation conditions at infinity need to be applied
and these will formally be introduced later.

2.3. Non-dimensionalising the variables

We non-dimensionalise the spatial variables with respect to a length
parameter L (for example, L may be derived from the area of the plate
or L may be the characteristic length (D/ρg)1/4) and the time variables
with respect to

√
L/g. The dimensionless variables are therefore given

by

(x̄, ȳ, z̄, W̄ ) =
1
L

(x, y, z,W ), t̄ = t

√
g

L
, p̄ =

p

ρgL
and Φ̄ =

Φ
l
√
Lg

.

Using the dimensionless variables equation (1) combined with the last
equation of (4) becomes

β∇̄4
hW̄ + γ

∂2W̄

∂t̄2
= p̄ = − ∂Φ̄

∂t̄

∣∣∣∣∣
z=0

− W̄ , (5)

where the dimensionless parameters associated with the motion of the
plate, β and γ, representing the ‘stiffness’ and ‘mass loading’ of the
plate respectively, are given by

β =
D

ρgL4
and γ =

ρih

ρL
.

This notation is based on (Tayler, 1986).
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Hereafter, we will work with dimensionless variables only but omit
the overbar from all variables for reasons of clarity. Note that from now
on we will use l to mean the non-dimensional floe separation l̄ = l/L.

2.4. The single frequency equations

We will consider the solution for a single frequency and we can there-
fore represent the displacement and the potential as the real parts of
complex functions in which the time dependence is e−iωt where ω is the
dimensionless radian frequency, i.e.

W (x, y, t) = Re
[(

i

ω

)
w(x, y)e−iωt

]
,

Φ(x, y, z, t) = Re
[
φ(x, y, z)e−iωt

]
,

where we have introduced an additional scaling for W to simplify the
equations which follow.

Therefore equation (5) becomes

β∇4
hw(x, y) + (1− ω2γ)w(x, y) = ω2φ(x, y, 0). (6)

Combining the non-dimensionalisation with the time assumption we
also have from (4)

∂φ

∂z
= w, z = 0 (7)

with
∇2φ = 0, −∞ < z < 0,

φ, |∇φ| → 0, z → −∞,

 (8)

For x 6∈ ∆m, (6) still holds, but with β = γ = 0 and combining with
(7) gives the usual free-surface condition

∂φ

∂z
− kφ = 0, on z = 0, where k = ω2

and k is the dimensionless wavenumber (i.e. the dimensionless wave-
length is λ = 2π/k). The velocity potential also satisfies the Sommerfeld
radiation condition as |x| → ∞,

lim
|x|→∞

√
|x|
(

∂

∂|x| − ik
)(

φ− φin
)

= 0, (9)

((Wehausen and Laitone, 1960)). In equation (9), φin is the incident
wave potential given by

φin =
A

k
eik(x cos θ+y sin θ) ekz, (10)
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where A is the dimensionless amplitude and θ is the direction of prop-
agation of the wave.

3. Transformation to an Integral Equation

We now apply Floquet’s theorem, which states that potential and the
displacement from adjacent plates differ only by a phase factor (Scott,
1998). If the potential under the central plate ∆0 is given by φ(x0, 0),
x0 ∈ ∆0, then by Floquet’s theorem the potential satisfies

φ(xm, 0) = φ(x0, 0)eimσl , (11)

and the displacement of the plate ∆m satisfies

w(xm) = w(x0)eimσl, (12)

where xm ∈ ∆m, −∞ < m <∞ and the phase difference is σ = k sin θ
(see, for example, (Linton, 1998)).

A standard approach to the solution of the equations of motion for
the water (6), (7), (8) is to transform these equations into a boundary
integral equation using the free-surface Green function for infinite depth
(see (Wehausen and Laitone, 1960; Kim, 1965)). In doing so we obtain

φ(x, 0) = φin(x, 0) +
∞∑

m=−∞

∫
∆m

G(x, 0; ξ) [kφ(ξ, 0)−w(ξ)] dξ (13)

where ξ = (ξ, η) and G(x, z; ξ) is the free-surface Green function satis-
fying

∇2G = 0, −∞ < z < 0,
∂G

∂z
− kG = −δ(x− ξ), z = 0,

G, |∇G| → 0, z → −∞.

 (14)

which, on z = 0, is given by

G(x, 0; ξ) = − 1
4π

(
2

|x− ξ| − πk
[
H0 (k |x− ξ|)

+Y0 (k |x− ξ|)− 2iπJ0 (k |x− ξ|)
])
, (15)

In the above H0 is the Struve function of order zero, J0 is the Bessel
function of the first kind of order zero and Y0 is the Bessel function of
the second kind of order zero (Abramowitz and Stegun, 1970).
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Using (11) and (12) in (13) we obtain

φ(x, 0) = φin(x, 0)

+
∞∑

m=−∞

∫
∆0

G(x, 0; ξ + (0,m)) [kφ(ξ, 0)− w(ξ)] eimσl dξ

which can be written alternatively as

φ(x, 0) = φin(x, 0) +
∫
∆0

GP(x; ξ) [kφ(ξ, 0)− w(ξ)] dξ, (16)

where the kernel GP (referred to as the periodic Green function) is
given by

GP(x; ξ) =
∞∑

m=−∞
G (x, 0; ξ + (0,m)) eimσl. (17)

4. Solution of the Integral Equation

The integral equation (16) is identical to the integral equation for a sin-
gle plate (see (Meylan, 2002)) except for the modification to the Green
function. Furthermore, the periodic Green function GP has the same
singularity at x = ξ as the standard free-surface Green function G. We
solve equation (16) using a higher-order method, which is explained
in detail in (Wang and Meylan, 2004). We will we briefly outline the
solution method here.

We expand the plate potential and displacement as

w(x) ≈
3q∑
i=1

wiχi(x) = ~χT (x)~w

φ(x, 0) ≈
3q∑

i=1

φiχi(x) = ~χT (x)~φ


(18)

where ~w and ~φ are vectors representing the values of the displacement
and potential, respectively, and their horizontal derivatives at the q
nodes, and ~χ is a vector of the associated basis functions. We can
express ~χT (x) in terms of the non-conforming basis functions for each
square panel, denoted by Nd (x), ((Petyt, 1990; Wang and Meylan,
2004) as

~χT (x) =

(
N∑

d=1

Nd (x) [o]d

)
(19)
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where N is the number of panels and the matrix [o]d is the assembler
matrix . Both Nd(x) (which is a 1 × 12 matrix) and [o]d (which is a
12× 3q matrix) are discussed in detail in (Wang and Meylan, 2004).

The equation governing the motion of the plate (6) and the time-
harmonic non-dimensionalised versions of the boundary conditions at
the edge of the plate (2), (3) are equivalent to the variational principle
(Porter and Porter, 2004; Hildebrand, 1965; Meylan, 2001), δL = 0
where

L(w) =
1
2

∫
∆0

β

(∇2
hw
)2 − 2(1− ν)

∂2w

∂x2

∂2w

∂y2
−
(
∂2w

∂x∂y

)2


+ (1− kγ)w2 − 2kwφ|z=0 dx. (20)

The three terms in the integrand above represent, respectively, the
strain energy of the plate, the acceleration, and the dynamic pressure
on the plate. Apart from the plate equation itself other natural condi-
tions of δL = 0 are the free edge conditions described by (2), and (3).
Thus, using the variational principle means that the edge conditions
are satisfied indirectly as part of the approximation.

If we now substitute the approximation for w and φ in (18) into the
above and minimise (i.e. apply δL = 0) we obtain

βK ~w + (1− kγ) M ~w = kM ~φ, (21)

where the stiffness matrix K, is given by

K =
∫
∆0

[
∂2~χ

∂x2

∂2~χT

∂x2
+
∂2~χ

∂y2

∂2~χT

∂y2
(22)

+2 (1− ν) ∂2~χ

∂x∂y

∂2~χT

∂x∂y
+ ν

∂2~χ

∂x2

∂2~χT

∂y2
+ ν

∂2~χ

∂y2

∂2~χT

∂x2

]
dx (23)

and the mass matrix M is given by

M =
∫
∆0

~χ(x)~χT (x) dx. (24)

The integral equation (16) is transformed by substituting the approxi-
mations for w and φ given by (18) to obtain

~χT (x)~φ = ~χT (x)~φin +
∫
∆0

GP(x; ξ)
[
k~χT (ξ)~φ− ~χT (ξ)~w

]
dξ (25)

(where where ~φin is the representation of φin in the basis functions χ)
and then multiplying this equation by ~χ(x) and integrating over ∆0.
This gives us

M ~φ = M~φin + kGP
~φ− GP ~w, (26)
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where GP, is given by

GP =
∫
∆0

∫
∆0

~χ(x)GP(x, ξ)~χT (x) dxdξ. (27)

We can use equation (19) to express the matrices K, M, and GP as

K =
N∑

d=1

[o]Td [
∫
∆d

(
∂2NT

d

∂x2

∂2Nd

∂x2

)
+ ν

(
∂2NT

d

∂x2

∂2Nd

∂y2
+
∂2NT

d

∂y2

∂2Nd

∂x2

)

+2 (1− ν)
(
∂2NT

d

∂x∂y

∂2Nd

∂x∂y

)
+

(
∂2NT

d

∂y2

∂2Nd

∂y2

)
dx] [o]d , (28)

M =
N∑

d=1

[o]Td

[∫
∆d

NT
d (x) Nd (x) dx

]
[o]d , (29)

and

GP =
p∑

e=1

p∑
d=1

[o]Te

[∫
∆e

∫
∆d

NT
e (x)GP(x, ξ)Nd (ξ) dxdξ

]
[o]d . (30)

These are the equations which are used to find to calculate the matrices
K, M, and G. The solution for ~w and ~φ is then found by solving equation
(21) simultaneously with (26).

5. Accelerating the Convergence of the Periodic Green
Function

The spatial representation of the far-field periodic Green’s function
equation (17) is slowly convergent, with terms decaying in magni-
tude like O(n−1/2) and in this section we show how to accelerate the
convergence. We begin with the asymptotic approximation of the three-
dimensional Green function (15) far from the source point,

G(x, 0; ξ) ∼ − ik
2
H0(k|x − ξ|), as |x− ξ| → ∞, (31)

(Wehausen and Laitone, 1960) where H0 ≡ H
(1)
0 is the Hankel function

of the first kind of order zero (Abramowitz and Stegun, 1970). In (Lin-
ton, 1998) various methods were described in which the convergence of
the periodic Green functions was improved. One such method, which
suits the particular problem being considered here, involves writing the
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12 Wang, Meylan & Porter

periodic Green function as

GP(x; ξ) =
∞∑

m=−∞

[
G (x; ξ + (0,ml)) +

ik

2
H0

(
k
√

(X + cl)2 + Y 2
m

)]
eimσl

−
∞∑

m=−∞

ik

2
H0

(
k
√

(X + cl)2 + Y 2
m

)
eimσl (32)

where c is a numerical smoothing parameter, introduced to avoid the
singularity at x = ξ in the Hankel function, and

X = x− ξ, and Ym = (y − η)−m.
The first term in (32) is now much more rapidly convergent than in its
original form and we use the fact that second slowly convergent sum in
(32) can be transformed to

− i
l

∞∑
m=−∞

eikµm|X+c| eiσmY0

µm
(33)

(Linton, 1998; Jorgenson and Mittra, 1990; Singh et al., 1990) where
σm = σ + 2mπ/l and

µm =

[
1−

(
σm

k

)2
] 1

2

.

Combining equations (32) and (33) we obtain the accelerated version
of the periodic Green’s function

GP(x; ξ) =
∞∑

m=−∞

[
G (x; ξ + (0,ml)) +

ik

2
H0

(
k
√

(X + cl)2 + Y 2
m

)]
eimσl

− i
l

∞∑
m=−∞

eikµm|X+cl|eiσmY0

µm
. (34)

Note that some special combinations of wavelength λ and angle of
incidence θ cause the periodic Green’s function to diverge ((Jorgenson
and Mittra, 1990), (Scott, 1998)). This singularity is closely related to
the diffracted waves and will be explained shortly.

6. The scattered waves

We begin with the accelerated periodic Green function, equation (34)
setting c = 0 and considering the case when X is large (positive or
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negative). We also note that for m sufficiently small or large the Um

will be negative and the corresponding terms will decay. Therefore

GP(x; ξ) ∼ − i
l

N∑
m=−M

eikµm|X| eiσmY0

µm
, as X → ±∞ (35)

where the integers M and N satisfy the following inequalities

σ−M−1 < −k < σ−M ,
σN < k < σN+1.

}
(36)

Equations (36) can be written as

l

2π
(σ + k − 2π) < M <

l

2π
(σ + k) , (37)

and
l

2π
(k − σ) > N >

l

2π
(k − σ − 2π) (38)

(Linton, 1998). It is obvious that GP will diverge if σm = ±k; these
values correspond to cut-off frequencies which are an expected feature
of periodic structures.

6.1. The diffracted waves

The diffracted waves are the plane waves which are observed as x →
±∞. Their amplitude and form are obtained by substituting the limit
of the periodic Green function (35) as x → ±∞ into the boundary
integral equation for the potential (16). This gives us

lim
x→±∞φ

s(x, 0) = − i
l

N∑
m=−M

∫
∆0

eikµm|X|eiσmY0

µm
[kφ(ξ, 0)− w(ξ)] dξ,

(39)
where φs = φ − φin is the scattered wave and is composed of a finite
number of plane waves. For negative x we write

lim
x→−∞φ

s(x, 0) = A−m eikµmxeiσmy, (40)

where the amplitudes A−m are identified from (39) as

A−m = − i

µml

∫
∆0

eikµmξe−iσmη [kφ (ξ)− w(ξ)] dξ. (41)

Likewise as x→∞ it is given by

lim
x→∞φ

s(x, 0) = A+
me−ikµmxeiσmy, (42)
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where A+
m are

A+
m = − i

µml

∫
∆0

e−ikµmξe−iσmη [kφ(ξ, 0)− w(ξ)] dξ. (43)

The diffracted waves propagate at various angles with respect to the
normal direction of the array. The angles of diffraction, ψ±m, are given
by

ψ±m = tan−1
(

σm

±kµm

)
. (44)

Notice that for m = 0 we have

ψ±0 = ±θ, (45)

where θ is the incident angle. This is exactly as expected since we should
always have a transmitted wave which travels in the same direction as
the incident wave and a reflected wave which travels in the negative
incident angle direction.

6.2. The fundamental reflected and transmitted waves

We need to be slightly careful when we determine the wave of order
zero at x→∞ because we have to include the incident wave. There is
always at least one set of propagating waves corresponding to m = 0
which correspond to simple reflection and transmission. The coefficient,
R, for the fundamental reflected wave for the m = 0 mode is given by

R = A−0 = − i

µ0l

∫
∆0

eik(ξ cos θ−η sin θ) [kφ(ξ, 0)− w(ξ)] dξ. (46)

The coefficient, T , for the fundamental transmitted wave for the m = 0
mode is given by

T = 1 +A+
0 = 1− i

µ0l

∫
∆0

e−ik(ξ cos θ+η sin θ) [kφ(ξ, 0)− w(ξ)] dξ. (47)

6.3. Conservation of energy

The diffracted wave, taking into account the correction for T , must
satisfy the energy flux equation. This simply says that the energy of
the incoming wave must be equal to the energy of the outgoing waves.
This gives us

cos θ =
(
|R|2 + |T |2

)
cos θ +

N∑
m=−M
m 6=0

(
|A−m|2 cosψ−m + |A+

m|2 cosψ+
m

)
.

(48)
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Table I. The coefficients A±m for the case of
a dock of geometry 1 with λ = 4, l = 6 and
θ = π/6.

m A−m A+
m

−2 −0.214− 0.042i 0.232 + 0.023i

−1 0.266− 0.268i −0.185 + 0.349i

0 0.631− 0.210i −0.702− 0.141i

The energy balance equation (48) can be used as an accuracy check on
the numerical results.

7. Results

We tested the convergence of our accelerated version of the Green func-
tion and we use c = 0.005 and 44 terms in the spatial representation and
46 terms in the spectral representation of the accelerated GP (equation
(34)) in all our subsequent calculations. We consider four geometries
for the plates which are shown in figure 2.

7.1. Scattering from a Dock

Aside from the energy balance equation or wide spacing, it is difficult
to compare our results to establish their validity. However, there is
one case in which we can make comparisons. If we consider the case
when we have the dock boundary condition under the plate (so that
w = 0) and the plates are square and joined then the problem reduces
to a two dimensional dock problem which is discussed extensively in
(Linton and McIver, 2001). To impose the condition of a dock we simply
solve equation (26) setting ~w to zero (we do not require equation (21)),
choosing plate geometry 1 and setting the plate separation to l = 4.

Figure 3 show the reflection and transmission coefficients for a plate
of geometry 1 with the plate separation l = 4 and the dock boundary
condition (crosses) and the solution to the two-dimensional dock prob-
lem using the method of (Linton and McIver, 2001) (solid and dashed
lines). As expected the results agree. Table I shows the values of the
coefficient A±m for a dock of geometry 1 with λ = 4, l = 6 and θ = π/6.
These results are given to assist in numerical comparisons.
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Table II. The coefficients A±m for the case of
an elastic plate of geometry 1 with β = 0.1,
γ = 0, λ = 4, l = 6 and θ = π/6.

m A−m A+
m

−2 0.001 + 0.014i −0.040− 0.016i

−1 −0.016− 0.008i −0.070− 0.099i

0 −0.058− 0.072i −0.209− 0.582i

7.2. Scattering from Elastic Plates

We begin with a short table of numerical results. Table (II) is equivalent
to Table I except that the plate is now elastic with β = 0.1 and γ = 0.
As expected the reflected energy is less because the waves can propagate
under the elastic plates. Figures 4 and 5 show the amplitudes of the
diffracted waves due to the array as a function of the incident angle
for plates of geometry one and two respectively with β = 0.1, γ = 0,
k = π/2, and l = 6. There are 3 pairs of diffracted waves (including the
reflected-transmitted pair) for any angle. GP diverges if σn = ±k which
for our values of l and k means that θ = ±0.3398. As θ moves across
these points one of the diffracted waves disappears (at ±π/2) and an
other appears (at ∓π/2). In the plots we have plotted A±−2 and A±1 with
the same line style and also A±−1 and A±2 since they represent diffracted
waves which appear and disappear together. Interestingly the result of
doing this is to produce smooth curves for −π/2 < θ < π/2.

Figures 6. to 9 show the real part of the displacement for five plates
(∆j, j = −2,−1, 0, 1, 2) of the array for plates of geometry one to four
respectively, with β = 0.1, γ = 0, and l = 6. The angle of incidence is
θ = π/6. We consider two values of the wavenumber, k = π/2 (a) and
k = π/4 (b). The complex response of the elastic plates is apparent in
these figures as is the coupling between the the water and the plate.

8. Summary

Motivated by the problem of modelling wave propagation in the marginal
ice zone we have presented a solution to the problem of wave scattering
by an infinite array of floating elastic plates. The solution method is
similar to that used to solve for a single plate except that the periodic
Green function must be used. We have shown how the calculation of the
periodic Green function can be accelerated and how the diffracted wave
far from the array can be calculated. We have checked our numerical
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calculations for energy balance and against the limiting case when the
plates are rigid and joined where the solution reduces to that of a
rigid dock. We have also presented solutions for a range of elastic plate
geometries.
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Incident plane wave

Figure 1. A schematic diagram of the periodic array of floating elastic plates.
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Figure 2. Diagram of the four plate geometries for which we will calculate solutions.
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Figure 3. The reflection coefficient R (solid line) and the transmission coefficient T
(dashed line) as a function of k for a two-dimensional dock of length 4 for the incident
angles shown. The crosses are the same problem solved using the three-dimensional
array code with the dock boundary condition and using plates of geometry 1 with
l = 4.
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Figure 4. The diffracted waves A±m for a periodic array of geometry one plates with
k = π/2, l = 6, β = 0.1, γ = 0, and l = 6. The solid line is A±0 , the chained line is
A±−2 and A±1 and the dashed line is A±−1 and A±2 .
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Figure 5. As for figure 4 except that the pate has geometry 2.
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Figure 6. The real part of the displacement w for five plates of geometry one which
are part of a periodic array, l = 6, θ = π/6, β = 0.1, γ = 0 and (a) k = π/2 and (b)
k = π/4 = 8.
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Figure 7. As for figure 6 except that the plate is of geometry two.
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Figure 8. As for figure 6 except that the plate is of geometry three.
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Figure 9. As for figure 6 except that the plate is of geometry four.
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