COUNTING RATIONAL POINTS ON CUBIC HYPERSURFACES: CORRIGENDUM

T. D. BROWNING

There is an error in [1] which invalidates the proof of the main theorem from [1] and also the proof of Lemma 11 from [2]. In attempting to apply Proposition 3 in [1, §5], it is claimed that

\[
\sum_{R_0 < b_1 \leq 2R_0} M_1 \ll R_0^{-1/2} \sum_{R_0 < b_1 \leq 2R_0} \max_{0 < N \ll (HP)^{\theta}} \gcd(b_1, N)^{1/2} \\
\ll R_0^{-1/2} \sum_{R_0 < b_1 \leq 2R_0} \max_{0 < N \ll (HP)^{\theta}} \gcd(b_1, N)^{1/2} \\
\ll R_0^{1/2} (HP)^{\varepsilon}.
\]

The second line is false and in fact one has \(M_1 = 1 \) in Proposition 3. The author is very grateful to Professor Hongze Li for drawing his attention to this flaw.

The error can be fixed by introducing an average over \(b_1 \) into the statement of Proposition 3. This allows us to recover the main theorem in [1], and also [2, Lemma 11], via the following modification.

Proposition 3. Let \(w \in W_n \), let \(\varepsilon > 0 \) and let \(g \in \mathbb{Z}[x_1, \ldots, x_n] \) be a cubic polynomial such that \(g_0 \) is non-singular and \(\|g\|_P \leq H \), for some \(H \leq P \). Let \(\tilde{q} = b_2^2 c^2 d \), where

\[
b_2 := \prod_{p \nmid \tilde{q}^2} p, \quad d := \prod_{\rho \mid \tilde{q}, e \geq 3, 2 \nmid e} p,
\]

and let \(R_0 \geq 1/2 \). Define

\[
V := R_0 \tilde{q} P^{-1} \max \{1, \sqrt{|z| P^3}\}, \quad (4.2)
\]

and

\[
W := V + (e^2 d)^{1/3}, \quad (4.3)
\]

Then there exists a positive number \(\theta \) such that

\[
\sum_{R_0 < b_1 \leq 2R_0} |S_u(b_1 \tilde{q}; z)| \ll H^\theta (R_0 \tilde{q}^{-n/2 + 1} P^{n+\varepsilon} \\
\times (W^n \tilde{M}_1 + R_0 \min\{M_2, M_3\})),
\]

Received 13 December 2012.
where
\[M_1 := \min \left\{ R_0, \frac{P^{3/4}}{q^{1/2}} \right\} \]
and
\[M_2 := c^n \left(1 + \frac{V}{c} \right)^{n-3/2}, \quad M_3 := V^n \left(1 + \frac{c^2d}{V^3} \right)^{n/2}. \]

In order to prove this result we will need a new technical lemma, which allows us to separate variables at a crucial point in our argument.

Lemma A. Let \(h \in \mathbb{R}^n \), let \(M, N > 0 \) and let \(f(m; n) \geq 0 \) for every \(m \in \mathbb{N} \) and \(n \in \mathbb{Z}^n \). Then we have
\[
\sum_{M < m \leq 2M} \sum_{n \in \mathbb{Z}^n \atop |n - mh| \leq N} f(m; n) \leq \sum_{1 \leq I \leq L} \sum_{n \in \mathbb{Z}^n \atop |n - M_i h| \leq 2N} \sum_{M < m \leq 2M} f(m; n),
\]
for appropriate \(M_i \in (M, 2M) \), where \(L = M \min \{1, |h|/N\} + 1 \).

Proof. We break the outer sum into smaller intervals of length \(U \geq 1 \), writing
\[
(M, 2M) = \bigcup_{1 \leq i \leq M/U+1} (M_i, M_{i+1}],
\]
with \(M_i = M + (i - 1)U \). We will take \(U \) to be maximal so that \(U \geq 1 \) and \(|h|U \leq N \). Let \(m \in (M_i, M_{i+1}] \) and note that
\[
N \geq |n - mh| = |n - M_i h + M_i h - mh| \geq ||n - M_i h| - (m - M_i)|h||.
\]
Since \(m - M_i \leq M_{i+1} - M_i = U \), we see that the overall contribution to the left-hand side from such \(m \) is at most
\[
\sum_{M_i < m \leq M_{i+1}} \sum_{n \in \mathbb{Z}^n \atop |n - M_i h| \leq 2N} f(m; n).
\]
We conclude the proof on enlarging the outer sum to all \(m \in (M, 2M) \) and interchanging it with the sum over \(n \). \(\square \)

Proof of Proposition 3. We adopt the equation numbering from [1] and write \(B \) for the set of square-free integers \(b_1 \in (R_0, 2R_0] \). For given \(b_1 \in B \) we write \(q = b_1 \hat{q} \) and \(b = b_1 b_2^2 \). Our chief difficulty in introducing averaging over \(b_1 \) will be that we can no longer merely take a maximum over \(v_0 \ll H P \) in (4.5) in every case. We begin, using (4.5) and (4.11), by noting that
\[
S_u(q; z) \ll P^{-N} + q^{-n} \int_{x \ll P} \left| \sum_{|v - qz \nabla g(x)| \ll P^\epsilon} S_u(q; v) \right| \, dx,
\]
where
\[
S_u(q; v) \ll H^{\theta} b^{(n+1)/2+\epsilon} b_2 \gcd(b_1, u, g^*(v))^{1/2}
\]
\[\times \max_{\tilde{b} \in (\mathbb{Z}/c^2d\mathbb{Z})^*} |S_{\tilde{u} b^2}(c^2d; \tilde{b}v)|. \] \((*) \)
Let $S_2(v_0)$ be the overall contribution obtained by taking $u = 0$ and summing the right-hand side of (*) over $|v - v_0| \leq P^\varepsilon V$ for which $g^*(v) = 0$. Then

$$
\sum_{b_1 \in B} q^{-n} \int_{x \ll P} S_2(qz \nabla g(x)) \, dx \ll \sum_{b_1 \in B} q^{-n} P^n \max_{v_0 \ll HP} S_2(v_0).
$$

But the treatment of $S_2(v_0)$, which is uniform in v_0, is correct and leads via (4.15)–(4.16) to

$$
\sum_{b_1 \in B} q^{-n} \int_{x \ll P} S_2(qz \nabla g(x)) \, dx \ll H^\theta R_0(R_0q)^{-n/2+1} P^{n+\varepsilon} \min\{M_2, M_3\},
$$

the effect of the sum over b_1 being merely to multiply the bound by R_0.

Interchanging the sum over b_1 and the integral over x, we are now led to examine

$$
J = \sum_{b_1 \in B} S_1(b_1 \tilde{q}_z \nabla g(x)),
$$

for given $x \ll P$, where for given $v_0 \in \mathbb{R}^n$, we denote by $S_1(v_0)$ the overall contribution from summing (*) over $|v - v_0| \leq P^\varepsilon V$ for which

$$(u, g^*(v)) \neq (0, 0).$$

We will produce two bounds for J. The first arises from taking

$$
gcd(b_1, u, g^*(v)) \ll b_1
$$

in the existing argument and summing trivially over b_1. This leads to the estimate

$$
J \ll H^\theta R_0(R_0q)^{n/2+1+\varepsilon} W^n. \tag{**}
$$

To deduce an alternative estimate we first analyze

$$
J(v_0) = \sum_{b_1 \in B} S_1(v_0)
$$

$$
\ll H^\theta R_0^{(n+1)/2+\varepsilon} b_2^{n+2+\varepsilon} \sum_{|v - v_0| \leq P^\varepsilon V \atop (u, g^*(v)) \neq (0, 0)} \max_{b \in (\mathbb{Z}/c^2d\mathbb{Z})^*} |S_{ub^2}(c^2d; \tilde{b}v)|
$$

$$
\times \sum_{b_1 \in B} \gcd(b_1, u, g^*(v))^{1/2},
$$

for fixed $v_0 \in \mathbb{R}^n$. The inner sum over b_1 is $O(R_0P^\varepsilon)$, by the third displayed equation on page 107 of [1], whence

$$
J(v_0) \ll H^\theta R_0^{(n+3)/2} b_2^{n+2} P^\varepsilon \sum_{|v - v_0| \leq P^\varepsilon V} \max_{\tilde{b} \in (\mathbb{Z}/c^2d\mathbb{Z})^*} \sum_{a \mod c^2d \atop \gcd(a, c^2d) = 1} |T(a, c^2d; \tilde{b}v)|,
$$

where $T(a, c^2d; \tilde{b}v)$ is given by (4.6). The path is now clear for the final bound

$$
J(v_0) \ll H^\theta R_0^{1/2} (R_0q)^{n/2+1+\varepsilon} W^n,
$$

where
which is obtained by combining [3, Lemmas 11, 15 and 16] in the manner indicated at the close of [3, §5]. In particular, this bound is uniform in \(v_0 \).

Returning to the estimation of \(J \) we apply Lemma A with

\[
M = R_0, \quad N = P^\varepsilon V, \quad h = \tilde{q}z \nabla g(x),
\]

which leads to the bound

\[
J \ll \min\left\{ \frac{R_0 \tilde{q}|z|HP^2}{V} \right\} \max_{v_0 \ll HP} J(v_0)
\]

\[
\ll H \sqrt{\frac{P^{3/2}}{R_0 \tilde{q}}} \max_{v_0 \ll HP} J(v_0),
\]

since

\[
\frac{R_0 \tilde{q}|z|P^2}{V} = \frac{|z|P^3}{\max\{1, \sqrt{|z|P^5}\}} \leq \sqrt{|z|P^3} \leq \sqrt{\frac{P^{3/2}}{R_0 \tilde{q}}},
\]

by (3.2). Drawing our argument together with (**), this therefore shows that

\[
(R_0 \tilde{q})^{-n} \int_{x \ll P} \sum_{b_1 \in B} S_1(q \tilde{z} \nabla g(x)) \, dx \ll H^\theta (R_0 \tilde{q})^{-n/2+1} P^{n+\varepsilon} W^n \tilde{M}_1,
\]

which concludes our proof of the proposition. \(\Box \)

It remains to show that our modified Proposition 3 suffices to prove [1, Proposition 1] and [2, Lemma 11].

Proof of Proposition 1. Let us adopt the equation and page numbering from [1]. We begin as in §5, with the aim of showing (5.2) for \(i = 1, 2 \), under the assumption that \(n \geq 5 \) and \(s(g_0) = -1 \). We supplant Lemma 3 with the modified bound

\[
\#(\tilde{q} = b_2^2 c^2 d : (5.1) holds) \ll R_1 R_2^{1/2} R_3^{1/2}.
\]

The estimation of \(\Sigma_2(R, R; t) = \Sigma_2(R, R) \) in §5.1 begins with (5.5), the estimation of \(\Sigma_{2,b} \) running through unchanged. On the other hand, we now have

\[
\Sigma_{2,a} \ll H^\theta P^{n-3+\varepsilon} M \sum_{\tilde{q}} R_0^{1/2} R^{1-n/2} \max_{|z| \gg (RQ)^{-1}} W^n,
\]

where

\[
M = \min\left\{ R_0^{1/2}, \frac{P^{3/4}}{R^{1/2}} \right\}
\]

and the summation over \(\tilde{q} \) is over all \(\tilde{q} = b_2^2 c^2 d \) such that \(b_2, c, d \) are constrained to lie in the dyadic ranges (5.1). Hence

\[
\Sigma_{2,a} \ll H^\theta \frac{P^{n-3+\varepsilon}}{R^{n/2-3/2}} M (R^{1/2} P^{-1/4} + (R_2 R_3)^{1/3})^n. \tag{***}
\]
This is the same bound for $\Sigma_{2,a}$ that features in the middle of page 107, except that we have an additional factor \mathcal{M}. The term involving $R^{1/2}P^{-1/4}$ is now found to contribute

$$\ll H^{0}P^{3n/4-3/4+\varepsilon} R \ll H^{0}P^{3n/4-3/4+\varepsilon},$$

since $R \leq P^{3/2}$, whereas the term involving $(R_2^2R_3)^{1/3}$ contributes

$$\ll H^{0}P^{n-3+3/4+\varepsilon} (R_2^2R_3)^{n/3} R^{n/2-1} \ll H^{0}P^{n-3+3/4+\varepsilon} R^{1-n/6},$$

since $R_2^2R_3 \ll R$. Both of these are satisfactory, concluding the proof of (5.7).

We now turn to the treatment of $\Sigma_1(R; R; t)$ in §5.2, with the estimation of $\Sigma_{1,b}$ running through unchanged. On the other hand, we now have

$$\Sigma_{1,a} \ll H^{0}P^{n+\varepsilon} t \mathcal{M} \left(\frac{R^{3/2-n/2}(V + (R_2^2R_3)^{1/3})^n}{R_2^{1/2}} \right),$$

where V has order (5.10) and the difference between this and the existing bound for $\Sigma_{1,a}$ is the additional factor \mathcal{M}. Following the argument in §5.2, we need to check that this does not alter the truth of (5.9). Thus, when $t \geq P^{-3}$, we take $\mathcal{M} \leq R^{-1/2}P^{3/4}$ and find that the term involving V makes the contribution

$$\ll H^{0}P^{3n/2+3/4+\varepsilon} t^{1+n/2} R^{1+n/2} \ll H^{0}P^{3n/4-3/4+\varepsilon},$$

since $t \leq (RP^{3/2})^{-1}$. This is satisfactory for $n \geq 5$. Likewise, when $t < P^{-3}$, one obtains a satisfactory contribution. Turning to the contribution from the term involving $(R_2^2R_3)^{1/3}$, we suppose first that $t < P^{-3}$. Taking $R_2 \geq (R_2^2R_3)^{1/3}$, the contribution from this case is found to be

$$\ll H^{0}P^{n+\varepsilon} \mathcal{M} \frac{R^{3/2-n/2} t (R_2^2R_3)^{n/3}}{R_2^{1/2}} \ll H^{0}P^{n-3+\varepsilon} \mathcal{M} R^{3/2-n/2} (R_2^2R_3)^{n/3-1-6}.$$

Taking $\mathcal{M} \leq R^{-1/2}P^{3/4}$ gives $O(H^{0}P^{n-3+3/4+\varepsilon} R^{(5-n)/6})$, which is satisfactory since $n \geq 5$. Next, assuming that $t \geq P^{-3}$ and adjoining Proposition 2, it remains to analyze the contribution

$$\ll H^{0}P^{n+\varepsilon} \min \left\{ \mathcal{M} R^{3/2-n/2} t (R_2^2R_3)^{n/3-1-6}, \frac{R_2^{2-n/8} t^{1-n/8}}{(R_2^2R_3)^{2/3} P^{3n/8}} \right\}. \tag{****}$$

For $n \geq 6$ we apply the inequality $\min \{A, B\} \leq A^{1/3}B^{2/3}$, to get the overall contribution $O(H^{0}P^{n-2+\varepsilon} \mathcal{M}^{1/3}E_n)$, with E_n given at the bottom of page 109. When $n \geq 13$ we take $t \geq P^{-3}$, getting

$$\mathcal{M}^{1/3}E_n \ll P^{-3/4} R^{7/6-5n/36} \ll 1.$$
When $6 \leq n \leq 12$ we take $t \leq (RP^{3/2})^{-1}$ to deduce that

$$\mathcal{M}^{1/3} E_n \ll P^{3/4-n/8} R^{1/6-n/18} \ll 1.$$

Finally we dispatch the case $n = 5$, for which we return to (****) and take $t \leq (RP^{3/2})^{-1}$. This leads to the contribution

$$\ll H^\theta P^{3+\varepsilon} \times \min \left\{ P^{1/2} R^{-2} R_0^{1/2} (R_2^2 R_3)^{3/2}, P^{5/4} R^{-5/2} (R_2^2 R_3)^{3/2}, \frac{P^{-7/16} R}{(R_2^2 R_3)^{2/3}} \right\}$$

$$\ll H^\theta P^{3+\varepsilon} \min \left\{ P^{1/2} R^{-3/2} R_2^2 R_3, P^{5/4} R^{-5/2} (R_2^2 R_3)^{3/2}, \frac{P^{-7/16} R}{(R_2^2 R_3)^{2/3}} \right\}.$$

Taking $\min \{A, B, C\} \leq A^{17/75} B^{2/15} C^{16/25}$ leads to the contribution $O(H^\theta p^{3+\varepsilon} R^{-1/30})$. This is satisfactory and so concludes the proof of Proposition 1 in [1].

Proof of Lemma 11. We now adopt the equation and page numbering from [2]. The treatments of $\Sigma_{1,b}$ and $\Sigma_{2,b}$ go through unchanged, leaving us the task of showing that

$$\Sigma_{i,a} \ll H^\theta P^{n-5/2+\varepsilon},$$

for $i = 1, 2$ and $n \geq 8$. Beginning with $i = 2$, it follows from (***), that our estimate at the top of page 866 gets replaced by

$$\Sigma_{2,a} \ll H^\theta P^{3n/4-3/4+\varepsilon} + H^\theta \frac{P^{n-3+\varepsilon} (R_2^2 R_3)^{n/3}}{R^{n/2-3/2}} \min \left\{ R_0^{1/2}, \frac{P^{3/4}}{R^{1/2}} \right\}.$$

The first term is satisfactory. We take $\min \{\cdot, \cdot\} \leq R_0^{1/2}$ in the second term and note that $R_0^{1/2} (R_2^2 R_3)^{n/3} \ll R^{n/3}$. Thus the second term is

$$\ll H^\theta P^{n-3+\varepsilon} R^{-n/6+3/2},$$

which is satisfactory for $n \geq 8$, since $R \leq P^{3/2}$.

Turning to $i = 1$, our analogue of the third displayed equation on page 866 is

$$\Sigma_{1,a} \ll H^\theta P^{\varepsilon} (P^{3n/4-3/4} + P^{n-3} \mathcal{M} R^{3/2-n/2} (R_2^2 R_3)^{n/3-1/6} + \mathcal{E}),$$

where, in view of (****),

$$\mathcal{E} = P^n \min \left\{ \mathcal{M} R^{3/2-n/2} t (R_2^2 R_3)^{n/3-1/6}, \frac{R^{2-n/8} t^{1-n/8}}{(R_2^2 R_3)^{2/3} P^{3n/8}} \right\}.$$

In our bound for $\Sigma_{1,a}$ the second and third terms correspond to the contribution from the term involving $(R_2^2 R_3)^{1/3}$, with the second dealing with the case $t < P^{-3}$ and the third dealing with the case $t \geq P^{-3}$. The first term
is satisfactory. Taking $\mathcal{M} \leq R_0^{1/2}$ shows that the second term makes the satisfactory contribution
\[
\ll H^\theta P^{n-3+\varepsilon} R^{3/2-n/2} R_0^{1/2} (R_2^2 R_3) n/3-1/6 \ll H^\theta P^{n-3+\varepsilon} R^{4/3-n/6}.
\]

We handle \mathcal{E} as in [1, §5.2] by applying the inequality $\min\{A, B\} \leq A^{1/3} B^{2/3}$, to get the overall contribution $O(H^\theta P^{n-3+\varepsilon} \mathcal{M}^{1/3} E_n)$, with
\[
E_n = P^{2-n/4} t^{1-n/12} R^{11/6-n/4} (R_2^2 R_3) n/9-1/2.
\]

We need to check that $P^{1/2} \mathcal{M}^{1/3} E_n \ll 1$ for $n \geq 8$. When $n \geq 13$ we take $t \geq P^{-3}$, getting
\[
P^{1/2} \mathcal{M}^{1/3} E_n \ll P^{-1/4} R^{7/6-5n/36} \ll 1.
\]

When $8 \leq n \leq 12$ we take $t \leq (RP^{3/2})^{-1}$ to deduce that
\[
P^{1/2} \mathcal{M}^{1/3} E_n \ll R_0^{1/6} P^{1-n/8} R^{5/6-n/6} (R_2^2 R_3) n/9-1/2 \ll P^{1-n/8} R^{1/3-n/18} \ll 1.
\]

This is satisfactory and so concludes the proof of Lemma 11 in [2].

References

T. D. Browning,
School of Mathematics,
University of Bristol,
Bristol BS8 1TW, U.K.
E-mail: t.d.browning@bristol.ac.uk