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Hausdorff measure and dimension

Let E ⊆ Rn. (Note: throughout this talk we will assume all such
sets are ‘reasonable’, i.e. Borel or analytic.) For s > 0, δ > 0 let

Hs
δ(E ) = inf

{ ∞∑
i=1

(diamUi )
s : E ⊆

∞⋃
i=1

Ui , diamUi ≤ δ
}
.

Then
Hs(E ) = lim

δ→0
Hs
δ(E )

is the s-dimensional Hausdorff measure of E .

The Hausdorff dimension of E ⊂ Rn is

dimH E = inf{s : Hs(E ) = 0} = sup{s : Hs(E ) =∞}.
If you prefer:

dimH E = inf
{
s : for all ε > 0 there is a countable cover

{Ui} of E such that
∑
i

(diamUi )
s < ε

}
.
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Von Koch curves of various dimensions
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John Marstrand’s 1954 paper

• The paper has been highly cited in recent years, usually for the
‘projection theorems’ in the plane:

Theorem I Any s-set whose dimension is greater than unity projects
into a set of positive Lebesgue measure in almost all directions.

Theorem II Any s-set whose dimension does not exceed unity
projects into a set of dimension s in almost all directions.
[dimension = Hausdorff; s-set = Borel set with 0 < Hs(E ) <∞]
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John Marstrand’s 1954 paper

• The paper notes that, because of a result of Davies (1952) the
theorems can be expressed in terms of dimension:

Theorem I Any set whose dimension is greater than unity projects
into a set of positive Lebesgue measure in almost all directions.

Theorem II Any set of dimension s that does not exceed
unity projects into a set of Hausdorff dimension s in almost all
directions.

A talk to mark the 60th anniversary of John Marstrand’s fundamental paper Kenneth FalconerA Selective Survey of Projections



• It follows easily from the definitions that for E ⊂ Rn

dimH projθE ≤ min{dimH E , 1} for all θ. The almost sure lower
bound requires more work.

• The paper was the first time the interplay between the geometry
and dimensional properties of general ‘fractals’ were investigated –
20 years before the word ‘fractal’ was coined. ‘Fractal Geometry’ is
now a flourishing research area.

• However, the paper attracted little attention for 30 years, except:

– The natural analogues for projections of sets in Rn to
m-dimensional subspaces were proved by Mattila (1975).

– Kaufman (1968) gave a new proof of the Theorems
using potential theory.

• In the last 30 years the paper has had an vast number of
citations, with many variants, generalisations and specialisations
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John Marstrand’s 1954 paper - content

• Projection theorems

+ much more ...

• Intersection with lines – almost every line through almost every
point of an s-set E (s > 1) intersects E in a set of dimension s − 1.

• Projection of sets from points

• Examples to show results are best possible

• The density limr→0Hs(E ∩ B(x , r))/(2r)s of an s-set E ⊂ R2

can only exist and equal 1 on a set of positive Hs -measure if
s = 0, 1 or 2

• Bounds on angular densities (i.e. densities in a sector)

• Discussion of weak tangents to sets
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Energy characterisation of Hausdorff dimension

Marstrand’s proof was geometric and quite intricate. Kaufman’s
(1968) potential theoretic proof has become the standard approach
for such problems.

This depends on the following energy characterisation of Hausdorff
dimension:

dimH E = sup
{
s : E supports a positive finite measure

µ such that

∫ ∫
dµ(x)dµ(y)

|x − y |s
<∞

}
.
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Kaufman’s proof of Marstrand’s projection theorem

Suppose dimH E > s where s < 1. Take a measure µ on E such that∫ ∫
dµ(x)dµ(y)

|x − y |s
<∞.

Write µθ for the projection of µ onto the line in direction θ, so∫∞
−∞ f (t)dµθ(t) =

∫
E
f (x · θ)dµ(x) for continuous f . Then∫ π

0

[ ∫ ∞
−∞

∫ ∞
−∞

dµθ(t)dµθ(u)

|t − u|s

]
dθ =

∫ π

0

[ ∫
E

∫
E

dµ(x)dµ(y)

|x · θ − y · θ|s

]
dθ

=

∫
E

∫
E

∫ π

0

dθ

|ux−y · θ|s
dµ(x)dµ(y)

|x − y |s

≤ c

∫
E

∫
E

dµ(x)dµ(y)

|x − y |s
<∞

Hence for almost all θ,

∫ ∞
−∞

∫ ∞
−∞

dµθ(t)dµθ(u)

|t − u|s
<∞, so, since µθ is

supported by projθE , we conclude dimH projθE ≥ s. �

A talk to mark the 60th anniversary of John Marstrand’s fundamental paper Kenneth FalconerA Selective Survey of Projections



What about when dimH E = 1?

Marstrand’s theorem does not say anything about the Lebesgue
measure of projections of E when dimH E = 1.

However, Besicovitch (1928, 1938, 1939) had already considered
projections of sets of positive finite 1-dimensional Hausdorff
measure in the plane:

• If E ⊆ R2 and 0 < H1(E ) <∞, then E may be decomposed into
a regular part ER and an irregular part EI , so E = ER ∪ EI where

ER is a subset of a countable number of rectifiable curves
EI intersects every rectifiable curve in length 0.

• Then
L(projθER) > 0 for all except at most one value of θ

(provided H1(ER) > 0)
L(projθEI ) = 0 for almost all θ.
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What if dimH E = 1 and H1(E ) =∞?

Almost anything can happen!

Theorem Given a set Eθ for each 0 ≤ θ < π
(+ measurability condition), there exists a Borel set E ⊂ R2 such
that L(Eθ4projθE ) = 0 for almost all directions θ.

This follows by dualising a result of Davies (1952) on covering sets
by lines. Alternatively, there is a direct ‘iterated venetian blind’
construction.

Higher dimensional analogues are also valid.
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Digital sundial theorem (F, 1986)

Given a subset EV of each 2-dimensional subspace V of R3

(+ measurability condition), there exists a Borel set E ⊂ R3 such
that for almost all subspaces V L2(EV4projVE ) = 0.
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Packing measure and dimension

Packing dimension was introduced by Tricot & Taylor (1982) as a ‘dual’
to Hausdorff dimension.

For s > 0, δ > 0,E ⊆ Rn, let

Ps
δ(E ) = sup

{ ∞∑
i=1

(diamBi )
s : Bi disjoint balls with centres in E , diamBi ≤ δ

}
.

Then
Ps
0(E ) = lim

δ→0
Ps
δ(E )

and

Ps(E ) = inf
{ ∞∑

i=1

Ps
0(Ei ) : E ⊆

∞⋃
i=1

Ei}

is the s-dimensional packing measure of E .

The packing dimension of E ⊆ Rn is

dimP E = inf{s : Ps(E ) = 0} = sup{s : Ps(E ) =∞}.
For all E ⊆ Rn

dimH E ≤ dimP E .
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Projections and packing dimension

• Projection theorems for packing dimension are more subtle than
for Hausdorff dimension. In particular packing dimension is not a.s.
preserved under projections:

• For E ⊆ Rn, for projection onto almost all m-dimensional
subspaces V ,

dimP E

1 + (1/m − 1/n) dimP E
≤ dimP projVE ≤ min{dimP E ,m}

(Järvenpää, 1994; Howroyd & F 1996)

• Is dimP projVE constant for almost all V ?

• Yes! – Given E ⊆ Rn, dimP projVE = dimm
P E for almost all

m-dimensional subspaces V , where dims
P E is the packing

dimension profile of E , reflecting how E typically appears when
examined from an s-dimensional viewpoint. (Howroyd & F 1997)
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Generalized projections and transversality

• The projection theorems may be developed to a much more
general setting.

• Consider a family of maps πθ : Rn → Rm for θ in a suitable
parameter space. If

∫
dθ

|πθ(x)−πθ(y)|s ≤
c

|x−y |s then Kaufman’s

argument goes through to give dimH πθE = min{m, dimH E} for
almost all θ.

• The family is πθ is transversal if |πθ(x)− πθ(y)|/|x − y | and
∂
∂θ |πθ(x)− πθ(y)|/|x − y | are not simultaneously small.

Peres & Schlag (2000) showed that for a transversal family

dimH πθ(E ) = min{m, dimH E} for almost all θ.

• Method generalises the potential-theoretic and Fourier methods
beyond recognition, to get information on exceptional sets,
function spaces, etc.

• Many applications, including Bernoulli convolutions, sums of
Cantor sets, pinned distance sets, etc.
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Size of exceptional sets

Marstrand’s theorem tells nothing about which particular directions
θ have projections with dimension smaller than normal, i.e. when
dimH projθE < min{dimH E , 1}.

The set shown has dimension log 4/ log 5/2 = 1.51, but with some
projections of dimension < 1.
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Size of exceptional sets

However, the set of exceptional directions can’t be too big:

• (Kaufman, 1968) If E ⊆ R2 and dimH E ≤ 1,

dimH{θ : dimH projθE < dimH E} ≤ dimH E .

– Follows by adapting Kaufman’s proof above, since if
s < dimH E < t and T is any set of θ of dimension t, we may find
a measure ν supported by T such that∫
T |ux−y · θ|

−sdν(θ) ≤ M <∞.
Then dimH projθE ≥ s for ν almost all θ ∈ T .

• (F, 1982) If E ⊆ R2 and dimH E > 1,

dimH{θ : L(projθE ) = 0} ≤ 2− dimH E .

– all known proofs involve Fourier transforms.
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Projections of specific sets

Recently projections and the exceptional set of directions have
been investigated for specific sets where it is sometimes possible to
identify the exceptional directions

– or perhaps to show that there aren’t any exceptional directions
at all.
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Self-similar sets

A family of contracting similarities {S1, . . . ,Sm} on Rn defines a unique
non-empty compact set E such that E = ∪mi=1Si (E ). The set E is called
self-similar.

If Si has similarity ratio ri then dimH E = s where
∑m

i=1 r
s
i = 1, provided

there is ‘not too much overlapping’.
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Projections of specific self-similar sets

The behaviour of the dimensions dimH projθE as θ varies has been
investigated in certain specific cases. For example:

Let E be the 1-dimensional
Sierṕınski triangle, so dimH E = 1.

For projections in direction θ:
(a) if θ = p/q is rational,

and p + q 6≡ 0 (mod 3)
dimH projθE < 1;

and p + q ≡ 0 (mod 3)
projθE contains an interval,

(b) if θ is irrational,
L(projθE ) = 0.

(Kenyon, 1997)

Similar investigations have been done for certain other ‘regular’
sets.
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Self-similar sets with rotations

Now suppose the similarities on
Rn may be written

Si (x) = riOi (x) + ti
where 0 < ri < 1 is the scale
factor, Oi is a rotation and ti is
a translation. We say that the
family {S1, . . . ,Sm} has dense
rotations if the group generated
by {O1, . . . ,Om} is dense in the
SO(n,R).

Theorem (Peres & Shmerkin, 2008, Hochman & Shmerkin, 2012)
Let E ⊂ Rn be a self-similar set defined by a family {S1, . . . ,Sm}
of similarities with dense rotations. Then
dimH projVE = min{dimH E ,m} for all m-dimensional subspaces
V .
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Self-similar sets with rotations

Theorem (Peres & Shmerkin, 2008, Hochman & Shmerkin, 2012)
Let E ⊂ Rn be a self-similar set defined by a family {S1, . . . ,Sm}
of similarities with dense rotations. Then
dimH projVE = min{dimH E ,m} for all m-dimensional subspaces
V .

The proof of this involves setting up a CP-chain (‘conditional
probability’), that is a measure-valued Markov process representing
the renormalised measures scaled up about points of the set E .
The chain is ergodic, on a space which includes Haar measure on
SO(n,R) as a factor. Projecting the measure onto subspaces gives
an ergodic sequence of measures on each subspace. An
entropy-like expression which is continuous with respect to
subspaces and approximates Hausdorff dimension from below gives
the continuity of the dimension of projection, and so extends
‘almost all θ’ to ‘all θ’ in Marstrand’s Theorem.
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Fractal percolation

Squares are repeatedly divided into M ×M subsquares and each
square is retained independently with probability p.

Percolation process The percolation set

Conditional on non-extinction this yields a percolation set Ep of
dimension a.s. log 9p/ log 3 (= 1.54 if p = 0.6 as in the picture).
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Fractal percolation

Let Ep ⊆ R2 be the random percolation set based on an M ×M
subdivision with each square retained with probability p.

• If p > 1/M2 then there is a positive probability of Ep 6= ∅, in
which case dimH Ep = logM2p/ logM almost surely.

• It is immediate from Marstrand’s theorems that, almost surely
conditional on Ep 6= ∅, for almost all θ,

dimH projθEp = min{dimH Ep, 1};

if logM2p/ logM > 1 then L(projθEp) > 0.

Theorem (Rams & Simon, 2013, 2014) Almost surely, conditional
on Ep 6= ∅, for all θ

dimH projθEp = min{dimH Ep, 1};

if logM2p/ logM > 1 then projθEp contains an interval.
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Fractal percolation on a self-similar set with rotations

Now let E ⊂ Rn be a self-similar set defined by a family
{S1, . . . ,Sm} of similarities with dense rotations. E has a natural
hierarchical construction.

Perform the percolation process on E with respect to its
hierarchical construction, with each similar component retained
independently with probability p, to give a percolation set Ep ⊆ E .
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Fractal percolation on a self-similar set with rotations

Theorem (Jin & F, 2014) Conditional on Ep 6= ∅, almost surely, for
all θ

dimH projθEp = min{dimH Ep, 1}.

The proof uses ergodic theory on the space (ΛN,Ω∗,SO(n,R)).
Here Λ = {1, 2, . . . ,m} and Ω∗ is a product of copies of the
probability space underlying the percolation process, indexed by
∪∞k=1Λk . The map

T : (i, ωj, g) 7→ (σ(i), ωi|1j, gOi|1)

is invariant, ergodic and mixing with respect to an appropriate
measure (Peyrière × Haar). Then, with M : (i, ωj, g) 7→ gν, we get
{M ◦ T n}n a stationary ergodic sequence.
Then CP-trees are used again to get almost sure continuity of the
projected measures.
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Other recent extensions and variants

• Projections onto restricted families of subspaces (Orponen,
Fässler, Järvenpää, Keleti, Leikas, ...)

• Projections in infinite dimensional spaces (Hunt & Kaloshin)

• Projections in Heisenberg groups (Mattila, Balogh, Tyson, ...)

• Applications to sums and products (projections of E × F
correspond to sums E + λF ) (Moreira, Lima, Peres, Shmerkin, ...)

• Equal dimensions of projections in all directions (apart from
obvious exceptions) for products of Cantor sets, and of self-affine
carpets (Ferguson, Jordan, Shmerkin, Peres)

• Natural projection from its tangent bundle to a Riemann surface
(Ledrapier, Lindenstrauss, Järvenpää, Leikas ,...)

• Multifractal projection results (Olsen, Barral, Bhouri, ...)

• ......
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